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Abstract

A linear (qd, q, t)-perfect hash family of size s in a vector space V of order qd over
a field F of order q consists of a set φ1, . . . , φs of linear functionals from V to F with
the following property: for all t subsets X ⊆ V there exists i ∈ {1, . . . , s} such that φi
is injective when restricted to F . A linear (qd, q, t)-perfect hash family of minimal size
d(t− 1) is said to be optimal. In this paper we extend the theory for linear perfect hash
families based on sequences developed by Blackburn and Wild. We develop techniques
which we use to construct new optimal linear (q2, q, 5)-perfect hash families and (q4, q, 3)-
perfect hash families. The sequence approach also explains a relationship between linear
(q3, q, 3)-perfect hash families and linear (q2, q, 4)-perfect hash families.

1 Introduction to Perfect Hash Families

Perfect hash families were introduced by Mehlhorn [13] in 1984 as part of compiler design. Per-

fect hash families have also proved useful in a large variety of applications, in particular, there

have been a number of recent applications to cryptography. For example, to threshold cryp-

tography (see Blackburn, Burmester, Desmedt and Wild [8] and Blackburn [6]), to broadcast

encryption (see Fiat and Naor [10]) and to improve explicit constructions of secure frameproof

codes, key distribution patterns, group testing algorithms, cover free families and separating

systems (see Stinson, van Trung and Wei [14]).

Let s, t, n, q be positive integers and let V be a set of size n and let F be a set of size q. A

function φ:V → F separates a subset X of V if φ is an injection when restricted to X. An

(n, q, t)-perfect hash family of size s is a set S = {φ1, . . . , φs} of s functionals from V to F with

the property that for all t-subsets X ⊆ V , at least one of φ1, . . . , φs separates X.
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We say that S is a linear perfect hash family if F can be identified with a finite field GF(q)

and V can be identified with a vector space over GF(q) in such a way that S is a set of linear

functionals under this identification. Thus in the linear case, q is a prime power and n = qd

for some non-negative integer d. This paper deals solely with linear perfect hash families and

throughout we use q to denote a prime power. Linear perfect hash families also have a geometric

interpretation which was used in [3, 4] to construct linear perfect hash families.

The following result from Blackburn and Wild [9] gives a bound on the size of a linear perfect

hash family.

Theorem 1.1 ([9]) Let d and t be integers such that d ≥ 2 and t ≥ 2 and let q be a prime

power. If S is a linear (qd, q, t)-perfect hash family, then |S| ≥ d(t− 1).

If |S| = d(t− 1) then S is called optimal. Blackburn and Wild give conditions for the existence

of optimal linear perfect hash families.

Theorem 1.2 ([9]) An optimal linear (qd, q, t)-perfect hash family S exists if q ≥
(
t
2

)d(t−1)
.

Perfect hash families are an interesting combinatorial structure with practical applications.

They are hard to construct, and there are limited known constructions of linear perfect hash

families. Blackburn and Wild [9] give a general construction of an optimal linear perfect hash

family which works for q much larger than the bound of Theorem 1.2 and of a certain form,

namely q = q
α1α2···αd(t−2)

0 where q0 is any prime power and each αi ≥ d. Blackburn [7] gives

a construction of optimal linear (p2, p, 4)-perfect hash families where p is a prime, p = 11 or

p ≥ 17. Wang and Xing [15] construct linear perfect hash families but their constructions are

not optimal. In [3] the authors use geometric techniques to show that optimal linear (q2, q, 4)-

perfect hash families exist if and only if q = 11 or q ≥ 17 (q a prime power) and constructions are

given for each such q. In [4] geometric techniques are used to show that optimal linear (q3, q, 3)-

perfect hash families exist if and only if q ≥ 11 (q a prime power) and constructions are given

for each such q. The authors also give constructions of optimal linear (q2, q, 5)-perfect hash

families for restricted values of q. In [1, 2], recursive algorithms for constructing perfect hash

families are given. These algorithms need as input perfect hash families with small parameters.

This gives motivation for constructing small perfect hash families.

In this paper we investigate the sequence representation of linear perfect hash families developed

by Blackburn and Wild [9] in more detail. We generalise their results with the aim of using

a sequence approach to construct optimal linear perfect hash families. Known constructions

methods of perfect hash families are ad hoc and this sequence approach gives a general method
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which can be used to construct optimal linear perfect hash families. We illustrate how this

approach can be used to construct the optimal linear (q2, q, 4)- and (q3, q, 3)-perfect hash families

found in [3, 4]. Further, the sequence approach explains a correspondence between these two

cases. We then use these techniques to construct new optimal linear (q2, q, 5)- and (q4, q, 3)-

perfect hash families.

2 The sequence approach to linear perfect hash families

In this section we introduce the sequence approach used by Blackburn and Wild in [9]. In their

paper they used sequences to prove Theorem 1.2, that is, to show that optimal linear perfect

hash families exist if q is large enough. The proof of this result is a probabilistic argument and

does not use the sequences to produce constructions of perfect hash families. Our approach here

is to study the sequences with the aim of characterizing when they are perfect hash families in

order to develop techniques to construct perfect hash families. Consequently we need to study

these sequences in more detail than previously done, in particular we need to generalise the

results of [9] to results that hold for smaller q; and we need to obtain some more specialised

results on these sequences. Some of the preliminary results here are from [9], but we have

included some short proofs to assist in understanding the theory. We mostly use the notation

of [9]. As a lot of notation and definitions are involved, we include a notation index in the

Appendix for easy reference by the reader.

2.1 The sequence approach to the characterization of optimal linear

perfect hash families

I’ve put q ≥ 2 below instead of >, I thought it was more natural.

Let V be a vector space of dimension d > 0 over GF(q), where q ≥ 2. Let V ∗ be the dual

space of V , consisting of the set of linear functionals φ:V → GF(q). If p ∈ V and φ ∈ V ∗,

we will use the notation pφ to represent φ acting on p. Given a set S = {φ1, . . . , φk} of

k linear functionals, we may order them in some arbitrary way to produce the associated

functional sequence Φ = (φ1, . . . , φk) ∈ (V ∗)k. In [9], conditions were found on Φ so that S (or

equivalently Φ) is a perfect hash family. To explain these conditions we need to introduce the

following notation and concepts from [9].

Note that the t = 1 case is trivial and if q < t then no functional can separate t points.

Hence let 2 ≤ t ≤ q and consider (V ∗)t, a dt-dimensional vector space over GF(q). Let

Ψ = (ψ1, . . . , ψt) ∈ (V ∗)t. Let P = (p1, . . . , pt) be a sequence of t elements of V . We can regard
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Ψ as a linear map Ψ:V t → GF(q) over GF(q) where PΨ =
∑t

i=1 p
ψi

i .

Further, P defines a subspace UP of (V ∗)t given by

UP =
{
Ψ = (ψ1, . . . , ψt) ∈ (V ∗)t : PΨ = 0

}
.

Let T = {1, 2, . . . , t} and define T 2 to be {(a, b) ∈ Z × Z : 1 ≤ a < b ≤ t}. An element (a, b)

of T 2 is a pair on T , and a sequence c of pairs (possibly repeated) from T 2 is said to be a pair

sequence on T . For a pair (a, b) on T and all φ ∈ V ∗, define the vector w(a,b),φ ∈ (V ∗)t by

w(a,b),φ = (ψ1, . . . , ψt) where ψi =


φ if i = a,

−φ if i = b,

0 if i 6= a, b.

So for example, w(1,2),φ = (φ,−φ, 0, . . . , 0). We use w(a,b),φ to determine whether φ separates a

t-subset {p1, . . . , pt} of V . We let P = (p1, . . . , pt) be an arbitrary ordering of the t-subset and

say that φ separates the sequence P if φ separates the set {p1, . . . , pt}.

Result 2.1 ([9]) Let P = (p1, . . . , pt) be a sequence of t distinct elements of V . Let φ ∈ V ∗.

Then φ fails to separate P if and only if w(a,b),φ ∈ UP for some (a, b) ∈ T .

Proof The linear functional φ fails to separate P if and only if φ maps two elements of P to

the same element of GF(q). That is, if and only if there exists (a, b) ∈ T such that pφa = pφb ,

that is, w(a,b),φ ∈ UP . �

So, for example, if w(1,2),φ ∈ UP , then pφ1 + p−φ2 + p0
3 + . . .+ p0

t = 0, that is pφ1 = pφ2 , so φ maps

p1 and p2 to the same element of GF(q). Thus φ fails to separate P .

For (a, b) ∈ T , we define the subspace V(a,b) of (V ∗)t by

V(a,b) = {w(a,b),φ : φ ∈ V ∗}.

Note that V(a,b) is a vector space of dimension d over GF(q). We are interested in t-subsets

{p1, . . . , pt} of V which necessarily have distinct elements. However, when we consider an

arbitrary t-sequence P = (p1, . . . , pt) from V t, P may have repeated elements. The subspace

V(a,b) gives us a way to determine whether P has repeated elements.

Result 2.2 ([9]) Let P = (p1, . . . , pt) be a sequence of t elements of V . Then P has a repeated

element pa = pb (for some a, b, 1 ≤ a < b ≤ t) if and only if V(a,b) ⊆ UP .

Proof We have pa = pb if and only if pφa = pφb for all φ ∈ V ∗, if and only if w(a,b),φ ∈ UP for all

φ ∈ V ∗, if and only if V(a,b) ⊆ UP . �
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Let c = ((a1, b1), . . . , (ak, bk)) be a k-pair sequence on T and let Φ = (φ1, . . . , φk) ∈ (V ∗)k be a

k-functional sequence. Define the subspace Wc,Φ of (V ∗)t to be

Wc,Φ =
〈
w(ai,bi),φi

: 1 ≤ i ≤ k
〉
.

So, for example, if k = 2 and c = ((1, 2), (1, 3)), Φ = (φ1, φ2), then Wc,Φ = 〈(φ1,−φ1, 0, . . . , 0),

(φ2, 0,−φ2, 0, . . . , 0)〉 .

The next result involving Wc,Φ shows when {φ1, . . . , φk} separates the t-subset {p1, . . . , pt} of

V .

Result 2.3 ([9]) Let P = (p1, . . . , pt) be a sequence of t distinct elements of V and let S =

{φ1, . . . , φk} be a set of k linear functionals with associated k-functional sequence Φ. Then S

fails to separate P if and only if there exists a k-pair sequence c on T such that Wc,Φ ⊆ UP .

Proof The set S fails to separate P if and only if every functional φi ∈ Φ maps two distinct

elements of P to the same element of GF(q). That is, if and only if for each φi ∈ Φ there exists

(ai, bi) ∈ T such that pφi
ai

= pφi

bi
, that is, w(ai,bi),φi

∈ UP . This occurs if and only if there exists

a pair sequence c on T with Wc,Φ ⊆ UP . �

Note that if a set {φ1, . . . , φk} fails to separate a sequence (p1, . . . , pt) of distinct elements, then

it fails to separate any supersequence (p1, . . . , pt, pt+1).

In the next Lemma we will use the subspace Y of (V ∗)t defined as:

Y = {(ψ1, . . . , ψt) ∈ (V ∗)t :
t∑
i=1

ψi = 0}.

Note that Y has dimension d(t − 1) over GF(q) (since ψ1, . . . , ψt−1 can be chosen arbitrarily,

and then ψt = −(ψ1 + . . .+ ψt−1)).

Lemma 2.4 Suppose S is a set of d(t−1) linear functionals with associated functional sequence

Φ. Let c be a d(t − 1)-pair sequence on T . Then Wc,Φ ⊆ Y , and so rank Wc,Φ ≤ d(t − 1). In

particular, if rank Wc,Φ = d(t − 1), then Wc,Φ = Y and so V(a,b) ⊆ Wc,Φ for all pairs (a, b) on

T .

Proof As w(a,b),φ ∈ Y for all pairs (a, b) on T and φ ∈ V ∗, it follows that Wc,Φ ⊆ Y . The

remaining statements follow from the definitions. �

The following result was stated in [9] without proof (the proof is very similar to the proof of

[9, Theorem 4]).
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Result 2.5 ([9]) Suppose S is a linear (qd, q, t)-perfect hash family of optimal size d(t − 1).

Then every d elements of S are independent over GF(q).

We now describe the geometrical interpretation of linear perfect hash families as introduced

in [9] to provide an easy proof for Therem 2.6 below. For an introduction to finite projective

geometry see [11]. Let π∞ be the hyperplane at infinity in the projective space PG(d, q). We

identify the elements of V with the affine points of PG(d, q). For any linear functional φ ∈ V ∗

and γ ∈ GF(q), the points v ∈ V with vφ = γ form a hyperplane of PG(d, q) and so φ

corresponds to a parallel class of hyerplanes. There is a correspondence between such parallel

classes of hyperplanes in PG(d, q) and the hyperplanes of π∞. Denote by [φ] the hyperplane in

π∞ corresponding to the parallel class determined by φ. Perfect hash family results now relate

to properties in PG(d, q). For example, Result 2.5 states that every d linear functionals are

independent, so the the hyperplanes corresponding to the linear functionals form a dual arc in

π∞. Two points p1, p2 are separated by φ if and only if they belong to different hyperplanes of

the parallel class determined by φ, if and only if the line p1p2 does not meet π∞ in a point of

[φ].

Example 1 Suppose t = 2. Consider the geometrical interpretation of linear perfect hash

families as described above. Then, any set of d independent hyperplanes {φ1, . . . , φd} of π∞

form a (qd, d, 2) perfect hash family. To see this, consider two distinct affine points P1, P2.

P1P2 ∩ π∞ is a point. So {φ1, . . . , φd} is a perfect hash family if and only if ∩di=1φi does not

contain a point, if and only if φ1, . . . , φd are independent.

If q = 2 then as 2 ≤ t ≤ q, we have t = 2 and this is discussed above.

Theorem 2.6 Suppose 2 ≤ t ≤ q. If Φ is a a linear (qd, d, t) perfect hash family, then for each

t′ (2 ≤ t′ < t), and d(t′ − 1) subset Φ′ of Φ is a (qd, d, t′) perfect hash family.

Proof If t = 2 there is nothing to prove. So suppose firstly that t′ = t− 1 ≥ 2. Suppose that

Φ′ is not a (qd, d, t− 1) perfect hash family. So there exists distinct points P ′ = (p1, . . . , pt−1)

and pair sequence c′ of length d(t− 2) with Wc′,Φ′ ⊆ UP ′ .

We now use the geometrical representation. Consider the d linear functionals φ1, . . . , φd in

Φ\Φ′. As they are independent (Result 2.5), the intersection [φ1] ∩ [φ2] ∩ · · · ∩ [φd−1] of the

hyperplanes of π∞ corresponding to the first d − 1 linear functionals is a point h ∈ π∞ say,

which is not contained in the final linear functional [φd]. Now the line p1h intersects 〈p2, [φd]〉
in a point g, say.
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Suppose firstly that g 6= p1, p2. So we have p1g∩π∞ ∈ [φ1]∩[φ2]∩· · ·∩[φd−1] and p2g∩π∞ ∈ [φd].

If g ∈ {p3, . . . , pt−1} then Φ does not separate the t− 1 distinct points p1, . . . , pt−1. Otherwise

Φ does not separate the t distinct points p1, . . . , pt−1, g. In both cases this contradicts Φ being

a perfect hash family.

If g = p1 then let pt be any point of p1h\{p1, h}. So φ1, . . . , φd−1 does not separate p1, pt and

φd does not separate p1, p2. Hence using Wc′,Φ′ ⊆ UP ′ we can conclude Φ does not separate the

distinct elements from p1, . . . , pt, contradicting Φ being a perfect hash family.

Similarly, if g = p2 then φ1, . . . , φd−1 does not separate p1, p2. Let pt ∈ 〈p2, [φd]〉\{p2, π∞}. So

φd does not separate p2, pt. Hence Φ does not separate the distinct elements from p1, . . . , pt.

The remaining values of t′ follow by repeating the argument. �

Example 2 We now discuss the case t = 3. If we consider three affine (non-collinear) points

P1, P2, P3, then the points Q3 = P1P2∩π∞, Q2 = P1P3∩π∞ and Q1 = P2P3∩π∞ are collinear.

Thus {φ1, . . . , φ2d} is not a perfect hash family if we can find a partition of φ1, . . . , φ2d into sets

A1, A2, A3 where |A1| = |A2| = d− 1 with

R1 =
⋂
φ∈A1

φ, R2 =
⋂
φ∈A2

φ, θ =
⋂
φ∈A3

φ

and R1R2 ∩ θ 6= ∅ (R1, R2 are points by Theorem 2.6 and Result 2.5).

Thus, for every such partition A1, A2, A3, we need 〈R1, R2, θ〉 = π∞. We see later (Sections 5,6)

that there are other conditions to consider.

We now examine the case when d = 2, where the condition now becomes no three functionals

of a (q2, 2, 3) perfect hash family are dependent and so the four functionals are distinct under

the geometrical representation.

In the following lemmas we relate pair sequence properties with the rank properties of Wc,Φ.

The next result determines the maximal rank of Wc,Φ for any k-functional sequence Φ and

k-pair sequence c. We will show later that Φ is a perfect hash family if and only if the rank

of Wc,Φ is this maximal value for all relevant k-pair sequences c. We will use the subspace

R = {(p, . . . , p) : p ∈ V } ⊆ V t. Note that R is a vector space of dimension 1 over V , and

consequently of dimension d over GF(q).

Lemma 2.7 Let Φ be a k-functional sequence and let c be any k-pair sequence of T k. Then we

have rank Wc,Φ ≤ d(t− 1). Further, rank Wc,Φ < d(t− 1) if and only if there exists P ∈ V t \R
with Wc,Φ ⊆ UP .



perfect hash familyseq.tex December 22, 2005 8

Proof Let Φ = (φ1, . . . , φk), c = ((a1, b1), . . . , (ak, bk)) and let [Wc,Φ] be the k× t matrix with

rows w(ai,bi)φi
, 1 ≤ i ≤ k. So the row space of [Wc,Φ] is equal to Wc,Φ. Let P = (p1, . . . , pt) ∈ V t.

As each w(ai,bi),φi
:V t → GF(q) is a linear map, we can regard [Wc,Φ]:V t → GF(q)k as a linear

map over GF(q), where P [Wc,Φ] = [Wc,Φ]P Tr = (Pw(a1,b1),φ1 , . . . , Pw(ak,bk),φk ) (where Tr represents

matrix transposition). Hence over GF(q), [Wc,φ] satisfies the dimension theorem:

dim kernel([Wc,Φ]) + dim image([Wc,Φ]) = dimV t.

Now dim V t = dt and R ⊆ kernel([Wc,Φ]), so dim kernel([Wc,Φ]) ≥ d. Hence

dim image ([Wc,Φ]) = rank Wc,Φ ≤ d(t− 1)

with equality if and only if ker ([Wc,Φ]) = R. That is, if and only if Wc,Φ 6⊆ UP for any P 6∈ R.

�

As the row space of [Wc,Φ] is equal to Wc,Φ, they have the same rank, so from now on, we use

Wc,Φ for [Wc,Φ].

Let A be a subset of T = {1, . . . , t}. If c is a pair sequence on T , define cA to be the pair

sequence on A where the pairs in cA are only those pairs of c whose entries lie entirely in A.

Similarly, if Φ is a functional sequence associated with c, let ΦA be the functional sequence

consisting of those elements of Φ corresponding to the pairs in cA.

We remind the reader that a k-pair sequence c = ((a1, b1), . . . , (ak, bk)) on T may contain

repeated pairs. We say c is (d, t)-limited if for every t′ (2 ≤ t′ < t), and t′-subset A of T , the

number of pairs |cA| in cA is strictly less than d(t′ − 1).

The concept of (d, t)-limited sequences is fundamental to our technique for constructing perfect

hash families. This concept was not used in Blackburn and Wild [9]; it is important for

our constructions as it considerably reduces the number of sequences to be considered in the

construction of a perfect hash family.

Sue, this is new

Lemma 2.8 Consider a (qd, d, t) perfect hash family with associated linear functional sequence

Φ. Let c be a d(t − 1)-pair sequence. Let c′ a subsequence of c with one pair less. If c′ is

(d, t)-limited sequence then rank Wc,Φ = d(t− 1).

Proof Let Φ′ be the subsequence of Φ corresponding to c′. By Lemma 2.7, rank Wc,Φ ≤ d(t−1),

so we suppose that rank Wc,Φ < d(t − 1) and arrive at a contradiction. By Lemma 2.7 there

exists P = (p1, . . . , pt) 6∈ R with Wc′,Φ′ ⊆ Wc,Φ ⊆ UP . As Φ is a perfect hash family, P does not

have distinct elements. So P has some repeated elements, but at least two different elements,
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as P 6∈ R. Suppose P has r (1 < r < t) distinct elements q1, . . . , qr. Let Ai ⊆ T be the set

{j : pj = qi}, and let ai = |Ai|, the number of times qi occurs in P , so 1 ≤ ai < t. If no ai = 1,

set s to 0 otherwise suppose without loss of generality that 1 = a1 = a2 = · · · = as, and ai > 1

for i > s. Note that s < r and

s+
r∑

i=s+1

ai = t. (1)

Our aim is to show that the number |c| of pairs in c is strictly bounded above by d(t − 1),

contradicting c being of length d(t− 1), from which the theorem follows.

We partition the pairs of c′ into r + 1 categories (0), (1), . . . , (r). The category (0) consists of

the pairs (e, f) of c′ where e ∈ Ai, f ∈ Aj and i 6= j. The category (i) consists of the pairs

(e, f) of c′ where e, f ∈ Ai, e 6= f (1 ≤ i ≤ r).

We first consider the pairs in category (i) (1 ≤ i ≤ r). If ai = 1 then there are no pairs in this

category (as a pair has two distinct entries). Otherwise, as c′ is (d, t)-limited, we have

|c′Ai
| ≤ d(ai − 1)− 1.

Now consider the pairs of category (0). We will define a new pair sequence c′0. For each pair

(e, f) of c′ of category (0), define a corresponding pair (i, j) of c′0, where e ∈ Ai, f ∈ Aj. By

definition of category (0), i 6= j. (If i > j write the pair as (j, i) without loss of generality.) Let

Φ′
0 be those elements of Φ′ corresponding to the pairs in category (0). As Wc′,Φ′ ⊆ UP , we have

Wc′0,Φ
′
0
⊆ UQ, (2)

where Q = (q1, . . . , qr).

If |Φ0| ≥ d(r − 1), then by Result 2.6, Φ0 is a (qd, d, r) perfect hash family. As Q has distinct

points, this contradicts (2). Hence |Φ′
0| ≤ d(r−1)−1 and so the number |c′0| of pairs in category

(0) is less than or equal to d(r − 1)− 1.

We are now ready to bound the length of c′, using the bounds on the pairs in categories

(0), (1), . . . , (r). We have

|c′| ≤ d(r − 1)− 1 +
r∑

i=s+1

(d(ai − 1)− 1)

= dr − d− 1 +

(
r∑

i=s+1

dai

)
− (r − s)d− (r − s)

= d

(
s+

r∑
i=s+1

ai

)
− d− 1− (r − s)

= d(t− 1)− 1− (r − s) by (1)

≤ d(t− 1)− 2
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as s < r. A |c| = |c′|+ 1, this contradicts c being of length d(t− 1). �

Lemma 2.9 Let Φ be a k-functional sequence (1 ≤ k ≤ d(t− 1)) with the property that every

d(t− 2)-subset of S is a (qd, q, t− 1) perfect hash family. Let c be a k-pair sequence on T which

is not (d, t)-limited. Then V(a,b) ⊆ Wc,Φ for some pair (a, b) on T .

Proof As c is not (d, t)-limited, let t′ be the smallest value (2 ≤ t′ < t) with a t′-subset A

of T satisfying |cA| ≥ d(t′ − 1). Choose any subsequence c′ of cA of length d(t′ − 1), and let

Φ′ be the corresponding subsequence of ΦA. By choice of t′, c′ is (d, t′)-limited. As t′ < t, by

Theorem 2.6, Φ′ is a (qd, q, t′) perfect hash family. Applying Lemma 2.8 with Φ′ and c′, we

have rank Wc′,Φ′ = d(t′ − 1). By Lemma 2.4, there exists a, b ∈ A with V(a,b) ⊆ Wc′,Φ′ ⊆ Wc,Φ,

as required. �

The following is our first theorem that characterises perfect hash families in terms of sequences.

In [9] the forward implication was indicated, but we include the proof for completeness.

Theorem 2.10 Suppose 2 ≤ t ≤ q. Suppose S is a set of d(t − 1) linear functionals with

associated functional sequence Φ. Then S is an (optimal) linear (qd, q, t)-perfect hash family if

and only if, for all |S|-pair sequences c we have either: (a) there exists a pair (a, b) on T with

V(a,b) ⊆ Wc,Φ, or (b) rank Wc,Φ = d(t− 1).

Proof (⇒) Suppose that S is a perfect hash family and let c be a |S|-pair sequence. If c is

not (d, t)-limited, then (a) holds by Theorem 2.6 and Lemma 2.9. If c is (d, t)-limited, then (b)

holds by Lemma 2.8.

(⇐) Suppose that S is not a perfect hash family. Then there exists a set P of t distinct

elements of V that S does not separate. Thus by Result 2.3, there exists a |S|-pair sequence

c with Wc,Φ ⊆ UP . If c satisfies (a), then there exists (a, b) ∈ T such that V(a,b) ⊆ Wc,Φ ⊆ UP

and so by Result 2.2, P does not have distinct elements, a contradiction. If c satisfies (b), then

by Lemma 2.4 we have V(a,b) ⊆ Wc,Φ ⊆ UP for all (a, b) ∈ T , and so by Result 2.2, P does not

have distinct elements, a contradiction. Thus S is a perfect hash family. �

Corollary 2.11 Suppose 2 ≤ t ≤ q. Suppose S is a set of d(t − 1) linear functionals with

associated functional sequence Φ. Then S is an (optimal) linear (qd, q, t)-perfect hash family if

and only if, for all |S|-pair sequences c there exists a pair (a, b) on T with V(a,b) ⊆ Wc,Φ.

This is also new.
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Lemma 2.12 Suppose 2 ≤ t ≤ q. Let Φ be a d(t − 1) linear functional sequence with the

property that, for every d(t− 1) pair sequence c of the form c = (c′, (a, b)), where c′ be a (d, t)-

limited pair sequence of length d(t− 1)− 1, we have rank Wc,Φ = d(t− 1). Then Φ is a (qd, d, t)

perfect hash family.

Proof We prove this by induction on t.

Suppose firstly that t = 2. In this case T = {1, 2} and c = (1, 2)d (that is, the pair (1, 2)

repeated d times). The condition that rank Wc,φ = d is equivalent to every d functions in

Φ being linearly independent, is equivalent to Φ being a (qd, d, 2) perfect hash family (see

Example 1).

Suppose now that the statement of the lemma holds for the value t− 1 (t− 1 ≥ 2). We prove

the statement for t.

Let c be a d(t − 1)-pair sequence. If c = (c′, (a, b)) where c′ is (d, t)-limited, by assumption,

rank Wc,Φ = d(t−1). We will show later that every d(t−2)-subset of Φ is a (qd, q, t−1) perfect

hash family. So if c = (c′, (a, b)) is not (d, t)-limited, by Lemma 2.9 there exists a pair (a, b)

with V(a,b) ⊆ Wc,φ. Hence by Theorem 2.10, Φ is a (qd, q, t) perfect hash family.

It remains to show that a d(t− 2) subsequence Ψ of Φ is a (qd, d, t− 1) perfect hash family.

Take a d(t− 2) pair sequence e = (e′, (a, b)) on T ′ = {1, . . . , t− 1} where e′ is (d, t− 1)-limited.

Now extend e′ to a d(t− 1)-sequence c′ where

c′ = (e′, (t− 2, t), (t− 1, t)d−1).

If we prove that c′ is (d, t)-limited, then rank W(c′,(a,b)),Φ = d(t− 1) (by induction assumption)

and in particular rank We,Ψ = d(t− 2). From this we conclude by inductive hypothesis that Ψ

is a (qd, d, t− 1) perfect hash family, as required. It remains to show that c′ is (d, t)-limited.

Note that as e′ is (d, t− 1)-limited, for any subset A′ of T ′, we have

|cA′| ≤ d(|A′| − 1)− 1.

Consider A ⊂ T . There are four cases to consider: (1) t − 1, t ∈ A, (2) t − 1 ∈ A, t 6∈ A, (3)

t− 1 6∈ A, t ∈ A, and (4) t− 1, t 6∈ A.

In Case (1), write A = A′ ∪ {t}, so |A′| ≥ 1. If |A′| > 1 then

|cA| ≤ d(|A′| − 1)− 1 + d = d(|A| − 1)− 1

as required. Otherwise |A′| = 1 and A = {t− 1, t} and so |cA| = d(|A| − 1)− 1 as required.
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In Case (2), |cA| = |eA| ≤ d(|A|−1)−1 as required. In Case (3), write A = A′∪{t}. If |A′| > 1,

then |cA| ≤ d(|A′| − 1)− 1 + 1 ≤ d(|A| − 1)− 1. If |A′| = 1 then |cA| ≤ 1 ≤ d(|A| − 1)− 1, as

required.

In Case (4), |cA| = |eA| ≤ d(|A| − 1)− 1, as required.

Hence, c′ is (d, t)-limited as required. �

Theorem 2.13 Suppose 2 ≤ t ≤ q. Suppose S is a set of d(t − 1) linear functionals with

associated functional sequence Φ. Then S is a (qd, d, t) perfect hash family if and only if both

1. Every d(t− 2)-subset of S is a (qd, q, t− 1) perfect hash family.

2. For all (d, t)-limited |S|-pair sequences c we have rank Wc,Φ = d(t− 1).

Proof The forward direction follows immediately from Lemma 2.8. The reverse direction

follows from Lemma 2.9 and Theorem 2.10. �

We are now able to prove the main theorem which characterizes when a functional sequence Φ

is a perfect hash family in terms of the rank of Wc,Φ and (d, t)-limited pair sequences.

Theorem 2.14 Suppose 2 ≤ t ≤ q. Suppose S is a set of d(t − 1) linear functionals with

associated functional sequence Φ. Then S is an (optimal) linear (qd, q, t)-perfect hash family if

and only if, for all |S|-pair sequences of the form c = (c′, (a, b)) where c′ is (d, t)-limited, and

all pairs (a, b) on T , we have

rank Wc,Φ = d(t− 1).

Proof The forward direction follows immediately from Theorem 2.6 and Lemma 2.8. The

backward direction is Lemma 2.12. �

2.2 Methods to construct linear perfect hash families

These results give us two approaches to constructing perfect hash families. Both these methods

involve finding d(t− 1) functionals that satisfy Theorem 2.14.

Before describing these methods, we first note that if c1, c2 are two k-pair sequences, then we

can determine whether they are isomorphic under the induced action of the symmetric group

St acting on the collection of k-pair sequences. If c1 and c2 are isomorphic, then for any k-

functional sequence Φ, Wc1,Φ is a column permutation of Wc2,Φ and so rank Wc1,Φ = rank Wc2,Φ.
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Thus, to show that a d(t − 1)-functional sequence Φ satisfies Theorem 2.14, it is sufficient to

show that it satisfies the rank condition for one representative of each isomorphism group of

the d-limited d(t−1)-pair sequences under the induced action of St. We will call representative

k-pair sequences the collection of one sequence from each isomorphism group. In the next

sections, we present some examples and show how to find the representative pair sequences.

Method 1 This method involves guessing a d(t−1)-functional sequence Φ, and then checking

if it is a linear (qd, q, t)-perfect hash family. To do this we check that for each representative

d(t− 1)-pair sequence c with a subsequence c′ of length d(t− 1)− 1 which is (d, t)-limited, we

have rank Wc,Φ = d(t− 1). Then by Theorem 2.14, Φ is an optimal linear (qd, q, t)-perfect hash

family.

This method is not very practical; the second method gives us a technique for building up a

perfect hash family.

Method 2 This method has two main steps. The first step is to find an appropriate d(t−1)−1

functional sequence Φ′. The second step is to consider all (d, t)-limited sequences c′ of length

d(t− 1)− 1, and all pairs (a, b) and find the functions φ for which

rank Wc′,Φ′ = rank W(c′,(a,b)),(Φ′,φ).

We formally show later that any other function φ will complete Φ′ to a perfect hash family.

We say a (d(t − 1) − 1) functional sequence Φ′ is (d, t)-suitable if every d(t − 2) subset of

Φ′ is (qd, d, t − 2) perfect hash family and rank Wc′,Φ′ = d(t − 1) − 1 for all (representative)

(d, t)-limited sequences c′ of length d(t− 1)− 1.

Let (a, b) be any pair on T . If φ is a linear functional with rank Wc′,Φ′ = rank W(c′,(a,b)),(Φ′,φ),

then we say that φ is excluded. In the case that (c′, (a, b)) is (d, t)-limited, we say that φ is

limit-excluded.

Now suppose (c′, (a, b)) is not (d, t)-limited. As c′ is (d, t)-limited, this means there exists A ⊂ T

with |(c′, (a, b))A| = d(|A|−1). If φ is a linear functional with rank Wc′,Φ′ = rank W(c′,(a,b)),(Φ′,φ),

then (ΦA, φ) is not a (qd, d, |A| − 1) perfect hash family, for A with |A| < t. We call φ sub-

excluded (reflecting a subset of a perfect hash family also being a perfect hash family). Then

the sub-excluded functions are the functions which are excluded because adding them would

result in a functional sequence contradicting Theorem 2.6.

It is important to note that by definition Wc,Φ and its rank is dependent on the value of q.

Theorem 2.15 Let 2 ≤ t ≤ q. Let Φ′ be a (d, t)-suitable functional sequence of length d(t−1)−
1. For any linear functional φ which is neither limit-excluded nor sub-excluded, (Φ′, φ) forms a
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(qd, d, t) perfect hash family. Further, every (qd, d, t) perfect hash family can be constructed in

this way.

Proof As Φ′ is (d, t)-suitable, rank Wc′,Φ′ = d(t− 1)− 1 for all (d, t)-limited sequences c′. If φ

is neither limit-excluded nor sub-excluded then rank W(c′,(a,b)),(Φ′,φ) = rank Wc′,Φ′ +1 = d(t−1).

Hence, by Theorem 2.14, (Φ′, φ) is a (qd, d, t) perfect hash family.

Take any (qd, d, t) perfect hash family Φ, and let Φ = (Φ′, φ), where Φ′ is the sequence of the

first d(t−1)−1 elements of Φ and φ is the remaining linear functional. Then Φ′ is (d, t)-suitable

by Theorems 2.6 and 2.14. The functional φ is not excluded by Theorem 2.14. �

We now summarise Method 2.

To find a (qd, d, t) perfect hash family

Assumed knowledge: Existence of (qd, d, t− 1) perfect hash families

Suitability Phase: Find a (d, t) suitable d(t− 1)− 1 functional sequence Φ′, that is, so that

(a) Every d(t− 2) subsequence of Φ′ is a (qd, d, t− 1) perfect hash family.

(b) Check for every (d, t)-limited d(t−1)−1 sequence c′, that we have rank Wc′,φ′ = d(t−1)−1.

Exclusion Phase:

(a) For every d(t− 2)− 1 subsequence of Φ′, calculate the excluded functions. These are the

sub-excluded functions of Φ′.

(b) For every (representative) (d, t)-limited d(t− 1)− 1 pair sequence c′, calculate the limit-

excluded functions of Φ′.

In previous sections, we have used c and c′ to represent pair sequences of length d(t − 1) and

d(t − 1) − 1 respectively. In the construction of perfect hash families, we are only concerned

with sequences of length d(t− 1)− 1. Hence from now on we will omit the ′, and use c and Φ

to denote sequences of length d(t− 1)− 1.

2.3 Sequence condition for every d functionals independent

Let (a, b) be a pair on T . If c is a (d, t)-limited sequence of length d(t−1)−1 with (a, b)d−1 ∈ c,
then the condition that rank W(c,(a,b)),(Φ,φ) = d(t−1) over all such sequences c implies that every
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d linear functionals in a perfect hash family is linearly independent (cf Result 2.5). It simplifies

the search for perfect hash families by reducing the number of functionals to eliminate.

In the case d = 2, an optimal linear (q2, q, t) perfect hash family S has size 2(t − 1). A linear

functional φ ∈ V ∗ can be represented by φ = [a, b] where a, b ∈ GF(q) (we will use square

brackets to denote linear functionals). Suppose that c′ is a (d, t)-limited sequence of length

d(t− 1)− 1. If a pair (a, b)d−1 = (a, b) occurs in c′, then a condition that φ is not sub-excluded

is the condition that every two functions in a perfect hash family are independent. Hence, when

constructing a perfect hash family if φ = [a, b] ∈ S then αφ = [αa, αb] is a sub-excluded linear

functional. Hence, without loss of generality, we only consider linear functionals of the form

φ = [1, α] where α ∈ GF(q) ∪ {∞} (where φ = [1,∞] is used to represent the linear functional

[0, 1]).

3 Case d = 2, t = 4

We will use the sequence theory developed above to show how to construct optimal linear

(q2, q, 4)-perfect hash families. We take a brief look at this case for three reasons. Firstly, this

case was considered using a geometrical approach in [3] and we want to illustrate the difference

between the geometric approach and the sequence approach. Secondly, we want to explain

the correspondence between this case and a case of d = 3, t = 3 in Section 5. Thirdly, when

considering the d = 2, t = 5 case in Section 4, we will see that (as implied by Theorem 2.6) the

results for t = 4 appear as part of the conditions for the t = 5 case.

3.1 Constructing (q2, q, 4)-perfect hash families

We will use Theorem 2.15 to construct a perfect hash family. As mentioned in Section 2.3,

we will assume the linear functionals are of the form φ = [1, α] where α ∈ GF(q) ∪ {∞}. We

have T 2 = {(a, b) ∈ Z × Z : 1 ≤ a < b ≤ 4} = {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}. A

(2, 4)-limited pair sequence of length d(t−1) = 6 uses each pair on T exactly once. This covers

the limit-excluded functions. For the sub-excluded functions, a pair in c is repeated. However,

this case is already dealt with in Section 2.3, since we take our linear functions to be of the

form [1, α].

The method begins with a (2, 4)-suitable 5-functional sequence Φ and all the representative

(2, 4)-limited 5-pair sequences c on T . As |T 2| = 6, there is a unique way to complete a

(2, 4)-limited 5-pair sequence c to a (2, 4)-limited 6-pair sequence (c, (a6, b6)). For each such

representative 5-pair sequence c, we form Wc,Φ and row reduce to calculate the limit-excluded
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linear functional φ corresponding to the remaining pair (a6, b6) on T . Once we have calculated

all the limit-excluded linear functionals, any of the remaining linear functionals in V ∗ of the

form [1, α], α ∈ GF(q) ∪ {∞} can be added to Φ to form a perfect hash family.

We first count the number of representative (2, 4)-limited 5-pair sequences on T . The ac-

tion of the symmetric group S4 on 1, 2, 3, 4 induces an action on T . For example, the map-

ping σ = (123) (that is, 1 7→ 2 7→ 3 7→ 1) maps the pair (2, 3) on T onto (3, 1) ≡ (1, 3).

Without loss of generality, we can assume that a representative 5-pair sequence contains

the pairs Q = {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4)}. So the subgroup 〈(1, 2), (3, 4)〉 of S4 of size

4 fixing the set Q. The number of representative 5-pair sequences consisting of the pairs

{(1, 2), (1, 3), (1, 4), (2, 3), (2, 4)} under S4 is therefore 5!/4 = 30.

We choose a general 5-functional sequence Φ and consider the following 5-pair sequence c:

Φ = ([1, v], [1, w], [1, x], [1, y], [1, z])

c = ((1, 2), (1, 3), (1, 4), (2, 3), (2, 4)).

We need to construct Wc,Φ. Recall that w(1,2),φ = (φ,−φ, 0, 0), thus the first row of Wc,Φ is

(1, v,−1,−v, 0, 0, 0, 0). Similarly we obtain all the wc,φ and so Wc,Φ written as a matrix is:

Wc,Φ =



1 v −1 −v 0 0 0 0

1 w 0 0 −1 −w 0 0

1 x 0 0 0 0 −1 −x
0 0 1 y −1 −y 0 0

0 0 1 z 0 0 −1 −z


.

We need Φ to be (2, 4)-suitable. From Example 2, every 4 elements of v, w, x, y, z are distinct.

So we need the rank of Wc,Φ to be 5 for all (2, 4)-limited 5-pair sequences c. By inspection

the matrix above has rank 5 if v, w, x, y, z are distinct. Now, different representative 5-pair

sequences correspond to permuting the pairs in c and so correspond to permuting v, w, x, y, z

in this matrix. Hence for any representative 5-pair sequence c, rank Wc,Φ = 5. Thus any set of

5 distinct values of v, w, x, y, z results in a (2, 4)-suitable 5-functional sequence Φ.

We now perform row operations on Wc,Φ to find the functional [1, θ] such that w(3,4),[1,θ] is in the

row space of Wc,Φ. That is, we perform row operations to construct a row [0, 0, 0, 0, 1, θ,−1,−θ].
For the above matrix, the linear functional corresponding to the final pair (3, 4) is [1, θ] where

θ = −xy(v − w − z) + (x+ y)wz − vwz

xy − (x+ y)v + zv − zw + wv
.

Thus we have rank Wc,Φ = rank W(c,(3,4)),(Φ,[1,θ]) = 5 and so we cannot add the linear functional

[1, θ] to our set {[1, v], [1, w], [1, x], [1, y], [1, z]} to obtain a perfect hash family. That is, [1, θ] is
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a limit-excluded linear functional. (Note by choice of the functionals being of the form [1, α],

the sub-excluded linear functionals are exactly the elements {[1, v], [1, w], [1, x], [1, y], [1, z]}).

There are 30 representative 5-pair sequences, so there are 30 limit-excluded functionals. How-

ever, we see that θ is symmetrical in x and y (with corresponding pairs (1, 4) and (2, 3)) and

so two sequences with the pairs (1, 4) and (2, 3) swapped yield the same limit-excluded linear

functional [1, θ]. This gives us a total of 15 representative 5-pair sequences to consider. These

can be calculated directly by hand; Table 1 lists 15 representative 5-pair sequences. (Note

also that θ is symmetrical in w and z but this does not reduce the number of sequences to be

considered.)

Table 1: The 15 representative sequences c1, . . . , c15 for d = 2, t = 4

c1 ((1, 2), (1, 3), (1, 4), (2, 3), (2, 4)) c9 ((1, 3), (1, 4), (2, 3), (1, 2), (2, 4))

c2 ((1, 2), (1, 3), (1, 4), (2, 4), (2, 3)) c10 ((1, 3), (1, 4), (2, 3), (2, 4), (1, 2))

c3 ((1, 2), (1, 3), (2, 4), (1, 4), (2, 3)) c11 ((1, 3), (1, 4), (2, 4), (1, 2), (2, 3))

c4 ((1, 3), (1, 2), (1, 4), (2, 3), (2, 4)) c12 ((1, 3), (1, 4), (2, 4), (2, 3), (1, 2))

c5 ((1, 3), (1, 2), (1, 4), (2, 4), (2, 3)) c13 ((1, 3), (2, 4), (1, 2), (1, 4), (2, 3))

c6 ((1, 3), (1, 2), (2, 4), (1, 4), (2, 3)) c14 ((1, 3), (2, 4), (1, 4), (1, 2), (2, 3))

c7 ((1, 3), (1, 4), (1, 2), (2, 3), (2, 4)) c15 ((1, 3), (2, 4), (1, 4), (2, 3), (1, 2))

c8 ((1, 3), (1, 4), (1, 2), (2, 4), (2, 3))

To construct a perfect hash family, we choose the 5-functional sequence to be

Φ = ([0, 1], [1, 0], [1, 1], [1, a], [1, b]).

We can do this without loss of generality as the group GL(2, q) of linear functionals of GF(q)2

is 3-transitive on a one dimensional subspace (see [12]). By the suitability of Φ, we need a 6= b

and a, b 6= 0, 1,∞.

We want to find the limit-excluded functional for each representative 5-pair sequence c in

Table 1. Rather than performing row operations on a new Wc,Φ for each sequence c, we use

the Wc,Φ matrix above, and note that changing the sequence c is equivalent to permuting

v, w, x, y, z in the matrix. Hence it is equivalent to permuting v, w, x, y, z in the excluded

functional [1, θ]. So for the first sequence c1 = ((1, 2), (1, 3), (1, 4), (2, 3), (2, 4)), we have v = ∞,

w = 0, x = 1, y = a, z = b, hence θ = −a/(b − a − 1). Thus we obtain the limit-excluded

linear functional φ1 = [1,−a/(b− a− 1)] which appears against c1 in Table 2. For the second

sequence c2 = ((1, 2), (1, 3), (1, 4), (2, 4), (2, 3)), we have v = ∞, w = 0, x = 1, y = b, z = a

and so θ = −b/(a− b− 1), giving the limit-excluded linear functional φ2 = [1,−b/(a− b− 1)].

Similarly, we obtain φ3. For the remaining 12 sequences c4 to c15, the pair (1, 3) corresponds

to ∞, that is w = ∞. Thus in these cases θ becomes −(−xy + zx − zv + yz)/(−z + v). So,
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for example, c4 = ((1, 3), (1, 2), (1, 4), (2, 3), (2, 4)), so w = ∞, v = 0, x = 1, y = a, z = b and

hence θ = −(−a+ b+ ab)/(−b). Table 2 lists the 15 limit-excluded linear functionals obtained.

Table 2: The 15 excluded linear functionals for d = 2, t = 4

c1 φ1 = [1,−a/(−a+ b− 1)] c9 φ9 = [1, b(a− 1)/(a− b)]

c2 φ2 = [1,−b/(−b+ a− 1)] c10 φ10 = [1, a(b− 1)/(b− a)]

c3 φ3 = [1, ab/(a+ b− 1)] c11 φ11 = [1, (a− b)/(a− 1)]

c4 φ4 = [1, (ab− a+ b)/b] c12 φ12 = [1, (b− a)/(b− 1)]

c5 φ5 = [1, (ab+ a− b)/a] c13 φ13 = [1, ab]

c6 φ6 = [1,−ab+ a+ b] c14 φ14 = [1, b/a]

c7 φ7 = [1, b(a− 1)/(b− 1)] c15 φ15 = [1, a/b]

c8 φ8 = [1, a(b− 1)/(a− 1)]

We note that these 15 limit-excluded linear functionals correspond to the 15 linear functionals

calculated via geometrical means in [3]. Constructions there used these 15 excluded linear

functionals to show the following existence result.

Theorem 3.1 Optimal linear (q2, q, 4)-perfect hash families exist for all prime powers q except

when q = 2, 3, 4, 5, 7, 8, 9, 13.

4 Case d = 2, t = 5

An optimal linear (q2, q, 5)-perfect hash family has size d(t− 1) = 8. Theorem 1.2 shows that

they exist for q ≥ 108. In this section we prove an existence bound that is much smaller.

Further, we construct optimal linear (q2, q, 5)-perfect hash families for much smaller q than the

known examples.

We first list the known constructions of optimal linear (q2, q, 5)-perfect hash families. They

are all based on chains of subfields. The Blackburn-Wild [9] construction gives optimal linear

(q2, q, 5)-perfect hash families for q of the form q = q
α1α2···αd(t−2)

0 where q0 is any prime power

and each αi ≥ d. In [4], the authors construct optimal linear (q2, q, 5)-perfect hash families for

q = r2, r a prime, r ≥ 31; and for q = r4, r a prime, r ≥ 11 (r 6= 13).

4.1 An Existence Bound

We use Method 2 from Section 2.2. As noted in Section 2.3, we only need to consider linear

functionals of the form [1, α], α ∈ GF(q) ∪ {∞} when constructing our perfect hash family.
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We are interested in (2, 5)-limited (d(t− 1)− 1)-pair sequences from T = {(1, 2), (1, 3), (1, 4),

(1, 5), (2, 3), (2, 4), (2, 5), (3, 4), (3, 5), (4, 5)}. So we only need to consider sequences of length

7 where each pair from T occurs at most once. Since |T | = 10, we can complete this sequence

in 10 ways, but in only 3 ways without repeating a pair.

We wish to count the number of representative (2, 5)-limited 7-pair sequences so that we can

get a bound on the number of excluded functionals. Note that different sequences may result in

the same excluded functional, so this count gives us an upper bound. Let c be a (2, 5)-limited

7-pair sequence from T . Then, under the action of the symmetry group S5, the remaining three

pairs in T are one of four types: A, B, C or D which are given in Table 3.

Table 3: Sequence Types for d = 2 and t = 5

Case remaining 3 pairs

A {(1, 2), (1, 3), (1, 4)}
B {(1, 2), (1, 3), (4, 5)}
C {(1, 2), (1, 3), (2, 3)}
D {(1, 2), (1, 3), (2, 4)}

We now provide an upper bound on the total number of sequences of each type.

A. This sequence is not (2, 5)-limited as taking A = {2, 3, 4, 5} results in |cA| = 2(|A|−1) = 6.

So we can ignore this case.

B. To preserve a sequence of type B, we can permute 2, 3 and 4, 5. Hence sequences of type

B are still type B under the action of the permutation group 〈(23), (45)〉 of size 4. This

group has 4 elements, hence there are 7!/4 = 1260 representative sequences of type B.

C. Sequences of type C remain type C under the action of the group S3 × S2 of size 12

permuting 1, 2, 3 and 4, 5. Hence there are 7!/12 = 420 representative sequences of type

C.

D. A sequence of type D remains a sequence of type D under the action of the permutation

group 〈(12)(34)〉 of size 2. Hence there are 7!/2 = 2520 representative sequences of type

D.

For each (2, 5)-limited sequence c above, consider repeating a pair (a, b) already occuring in the

sequence. The condition generated by this pair, by the discussion in Section 2.3, is every two

functionals are independent. This is already accounted for by considering only functionals of

the form [1, α]. Thus, we only need to consider adding the three pairs not already occuring in

the sequence.
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This gives a total of 4200 representative (2, 5)-limited 7-pair sequences, each can be completed

to an 8-pair sequence in three ways. Hence there are 4200 × 3 representative (2, 5)-limited

8-pair sequences. Each 8-pair sequence results in one excluded linear functional of the form

[1, α]. Hence there at most 4200 × 3 excluded linear functionals of the form [1, α]. However,

to prove existence of a perfect hash family, we first need to verify that there exists a (2, 5)-

suitable 7-functional sequence Φ. So we need to show that firstly, every 6 elements of Φ form a

(q2, q, 4) perfect hash family, and secondly, Wc,Φ has maximal rank 7 for any (2, 5)-limited 7-pair

sequence c. We study the form of Wc,Φ in the next section and will prove that a (2, 5)-suitable

sequence exists if q > 95. The next theorem gives a bound on the existence of optimal linear

(q2, q, 5)-perfect hash families assuming a (2, 5)-suitable sequence exists.

Theorem 4.1 If q+1 > 7+4200×3 = 12607, and there exists a (2, 5)-suitable sequence, then

there exists an optimal linear (q2, q, 5)-perfect hash family.

Proof We assume there exists a (2, 5)-suitable 7-functional sequence Φ. We can use this

sequence together with the 4200 representative (2, 5)-limited 7-pair sequences (each of which

has 3 excluded functionals) to calculate the 7 + 4200 × 3 linear functionals in V ∗ of the form

[1, α] that cannot be added to Φ to form a perfect hash family. There are q+1 linear functionals

of the form [1, α], α ∈ GF(q) ∪ {∞}, so provided q + 1 > 12607, there are functionals in V ∗

that we can add to Φ to form a (q2, q, 5)-perfect hash family. �

In fact we will show that (q2, q, 5)-perfect hash families exist for much smaller q than given in

Theorem 4.1, since the excluded linear functionals are not necessarily distinct.

4.2 Sequence Analysis for d = 2 and t = 5

rewritten this section

In order to construct linear (q2, q, 5)-perfect hash families, we use a similar technique to that

used in Section 3.1. We now study in detail the representative (2, 5)-limited 7-pair sequences

from each of the cases B, C and D given in Table 3.

Case B. Consider the 7-functional sequence Φ and 7-pair sequence c:

Φ = ([1, s], [1, u], [1, v], [1, w], [1, x], [1, y], [1, z])

c = ((1, 4), (1, 5), (2, 3), (2, 4), (2, 5), (3, 4), (3, 5)).

Row reducing Wc,Φ enables us to calculate the excluded linear functionals for each of the 3

missing pairs (4, 5), (1, 2), (1, 3). They are:

B(4,5) =
[
1,−−vwz−wxy+wzx+wzy−yzx+yvx

−vy+zv−wz+vw−vx+xy

]
,
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B(1,2) =
[
1, −wuzv+zuvs+zuwy−vwsx+xwzs+xysv−xzys+wuvx−uvsx−wuxy+yusx−uysv−swuz+swuvzsv+wzy−zys−vsx−wxy+ysx−yzx+yvx+wzx+yuz−uvy−wuz+wuv−vwz)

]
,

B(1,3) =
[
1, −uysv+yusx+swuv+yzsv−xzys−wzsv+xwzs+zuvs−uvsx−yuzv+yuvx−swuz+zuwy−wuxy−uvy+uxy+wuv−wux−yzx−vwz+wzx+zsv−vsx+yvx−wzs+wsx+wzy−wxy

]
.

Case C: Consider the 7-functional sequence Φ and 7-pair sequence c:

Φ = ([1, s], [1, u], [1, v], [1, w], [1, x], [1, y], [1, z])

c = ((1, 4), (1, 5), (2, 4), (2, 5), (3, 4), (3, 5), (4, 5)).

The excluded linear functionals for the 3 missing pairs (1, 2), (1, 3), (2, 3) are:

C(1,2) =
[
1, −(−uzv−wus+wuv+uvs−svw+wzs)

−uv−zs+zv+ws+uz−wz

]
,

C(1,3) =
[
1, −usx+uzx+uys−uxy+ysx−zys−(−ys+zy−uz+ux+zs−zx)

]
,

C(2,3) =
[
1, −(−yzv+yvx−vwx+yvw−wxy+wzx)

zy−wz+wx−vy+zv−zx

]
.

Case D: Consider the 7-functional sequence Φ and 7-pair sequence c:

Φ = ([1, s], [1, u], [1, v], [1, w], [1, x], [1, y], [1, z])

c = ((1, 4), (1, 5), (2, 3), (2, 5), (3, 4), (3, 5), (4, 5)).

The excluded linear functionals for the 3 missing pairs (1, 2), (1, 3), (2, 4) are:

D(1,2) =
[
1, −uysv+uvsx+yuzv−uzvx−vwsx−wusx−wuzv+wuzx+wuvx+wuys−wuxy+wysx+wzsv−wzysyuz+wys−wsx−wzy+wzx−uzv+uvx−uxy−ysv+ysx+yzv+zsv−zvx−zys

]
,

D(1,3) =
[
1, −usx+uzx+uys−uxy+ysx−zys−(−ys+zy−uz+ux+zs−zx)

]
,

D(2,4) =
[
1, −vwx−yzv+zvx+vwz+wxy−wzxxy+wy−wx−vy+zv−zy

]
.

The linear functional B(4,5) is the linear functional sub-excluded with A = {2, 3, 4, 5}. More

specifically, in the case d = 2, t = 4 with the 5-functional sequence and 5-pair sequence as

follows:
Φ′′ = ([1, v], [1, w], [1, x], [1, y], [1, z])

c′′ = ((2, 3), (2, 5), (3, 4), (3, 5), (4, 5)).

Can you check this?

A similar interpretation applies for the remaining sub-excluded linear functionals C(1,2), C(1,3),

C(2,3), D(1,3)(= C(1,3)) and D(2,4) (with A equal to {1, 2, 4, 5}, {1, 3, 4, 5}, {2, 3, 4, 5}, {1, 2, 3, 5}
and {2, 3, 4, 5} respectively). These cases correspond to the fact that given any 5-functional

subsequence of Φ, the 15 excluded linear functionals given in Table 2 for the case d = 2, t = 4

are sub-excluded functionals here. Thus the total number of (possibly distinct) sub-excluded

functions are
(
7
5

)
× 15 = 350.

The remaining three excluded functionals B(1,2), B(1,3) and D(1,2) are limit-excluded. This gives

a revised total of 1260×2+2520+350 = 5380 excluded functions (without counting the original

7 functions in Φ).
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Note that the symmetry group 〈(23)〉 maps the sequence ((1, 4), (1, 5), (2, 3), (2, 4), (2, 5), (3, 4),

(3, 5)) to ((1, 4), (1, 5), (2, 3), (3, 4), (3, 5), (2, 4), (2, 5)), hence B(1,3) is B(1,2) with the variables

w and y swapped and x and z swapped.

4.3 The existence of (2, 5)-suitable sequences

In this section we prove that there exists a (2, 5)-suitable sequence Φ if q > 95. We first need

to check that every 6 linear functionals of Φ form a (q2, q, 4)-perfect hash family. Secondly, we

need to show that in Cases B, C and D, rank Wc,Φ = 7. However, it is easy to see that in Cases

B, C, D, the matrix Wc,Φ always has rank 7 if s, u, v, w, x, y, z are distinct.

For example, for Case B, we arrange the pairs in the order shown below, writing ∗ instead of

the linear functions, we can consider Wc,Φ:

Wc,Φ =

1 2 3 4 5

∗ ∗
∗ ∗
∗ ∗
∗ ∗

0 ∗ ∗
∗ ∗
∗ ∗


The bottom five rows have rank 5 because every 6 functions form a (q2, 2, 4) perfect hash family.

Thus the whole matrix has rank 7. A similar argument holds for cases C and D.

The next lemma proves the existence of (2, 5)-suitable sequences for q > 95. Moreover, the

proof gives a technique which we will use to construct suitable sequences.

Lemma 4.2 If q > 95, there exists a (2, 5)-suitable sequence.

Proof Recall by Section 2.3 we can consider the linear functionals to be of the form [1, α],

α ∈ GF(q)∪{∞}. Suppose q is a prime power greater than 95, then by Theorem 3.1 there exists

a linear (q2, q, 4) perfect hash family S = {φ1, . . . , φ6}. For each 5-subset of S, the associated

5-functional sequence Φ′ leads to 15 excluded linear functionals (given by Table 2). Including

the original six linear functionals φ1, . . . , φ6, this accounts for 6+6×15 = 96 functionals. Hence

if q+ 1 > 96, there is a functional φ = [1, α] ∈ V ∗ which is not excluded. Thus S ∪ {φ} is a set

of 7 functionals, such that every 6 form a (q2, q, 4) perfect hash family (and as discussed above,

the rank condition is automatically satisfied), and so the associated 7-functional sequence is

(2, 5)-suitable. �
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4.4 Strategy for constructing perfect hash families for d = 2, t = 5

To construct a (q2, q, 5)-perfect hash family, we start with a (2, 5)-suitable 7-functional sequence

Φ. To build Φ, we use the technique described in the proof of Lemma 4.2. We begin with

S ′′, an optimal linear (q2, q, 4)-perfect hash family (constructions for these are given in [3]).

Note that S ′′ consists of 6 linear functionals. For each 5-functional subsequence of S ′′ we

calculate the 15 excluded linear functionals given in Table 2. We then choose any non-excluded

functional from V ∗ to add to S ′′ to give us a (2, 5)-suitable sequence Φ. (2, 5)-suitable sequences

were investigated in [4] and examples are found for all primes q ≥ 31. For example, Φ =

([1,∞], [1, 0], [1, 1], [1, 2], [1, 3], [1, 5], [1, 12]) is a (2, 5)-suitable sequence for all primes q > 79.

Given a (2, 5)-suitable 7-functional sequence Φ, we want to calculate the excluded linear func-

tionals for each representative (2, 5)-limited 7-pair sequence. In this case, there are 4200 rep-

resentative (2, 5)-limited 7-pair sequences, which is too many to calculate by hand as we did in

the d = 2, t = 4 case. However, using a computer, we can easily find the excluded functionals

for all the (2, 5)-limited 7-pair sequences. We choose a (2, 5)-suitable 7-functional sequence,

for example, let Φ = ([1,∞], [1, 0], [1, 1], [1, 2], [1, 3], [1, 5], [1, 12]) (for q > 79). There are 7!

ways of assigning s, u, v, w, x, y, z to be one of ∞, 0, 1, 2, 3, 5, 12. These different permutations

correspond to choosing different 7-pair sequences c in the matrix Wc,Φ. For each of these permu-

tations, we calculate the nine excluded linear functionals B(4,5), . . . , D(2,4) (given in Section 4.2).

This method will generate all the excluded linear functionals, and we can then choose a non-

excluded linear functional (distinct from the original seven) from V ∗ to add to Φ to form a

perfect hash family.

For simplicity we looked for constructions in the case q a prime, q < 50, 000. However, the

excluded functionals in Section 4.2 can be used to construct (q2, q, 5)-perfect hash families for

any (large enough) value of q. We found many constructions of optimal linear (q2, q, 5)-perfect

hash families. In summary, using the (2, 5)-suitable sequence

Φ = {[0, 1], [1, 0], [1, 1], [1, 2], [1, 3], [1, 5], [1, 12]},

we found constructions of (q2, q, 5)-perfect hash families for primes q = 359, 397, 401, 433, 439,

443, 449, 461, and for all primes 467 ≤ q ≤ 50, 000, q 6= 541. The larger q is, the more (q2, q, 5)-

perfect hash families containing Φ there are. We conjecture that optimal linear (q2, q, 5)-perfect

hash families containing Φ will exist for all primes q ≥ 467, q 6= 541.

The smallest example we found for d = 2 and t = 5 is a (3112, 311, 5)-perfect hash family

S = {[0, 1], [1, 0], [1, 1], [1, 2], [1, 3], [1, 5], [1, 16], [1, 87]}. In fact, starting with the (q2, q, 4)-

perfect hash family S ′′ = {[0, 1], [1, 0], [1, 1], [1, 2], [1, 3], [1, 5]}, we found examples for d = 2

and t = 5 for all primes 347 ≤ q ≤ 50, 000. Our search was by no means complete, as we

only used a few suitable sequences to base our search on. It seems likely that using a different
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starting suitable sequence may lead to examples of optimal linear (q2, q, 5)-perfect hash families

for q < 311. For the interested reader, Table 4 lists the smallest values of q for which we found

examples.

Table 4: Small values of q for which optimal linear (q2, q, 5)-perfect hash families

S = {[1, s], [1, u], [1, v], [1, w], [1, x], [1, y], [1, z], [1, i]} exist.

q s, u, v, w, x, y, z i

311 ∞, 0, 1, 2, 3, 5, 16 87, 264

317 ∞, 0, 1, 2, 3, 5, 19 179

331 ∞, 0, 1, 2, 3, 5, 14 75, 295

337 ∞, 0, 1, 2, 3, 5, 20 268

347 ∞, 0, 1, 2, 3, 5, 20 227

359 ∞, 0, 1, 2, 3, 5, 12 329

367 ∞, 0, 1, 2, 3, 5, 26 334

We also wanted to find a general example of an optimal linear (q2, q, 5)-perfect hash family.

S = {[0, 1], [1, 0], [1, 1], [1, 2], [1, 3], [1, 5], [1, 12], [1, 44]} is an optimal linear (q2, q, 5)-perfect hash

family for primes q, 2400 ≤ q ≤ 50, 000, except for q = 2543, 2579 and 2843. (In these cases

{[0, 1], [1, 0], [1, 1], [1, 2], [1, 3], [1, 5], [1, 12], [1, 46]} is a perfect hash family.) This set S is also a

perfect hash family for many smaller values of q. We conjecture that S is a perfect hash family

for all primes q > 2843.

5 Case d = 3, t = 3

An optimal linear (q3, q, 3)-perfect hash family has size d(t − 1) = 6. We start by considering

the representative (3, 3)-limited 5-pair sequences from T 2 = {(1, 2), (1, 3), (2, 3)}. Using the

action of the symmetric group S3 on 1,2,3 we may assume the missing pair is (2, 3). To be

(3, 3)-limited, each pair occurs at most twice. So there are (5!/(2!2!)) (3, 3)-limited sequences

as the pairs (1, 2) and (1, 3) each occur exactly twice. However, the group of size 2 swapping 2

and 3 fixes the missing pair (2, 3). Hence there are 5!/(2!2!× 2) = 15 sequences to consider.

To build a (q3, q, 3)-perfect hash family, we need to start with a (3, 3)-suitable 5-functional

sequence Φ. To be suitable, we need any d(t − 2) = 3 functionals in Φ to form a (q3, 3, 2)

perefect hash family, that is, every three functionals are independent. This means we can use

a special form for Φ to make our calculations easier. We use the fact that without loss of

generality, any five elements, no three dependent, in GF(q)3 can be written as [1, α, α2] for five

distinct values of α ∈ GF(q) (see [11], [4]). Hence we may consider the following 5-functional
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sequence Φ and the general (3, 3)-limited representative 5-pair sequence c:

Φ = ([1, v, v2], [1, w, w2], [1, x, x2], [1, y, y2], [1, z, z2])

c = ((2, 3), (1, 2), (1, 3), (1, 3), (1, 2)).

So we have

Wc,Φ =



0 0 0 1 v v2 −1 −v −v2

1 w w2 −1 −w −w2 0 0 0

1 x x2 0 0 0 −1 −x −x2

1 y y2 0 0 0 −1 −y −y2

1 z z2 −1 −z −z2 0 0 0


.

Our choice of functionals ensures that any d = 3 elements in Φ are independent provided

v, w, x, y, z are distinct. The remaining condition for Φ to be (3, 3)-suitable, is that rank Wc,Φ =

5 for all 3-limited 5-pair sequences c. Rearranging the rows of the matrix Wc,Φ as

0 ∗ ∗
∗ 0 ∗
∗ 0 ∗

∗ ∗ ... 0

∗ ∗ ... 0


we can see that the matrix Wc,Φ has rank 5 for any distinct v, w, x, y, z. This is true for any

permutation of c, thus Φ is a (3, 3)-suitable functional sequence for any distinct v, w, x, y, z.

By inspection, adding the pair (1, 2) to c results in a set of sub-excluded functionals which is

〈[1, w, w2], [1, z, z2]〉. A similar result holds for the pair (1, 3).

Now consider the pair (2, 3). It completes c to the only (3, 3)-limited 6-pair sequence. Thus

we need to perform row operations on Wc,Φ to find the limit-excluded linear functional corre-

sponding to this last pair (2, 3). Row reductions give us two rows in the right form, namely

(0, 0, 0, 1, v, v2,−1,−v,−v2) and (0, 0, 0, a, b, c,−a,−b,−c) where a = z+w−x−y, b = wz−xy,
c = zw(x+ y)−xy(z+w). Thus any linear functional which is a linear combination of these is

excluded. A general linear functional has form [`,m, n], so we exclude all such functionals with∣∣∣∣∣∣∣∣
` m n

1 v v2

a b c

∣∣∣∣∣∣∣∣ = 0. (3)

We now consider the special case where the final linear functional [`,m, n] is of the form

[1, θ, θ2]. Assume that all parameters v, w, x, y, z, θ are distinct. This will ensure that any

three functionals in our perfect hash family are independent (and so we need not consider the
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sub-excluded linear functionals) Solving equation (3) gives us the limit-excluded functionals

[1, θ, θ2] where

θ = −xy(v − w) + wz(x− v) + yz(w − x)

z(v − w) + y(x− v) + v(w − x)
.

That is, w(2,3),[1,θ,θ2] is in the row space of Wc,Φ if θ has this form.

We note that this is exactly the same expression for θ as in the t = 2, d = 4 case. This corre-

spondence was noted in [4] where this case was studied using geometric methods, however the

geometric interpretation did not explain the correspondence, whereas the sequence technique

does. More specifically, the correspondence between the sequences is:

d = 3, t = 3 Φ = ([1, v, v2], [1, w, w2], [1, x, x2], [1, y, y2], [1, z, z2])

c = ((2, 3), (1, 2), (1, 3), (1, 3), (1, 2))

d = 2, t = 4 Φ = ([1, v], [1, w], [1, x], [1, y], [1, z])

c = ((1, 2), (1, 3), (1, 4), (2, 3), (2, 4))

So in this special case we can use the construction results from the d = 2, t = 4 case. This

gives us constructions of (q3, q, 3)-perfect hash families for all prime powers q except q =

2, 3, 5, 7, 8, 9, 13. Using the general form [`,m, n] in equation (3) allows us to construct a

(q3, q, 3)-perfect hash family for the additional case q = 13. Constructions of (q3, q, 3)-perfect

hash families for prime powers q ≥ 11 are given in [4].

6 Case d = 4, t = 3

An optimal linear (q4, q, 3) perfect hash family has d(t − 1) = 8 elements. Once again we use

Method 2 from Section 2.2. We have T = {(1, 2), (1, 3), (2, 3)}, and we first count the number

of representative (4, 3)-limited 7-pair sequences from T . Since each pair from T occurs at most

3 times in our sequence, we have 9 pairs to choose from. We consider the different possibilities

for the two pairs that are not in the sequence. Under the symmetric group S3 acting on {1, 2, 3}
there are 2 possibilities for these remaining two pairs.

Case A. The remaining two pairs are (2, 3), (2, 3). The number of (4, 3)-limited representative 7-

pair sequences c (with pairs from {(1, 2), (1, 2), (1, 2), (1, 3), (1, 3), (1, 3), (2, 3)}) is: 7!/(3!3!1!×
2) = 70.

Case B. The remaining two pairs are (1, 3), (2, 3). The number of (4, 3)-limited representative 7-

pair sequences c (with pairs from {(1, 2), (1, 2), (1, 2), (1, 3), (1, 3), (2, 3), (2, 3)}) is: 7!/(3!2!2!×
2) = 105.

In both cases, an 8-pair sequence will lead to a subspace of excluded functionals. For this

case, we restrict our attention to functionals of a special form. This will make it easier to find
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constructions, but will mean that we do not completely answer the existence question. The

sub-exclusion condition is equivalent to every d(t−2) functions of a (q4, q, 3)-perfect hash family

being independent, so we consider the special case using only linear functionals that have form

[1, α, α2, α3] for α ∈ GF(q). Note that this means the sub-exclusion condition is automatically

satisfied provided we use distinct values of α for our functionals.

We consider Case A and the 7-functional sequence φ and 7-pair sequence c.

Φ = ([1,s,s2,s3] [1,u,u2,u3] [1,v,v2,v3] [1,w,w2,w3] [1,x,x2,x3] [1,y,y2,y3] [1,z,z2,z3])

c = ((1,2) (1,2) (1,2) (1,3) (1,3) (1,3) (2,3)).

We construct Wc,Φ and note that the matrix Wc,Φ has rank 7 provided s, u, v, w, x, y, z are

distinct. We proceed as before, performing row reductions on Wc,Φ to find the excluded linear

functionals. Completing the sequence with (12) or (13) repeates the condition that every four

linear functionals are independent. Completing to (23) to obtain limit-excluded linear functions

(0, 0, 0, 0, 1, z, z2, z3,−1,−z,−z2,−z3), (0, φ1,−φ1), (0, φ2,−φ2), for certain φ1, φ2. Any linear

combination of these 3 functionals is limit-excluded. However, we are considering the special

case where we only want to add a functional to Φ that has form [1, α, α2, α3]. To find the

limit-excluded functionals of this form we solve∣∣∣∣∣∣∣∣∣∣
1 α α2 α3

1 z z2 z3

φ1

φ2

∣∣∣∣∣∣∣∣∣∣
= 0.

There are 3 solutions for α ∈ GF(q), one solution being α = z which corresponds to a functional

in Φ (and so corresponds to a sub-excluded functional). Thus there are at most two limit-

excluded functionals of the form [1, α, α2, α3].

We undertake a similar process for a sequence of type B. The matrix Wc,Φ has rank 7 for any

distinct s, u, v, w, x, y, z, so we can conclude that Φ is (4, 3)-suitable for distinct s, u, v, w, x, yz.

Here the two pairs missing from c are different, so we will get a different subspace of excluded

functionals for each missing pair. Each of these subspaces excludes three linear functionals of

the form [1, α, α2, α3]. Two of these are functionals in Φ (and so are sub-excluded). Hence

for each of the two pairs missing from c, we have one limit-excluded functional of the form

[1, α, α2, α3].

In total there are 175 representative pair sequences, each with at most 2 limit-excluded linear

functionals, so there are at most 350 limit-excluded linear functionals. Since there are q linear

functionals of the form [1, α, α2, α3], α ∈ GF(q), then provided q > 7 + 350 + 1 = 358, an

optimal (q4, q, 3)-perfect hash family will exist. We have proved:

Theorem 6.1 Optimal linear (q4, q, 3)-perfect hash families exist for all prime power q > 358.
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In order to construct optimal linear (q4, q, 3)-perfect hash families, we begin with a (4, 3)-

suitable 7-functional sequence Φ; by the above argument, any choice of distinct s, u, v, w, x, y, z

for Φ will do. We chose 0, 1, 2, 3, 4, 5, 6, that is,

Φ = ([1, 0, 0, 0], [1, 1, 1, 1], [1, 2, 22, 23], [1, 3, 32, 33], [1, 4, 42, 43], [1, 5, 52, 53], [1, 6, 62, 63]).

For each of the 7! arrangements of {s, u, v, w, x, y, z} = {0, 1, 2, 3, 4, 5, 6}, we calculate the 2 so-

lutions for α obtained from Case A, and the 2 solutions for α from Case B. Each arrangement ex-

cludes (at most) 4 values of α. Once these are calculated, any value β ∈ GF(q)\{0, 1, 2, 3, 4, 5, 6}
not excluded will give us a linear functional [1, β, β2, β3] which we can add to Φ to make a per-

fect hash family. We did some computer searches and found that optimal linear (q4, q, 3)-perfect

hash families exist for q much smaller than the bound of 358. Our program searched for such

perfect hash families for each prime q < 2000 and Table 5 lists an example of a perfect hash

family containing S for q where they exist. Note that the larger q is, the more values of β that

can be used to make a perfect hash family.

Result 6.2 Let S = {[1, 0, 0, 0], [1, 1, 1, 1], [1, 2, 22, 23], [1, 3, 32, 33], [1, 4, 42, 43], [1, 5, 52, 53],

[1, 6, 62, 63]}. For each prime q, and β ∈ GF(q), we checked when S ∪ {[1, β, β2, β3]} is an

optimal linear (q4, q, 3)-perfect hash family. Table 5 lists an example of a perfect hash family

S ∪ {[1, β, β2, β3]} for each prime q < 2000 where a β exists.

Table 5: Examples of (q4, q, 3)-perfect hash families S ∪ {[1, β, β2, β3]} for prime q < 2000

q β

47 24

59 21

67 34

79 37

83 42

89 43

97,109 26

101,137 11

103,107,151,163,173,179,191,193,197,199,211,227,241,251,263,269 12

113,127,131,223,229,233,239,271,277,281,349,521,541,599 13

139,157,257 17

149 19

283 ≤ q ≤ 2000, q 6= 349, 521, 541, 599 12

Table 5 shows that

{[1, 0, 0, 0], [1, 1, 1, 1], [1, 2, 22, 23], [1, 3, 32, 33], [1, 4, 42, 43], [1, 5, 52, 53],
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[1, 6, 62, 63], [1, 12, 122, 123]}

is an optimal linear (q4, q, 3) perfect hash family for all prime q, 599 < q < 2000. We conjecture

that this set will be a perfect hash family for all primes q > 599.

7 Conclusion

In this paper we have developed a technique which can be used to construct optimal linear

(qd, q, t)-perfect hash families. We have illustrated the technique by constructing new optimal

linear (q2, q, 5)- and (q4, q, 3)-perfect hash families. This technique is straightforward to use

for small d and t. It can be used for larger d, t, but the size of d and t will be limited by

computational capacity.
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Appendix: Notation Index

This appendix contains an index of the notation and definitions introduced in Section 2.1.

V = GF(q)d

V ∗ = {φ : V → GF(q)}

P = (p1, . . . , pt) ∈ V t

UP =
{

(ψ1, . . . , ψt) ∈ (V ∗)t :
∑t

i=1 p
ψi

i = 0
}

T = {1, . . . , t}

T 2 = {(a, b) ∈ Z× Z : 1 ≤ a < b ≤ t}

w(a,b),φ = (ψ1, . . . , ψt) ∈ (V ∗)t where

ψi =


φ if i = a,

−φ if i = b,

0 if i 6= a, b

(for (a, b) ∈ T, φ ∈ V ∗)

V(a,b) = {w(a,b),φ : φ ∈ V ∗} ⊆ (V ∗)t, for (a, b) ∈ T

Wc,Φ =
〈
w(ai,bi),φi

: 1 ≤ i ≤ k
〉
⊆ (V ∗)t,

where c = ((a1, b1), . . . , (ak, bk)) ∈ T k,Φ = (φ1, . . . , φk) ∈ (V ∗)k
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R = {(p, . . . , p) : p ∈ V } ⊆ V t

Y = {(ψ1, . . . , ψt) ∈ (V ∗)t :
∑t

i=1 ψi = 0}

dimL refers to the dimension of the subspace L over GF(q)

A k-pair sequence c = ((a1, b1), . . . , (ak, bk)) on T is a sequence of k pairs from T .

A k-functional sequence Φ = (φ1, . . . , φk) ∈ (V ∗)k is a sequence of k functionals from V ∗.

For A ⊆ T , cA consists of those pairs (ai, bi) with ai, bi ∈ A. ΦA consists of those functionals

corresponding to the pairs in cA.

A (d, t)-limited k-pair sequence is a k-pair sequence on T where for each proper subset A of T

we have |cA| < d(|A| − 1).

A (d, t)-suitable sequence Φ is a (d(t − 1) − 1)-functional sequence such that every d(t − 2)

elements for a (qd, d, t − 1) perfect hash family, and for every (d, t)-limited (d(t − 1) − 1)-pair

sequence c, we have rank Wc,Φ = d(t− 1)− 1.

The representative k-pair sequences is the collection of one sequence from each isomorphism

group under the action of the symmetry group St.


