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Abstract. In the presence of economic globalization joint venture is one of the most common and effective means
of conducting business internationally. By building joint ventures companies form strategic alliances that help
them to enter new economic markets and further their business goals in a cooperative effort without loosing own
independence. Upon building a joint venture company, two or more ”parent” companies agree to share capital,
technology, human ressources, risks and rewards in a formation of a new entity under shared control by a ”board
of directors”, which consists of representatives of ”parent” companies. The establishment of such shared control is
tricky and relies generally on the ”trust, but verify” relationship, i.e., companies trust the information they receive
from prospective partners, but it is a good business practice to verify the facts. In this paper we focus on the issue
of the shared financial control in a joint venture. We consider the mostly preferred form of the control where
every member of the board is able to issue payment orders on behalf of the joint venture, but at the same time
representatives of other companies, should be able to monitor the accounting to achieve fairness in the spending
of shared funds. For this form of the shared control we propose a new secure group-oriented signature scheme,
called a democratic group signature scheme, which results from the modification of the standard notion of group
signatures by eliminating the role of the group manager. We also show that existing schemes, e.g., ring and group
signatures, cannot be used to realize the required shared control based on the ”trust, but verify” relationship.
Key words: group-oriented signatures, ”trust, but verify”, anonymity, joint membership control, individual tracing

1 Introduction

Joint ventures (JV) become an increasingly common way for companies to form strategic alliances for
the means of economic expansion and realization of new business plans, such as entering new economic
markets, developement of new technology or conducting trade internationally. A joint venture arrangement
between partner companies has one of the following two forms: a joint venture agreement (JVA) or a joint
venture company (JVCo). JVA is a simple agreement between participating companies which determines
what each will bring to and gain from the project without forming a separate legal entity, and is considered
to be a ”once more” arrangement that is established for the mutual benefit of partners, e.g., arrangement on
a joint distribution network or shared product facilities. JVCo goes a step further in setting up a company in
order to procure the project. It is usually specified by own trade and business plans, has some independence
to pursue own commercial strategy with agreed objectives, and is able to access the market with own trade
mark.

Depending on the arrangement the JVCo may be open for other companies to join if they fulfill certain
criteria and agree to sign the contract. Usually, current JV partners decide together whether a new company
is allowed to join the JVCo. Similarly, a company may resign from the JV contract and leave the JVCo.
Criteria for join and leave are usually defined in a common policy which is agreed by ”parent” companies
and is part of the signed contract.

Where a JV company is set up the control of the company is generally proportional to the percentage of
shares held by each ”parent” company, which in turn reflects the investment by the companies, respectively.
The so-called ”board of directors” of JVCo is legally responsible for the supervision/strategic plans and
active management of JVCo on the basis of a shared control, and consists usually of representatives of
”parent” companies. The organization of the shared control in JVCo is a challenging task, since a specific
trust relationship between ”parent” companies, called ”trust, but verify” has to be considered. The ”trust,
but verify” relationship is followed from the natural objectives of ”parent” companies to gain as much as
possible from entering a joint venture while keeping the occuring expenses as little as possible. Therefore,



by the means of cooperation the JV partners generally trust the information they receive from each other,
but should be able to verify the facts.

Our paper focuses on the establishment of the shared financial control in a JVCo, however, we remark that
our model may also be utilized for other shared control issues. We consider a simpler case of a JV arrange-
ment where all ”parent” companies provide equal contribution to the shared budget, and have, therefore, an
equal number of representatives in the board, e.g., one. The financial control in the JVCo includes among
other topics the issuing of payment orders on behalf of JVCo and the monitoring of the accounting of the
company. We are not interested in the organization of the JVCo, e.g., whether there is a separate finance
department, and assume for simplicity that the responsibility for the financial control is given to the direc-
tors, i.e., members of the board. The organization of the financial control in JVCo is a subject of the JV
contract which is agreed and signed by all ”partner” companies. Since all JV companies have individual
arrangements there is no common form which is applied in all JVCos. However, the following form of the
shared financial control seems to be mostly fair for all JV participants, and is, therefore, preferred in the
most arrangements: ”parent” companies agree that each of them independently is allowed to issue payment
orders from the shared budget of the JVCo for the amount which does not exceed their own contribution to
this budget. Obviously, this form alone provides less flexibility, since sometimes companies need to make
investments which are higher than their contributions. For this case an additional clause is usually taken
into the JV arrangement: whenether a company issues a payment order for the amount which exceeds own
contribution, it is obliged to refund the difference to the JVCo’s budget.

In this paper we propose a security model for the described form of the financial control in JVCos. Ac-
cording to the ”trust, but verify” relationship ”parent” companies should be able to monitor the accounting
of the JVCo, which in turn means that representatives in the ”board of directors” should be given a power
for the independent verification of issued payment orders signed by other directors and ability to create
own view on the actual state of all JV partners’ debts to the shared JVCo’s budget.

Another security aspect of this form of the shared financial control is the anonymity of directors who is-
sue the payment orders. For a JVCo the own establishment on the market is of great importance, especially,
when JVCo enters the market with its own trademark. Hence, it is important to hide the information which
concerns the affiliation of the representative who has issued the payment order to his ”parent” company
from parties who get this money and are not involved in the JV arrangement. In other words, if a third
party receives a payment order signed on behalf of the JVCo then it must not be able to link the signa-
ture to the ”parent” company whose representative has signed the order. Note that for the means of the
shared monitoring of accounting other JV partners should be able to identify the ”parent” company (i.e.,
its representative) from the signature of the payment order.

Our model consists of a new group-oriented signature scheme, which results from the modification of
the standard notion of group signatures. The main changes to the classical model of group signatures are:
the absence of a central trusted authority (usually called a group manager), and the ability of the individual
tracing of signatures, i.e., every member of the group (director) is able to open signatures created by other
members. In Section 1.1 we describe in detail why the standard model of group signatures, and another
related group-oriented signature schemes called ring signatures are not applicable to the focused scenario
of the shared financial control in JVCos.

1.1 Related Work

The concept of group signatures was first introduced by Chaum and van Heyst [13], and further studied
and improved in [11], [10], [3], [4], [15], [7], [6], [8], [9]. Classical group signatures allow group members
to sign messages anonymously on behalf of the group. The anonymity is provided not only against non-
members, but also against other group members. However, there exists a designated authority, called group
manager that initializes the scheme, adds new group members, and is able to open group signatures, i.e.,
reveal the signer’s identity from the signature. Some schemes, like [10] distinguish between two group
managers with respect to their responsibilities, i.e., membership manager that sets up the scheme and
controls admission to the group, and revocation manager that opens (traces) the signatures. Group signature
schemes can be used by employees of a company to sign documents on behalf of the company, or in



electronic voting and bidding scenarios. Bellare el. al. have described in [4] and [6] formal models and
security requirements for classical static and dynamic group signature schemes.

In the following we argue that this standard notion of group signatures is not applicable to the scenario of
the shared financial control in a JVCo described in the introduction. The most disturbing factor is the role
of the group manager that must be trusted by all group members. Assume that a classical group signature
scheme is applied for the financial control in a JVCo. Then, there is a sole member (group manager) of
the ”board of directors” who according to the group signature scheme is given a power to decide about the
membership of JV partners and is able to verify all payment orders issued by other directors on behalf of
the JVCo, i.e., open corresponding signatures. Obviously, it is be difficult to agree whose representative
should take this role, because all ”parent” companies have equal rights. Even if such group manager is
chosen, the rest of the board must trust him not to compromise the scheme, e.g., not to add other members
to the group. Additionally, this kind of the centralized control contradicts to the idea of the shared financial
control, because other directors are not be able to independently monitor the accounting of the shared
budget. Surely, the group manager can be asked to open every signature and send a notification containing
the signer’s identity to every other member. However, this does not only contradict to the ”trust, but verify”
relationship, because other members have to trust that the information provided by the group manager is
correct, but is also inefficient, because the group manager is the only to perform computations needed
for the revocation (tracing), and it also becomes a ”single point of failure”. Additional drawbacks of such
centralized management get clear in the context of the dynamic changes. Since ”parent” companies may
resign from a JVCo there is a problem in case where the group manager represents a leaving JV partner. In
this case another group manager must be chosen and the scheme has to be reinitialized, because classical
group signature schemes assume that the group manager stays continuously in the group, and do not provide
mechanisms to handle the opposite case. For these reasons classical group signatures cannot be effectively
applied in the described scenario, and do not satisfy the fairness condition stated by the ”trust, but verify”
relationship.

Ring signatures are another kind of group-oriented signature schemes which we consider in the context
of the shared financial control in JV companies. The concept of ring signatures introduced by Rivest et. al.
in [20] and developed further in [1], [21] and [18], has some significant differencies to the classical group
signature schemes. In ring signature schemes there is no group initialization and no group manager. Thus,
members do not have to perform any interactive protocols (i.e., to cooperate) to initialize the group in dif-
ference to classical group signature schemes, where group members usually perform an interactive protocol
with the group manager to obtain their membership certificates that are then used in the generation of the
group signatures. Thus, in the ring signature schemes any participant may specify a set of possible signers
(usually by their public keys) and produce ring signatures that convince any verifier that the author belongs
to this set without revealing any information that may be used to identify the author. The most important
difference besides the absence of cooperation and the absence of the group manager is the requirement of
unconditional anonymity, i.e., there is no revocation (tracing) authority which is able to reveal the signer’s
identity from the ring signature.

This requirement of unconditional anonymity makes the use of ring signatures in the described scenario
of the shared control impossible. It disallows the independent monitoring of the accounting and does not
guarrantee that the shared capital is spent fairly by individual ”parent” companies. The fact that ring sig-
natures cannot be opened allows directors to sign payment orders which cannot be linked to their ”parent”
companies. Hence, directors must trust each other not to cheat while spending the shared capital, and truly
refund the differences to the JVCo’s budget. Obviously, this contradicts to the required ”trust, but verify”
relationship, because no independent verification is possible. Additionally, the absence of the group initial-
ization and the fact that every member can define own set of possible signers makes the establishment of a
JVCo as an independent company more difficult.

There exist currently no group-oriented signature schemes which can be effectively used for the means
of the shared control based on the ”trust, but verify” relationship. Therefore, in our model we design a
new scheme, which includes some properties of the existing schemes and states new requirements, such as



individual tracing of signatures, and cooperation of participants for the initialization of the scheme, and its
maintenance upon possible dynamic changes.

2 Democratic Group Signatures

In this section we present our model of a group-oriented signature scheme which can be used for the means
of the described scenario of the shared control based on the ”trust, but verify” relationship. To emphasize
that the ”parent” companies have equal rights in the formation and extension of a JVCo, in the issuing of
payment orders, and in the monitoring of the accounting we call our scheme a democratic group signature
scheme (DGS).

2.1 Preliminaries

Roles and Definitions. In order to link the description of our model to the example of the shared financial
control in the introduction we use the following notations: group stands for the ”board of directors” of a
JV company; group members are representatives of ”parent” companies in the board.

Dynamic Changes. As already described in the introduction a democratic group signature scheme has to
handle the following dynamic events: join and leave of JV partners. Whenether a new ”parent” company
signs the JV arrangement it provides its own representative to the board, i.e., a new member is added to the
group. Similar, if a JV partner resigns from the contract its representative leaves the board, i.e., a current
member is excluded from the group. In our model we assume that group members are notified about the
occured dynamic changes.

The individual tracing property of democratic group signatures together with possible dynamic changes
imply two additional (in the following informally defined) security requirements in the context of signer’s
anonymity: (1) a joining member must not be able to open any group signature which has been produced
by a group member before the join event took place, and (2) a leaving member must not be able to open
any group signature which is produced by a group member after the exclusion process. More specific, only
if users i and j are members during the period between two consecutive changes of the group formation,
then member i can open all signatures that member j has generated within this period, and vice versa.
Note that as a consequence of these requirements, all relevant group secrets that can be used to open group
signatures have to be changed after every dynamic change of the group formation. A trivial solution is
to reinitialize the group after any change of the group formation. Intuitively, this is inefficient because of
additional interaction and computation costs. A more intelligent solution is to provide auxiliary protocols
to hande join and leave events more efficiently, i.e., with less interaction and computation costs compared
to a full reinitialization.

Trust Relationship. As mentioned in the introduction democratic group signatures are based on the ”trust,
but verify” relationship between group members. Since tracing rights are given individually to every group
member and anonymity is an issue, every group member is trusted not to reveal secrets that may be used
to open group signatures to any other party. However, any group member may want to frame any other
group member into signing a message, or generate a group signature that cannot be opened. This attack
is imaginable in JV companies where partners may try to cheat and spend more money from the JVCo’s
budget without refunding the difference to the budget. Additionally, some JV partners may try to collude
against other JV partners and help each other to break the contract rules. In this case we assume that there
is at least one group member who is honest. Obviously, this is a realistic assumption since a collusion
which consists of all JV partners does not make any sense. Further, we assume that every member is able
to authenticate own messages during the interaction with other members. This can be realized using public
key certificates.

Counter. In order to simplify the handling of occuring dynamic events we distinguish between continuously
changed group formations using a counter value t that consecutively counts occuring dynamic events. The
counter is initialized as t = 0 after the initial group formation and increased by one after every further



dynamic event. Thus, every value t corresponds to the group formation at the moment t has been set.
Therefore, all parameters of our democratic group signature scheme are bound to a certain value t and may
be changed with respect to the changes in the group formation.

2.2 Protocols and Algorithms
In this section we describe protocols and algorithms of a democratic group signature scheme. We denote
by Y[t] the group public key, by xi[t] the secret signing key of member i, and by x̂[t] the tracing trapdoor
that correspond to a group formation identified by the counter value t, e.g., Y[0] and Y[1] denote the group
public keys of the initial formation (t = 0) and after the first dynamic event (t = 1), respectively.
Definition 1. A democratic group signature scheme DGS = {Setup(), Join(), Leave(), Sign(),
V erify(), Trace(), V erifyTrace()} is a digital signature scheme that consists of:

– A randomized protocol Setup() between n cooperating users for the initial formation of the group.
The public output is the group public key Y[0]. The private outputs are the individual secret signing
keys xi[0] for each member i, i ∈ [1, n] and the tracing trapdoor x̂[0].

– A randomized protocol Join() between current group members and a joining member. Let t be a
current counter value, n the number of current group members. The public output is the updated public
key Y[t+1]. The private outputs are possibly updated secret signing keys xi[t+1], i ∈ [1, n + 1] for all
members (including the new member) and the updated tracing trapdoor x̂[t+1].

– A randomized protocol Leave() between remaining group members. Let t be a current counter value,
n−1 the number of remaining group members. The public output is the updated public key Y[t+1]. The
private outputs are updated secret signing keys xi[t+1], i ∈ [1, n − 1] for all remaining members and
the updated tracing trapdoor x̂[t+1].

– A randomized algorithm Sign() that on input a secret signing key xi[t], a message m, and the group
public key Y[t] outputs a signature σ.

– A deterministic algorithm V erify() that on input a candidate signature σ, a message m, and the group
public key Y[t] returns 1 if and only if σ was generated by a group member i ∈ [1, n] using Sign() on
input xi[t], m and Y[t] for any counter value t ∈ N.

– A randomized algorithm Trace() that on input a candidate signature σ, a message m, the group public
key Y[t], and the tracing trapdoor x̂[t] returns the identity i of the group member who has generated σ
together with a proof π of this fact for any counter value t ∈ N.

– A deterministic algorithm V erifyTrace() that on input a signature σ, a message m, the group public
key Y[t], the identity i, and a candidate proof π that σ has been generated by member i returns 1 if and
only if i and π were returned by Trace() on input σ, m, x̂[t], Y[t] for any counter value t ∈ N.

We remark that Join() is used by members to add new participants to the group, whereas Leave() to
exclude a certain member from the group according to the agreed membership policy.

Remark 1. Obviously, only the knowledge of the tracing trapdoor x̂[t] allows to open produced group sig-
natures. In order to fulfill the requirement of anonymity with respect to possible dynamic changes and in
the context of the individual tracing rights, i.e., to prevent new members from opening previously generated
group signatures, and former members from opening any further generated group signatures, the tracing
trapdoor x̂[t] has to be changed whenether t is increased after any occured dynamic event. Note that in Def-
inition 1 the change of secret signing keys xi[t] is not explicitly required (i.e., we write ”possibly updated”
in the definition). Therefore, it depends on the concrete realization whether secret signing keys are changed
or not.

2.3 Security Requirements
In this section we specify the security properties of a democratic group signature scheme.
Definition 2 (Correctness). A democratic group signature scheme DGS = {Setup(), Join(), Leave(),
Sign(), V erify(), Trace(), V erifyTrace()} is correct if for all Y[t], xi[t], and x̂[t] returned by the
protocols Setup(), Join() and Leave() with respect to the counter value t, and for any signature
σ = Sign(xi[t],m, Y[t]):

V erify(σ,m, Y[t]) = 1 ∧ Trace(σ,m, Y[t], x̂[t]) = (i, π) ∧ V erifyTrace(σ,m, Y[t], i, π) = 1.



In other words, the verification algorithm V erify() accepts σ, and tracing algorithm Trace() outputs i
together with the proof π and verification algorithm V erifyTrace() accepts this proof.

Traceability. We say that a democratic group signature scheme DGS is traceable if there exists no
polynomial-time adversary A that can win the following traceability game, where A’s goal is to forge
a group signature that cannot be traced to one of the group members controlled or corrupted1 by A. Our de-
scription of traceability includes collision-resistance, framing and unforgeability requirements as described
in [4]. Let A[t] denote a set of group members controlled by the adversary, and A′

[t] denote a set of group
members corrupted by the adversary in the group formation identified by the counter value t, respectively.

Setup: The challenger C performs the protocol Setup() for n simulated participants and obtains the
keys Y[0], xi[0] for all i ∈ [1, n] and x̂[0], and sets t = 0. It provides the adversary A with Y[0].

Queries: After obtaining Y[0] adversary A can make the following queries:
Join. A can initiate Join() with C and introduce a new group member. Let t be the current counter
value and n the current number of group members. The protocol updates the keys Y[t+1], xi[t+1] for
all i ∈ [1, n + 1] and x̂[t+1]. A obtains Y[t+1], x̂[t+1], the secret signing key xa[t+1] of the introduced
member a. C adds the introduced member a to A[t+1]. Note that C does not learn xa[t+1].

Leave. A can initiate Leave() with C and exclude any member i ∈ [1, n] from the group. Let t be
the current counter value and n the current number of group members. The protocol updates the keys
Y[t+1], xi[t+1] for all i ∈ [1, n−1] and x̂[t+1]. C updates setA[t+1] by removing the excluded member if
he was in A[t]. If A[t+1] is not empty, then A obtains Y[t+1], x̂[t+1], and the secret signing keys xai[t+1]

of all controlled members in A[t+1]; otherwise it obtains only Y[t+1].

CorruptMember. A can request the secret signing key of any member i ∈ [1, n] that is not controlled
by A in a group formation identified by any t ∈ N. C returns xi[t] to A, and adds member i to A′

[t].

CorruptGroupKey. A can request the tracing trapdoor x̂[t] for any t ∈ N. C returns x̂[t] to A.

Sign. A can request a group signature of an arbitrary message m for any member i∈ [1, n] that is not
controlled or corrupted by A and any counter value t. C computes and returns σ = Sign(xi[t],m, Y[t]).

Output: Finally, A returns a message m, a signature σ, and a counter value t. A wins if the forgery is
successful, i.e., the following requirements are satisfied: (1) σ is accepted by the verification algorithm
V erify(); (2) algorithm Trace() traces σ to a group member that is neither in A[t] nor in A′

[t], or fails;
and (3) σ was not obtained by A from a signing query on m to C.

Definition 3. A democratic group signature scheme DGS = {Setup(), Join(), Leave(), Sign(),
V erify(), Trace(), V erifyTrace()} is traceable if the advantage of any polynomial-time adversary
A in winning the traceability game defined as Advtr

A = Pr[A outputs a successful forgery] is negligible,
i.e., Advtr

A ≤ ε.

Anonymity. We say that a democratic group signature scheme DGS is anonymous if there exists no
polynomial-time adversary A that can win the following anonymity game, where A’s goal is to determine
which of the two keys have been used to generate the signature. Let A[t] denote a set of group members
controlled by the adversary in the group formation identified by the counter value t, i.e., the adversary fully
controls the participation of these members in the protocols of DGS.

Setup: The challenger C performs the protocol Setup() for n simulated participants and obtains the
keys Y[0], xi[0], i ∈ [1, n] and x̂[0]. It provides the adversary A with Y[0].

1 We distinguish between group members that are controlled and group members that are corrupted by A. If A introduces a new
member to the group, then we say that A controls this member. If A obtains the secret signing key of a member that it has
not introduced, then we say that this member is corrupted by A. Allowing A to control group members we consider an active
adversary that participates in the protocols that update the group formation.



Type1-Queries: After obtaining Y[0] algorithm A can make the following queries:
Join. A can initiate Join() with C and introduce a new group member. Let t be a current counter value
and n the current number of group members. The protocol updates the keys Y[t+1], xi[t+1], i ∈ [1, n+1]
and x̂[t+1]. A obtains Y[t+1], x̂[t+1], the secret signing key xa[t+1] of the introduced member a. C notes
that there is a group member controlled by A in the group formation identified by t + 1, thus adds the
introduced member a to the set A[t+1]. Note that C does not learn xa[t+1].

Leave. A can initiate Leave() with C and exclude any member i ∈ [1, n] from the group. Let t be
the current counter value and n the current number of group members. The protocol updates the keys
Y[t+1], xi[t+1] for all i ∈ [1, n−1] and x̂[t+1]. C updates setA[t+1] by removing the excluded member if
he was in A[t]. If A[t+1] is not empty then A obtains Y[t+1], x̂[t+1], and the secret signing keys xai[t+1]

of all group members ai in A[t+1]; otherwise it obtains only Y[t+1]. Note that C does not learn any
xai[t+1].

Sign. A can request a signature on an arbitrary message m for any member i ∈ [1, n] that is not
controlled by A and any counter value t ∈ N. C computes σ = Sign(xi[t],m, Y[t]) and returns σ to A.

Challenge: A outputs a message m′, two identities of group members i0, i1 ∈ [1, n] and a counter
value t, such that A[t] = ∅. C chooses a random bit d ∈R {0, 1}, computes a signature σd =
Sign(xid[t],m

′, Y[t]) and returns it to A.

Type2-Queries: After obtaining the challenge, A can make the following queries:
Join. A can introduce new group members as in Type1-Queries.
Leave. A can exclude group members (also challenged members i0 and i1) as in Type1-Queries.
Sign. A can request a signature on an arbitrary message m (also m′) for any member i that is not
controlled by A (also for members i0 and i1) and any counter value t ∈ N as in Type1-Queries.

Output: Finally, A returns a bit d′ trying to guess d, and wins the game if d′ = d.

Definition 4. A democratic group signature scheme DGS = {Setup(), Join(), Leave(), Sign(),
V erify(), Trace(), V erifyTrace()} is anonymous if the advantage of any polynomial-time adversary A
in winning the anonymity game defined as Advan

A = Pr[A(σ1) = 1] − Pr[A(σ0) = 1] is negligible, i.e.,
Advan

A ≤ ε.

We remark that at least two group members have to be in the group identified by the challenged counter
value t, and A[t] = ∅ must hold. Note that the signature σd is bound to a certain counter value t so that the
informally defined requirements from Section 2.1 (a joining member must not be able to open any group
signature which has been produced by a group member before the join event took place, and a leaving
member must not be able to open any group signature which is produced by a group member after the
exclusion process) are covered by the above anonymity game.

Definition 5 (Security). A democratic group signature scheme DGS = {Setup(), Join(), Leave(),
Sign(), V erify(), Trace(), V erifyTrace()} is secure if it is correct, anonymous and traceable.

3 Our Construction

3.1 Number-Theoretic Assumptions

Definition 6 (Discrete Logarithm (DL) Assumption). Let G =<g> be a cyclic group generated by g of
order ord(G). There is no probabilistic polynomial-time algorithm A that with non-negligible probability
on input ga where a ∈ Zord(G) outputs a. Let Advdl

A = Pr[A(ga) = a] be the advantage of A in breaking
the DL assumption. The DL assumption holds in G if this advantage is negligible, i.e, Advdl

A ≤ ε.



Definition 7 (Decisional Diffie-Hellman (DDH) Assumption). Let G =< g > be a cyclic group gen-
erated by g of order ord(G). There is no probabilistic polynomial-time algorithm A that distinguishes
with non-negligible probability between two distributions D0 = (g, ga, gb, gc) and D1 = (g, ga, gb, gab)
where a, b, c ∈ Zord(G), i.e., A outputs 1 on input the distribution D1, and 0 on input D0. Let Advddh

A =
Pr[A(D1) = 1] − Pr[A(D0) = 1] be the advantage of A in breaking the DDH assumption. The DDH
assumption holds in G if this advantage is negligible, i.e., Advddh

A ≤ ε.

3.2 Building Blocks
Our scheme consists of the following well known cryptographic primitives: a contributory group key agree-
ment protocol for the initialization of the scheme and its maintenance upon dynamic changes, and signa-
tures of knowledge for the signing and verification processes. Although our scheme may be seen as a
straightforward solution, we note that to the best of our knowledge it is first (!) to consider contributory
group key agreement protocols in the context of group-oriented signature schemes. This provides addi-
tional challenge for the security proof of the scheme, because the security of the interactive setup protocol
has to be considered. Note that in classical group signatures the group manager that sets up the group is
trusted, and, therefore, the security of the initialization procedure is usually omitted.

Contributory Group Key Agreement Protocols Contributory group key agreement (CGKA) protocols
allow participants to form a group, compute the group secret key kG by interaction, and update it on occured
dynamic changes. The group secret key kG is computed or updated as a function of individual contributions
of all group members. CGKA protocols suit well into the scenario of the shared control based on the ”trust,
but verify” relationship, because they are independent of any centralized management and allow group
members to verify the protocol steps towards the computation of kG. A CGKA protocol suite consists
usually of a setup protocol and of protocols that handle various dynamic events, i.e., join and leave of
single group members, and merge and partition of whole groups. However, for our group signature scheme
we require only setup, join and leave protocols. Therefore, we omit the description of merge and partition
protocols in the following definition.

Definition 8. A CGKA protocol suite CGKA = {Setup(), (Joini(), Joinu()), Leave()} consists of the
following algorithms and protocols:

– A randomized interactive algorithm Setup() that implements the user’s i side of the homonymous
protocol between n users to initialize the group. On input an individual secret ki of user i and corre-
sponding contribution zi, the algorithm obtains by interaction a set of individual contributions of other
users Z = {zj |j ∈ [1, n], j 6= i}, and outputs the group secret key kG and some auxiliary information
auxi for the handling of further dynamic events. Note that kG can be computed only by group members
who participate in the protocol.

– A pair of randomized interactive algorithms (Joini(), Joinu()) that implement member’s i and joining
user’s u sides of the protocol Join() between n group members and the joining user, respectively.
Joini() takes as input a current individual secret ki and current information auxi, obtains by interaction
the joining user’s contribution zu, and outputs updated kG, auxi, and possibly changed ki.
Joinu() takes as input a new user’s individual secret ku and corresponding contribution zu, obtains by
interaction some auxiliary information auxu (including set Z = {zj |j ∈ [1, n]), and outputs updated
kG and auxu.

– A randomized interactive algorithm Leave() that implements member’s i side of the homonymous
protocol between remaining n− 1 group members due to exclusion of a member j. On input a current
individual secret ki, leaving member’s contribution zj and current information auxi, the algorithm
outputs updated kG, auxi, and possibly changed ki.

Remark 2. CGKA protocols that handle dynamic events require usually that some members change their
individual secret keys ki during the protocol for the sake of security, e.g., to guarantee the freshness of the
updated group secret key. This is emphasized by the expression ”possibly changed” in the above definition
of the protocols Joini() and Leave(). If such change is required then member i changes ki and updates
own contribution zi. Thus, no other party except for member i ever learns ki.



Remark 3. The auxiliary information auxi returned by the interactive algorithms of CGKA depends on
the actual protocol suite. It contains auxiliary values that can be used by group members to handle further
occuring dynamic events. We remark that for our scheme auxi must provide every member i with a current
set of members’ contributions Z = {zj |j ∈ [1, n]}, because we use Z as part of the group public key.
This requirement is implicitly achieved for most CGKA protocols (including those mentioned below),
because participants broadcast contributions over a public channel. This is also the reason why considering
contributions as part of the group public key is not a hazard to the security of the CGKA protocols.

The security of CGKA protocol suites is usually described by the following (informally described) set of
requirements ([17]):

– Computational group key secrecy requires that for a passive adversary it must be computationally in-
feasible to discover any secret group key.

– Decisional group key secrecy2 requires that for a passive adversary it must be computationally infeasi-
ble to distinguish any bits of the secret group key from random bits.

– Forward secrecy3 requires that any passive adversary being in possession of a subset of old group keys
must not be able to discover any subsequent group key (e.g. if a member leaves the group knowing the
group key it should not be able to compute the updated group key).

– Backward secrecy requires that any passive adversary being in possession of a subset of contiguous
group keys must not be able to discover any preceding group key (e.g. if a member joins to the group
and learns the updated group key it should not be able to compute the previous group key).

– Key independence requires that any passive adversary being in possession of any subset of group keys
must not be able to discover any other group key.

Note that the adversary is assumed to be passive, i.e., it is not a valid group member during the time
period the attack is taking place. Considering active adversaries, i.e., group members does not make sense,
because every group member learns the group key by the end of the protocol. Thus, group members are
trusted not to reveal the group key or any other secret values that may lead to the computation of the group
key to the third parties. This is exactly the requirement stated for democratic group signatures in Section
2.1 to keep the individual tracing of signatures prior to group members. Further reason for the suitability
of CGKA protocols for the initialization and maintenance of the DGS is the ”trust, but verify” relationship
between group members, i.e., some protocols, like [16] and [17] define a role of a sponsor that becomes
active on dynamic events and performs some computations on behalf of the group to achieve additional
efficiency. Although this sponsor acts on behalf of the group, there exists at least one other group member
who can verify the sponsor’s actions. Additionally, join and leave protocols can be utilized in DGS to
maintain the scheme efficiently, i.e., without reinitialization.

Members’ contributions in the mentioned CGKA protocols are constructed as follows: every member
chooses own secret ki and computes his contribution zi = gki , where g is a generator of a cyclic group
G =< g >, where the DL Assumption holds (e.g., Z∗

p with prime p or a subgroup of points on an elliptic
curve E over a finite field Fq).

Our scheme has been designed to work with any CGKA protocol suite that fulfills described security
requirements, and the contributions of group members have the above construction. For example, protocol
suites in [16] and [17] can be applied in the scheme. In the following we briefly explain how we use the
properties of such CGKA protocols.

The group secret key kG computed and updated by the CGKA protocols is used as the tracing trapdoor
x̂ from Definition 1. In order to maintain x̂ after dynamic changes and keep individual tracing rights prior
to group members, the protocols Setup(), (Joini(), Joinu()) and Leave() of the CGKA protocol suite
are embedded in the homonymous protocols of our DGS, respectively. Security requirements of CGKA

2 The formal definition of the decisional group key secrecy is given in Appendix A.3 where it is used to prove the anonymity of
our scheme.

3 In the context of our security proof (Remark 5) we show that the absence of so-called Perfect Forward Secrecy does not provide
additional risks to the security of our scheme.



protocols take care that no unauthorized users are able to compute x̂ and open group signatures. In our
scheme members use their individual secrets ki as secret signing keys xi from Definition 1. This is possi-
ble, because every ki remains known only to the corresponding member. Our scheme includes the set of
members’ contributions Z = {zi|∀i ∈ [1, n]} in the group public key Y as shown in Section 3.3.
Signatures of Knowledge Signatures of knowledge, introduced in [11], and also used in some classical
group signature schemes, like [10] and [3] are message dependent zero-knowledge proofs of knowledge
of some secret s that are made non-interactive using the Fiat-Shamir heuristic [14]. The security of such
schemes is usually shown by proving the security of an underlying interactive zero-knowledge protocol
and then by assuming that no security flaws occur if verifier’s computations in the interacive protocol are
replaced by a collision resistant hash function H : {0, 1}∗ → {0, 1}k with security parameter k. The
security of this non-interactive approach can be shown in the random oracle model [5].

Signatures of knowledge consist of two polynomial-time algorithms (SKSig(), SKV er()), where
SKSig() is a randomized signing algorithm and SKV er() a deterministic verifying algorithm. A signer
S who is in possession of some secret s can compute the signature of knowledge of s on a message m
using SKSig() and send it to a verifier V. In SKSig() an appropriate one-way function f is applied to the
secret that prevents any leakage of the information about the secret. If algorithm SKV er() performed by
V accepts the signature then V is convinced that S knows s, but learns nothing about this secret. However,
if S does not know s or does not use s in SKSig() to compute the signature then SKV er() rejects. A sig-
nature of knowledge is called secure if the probability of producing a forged signature without knowing the
secret s such that SKV er() accepts the forgery is negligible, and if any correctly generated signature does
not reveal any sufficient information that may be used to compute s. Before we describe the signatures of
knowledge used in our scheme, we give a simple example to explain used notations, borrowed from [11]:
a signature of knowledge on a message m, denoted SK[(α) : y = gα](m), proves the knowledge of the
discrete logarithm of y to the base g as described by the equation on the right side of the colon. By the
convention Greek letters denote secret values, whose knowledge has to be proved, whereas other letters
denote public values.

The following is a combination of the signature of knowledge of the representation and knowledge of
1-out-of-n discrete logarithms. We extend the signature of knowledge of 1-out-of-2 discrete logarithms
from [10]. Note that the signature does not reveal which discrete logarithm the signer knows.
Definition 9. Let G be a cyclic group of order ord(G) where the Discrete Logarithm Assumption
holds. A 3n-tuple (c1, . . . , cn, su1 , . . . , sun , sv1 , . . . , svn) ∈ ({0, 1}k)n × Z2n

ord(G) satisfying c1 ⊕ . . . ⊕
cn = H(g1||g2||y||z1|| . . . ||zn||yc1g

su1
1 g

sv1
2 || . . . ||ycng

sun
1 g

svn
2 ||zc1

1 g
sv1
2 || . . . ||zcn

n g
svn
2 ||m) is a signature

of knowledge of the discrete logarithm of one zi, i ∈ [1, n] to the base g2 and its equality to the exponent
of the g2-part of y, on a message m ∈ {0, 1}∗, denoted

SK[(αi, β) : y = gβ
1 gαi

2 ∧ (z1 = gα1
2 ∨ . . . ∨ zn = gαn

2 )](m).

Assume that the signer knows (x1, x2)∈R Z2
ord(G) with y = gx1

1 gx2
2 and zi = gx2

2 for one i ∈ [1, n]. Then

a signature SK[(αi, β) : y = gβ
1 gαi

2 ∧ (z1 = gα1
2 ∨ . . .∨ zn = gαn

2 )](m) on a message m ∈ {0, 1}∗ can be
computed using the following algorithm:
• (ru1 , . . . , run , rv1 , . . . , rvn)∈R Z2n

ord(G); (c1, . . . , ci−1, ci+1, . . . , cn)∈R ({0, 1}k)n−1;

• ui = g
rui
1 ; vi = g

rvi
2 ; for all j 6= i: uj = ycjg

ruj

1 g
rvj

2 and vj = z
cj

j g
rvj

2 ;
• ci =

⊕n
j 6=i cj ⊕H(g1||g2||y||u1|| . . . ||ui−1||uivi||ui+1|| . . . ||un||v1|| . . . ||vn||m);

• sui = rui − cix1; svi = rvi − cix2; for all j 6= i: suj = ruj and svj = rvj .

The following is a combination of the signatures of knowledge of two equal discrete logarithms and of
the representation described in [11] and [10].
Definition 10. Let G be a cyclic group of order ord(G) where the Discrete Logarithm Assumption holds.
A tupel (c, s1, s2) ∈ {0, 1}k × Z2

ord(G) satisfying c = H(g1||g2||y1||y2||yc
1g

sw1
2 ||yc

2g
sw1
1 g

sw2
2 ||m) is a sig-

nature of knowledge of the representation of y2 to the bases g1 and g2, and of the equality of the discrete
logarithm of y1 to the base g2 and the exponent of the g1-part of y2, on a message m ∈ {0, 1}∗, denoted

SK[(α, β) : y1 = gβ
2 ∧ y2 = gβ

1 gα
2 ](m).



Assume the signer knows (x1, x2)∈Z2
ord(G) with y1 = gx1

2 and y2 = gx1
1 gx2

2 . Then a signature SK[(α, β) :

y1 = gβ
2 ∧ y2 = gβ

1 gα
2 ](m) on a message m ∈ {0, 1}∗ can be computed using the following algorithm:

• (rw1 , rw2)∈R Z2
ord(G); w1 = g

rw1
2 ; w2 = g

rw1
1 g

rw2
2 ;

• c = H(g1||g2||y1||y2||w1||w2||m); sw1 = rw1 − cx1; sw2 = rw2 − cx2.
Both schemes can be proven secure in the random oracle model.4 We remark that the interactive version

of these protocols are zero-knowledge. Furthermore, these signatures of knowledge can be combined into
a single signature of knowledge as shown in the signing protocol in Section 3.3. Signatures of knowledge
can also be used as non-interactive proofs of knowledge if an empty string is used instead of the message
m, i.e., SK[(α) : y = gα]() stands for the proof of knowledge of a discrete logarithm of y to the base g.

3.3 The Scheme

In this section we describe in detail our democratic group signature scheme with respect to Definition
1. Consider a cyclic group G =< g > of order ord(G) generated by g where the Discrete Logarithm
Assumption holds. Let CGKA = {Setup(), (Joini(), Joinu()), Leave()} be a secure contributory group
key agreement protocol suite where group members’ contributions are constructed as described in Section
3.2. We assume that all sent messages are authentic.

Protocol Setup(). The protocol between n users to set up a SDG proceeds as follows. Each user i:
• sets counter value t = 0, selects secret signing key xi[0]∈R Zord(G), computes corresponding contribu-

tion zi[0] = gxi[0] ,
• performs the instance of the interactive algorithm CGKA.Setup(xi[0], zi[0]), and obtains the tracing

trapdoor (group secret key) x̂[0] ∈ Zord(G) and auxiliary information auxi[0] that contains the set of
contributions of all group members, i.e., Z[0] = {z1[0], . . . , zn[0]},

• computes ŷ[0] = gx̂[0] , and defines the group public key Y[0] = (ŷ[0], Z[0]).
The public output of the protocol is the group public key Y[0]. The private outputs are xi[0], x̂[0] and auxi[0].

Publishing of Y[t]. Every group public key Y[t] = {ŷ[t], Z[t]} has to be published in an authentic manner.
Unlike in classical group signatures, where the group manager usually proves the correctness of the group
public key to the certification authority, in DGS all group members have to cooperate for this purpose. We
suggest the following simple solution. Every participant i holds an identity certificate certi on a public key
pki issued by a certification authority CA and used to authenticate messages of i. The corresponding private
key ski is known only to the participant. Participant i computes the following signature of knowledge on a
message Mi = certi||t||Y[t]:

Si = SK[(αi, β) : ŷ[t] = gβ ∧ zi[t] = gαi ](Mi),

and signs it using a digital signature scheme with his private key ski, i.e., Ti = Sign(ski, Si). Then,
every member publishes (Mi, Si, Ti). Every member verifies whether all published tuples are correct, i.e.,
all proofs are verifiable, and every message Mi contains the same set of contributions Z[t] in Y[t], and
complains if he discovers any cheating attempt. Obviously, the signature Si proves that member i knows
the tracing trapdoor x̂[t], own secret xi[t] used to compute the contribution zi[t] and seals the group formation
identified by the counter value t, because contributions of all group members are part of Mi. This ensures
that any member’s attempt to cheat will be discovered if there is at least one honest group member (as
required by the trust relationship in Section 2.1). The cheating member can be identified using his signature
Ti. The published signature Ti can then be used to identify a group member i upon his contribution zi[t].

Remark 4. This procedure has to be performed whenether the group public key Y[t] is updated, i.e., after
the protocols Join() and Leave(). Since Y[t] changes over dynamic events group signatures produced by
our scheme can be used by members only to prove their membership in the group formation identified by
t. To prove the membership in several formations a signature for each formation must be provided.

4 Note that not all protocols, which can be proven to be secure in the random oracle model are also secure in the standard
model as recently shown in [12]. However, it is still believed that for the kind of protocols considered here (i.e., signatures of
knowledge) random oracle provides sufficient proofs.



Protocol Join(). The protocol between the group and a joining member u proceeds as follows. Let t be
the current counter value and n the number of group members.

• Joining member u selects his secret signing key xu[t+1] ∈R Zord(G), computes corresponding contri-
bution zu[t+1] = gxu[t] .

• Group members and the joining member perform the protocol CGKA.Join() by calling the instances
Joini() and Joinu(), respectively:
CGKA.Joini(xi[t], auxi[t]) is called by every member i ∈ [1, n], and outputs the updated x̂[t+1],
auxi[t+1], and possibly updated xi[t+1].
CGKA.Joinu(xu[t+1], zu[t+1]) is called by the joining member u, and outputs the updated x̂[t+1] and
auxu[t+1].

• Every group member increases t, computes ŷ[t+1] = gx̂[t+1] and Y[t+1] =
(ŷ[t+1], z1[t+1], . . . , zn+1[t+1]).

The public output of the protocol is the changed group public key Y[t+1]. The private outputs are xi[t+1],
x̂[t+1], and auxi[t+1]. We remark, that current value t can be sent to the joining member as part of auxu[t+1].
This requires a minimal modification of the underlying CGKA protocol. If no modification is possible, then
one additional message containing t has to be sent between the group and the joining member.

Protocol Leave(). The protocol between the remaining group members after a member u has left the
group proceeds as follows. Let t be the current counter value and n the number of group members. Every
remaining group member i ∈ [1, n− 1]:

• performs the instance of the interactive algorithm CGKA.Leave(xi[t], zu[t], auxi[t]), and obtains the
updated x̂[t+1], auxi[t+1], and possibly updated xi[t+1];

• increases t, computes ŷ[t+1] = gx̂[t+1] and Y[t+1] = (ŷ[t+1], z1[t+1], . . . , zn−1[t+1]).

The public output of the protocol is the updated group public key Y[t+1]. The private outputs are xi[t+1],
x̂[t+1], and auxi[t+1].

Algorithm Sign(). The signing algorithm is a combination of the signatures of knowledge from Section
3.2. In order to generate a group signature on a message m ∈ {0, 1}∗ the algorithm on input xi[t], m and
Y[t] = (ŷ[t], Z[t]) performs the following computations:

• r ∈R Zord(G); g̃ = gr; ỹ = ŷr
[t]zi[t];

• S = SK[(αi, β) : g̃ = gβ ∧ ỹ = ŷβ
[t]g

αi ∧ (z1[t] = gα1 ∨ . . .∨zn[t] = gαn)](m) is computed as follows:

∗ (ru1 , . . . , run , rv1 , . . . , rvn , rw1 , rw2)∈R Z2(n+1)
ord(G) ; (c1, . . . , ci−1, ci+1, . . . , cn)∈R ({0, 1}k)n−1;

∗ ui = ŷ
rui

[t] ; vi = grvi ; for all j 6= i: uj = ỹcj ŷ
ruj

[t] grvj , vj = z
cj

j grvj ; w1 = grw1 ; w2 = ŷ
rw1

[t] grw2 ;
∗ ci =

⊕n
j 6=i cj ⊕H(g||ŷ[t]||g̃||ỹ||u1|| . . . ||ui−1||uivi||ui+1|| . . . ||un||v1|| . . . ||vn||w1||w2||m);

∗ c̄ =
⊕n

j=1 cj ;
∗ sui = rui − cir; svi = rvi − cixi[t]; for all j 6= i: suj = ruj , svj = rvj ;

sw1 = rw1 − c̄r; sw2 = rw2 − c̄xi[t];
∗ S = (c1, . . . , cn, su1 , . . . , sun , sv1 , . . . , svn , sw1 , sw2);

The algorithm outputs the group signature σ = (g̃, ỹ, S). Obviously, the signer i proves that values (g̃, ỹ)
encrypt his contribution zi[t] without revealing the latter by proving the knowledge of the representation
of ỹ to the bases ŷ[t] and g, and that the same exponent is used to compute g̃ and the ŷ[t]-part in ỹ. That
encrypted value is a valid contribution in Z[t] is shown by proving the equality between the exponent in
g-part of ỹ and the discrete logarithm of zi[t] to the base g. The fact that the signer knows the discrete
logarithm that has been used to compute zi[t] proves that the signer is the owner of this contribution. Note
that the signature does not reveal the contribution of the signer. This is important for the anonymity property
of the scheme.



Algorithm V erify(). The verifying algorithm on input a candidate group signature σ = (g̃, ỹ, S), mes-
sage m, and the group public key Y[t] = (ŷ[t], Z[t]) verifies S, i.e.,

• Parse S as (c1, . . . , cn, su1 , . . . , sun , sv1 , . . . , svn , sw1 , sw2); c̄ =
⊕n

j=1 cj ;

• check c̄
?= H(g||ŷ[t]||g̃||ỹ||ỹc1 ŷ

su1

[t] gsv1 || . . . ||ỹcn ŷ
sun

[t] gsvn ||zc1
1 gsv1 || . . . ||zcn

n gsvn ||g̃c̄gsw1 ||ỹc̄ŷ
sw1

[t] gsw2 ||m)

and returns 1 if verification is successful; otherwise the algorithm fails.

Algorithm Trace(). The tracing algorithm on input a candidate signature σ = (g̃, ỹ, S), a message m,
the group public key Y[t] = (ŷ[t], Z[t]), and the tracing trapdoor x̂[t] proceeds as follows:

• check V erify(σ,m, Y[t])
?= 1;

• V1 = g̃x̂[t] ; zi[t] = ỹ/V1;

• check zi[t]

?
∈ Y[t];

• V2 = SK[(α) : ŷ[t] = gα ∧ V1 = g̃α]()

It outputs the decrypted signer’s contribution zi[t] and a proof (V1, V2) if and only if all checks are suc-
cessful; otherwise the algorithm fails. V2 is a proof that V1 equals to the ŷ[t]-part of ỹ, i.e., V1 = ŷr

[t]. The
signer’s identity can be easily computed from his contribution zi[t] as all contributions are part of the group
public key Y[t] and have been signed by the corresponding member using his certified key pair (ski, pki).

Algorithm V erifyTrace(). The algorithm on input a signature σ = (g̃, ỹ, S), a message m, the group
public key Y[t] = (ŷ[t], Z[t]), the contribution zi[t], and proving values (V1, V2) proceeds as follows:

• check V erify(σ,m, Y[t])
?= 1;

• check ỹ
?= V1zi[t];

• verify V2;

It outputs 1 if and only if all checks and verifications are successful; otherwise the algorithm fails.

3.4 Security Analysis
In this section we analyze the security of our scheme with respect to the requirements in Section 2.3.
We show that as long as underlying cryptographic building blocks (i.e, CGKA protocol and signatures
of knowledge) are secure our scheme fulfills the stated requirements. Since signatures of knowledge are
provably secure only in the random oracle model we apply this model to prove the security of our scheme.

Lemma 1. The construction of a democratic group signature schemeDGS = {Setup(), Join(), Leave(),
Sign(), V erify(), Trace(), V erifyTrace()} from Section 3.3 is correct.

Proof. The full proof is presented in Appendix A.1.

Lemma 2. The democratic group signature scheme DGS from Section 3.3 is traceable in the random
oracle model assuming that contributory group key agreement protocol suite CGKA is secure and the
Discrete Logarithm (DL) assumption holds in the group G =<g>.

Proof. The full proof is presented in Appendix A.2.

Lemma 3. The democratic group signature scheme DGS from Section 3.3 is anonymous in the random
oracle model assuming that contributory group key agreement protocol suite CGKA is secure and the
Decisional Diffie-Hellman (DDH) assumption holds in the group G =<g>.

Proof. The full proof is presented in Appendix A.3.

Theorem 1. The democratic group signature schemeDGS from Section 3.3 is secure in the random oracle
model assuming that contributory group key agreement protocol suite CGKA is secure, and the DDH and
DL assumptions hold in the group G =<g>.

Proof. The proof of this theorem follows immediately from Definition 5 and Lemmas 1, 2, and 3.



4 Conclusion and Further Directions

In order to handle the shared financial control in JVCos based on the ”trust, but verify” relationship we
have proposed a new group-oriented signature scheme, called a democratic group signature. We have
shown that the classical model of group signatures is not applicable for this scenario because of the group
manager’s role, which contradicts to the requirement of individual tracing of group signatures and joint
control over the membership in the group. Our model can also be used for other issues of the shared
control where the ”trust, but verify” relationship is required. The proposed practical construction fulfills
the stated requirements and is secure in the random oracle model. In the following we would like to point
out some further research topics in the area of democratic group signatures.

4.1 Dynamic Changes
The presented scheme uses a contributory group key agreement protocol suite to establish and maintain
the group formation upon dynamic changes. The scheme is currently designed to work with any protocol
suite which fulfills the requirements from Section 3.2. However, not all CGKA protocols provide same
efficiency in this context. It would be interesting to analyze, which of the existing CGKA protocol suites
are mostly efficient? Further details and comparison of existing CGKA protocol suites are given in [2].

4.2 Signature and Public Key Sizes
In the proposed practical solution the group public key and generated signatures grow linearly in the num-
ber of current group members, whereas recent classical group signature schemes keep both sizes constant.
The latter is possible because the group manager controls the group formation and maintains a database
with transcripts of join events for all members. This database is used to open group signatures and its size
grows linearly (!) in the number of current group members. A challenging task is to design a DGS which
fulfills the proposed requirements, but keeps the signature size and (or) the group public key size constant.
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A Security Proofs

A.1 Proof of Lemma 1 (Correctness)

To prove the correctness of the scheme we have to show according to Definition 2 that for all Y[t], xi[t] with
i∈ [1, n], and x̂[t] if σ = Sign(xi[t],m, Y[t]) then the following statements hold:

(i) V erify(σ,m, Y[t]) = 1 and
(ii) Trace(σ,m, Y[t], x̂[t]) = (zi[t], (V1, V2)) and V erifyTrace(σ,m, Y[t], zi[t], (V1, V2)) = 1.

Let σ = (g̃, ỹ, S) and Y[t] = (ŷ[t], z1[t], . . . , zn[t]). The statement V erify(σ,m, Y[t]) = 1 holds since any
correctly generated signature of knowledge S is accepted by the corresponding verification algorithm. On
input σ, m, Y[t], and x̂[t] the tracing algorithm computes V1 = g̃x̂[t] , which is equivalent to ŷr

[t], there-
fore ỹ/V1 = ŷr

[t]zi[t]/ŷr
[t] = zi[t] holds. The contribution zi[t] is part of Y[t] and reveals the identity of

the signer. The tracing algorithm outputs also the proof of knowledge V2, which is constructed using
the secret group key x̂[t]. Algorithm V erifyTrace() uses the proof (V1, V2) to verify the correctness

of zi[t] returned by the tracing algorithm with the equation ỹ
?= V1zi[t], which obviously holds, because

V1zi[t] = ŷr
[t]zi[t] = ỹ. Verification of V2 is succesfull due to its construction by the tracing algorithm.

Thus, V erifyTrace(σ,m, Y[t], zi[t], (V1, V2)) = 1. Hence, the democratic group signature scheme is cor-
rect.

A.2 Proof of Lemma 2 (Traceability)
The proof of traceability consists of four parts. First, we describe an oracle K that is used by the
polynomial-time challenger B to perform CGKA protocols. Second, we describe the interaction between
B and polynomial-time adversary A that is assumed to win the traceability game for the group signature
scheme. Third, we distinguish between different forgery types possibly produced by A. Fourth, we show
how interaction between B and A can be modified to compute a discrete logarithm in the group G =<g>
using the forking lemma [19, Theorem 3].

Oracle K. In the following interaction we outsource the challenger’s part of the contributory group key
protocol CGKA used in DGS to an oracle K. The idea is that B uses K to initialize the group of n
members and acts as a mediator between A and K during the interaction with A. Since K initializes the
group all secret keys {xi|i ∈ [1, n]} are initially known to K, but not to B. If during the interaction A
queries B to perform a dynamic change (join or leave) then B asks K to proceed with the query. Using K
we allow indirect participation of B in the CGKA protocols. B is allowed to ask for the computed tracing



trapdoor x̂ and any secret signing key {xi|i∈ [1, n]}, and receives also contributions of all group members,
i.e., set Z = {zi = gxi |i∈ [1, n]}. Our goal is to use the interaction to compute a secret signing key xj that
remains unknown to B after the interaction is finished. This is equivalent to the computation of the discrete
logarithm in G since xj = logg zj .

Let K denote a set of contributions of group members that are controlled by the oracle K, and n be the
current number of group members. Oracle K answers to the following queries of B:

Setup. This query can be used to initialize the group. It contains n∈N as parameter. K picks n secret
values (x1, . . . , xn) ∈R Zn

ord(G) computes corresponding contributions zi = gxi for all i ∈ [1, n],
performs n instances of the interactive algorithm CGKA.Setup(xi, zi) to obtain the tracing trapdoor
x̂ and auxiliary information auxi for each instance, and sets K = {zi|i ∈ [1, n]}. K answers with the
communication transcript tscript of all protocol messages. Note that tscript contains only public data
sent over simulated communication channel and due to the security of CGKA does not reveal any
information that may lead to the computation of secrets xi, i ∈ [1, n] or x̂. Among other information
tscript contains the set of public contributions Z = {zi|i ∈ [1, n]}.

Joini. This query can be used to introduce a new member to the group that is not controlled by K.
K performs |K| instances of the interactive algorithm CGKA.Joini(xi, auxi) and obtains the trac-
ing trapdoor x̂ and auxiliary information auxi for each instance. K answers with the communication
transcript tscript of all protocol messages. Note that tscript contains an updated set of public contri-
butions Z = {zi|i ∈ [1, n + 1]} including the contribution of the joined member.

Leave. This query can be used to exclude a member j from the group. It contains zj ∈ G as pa-
rameter. If zj ∈ K then K = K − {zj}. K performs |K| instances of the interactive algorithm
CGKA.Leave(xi, zj , auxi), and obtains the tracing trapdoor x̂ and auxiliary information auxi for
each instance. K answers with the communication transcript tscript of all protocol messages. Note
that tscript contains an updated set of public contributions Z = {zi|i ∈ [1, n− 1]}.

SGroupKey. This query can be used to obtain the tracing trapdoor x̂ and contains no parameters. K
answers with x̂. Note that due to the security requirements of CGKA the tracing trapdoor x̂ does not
reveal any information that can be used to compute any member’s secret xi.

SMemberKey. This query can be used to obtain a member’s i secret xi. It contains zi∈Z as parameter.
K answers with xi.

Interaction between B and A. Assume that there exists a polynomial-time adversary A that wins the
traceability game in Section 2.3 with non-negligible probability, i.e., Advtr

A > ε. Let A[t] denote a set of
contributions of group members controlled by the adversary, A′

[t] a set of contributions of group members
corrupted by the adversary, and B[t] a set of contributions of group members that are not controlled and
not corrupted by the adversary in the group formation that is identified with the counter value t, and n
be a number of group members of this group formation, such that the following relations hold for all t:
A[t] ∪B[t] = Z[t], A[t] ∩B[t] = ∅, A′

[t] ⊆ B[t], and n = |A[t]|+ |B[t]|. We stress that group members in B[t]

are controlled by the oracle K, and that all secret signing keys xi[t] of group members in B[t] are initially
known only to K and not to B.

Setup: B picks a random n∈R N, sets counter value t = 0, initializes sets A[0] = ∅, A′
[0] = ∅, queries

K on Setup with n and obtains communication transcript tscript, that reveals the set of contributions
Z[0] = {zi[0]|i ∈ [1, n]}. B defines B[0] = Z[0], queries K on SGroupKey and obtains the tracing
trapdoor x̂[0]. B computes ŷ[0] = gx̂[0] , and gives A the group public key Y[0] = (ŷ[0], Z[0]). (Note that
B does not know any secret signing key xi[0] used to compute the corresponding contribution.)

Hash Queries: At any time A can query the hash function H . B answers the query completely at
random while keeping constistency.



Queries:
Join. A picks xa[t+1] ∈ Zord(G), computes contribution za[t+1] = gxa[t+1] , and starts the interactive
algorithms CGKA.Joinu(xa[t+1], za[t+1]) and CGKA.Joini(xai[t], auxai) for all ai with zai[t] ∈A[t],
whereas K upon B’s query Joini starts CGKA.Joini(xi[t], auxi[t]) for all i with zi[t]∈B[t]. B forwards
A’s messages to K and vice versa until the protocol is finished. For the instance of CGKA.Joinu()
A obtains x̂[t+1] and auxa[t+1], and for all instances of CGKA.Joini() it obtains x̂[t+1], auxai[t+1]

and possibly updated xai[t+1], whereas K obtains x̂[t+1], auxi[t+1] and possibly updated xi[t+1]. B
receives tscript von K that includes the set of updated contributions Z[t+1] = {zi[t+1]|i∈ [1, n + 1]},
and updates A[t+1] = A[t] + {za[t+1]}, A′

[t+1] = A′
[t] and B[t+1] = B[t] accordingly. B queries K on

SGroupKey and obtains x̂[t+1]. Both, A and B compute ŷ[t+1] = gx̂[t+1] and Y[t+1] = (ŷ[t+1], Z[t+1]).

Leave. Suppose member j ∈ [1, n] should be excluded from the group. If zj[t] ∈ A[t] then B up-
dates A[t+1] = A[t] − {zj[t]}, else A[t+1] = A[t]. If zj[t] ∈ B[t] then B[t+1] = B[t] − {zj[t]}, else
B[t+1] = B[t]. If zj[t] ∈ A′

[t] then A′
[t+1] = A′

[t] − {zj[t]}, else A′
[t+1] = A′

[t]. A starts interactive al-
gorithms CGKA.Leave(xai[t], zj[t], auxai) for all ai with zai[t] ∈A[t+1], whereas K upon B’s query
Leave with parameter zj[t] starts CGKA.Leave(xi[t], zj[t], auxi) for all members i with zi[t]∈B[t+1]. B
forwards A’s messages to K and vice versa until the protocol is finished. A obtains x̂[t+1], auxai[t+1]

and possibly updated xai[t+1], whereas K obtains x̂[t+1], auxi[t+1] and possibly updated xi[t+1]. B re-
ceives tscript von K that includes the set of updated contributions Z[t+1] = {zi[t+1]|i∈ [1, n−1]}, and
updates possibly changed contributions in A[t+1] and B[t+1] using Z[t+1]. B queries K on SGroupKey
and obtains x̂[t+1]. Both, A and B compute ŷ[t+1] = gx̂[t+1] and Y[t+1] = (ŷ[t+1], Z[t+1]).

CorruptMember. If A queries B with a contribution zi[t]∈B[t] then B forwards it to K as SMemberKey
query and obtains the corresponding secret signing key xi[t] that it returns to A. B updates A′

[t] =
A′

[t] + {zi[t]}. However, if zi[t] ∈ A[t] then interaction outputs a failure. Note that B learns all secret
signing keys that correspond to contributions in A′

[t].

CorruptGroupKey. B answers with x̂[t] that it has previously obtained from K.

Sign. B is given a message m ∈ {0, 1}∗, a contribution zj[t] and a counter value t. If zj[t] ∈A[t] then
interaction outputs a failure. If zj[t]∈A′

[t] then B computes the signature σ = Sign(xj[t],m, Y[t]) and
gives it to A (note, B knows xj[t] for all contributions in A′

[t]). If zj[t]∈B[t]−A′
[t] then B generates the

signature σ without knowing xj[t] as follows. B picks a random r ∈R Zord(G), computes g̃ = gr, and
ỹ = ŷr

[t]zj[t]. B computes the signature of knowledge S = SK[(αi, β) : g̃ = gβ∧ ỹ = ŷβ
[t]g

αi ∧(z1[t] =
gα1 ∨ . . .∨ zn[t] = gαn)](m) without knowing the corresponding exponent αi using the random oracle
simulation as follows:
∗ (su1 , . . . , sun , sv1 , . . . , svn , sw1 , sw2)∈R Z2(n+1)

ord(G) ; (c1, . . . , cn)∈R ({0, 1}k)n; c̄ =
⊕n

i=1 ci;

∗ for all i∈ [1, n]: ui = ỹci ŷ
sui

[t] gsvi , vi = zci

i[t]g
svi ; w1 = g̃c̄gsw1 ; w2 = ỹc̄ŷ

sw1

[t] gsw2 .
∗ set H(g||ŷ[t]||g̃||ỹ||u1|| . . . ||un||v1|| . . . ||vn||w1||w2||m) := c̄ if the hash oracle has not yet been

queried on these values and c̄ has not been previously returned; otherwise B reselects the randoms;
∗ S = (c1, . . . , cn, su1 , . . . , sun , sv1 , . . . , svn , sw1 , sw2);

B gives the generated signature σ = (g̃, ỹ, S) to A.

Output: Finally, A outputs a successful forgery consisting of a message m, signature σ = (g̃, ỹ, S),
and a counter value t. The interaction outputs (m,σ, t).

Forgery Types. We distinguish between the following two successful forgery types with respect to the
output of the traceability game in Section 2.3.

Type 1. The forgery (m,σ, t) is accepted by the verification algorithm, i.e., V erify(σ,m, Y[t]) = 1, but
causes the tracing algorithm Trace(σ,m, Y[t], x̂[t]) to fail. A closer look on the tracing algorithm reveals
that such failure can only occur if for zi[t] = ỹ/V1 with V1 = g̃x̂[t] the relation zi[t] 6∈ Z[t] holds. This
implies that either (g̃, ỹ) is not a correct encryption of a contribution or that the encrypted contribution is



not part of Z[t], thus S has to be a forged signature of knowledge; otherwise the signature σ would have
been rejected by the verification algorithm. Assuming the security of applied signatures of knowledge A
outputs the forgery of type 1 only with some negligible probability ε1.

Type 2. On input the forgery (m,σ, t) the tracing algorithm Trace(σ,m, Y[t], x̂[t]) returns the encoded
contribution zi[t]∈B[t] −A′

[t]. In the following we show that if A returns a forgery of type 2 then B is able
to compute the discrete logarithm of the encoded contribution zi[t] to the base g in the group G =<g>. We
modify the interaction between B and A and show that the forking lemma for adaptively chosen-message
attacks from [19, Theorem 3] can be applied.

The forking lemma can be applied to the signatures of the form (σ1, c, σ2) on a message m where σ1

depends only on the random chosen values, c is a hash value that depends on m and σ1, and σ2 depends
only on σ1, m, and c. We abbreviate the signature σ = (g̃, ỹ, S) of a message m produced by the signing
algorithm of the group signature scheme in Section 3.3 as σ = (σ1, c, σ2) with the following parameters:

• σ1 = (g̃, ỹ, u1, . . . , un, v1, . . . , vn, w1, w2)
• c = c1 ⊕ . . .⊕ cn with c = H(g||ŷ[t]||σ1||m)
• σ2 = (su1 , . . . , sun , sv1 , . . . , svn , sw1 , sw2)

The forking lemma for adaptively chosen-message attacks requires that the signature σ = (σ1, c, σ2) can
be simulated without knowing the corresponding secret signing key with an indistinguishable distribution
probability. We stress that the computation of S described in the signing query of the interaction between
B and A provides such simulation in the random oracle model.

Assume that interaction between B and A outputs a successful forgery (m,σ, t) of type 2, where
σ = (σ1, c, σ2). The probability that the interaction outputs the forgery of type 2 with A having queried
the hash oracle on (m, g, ŷ[t], σ1) is ε2 = (Advtr

A − ε1)(1− 2−k), where 2−k stands for the possibility that
A guessed the corresponding value c =

⊕n
j=1 cj without querying H . Let zi[t] ∈ Z[t] be a contribution

returned by the tracing algorithm on the forgery (m,σ, t).

By the forking lemma we can rewind the interaction and A to the moment of this query, repeat the
interaction with different responses of H , and obtain a second successful forgery (m, σ′, t) where σ′ =
(σ1, c

′, σ′
2) so that c′ 6= c and σ′

2 6= σ2 with the probability at least ε2. Note that c′ =
⊕n

j=1 c′j such that
c′i 6= ci, whereas values cj and c′j with j 6= i are independent from the response of the hash oracle as
shown in the signing algorithm of the group signature scheme, and are not used in the computation of the
discrete logarithm. We compute the corresponding secret signing key xi[t] = logg zi[t] from the equality

zci

i[t]g
svi = z

c′i
i[t]g

s′vi as xi[t] =
s′vi

−svi

ci−c′i
. Hence, using A we can compute the discrete logarithm in G with

a non-negligible probability ((Advtr
A − ε1)(1 − 2−k))2. This is a contradiction to the Discrete Logarithm

assumption. Thus, Advtr
A ≤ ε and DGS is traceable according to Definition 3.

Remark 5. Most of the CGKA protocols do not achieve Perfect Forward Secrecy (PFS) since not all con-
tributions zi[t] are changed every time a group formation changes, and, therefore, the exposure of one xi[t]

can possibly reveal tracing trapdoors of multiple sessions until xi[t] is changed. Note that although we allow
the CorruptMember query, the absence of PFS is not a hazard for the traceability, since the knowledge of
the group key (allowed by CorruptGroupKey query) is not sufficient to break the requirement as shown in
the proof.

A.3 Proof of Lemma 3 (Anonymity)

Suppose there exists a polynomial-time adversary A that breaks the anonymity of GS. In the following
we show that it is possible to construct a polynomial-time distinguisher D against the security of CGKA



(decisional group key secrecy requirement), and adversary B against the DDH assumption in G such that

Advan
A ≤ 2Advcgka

D + 2Advddh
B + 2ε,

where Advcgka
D = Pr[D(tscript, χ1[t]) = 1] − Pr[D(tscript, χ0[t]) = 1] is the advantage of D in

distinguishing a secret group key (i.e., χ1[t] = x̂[t]) computed by CGKA from a random number (i.e.,
χ0[t] ∈R Zord(G)). Recall that tscript is the transcript of all protocol messages that contains also the set of
public contributions Z[t] = {zi[t]|i ∈ [1, n]}. Since we assume that CGKA is a secure protocol suite, and
the DDH assumption holds in G the right hand side of the inequality is negligible so, the advantage on the
left side is also negligible, and DGS is anonymous according to Definition 4.

Construction of D. Oracle K introduced in the proof of traceability can be used to generate inputs to D
and perform CGKA protocols on D’s queries. However, we modify K to suit the anonymity requirement
as follows. K does not answer to SGroupKey and SMemberKey queries, otherwise D would be able to
distinguish the tracing trapdoor simply using these queries. Let K[t] and A[t] denote sets of contributions
of members controlled by K and A during the group formation identified by t, respectively. K proceeds
queries Setup, Joini and Leave as described in A.2. Additionally, at the end of each query if A[t] = ∅
then K chooses a random bit e ∈ {0, 1} and together with tscript returns χe[t] to D, such that χe[t]

is either the secret group key x̂[t] if e = 1 or a random value r̂[t] ∈R Zord(G) if e = 0. However, if
A[t] 6= ∅ then K returns tscript and x̂[t] (this is because A knows x̂[t] too). D wins the game if for at
least one χe[t] it can correctly guess e. CGKA is said to fulfill decisional group key secrecy requirement

if Advcgka
D = Pr[D(tscript, χ1[t]) = 1]− Pr[D(tscript, χ0[t]) = 1] is negligible. In the following game

we show, how D uses A to break the security of CGKA. For clarity we omit the operations performed by
K and describe the views of D and A.

Setup: D sets counter value t = 0, queries K on Setup and obtains Z[0] = {zi[0]|i∈ [1, n]} and χe[0].
It computes ŷ[0] = gχe[0] , initializes set A[0] = ∅, and gives A the group public key Y[0] = (ŷ[0], Z[0]).
(Note that ŷ[0] is either gx̂[0] or gr̂[0] depending on e.)

Hash Queries: At any time A can query the hash function H . B answers the query completely at
random while keeping constistency.

Type1-Queries:
Join. A picks xa[t+1]∈Zord(G), computes za[t+1] = gxa[t+1] , and starts CGKA.Joinu(xa[t+1], za[t+1])
and CGKA.Joini(xai[t], zai[t], auxai[t]) for all ai with zai[t]∈A[t]. D forwards A’s messages to K and
vice versa until the protocol is finished. As result of CGKA.Joinu() A obtains x̂[t+1] and auxa[t+1],
and for all CGKA.Joini() it obtains x̂[t+1], auxai[t+1] and possibly updated xai[t+1], whereas D

obtains Z[t+1] and x̂[t+1] from K. A and D compute ŷ[t+1] = gx̂[t+1] and Y[t+1] = (ŷ[t+1], Z[t+1]). D
updates A[t+1] = A[t] + {za[t+1]}.

Leave. Suppose member j ∈ [1, n] should be excluded from the group. If zj[t] ∈ A[t] then D updates
A[t+1] = A[t] − {zj[t]}, else it sets A[t+1] = A[t].
• Case A[t+1] 6= ∅: A starts CGKA.Leave(xai[t], zj[t], auxai[t]) for all ai with zai[t] ∈ A[t+1]. D

forwards A’s messages to K and vice versa until the protocol is finished. A obtains Y[t+1], x̂[t+1]

and all secret signing keys xai[t+1], whereas D obtains Z[t+1] and x̂[t+1] from K. A and D compute
ŷ[t+1] = gx̂[t+1] and Y[t+1] = (ŷ[t+1], Z[t+1]). D updates possibly changed contributions in A[t+1].

• Case A[t+1] = ∅: D queries K on Leave with parameter zj[t], and obtains Z[t+1] and χe[t+1]. It
computes ŷ[t+1] = gχe[t+1] , and gives A the group public key Y[t+1] = (ŷ[t+1], Z[t+1]). (Note that
ŷ[t+1] is either gx̂[t+1] or gr̂[t+1] depending on e.)

Sign. D is given a message m ∈ {0, 1}∗, a member j ∈ [1, n] and a counter value t. If zj[t] ∈ A[t]

then B aborts. Else D generates a signature for m using j’s contribution as follows. B picks a



random r ∈R Zord(G), computes g̃ = gr and ỹ = ŷr
[t]zj[t]. B computes the signature of knowledge

S = SK[(αi, β) : g̃ = gβ ∧ ỹ = ŷβ
[t]g

αi ∧ (z1[t] = gα1 ∨ . . . ∨ zn[t] = gαn)](m) without knowing the
corresponding exponent αi using the random oracle simulation as described in the query Sign of the
traceability game in A.2, and gives the generated signature σ = (g̃, ỹ, S) to A.

Challenge: D is given a message m′ ∈ {0, 1}∗, two members i0 and i1, and a counter value t.
If A[t] 6= ∅ then D aborts. Otherwise, D picks a random bit d ∈R {0, 1}, generates the signature
σd = (g̃, ỹ, S) using contribution zid[t] as described in the query Sign of Type1, and gives it to A.
(Note that since D responds to the challenge only if A[t] = ∅, χe[t] is either x̂[t] or r̂[t] depending on e.)

Type2-Queries: D responds to the possible queries of A as described in Type1-Queries.

Output: Eventually, A outputs a bit d′∈{0, 1}. If d′ = d then D outputs 1 (indicating that χe[t] = x̂[t]);
otherwise it outputs 0 (indicating that χe[t] = r̂[t]).

Case e = 1. The most important observation in this case is that χ1[t] is a tracing trapdoor x̂[t] computed in
the sense of CGKA. Hence, Y[t] = (ŷ[t], Z[t]) is equivalent to the group public key of the proposed scheme
in Section 3.3. Therefore, signatures generated by D in the random oracle model are indistinguishable from
those in the anonymity game in Section 2.3. Obviously, D outputs 1 whenether A correctly guesses bit d.
Hence,

Pr[D(tscript, χ1[t]) = 1] = Pr[A(σ1) = 1]Pr[d = 1] + Pr[A(σ0) = 0]Pr[d = 0]

=
1
2
(Pr[A(σ1) = 1] + Pr[A(σ0) = 0])

=
1
2
(Pr[A(σ1) = 1] + 1− Pr[A(σ0) = 1])

=
1
2
(1 + Advan

A )

=
1
2

+
1
2

Advan
A

(1)

Case e = 0. The most important observation in this case is that χ0[t] is a random value r̂[t] ∈R Zord(G).
Note that in both cases ŷ[t] is constructed by D as gχe[t] . Hence in this case, Y[t] = (ŷ[t], Z[t]) is a simulated
group public key. Therefore, signature σd generated by D is a signature-like looking tuple. These signatures
can be classified into two distributions Ed, d∈{0, 1} depending on the choice of d. Obviously, D outputs 1
whenether A can distinguish whether σd belongs to distribution E0 or E1. Hence, Pr[D(tscript, χ0[t]) =
1] = Pr[A(E1) = 1]Pr[d = 1] + Pr[A(E0) = 0]Pr[d = 0], i.e.,

Pr[D(tscript, χ0[t]) = 1] =
1
2
(Pr[A(E1) = 1] + Pr[A(E0) = 0]) (2)

Instead of precise estimation of this probability we relate it to the probability of breaking the DDH
assumption by the adversary B, assuming that there exists adversary A that can distinguish between
signatures sampled from distributions E0 and E1.

Construction of B. Adversary B is given a tuple (g, Ta = ga, Tb = gb, Tc) ∈ G4 where a, b∈R Zord(G)

and either Tc = gc with c∈R Zord(G), or Tc = gab. B decides which Tc it was given by interacting with A
as follows. Let A[t] denote a set of contributions of group members controlled by the adversary, and B[t] a
set of contributions of group members that are not controlled by A in the group formation that is identified
by the counter value t, respectively, and n be a number of group members of this group formation. Note
that A[t] ∪ B[t] = Z[t], A[t] ∩ B[t] = ∅, and n = |A[t]|+ |B[t]|.

Setup: B picks a random n∈R N, sets counter value t = 0, picks randoms (û[0], x1[0], . . . , xn[0])∈R

Zn+1
ord(G). It computes ŷ[0] = T

û[0]
a and Z[0] = {gxi[0] |∀i∈ [1, n]}, performs n instances of the interactive



algorithm CGKA.Setup(xi[0], zi[0]) in parallel, and obtains x̂[0] and auxi[0] for each instance. It
initializes set A[0] = ∅, set B[0] = Z[0], and gives A the group public key Y[0] = (ŷ[0], Z[0]). (Note that
ŷ[0] is computed as gaû[0] and not using the obtained secret key x̂[0], and that B cannot compute aû[0]

because it does not know a. Obviously, Y[0] corresponds to the simulated group public key from the
construction of the distinguisher D above, allowing us later to relate the probabilities of both games.)

Hash Queries: At any time A can query the hash function H . B answers the query completely at
random while keeping constistency.

Type1-Queries:
Join. A picks xa[t+1] ∈ Zord(G), computes contribution za[t+1] = gxa[t+1] , and starts instances of the
interactive algorithms CGKA.Joinu(xa[t+1], za[t+1]) and CGKA.Joini(xai[t], zai[t], auxai[t]) for all
ai with zai[t] ∈A[t], whereas B starts CGKA.Joini(xi[t], zi[t], auxi[t]) for all i with zi[t] ∈ B[t]. After
the protocol is completed A obtains x̂[t+1], auxa[t+1], and possibly updated xai[t], whereas B obtains
x̂[t+1], auxi[t+1] and possibly updated xi[t+1]. Both, A and B compute ŷ[t+1] = gx̂[t+1] and Y[t+1] =
(ŷ[t+1], Z[t+1]). B adds the contribution of the introduced member to the set A[t], i.e., A[t+1] = A[t] +
{za[t+1]}.
Leave. Suppose member j ∈ [1, n] should be excluded from the group. If zj[t] ∈ A[t] then B updates
A[t+1] = A[t] − {zj[t]} and B[t+1] = B[t], else it sets A[t+1] = A[t] and B[t+1] = B[t] − {zj[t]}.
• CaseA[t+1] 6= ∅: A starts CGKA.Leave(xai[t], zj[t], auxai[t]) for all ai with zai[t]∈A[t+1], whereas

B starts CGKA.Leave(xi[t], zj[t], auxi[t]) for all i with zi[t]∈B[t+1]. After the protocol is completed
A obtains Y[t+1], x̂[t+1] and all secret signing keys xai[t+1], whereas B obtains Y[t+1], x̂[t+1] and all
secret signing keys xi[t+1]. B updates possibly changed contributions in A[t+1] and B[t+1].

• Case A[t+1] = ∅: B starts CGKA.Leave(xi[t], zj[t], auxi[t]) for all i with zi[t]∈B[t+1], and obtains
x̂[t+1], auxi[t+1] and possibly changed xi[t+1]. It picks a random û[t+1] ∈R Zord(G), computes

ŷ[t+1] = T
û[t+1]
a , and gives A the group public key Y[t+1] = (ŷ[t+1], Z[t+1]). B updates possibly

changed contributions in B[t+1]. (Note that like in setup Y[t+1] is a simulated group public key.)
Sign. B is given a message m ∈ {0, 1}∗, a member j ∈ [1, n] and a counter value t. If A[t] 6= ∅ and
zj[t] 6∈ A[t] then B computes the signature σ = Sign(xj[t],m, Y[t]) and gives it to A. If A[t] 6= ∅
and zj[t] ∈ A[t] then B aborts. Else if A[t] = ∅ then B generates a signature for m using j’s
contribution as follows. B picks a random r ∈R Zord(G), computes g̃ = T r

b (note that g̃ = gbr),

and ỹ = T
û[t]r
c zj[t] (note that if Tc = gab then ỹ = gabû[t]rzj[t] = ŷbr

[t]zj[t]; otherwise if Tc = gc

then ỹ = ŷc∗

[t]zj[t] for some unkonwn random c∗ = cr/a). B computes the signature of knowledge

S = SK[(αi, β) : g̃ = gβ ∧ ỹ = ŷβ
[t]g

αi ∧ (z1[t] = gα1 ∨ . . . ∨ zn[t] = gαn)](m) without knowing the
corresponding exponent β using the same random oracle simulation as described in query Sign in the
traceability game in A.2, and gives the generated signature σ = (g̃, ỹ, S) to A.

Challenge: B is given a message m′ ∈ {0, 1}∗, two members i0 and i1, and a counter value t.
If A[t] 6= ∅ then B aborts. Otherwise, B picks a random bit d ∈R {0, 1}, generates the signature
σd = (g̃, ỹ, S) using contribution zid[t] as described in the query Sign of Type1, and gives it to A.

Type2-Queries: B responds to the possible queries of A as described in Type1-Queries.

Output: Eventually, A outputs a bit d′∈{0, 1}. If d′ = d then B outputs 1 (indicating that Tc = gab);
otherwise it outputs 0 (indicating that Tc = gc).

Recall that the advantage of B in breaking the DDH assumption is defined in Section 3.1 as
Advddh

B = Pr[B(g, Ta, Tb, g
ab) = 1] − Pr[B(g, Ta, Tb, g

c) = 1]. In the following we compute
both probabilities and relate them to the probabilities obtained from the game with distinguisher D in the
previous paragraph.



Case Tc = gab. The most important observation in this case is that the signature σd generated by B
in the random oracle model is computed based on the simulated group public key Y[t] = (ŷ[t], Z[t]), i.e.,
g̃ = gbr and ỹ = ŷbr

[t]zid[t]. Therefore, signature σd is sampled from the distribution Ed introduced in
the previous paragraph. Obviously, B outputs 1 whenether A correctly guesses the distribution. Hence,
Pr[B(g, Ta, Tb, g

ab) = 1] = Pr[A(E1) = 1]Pr[b = 1] + Pr[A(E0) = 0]Pr[b = 0]. Considering the
Equation 2, we obtain

Pr[B(g, Ta, Tb, g
ab) = 1] = Pr[D(tscript, χ0[t]) = 1] (3)

Case Tc = gc. In this case the encryption of the contribution zid[t] in the signature σd given to A is
not correct, i.e., g̃ = gbr and ỹ = ŷc∗

[t]zid[t] for some unkown random c∗ = cr/a. Obviously, value ỹ
is indistinguishable from a random number. Thus, the probability of A in guessing bit d correctly is not
greater than that of a random guess, i.e., 1/2 + ε. Hence,

Pr[B(g, Ta, Tb, g
c) = 1] ≤ 1/2 + ε (4)

In the following we combine results from both parts of the proof. Recall that Advcgka
D =

Pr[D(tscript, χ1[t]) = 1]− Pr[D(tscript, χ0[t]) = 1]. With Equations 1 and 3 we obtain

Advcgka
D =

1
2

+
1
2

Advan
A − Pr[B(g, Ta, Tb, g

ab) = 1]

Addition of Pr[B(g, Ta, Tb, g
c) = 1] on both sides of the above equation combined with Advddh

B =
Pr[B(g, Ta, Tb, g

ab) = 1]− Pr[B(g, Ta, Tb, g
c) = 1] implies

Advcgka
D + Pr[B(g, Ta, Tb, g

c) = 1] =
1
2

+
1
2

Advan
A − Advddh

B

By transformation and consideration of the Equation 4 we obtain the required inequality:

Advan
A = 2Advcgka

D + 2Advddh
B + 2Pr[B(g, Ta, Tb, g

c) = 1]− 1

≤ 2Advcgka
D + 2Advddh

B + 2ε
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