
A Probabilistic Hoare-style logic for
Cryptographic Proofs

Ricardo Corin and Jerry den Hartog

{ricardo.corin,jerry.denhartog}@cs.utwente.nl
Department of Computer Science, University of Twente, The Netherlands

Abstract. We extend a Probabilistic Hoare-style logic to formalize re-
duction based cryptographic proofs. Our approach provides a systematic
and rigorous framework, thus preventing errors from being introduced.
We illustrate our technique by proving semantic security of ElGamal.

1 Introduction

A typical proof to show that a cryptographic construction is secure uses a reduc-
tion from the desired security notion towards some underlying hardness assump-
tion. The security notion is usually represented as a game, in which one proves
that the attacker’s chance of winning the game is (arbitrarily) small. From a
computer science perspective, these games can be thought of as programs whose
behaviour is partially known, since the program typically contains invocations
to an unknown function representing an arbitrary attacker. In this context, the
cryptographic reduction is a sequence of valid program transformations.

Even though cryptographic proofs based on reductions are powerful, the price
one has to pay is high: these proofs are complex, and can easily become involved
and intricated. This makes the verification difficult, with subtle errors difficult
to spot. Some errors may remain uncovered long after publication, as illustrated
for example by Boneh and Franklin’s IBE encryption scheme [5], whose crypto-
graphic proof has been recently patched by Galindo [8].

Recently, several papers from the cryptographic community (e.g. the work
of Bellare and Rogaway [3], Halevi [10], and Shoup [18]) have recognized the
need to tame the complexity of cryptographic proofs. There, the need for (de-
velopment of) rigorous tools to organize cryptographic proofs in a systematic
way is advocated. This prevents subtle easily overlooked mistakes from being
introduced in the proof. As another advantage, this precise proof development
framework would standardize the proof writing language so that proofs can be
checked easily, even perhaps using computer aided verification.

The proposed frameworks [3, 10, 18] provide ad-hoc formalisms to reason
about the sequences of games, providing useful program transformation rules
and illustrating the techniques with several cryptographic proofs from the lit-
erature. As we mentioned earlier, the games may be thought of as computer
programs, and the reductions thought of as valid program transformations, i.e.
transformations that do not change (significantly at least) the “behaviour” of

2 Ricardo Corin and Jerry den Hartog

the program. If we represent program behaviour by predicates that establish
which states are satisfied by the program before and after its execution, we ar-
rive to a well known setting studied by computer scientists for the past thirty
years: program correctness established by a Hoare logic [13, 1, 2]. In Hoare logic,
a programming language statement (e.g. value assignment to a variable) is pre-
fixed and postfixed with assertions which state which conditions hold before and
after the execution of the statement, respectively. There exist a wealth of papers
building on the basic Hoare logic setting, making it one of the most studied
subjects for establishing (imperative) program correctness.

This paper’s contributions are twofold:

– We adapt and extend our earlier work on Probabilistic Hoare-logic [11, 12]
to cope with reduction based cryptographic proofs:
• We introduce the notion of arbitrary functions, that can be used to

model the invocation of an unknown computation (e.g. an arbitrary at-
tacker function). We also include procedures, which are subroutines that
can be used to “wrap” function invocations. We provide the associated
deduction rules within the logic.

• We present a useful program transformation operation, called orthogo-
nality, which we use to relate Hoare triples. Orthogonality is our basic
“game stepping” operation.

– To illustrate our approach, we elaborate in full detail a proof of security of
ElGamal [7], by reducing the semantic security of the cryptosystem to the
hardness of solving the (well-known) Decisional Diffie-Hellman problem [4].

To the best of our knowledge, ours is the first application of a well known program
correctness logic (i.e. Hoare logic) to analyze cryptographic proofs based on
transformation of probabilistic imperative programs.

Related Work Differently from us, almost all formalisms we know of are directed
towards analysing security protocols, thus including concurrency as a main mod-
elling operation. One prime example is in the work of Ramanathan et al. [17],
where a probabilistic poly-time process algebraic language is presented to anal-
yse security protocols and cryptographic constructions (For example, also the
semantic security of ElGamal is shown using their process observational equiva-
lence rules). Much effort is paid to measure the computational power of (possibly
parallel) processes, so that an environmental context (representing an attacker)
can be precisely regulated to run in probabilistic polynomial time. On the other
hand, our Hoare-style logic is fitted for proofs on a simple probabilistic impera-
tive language. We do not consider parallel systems, nor communication or com-
position. This simplifies the reasoning and is closer to the original cryptographic
proofs which always consider imperative programs (the “games”).

Tarento [19] develops machine checkable proofs of signature schemes, focusing
on formalizing the semantics of the generic and random oracle models. This
differs from the present work, which uses a Hoare-style logic to “derive” the
(syntactic) cryptographic algorithms, and then uses the soundness of the logic
to obtain the security proofs.

A Probabilistic Hoare-style logic for Cryptographic Proofs 3

2 The Probabilistic Hoare-style logic pL

We shortly recall the probabilistic Hoare style logic pL (see [11, 12]). We in-
troduce probabilistic states, and programs which transform such states. Then
we introduce probabilistic predicates and a reasoning system to establish Hoare
triples which link a precondition and postcondition to a program.

Probabilistic programs We define programs (or statements) s, integer ex-
pressions e and Boolean expressions (or conditions) c by:

s ::= skip | x := e | s ; s | if c then s else s fi | s⊕ρ s

e ::= n | x | e + e | e − e | e · e | e div e | e mod e | . . .
c ::= true | false | b | e = e | e < e | . . . | c ∧ c | c ∨ c | ¬c | c→ c

where x is a variable of type (or ‘has range’) integer, b is a variable of type
Boolean and n a number. We assume it is clear how this can be extended to
other types and mostly leave the type of variables implicit, assuming that all
variables and values are of the correct type.

The basic statements do nothing (skip) and assignment (x := e) can be com-
bined with sequential composition (;), conditional choice (if) and probabilistic
choice ⊕ρ. In the statement s⊕ρ s′ a probabilistic decision is made which results
in executing s with probability ρ and statement s′ with probability 1− ρ.

A deterministic state, σ ∈ S, is a function that maps each program variable
to a value. A probabilistic state, θ ∈ Θ gives the probability of being in a given
deterministic state. Thus a probabilistic state θ can be seen as a (countable)
weighed set of deterministic states which we write as ρ1 ·σ1 + ρ2 ·σ2 + Here,
the probability of being in the (deterministic) state σi is ρi, i ≥ 0. For simplicity
and without loss of generality we assume that each state σ occurs at most once in
θ; multiple occurrences of a single state can be merged into one single occurrence
by adding the probabilities, e.g. 1 · σ rather than 3

4 · σ + 1
4 · σ.

The sum of all probabilities is at most 1 but may be less. A probability less
than 1 indicates that this point of execution may not be always reached (e.g. be-
cause of non-termination or because it is part of an ‘if’ conditional branch).

To manipulate and combine states we have scaling (ρ · θ) which scales the
probability of each state in θ, addition (θ+θ′) which unites the two sets and adds
probabilities if the same state occurs in both θ and θ′, weighed sum (θ ⊕ρ θ′ =
ρ·θ+(1−ρ)·θ′) and conditional selection (c?θ) which selects the states satisfying
c (and removes the rest). For example,

1
2 · (

1
2 · [x = 1] + 1

2 · [x = 2]) = 1
4 · [x = 1] + 1

4 · [x = 2]
(1
4 · [x = 1] + 1

4 · [x = 2]) + 1
4 · [x = 2] = 1

4 · [x = 1] + 1
2 · [x = 2]

(x ≤ 2)?(1
4 · [x = 1] + 1

2 · [x = 2] + 1
4 · [x = 3]) = 1

4 · [x = 1] + 1
2 · [x = 2]

A program s is interpreted as a transformer of probabilistic states, i.e. its
semantics D(s) is a function that maps input states of s to output states. The

4 Ricardo Corin and Jerry den Hartog

program transforms the probabilistic state element-wise, with the usual inter-
pretation of the deterministic operations. For probabilistic choice we use the
weighed sum: D(s⊕ρ s′)(θ) = D(s)(θ)⊕ρ D(s′)(θ).

2.1 Reasoning about probabilistic programs

To reason about deterministic states we use deterministic predicates, dp ∈ DPred.
These are the Boolean expressions with the addition of logical variables i, j and
the quantification ∀i :,∃i : over such variables. Similarly, to reason about prob-
abilistic states and programs we introduce probabilistic predicates, p ∈ Pred:

p ::= dp′ | er = er | er < er | . . . | p→ p | ¬p | p ∧ p | p ∨ p | ∃j : p | ∀j : p | ρ · p
| p + p | p⊕ρ p | c?p

er ::= ρ | r | P(dp) | er + er | er − er | er ∗ er | er/er | . . .

where dp′ is a predicate that does not use any program variables, ρ is a real
number and r a variable with range [0, 1]. A probabilistic expression er is meant
to express a probability in [0, 1].

Example 1. We have that (i < j) → (P(x = 5 ∧ y < x + i) > P(x = j) + 1
4) is a

probabilistic predicate but (x>i) is not as the use of program variable x outside
of the P(·) construction is not allowed.

The value of P(dp), in a given probabilistic state, is the sum of the prob-
abilities for deterministic states that satisfy dp, e.g. in { 1

4 · [x = 1], 1
4 · [x =

2], 1
4 · [x = 3], 1

4 · [x = 4]} we have that P(x ≥ 2) = 3
4 . Establishing the value of

a probabilistic expression er and a (basic) predicate p from a probabilistic state
θ is standard; the latter is denoted (as usual) by the satisfaction relation θ |= p.
The ‘arithmetical’ operators +, ⊕ρ,ρ·, ? specific to our probabilistic logic are the
logical counterparts of the same operations on states. For example,

θ |= p + p′ when there exists θ1, θ2: θ = θ1 + θ2, θ1 |= p and θ2 |= p′ (1)
θ |= c?p when there exists θ′: θ = c?θ′, θ |= p (2)

The satisfaction relation also includes an interpretation function giving values
to the logical variables, which we omit from the notation when no confusion is
possible. We write |= p if p holds in any probabilistic state.

Hoare triples, also known as program correctness triples, give a precondition
and a postcondition for a program. A triple is called valid, denoted |= { p } s { q } ,
if the precondition guarantees the postcondition after execution of the program,
i.e. for all θ with θ |= p we have D(s)(θ) |= q.

Our derivation system for Hoare triples adapts and extends the existing Hoare
logic calculus. The standard rules for skip, assignment, sequential composition,
precondition strengthening and postcondition weakening remain the same. The
rule for conditional choice is adjusted and a new rule for probabilistic choice is
added, along with some structural rules. We only present the main rules here
(see e.g. [11] for a complete overview), noting that the other rules come directly
from Hoare logic or from natural deduction.

A Probabilistic Hoare-style logic for Cryptographic Proofs 5

{ p[x/e] } x := e { p } (Assign)
{ c?p } s { q } {¬c?p } s′ { q′ }

{ p } if c then s else s′ fi { q + q′ }
(If)

{ p } s { p′ } { p′ } s′ { q }

{ p } s ; s′ { q }
(Seq)

{ p } s { q } { p } s′ { q′ }

{ p } s⊕ρ s′ { q ⊕ρ q′ }
(Prob)

{ p } s { q } { p } s { q′ }

{ p } s { q ∧ q′ }
(And)

|= p′ → p { p } s { q } |= q → q′

{ p′ } s { q′ }
(Cons)

These rules are used in the proof of ElGamal in Section 4, but first we extend
the language and logic to cover the necessary elements for cryptographic proofs.

3 Extending pL

We consider two language extensions and one extension of the reasoning method:

– Functions are computations that are a priori unknown. These are useful to
reason about arbitrary attacker functions, for which we do not know what
behavior they will produce.

– Procedures allow the specification of subroutines. These are useful to specify
cryptographic assumptions that hold ‘for every procedure’ satisfying some
appropriate conditions. Procedures are programs for which its behavior (i.e.
the procedure’s body) is assumed to be partially known (since it may contain
an invocation to an arbitrary function).
We assume that both functions and procedures are deterministic. However
this poses no loss of generality as enough “randomness” can be sampled
before and then passed to the function or procedure as an extra parameter.

– Orthogonality allows to reason about independent statements. This is a pro-
gram transformation operation that is going to be useful when reasoning on
cryptographic proofs as sequences of games.

Functions Functions, as opposed to procedures, are undefined (i.e. we do not
provide a body). We use these functions to represent arbitrary attackers, for
which we do not know a priori their behaviour.

To include functions in the language we add function symbols to expressions
(as defined in the previous section):

e ::= . . . | f(e, . . . , e)

We assume that the functions are used correctly, that is functions are always
invoked with the right number of arguments and correct types. Also, note that
by considering functions to be expressions we allow functions to be used in the
(deterministic and probabilistic) predicates. The fact that a function is deter-
ministic is represented in the logic by the following remark.

6 Ricardo Corin and Jerry den Hartog

Remark 2. For any function f(·) (of arity n) and expressions e1, . . . , en, e′1, . . . , e
′
n

(of the right type) we have |= (e1 = e′1 ∧ . . . ∧ en = e′n) → f(e1, . . . , en) =
f(e′1, . . . , e

′
n).

To deal with functions in the semantics, we assume that any function symbol
f has some fixed (albeit unknown) deterministic, type correct interpretation f̂ .
Thus, e.g. the semantics for an assignment using f becomes D(x := f(y))(ρ1 ·
σ1+ρ2 ·σ2+. . .) = ρ1 ·σ1[f̂(σ1(y)) / x]+ρ2 ·σ2[f̂(σ2(y)) / x]+. . .. It is straightforward
to see that this language extension along with its semantics does not interfere
with the logical rules, i.e. they still remain valid.

Procedures We now extend the language with procedures, which are used to
model (partially) known subprograms. Each procedure has a list of variables,
the formal parameters (divided in turn into value parameters and variable pa-
rameters) and a set of local variables. We assume that none of these variables
occur in the main program or in other procedures. The procedure also has a
body, Bproc, which is a program statement which uses only the formal parame-
ters and local variables, only assigns to variable parameters and local variables,
and assigns to a local variable before using its value. We also enforce the pro-
cedure to be deterministic by excluding any probabilistic choice statement from
Bproc. Finally, we require that the procedure is non-recursive (i.e. we can order
procedures such that any procedure only calls procedures of a lower order). We
use the notation procedure proc(value v1, . . . , vn,var w1, . . . , wm) : Bproc to list
the value and variable parameters and the body of a procedure (any variables
in Bproc that are not formal parameters are local variables).

We add procedures to the language by including procedure calls to the state-
ments:

s ::= . . . | proc(e, . . . , e, x, . . . , x)

Here we assume that there is no aliasing of variables; i.e. a different variable is
used for each variable parameter.

The procedure call proc(e1, . . . , en, x1, . . . , xm) (in state σ) corresponds to
first assigning the value of the appropriate expression (ei or xj) to the formal
parameters, running the body of the program and finally assigning the resulting
value of the variable arguments w1, . . . , wm to x1, . . . , xm. Thus the semantics is:

D(proc(e1, . . . , en, x1, . . . , xm))(θ) = D(v1 := e1; . . . ; vn := en;
w1 := x1; . . . ; wm := xm;
Bproc;
x1 := w1; . . . ; xn := wn)(θ)

Let proc be a procedure by procedure proc(value v1, . . . , vn,var w1, . . . , wm) :
Bproc. To enable reasoning about proc, we add the following derivation rule:

{p} Bproc {q}
{p[e1,...,en,x1,...,xn /v1,...,vn,w1,...,wm]} proc(e1, . . . , en, x1, . . . , xn) {q[x1,...,xn /w1,...,wm]}

(3)

A Probabilistic Hoare-style logic for Cryptographic Proofs 7

It is straightforward to see that with this added rule we still maintain correctness
of the logic, i.e. any Hoare triple derived from the proof system is valid.

Distributions and independence We now illustrate how to express the (joint)
distribution of variables (and more generally of expressions) in the logic. Then
we discuss the issue of independence of variables and expressions.

A commonly used component in (security) games is a variable chosen com-
pletely at random, which in other words is a variable with a uniform distribution
over its (finite) range. Suppose that variable x and i have the same range S.
Then the following predicate expresses that x is uniformly distributed over S:

RS(x) = ∀i : P(x = i) = 1/|S|

where |S| denotes the size of the set S. The variable x can be given a uniform
distribution over S = {v1, . . . , vn} by running the program

x:= v1 ⊕1/n (x := v2 ⊕1/(n−1) (· · · ⊕1/2 x := vn))

As this is a commonly used construction we introduce a shorthand notation for
this statement: x ← S. Using our logic, it is straightforward to derive (using
repeatedly rule (Prob)) that after running this program x has a uniform distri-
bution over S: |= {P(true) = 1 } x← S {RS(x) } .

More interestingly, after running the program x ← S; y ← S′ we not only
know that x has a uniform distribution over S and y has a uniform distribution
over S′, but we also know that y has a uniform distribution over S′ indepen-
dently from the value of x. In other words, the joint distribution of x and y is
RS,S′(x, y) ::= ∀i(∈ S), j(∈ S′) : P(x = i ∧ y = j) = 1/|S| · 1/|S′|. This is
a stronger property than only the information that x and y are uniformly dis-
tributed. (The difference is exactly the independence of the variables.) Below we
introduce a predicate expressing independence and generalize these results.

Definition 3 (Independent I(·) and Random R(·) expressions). The pred-
icate I(e1, . . . , en) states independence of expressions e1, . . . , en, and is defined
by (where ij is of the same type as ej, 1 ≤ j ≤ n.):

I(e1, . . . , en) = ∀i1, . . . , in : P(e1 = i1∧. . .∧en = in) = P(e1 = i1)·. . .·P(en = in)

The predicate RS1,...,Sn(e1, . . . , en) states that e1, . . . , en are randomly and
independently distributed over S1, . . . , Sn respectively, is defined as follows:

RS1,...,Sn(e1, . . . , en) = ∀i1, . . . , in : P(e1 = i1∧. . .∧en = in) = 1/|S1|·. . .·1/|Sn|

Lemma 4 (Relations between R(·) and I(·)).

1. An expression list has a joint uniform distribution when they are independent
and each has a uniform distribution, i.e. |= RS1,...,Sn(e1, . . . , en)↔ RS1(e1)∧
. . . ∧RSn(en) ∧ I(e1, . . . , en).

2. Separate randomly assigned variables have a joint random distribution: |=
{P(dp) } x1 ← S1; . . . ; xn ← Sn {RS1,...,Sn(x1, . . . , xn) } .

8 Ricardo Corin and Jerry den Hartog

3. Independence is maintained by functions; if an expression e is independent
from the inputs e1, . . . , en of a function f , then e is also independent of
f(e1, . . . , en). |= I(e, e1, . . . , en)→ I(e, f(e1, . . . , en)).

Both (1) and (3) express basic properties, shown easily to hold semantically for
any (probabilistic) state. The triple in (2) is shown valid by using the logic.

Example 5. The lemma above can be used in a derivation as follows:

{P(true) = 1}
b← Bool ;

{RBool(b)}
x← S;

{RBool,S(b, x)} → {I(b, x)} → {I(b, f(x))}
b′ := f(x) ;

{I(b,b′)}

The derivation above is represented as a so called proof outline, which is a com-
monly used way to represent proofs in Hoare logic. Briefly, rather than giving
a complete proof tree only the most relevant steps of the proof are given in an
intuitively clear format. The predicates in between the program statements give
properties that are valid at that point in the execution.

Orthogonality A (terminating) program that does not change the value of
variables in a predicate (i.e. is ‘orthogonal to the predicate’) will not change
its truth value. In this section we make this intuitive property more precise. As
we show in the proof of ElGamal cryptosystem in Section 4, orthogonality is a
powerful method to reason about programs and Hoare triples yet is easy to use
as it only requires a simple syntactical check.

Let Var(p) denote the set of program variables occurring in the probabilistic
predicate p, Var(s) the variables occurring in the statement s and let Vara(s)
denote the set of program variables which are assigned to (i.e. subject to assign-
ment) in s (x is assigned to in s if x := e occurs in s for some e or when x is used as
a variable parameter in a procedure call). We write s ⊥ p if Vara(s)∩Var(p) = ∅
and s ⊥ s′ if Vara(s) ∩ Var(s′) = ∅. Thus we call a program orthogonal to a
predicate (or to another program) if the program does not change the variables
used in the predicate (or in the other program).

The following theorem states that we can add and remove orthogonal state-
ments without changing the validity of a Hoare triple. As we shall see in Section 4,
this is precisely what is needed to establish the security of ElGamal.

Theorem 6. If s′ ⊥ q and s′ ⊥ s′′ then { p } s ; s′ ; s′′ { q } is valid if and
only if { p } s ; s′′ { q } is valid.

Theorem 6 asserts that a statement which does not directly affect the post-
condition or the later used values can be removed without affecting the validity
of Hoare triples. We provide a proof in the Appendix A.

A Probabilistic Hoare-style logic for Cryptographic Proofs 9

The notion of orthogonality ⊥ is a practical and purely syntactically defined
relation, and thus easy to check. On the other hand, ⊥ does not have commonly
used properties of relations such as reflexiveness, transitivity and congruence
properties. Therefore, care must be taken in reasoning with this relation outside
of its intended purpose, that is to add or remove non-relevant program sections
in a derivation, so one can transform a program into the exact required form.

4 Application: Security Analysis of ElGamal

We now apply our technique to derive semantic security for ElGamal [7].

ELGamal Let G be a group of prime order q, and let γ ∈ G be a generator.
Let Z∗

q = {1, . . . , q − 1} denote the usual multiplicative group. A key is created
by choosing a number uniformly from Z∗

q , say x ∈ Z∗
q . Then x is the private key

and γx the public key. To encrypt a message m ∈ Z∗
q , a number y ∈ Z∗

q is chosen
uniformly from Z∗

q . Then (c, k) is the ciphertext, for c = m · γxy, and k = γy.
To decrypt using the private key x, compute c/kx, since c

kx = m·γxy

γyx = m.

Security Analysis The security of ELGamal cryptosystem is shown w.r.t. the
Decisional Diffie-Hellman (DDH) assumption [4]. Suppose we sample uniformly
the values x, y and z. Fix εddh small and RND large w.r.t. q. Then the DDH as-
sumption (for G) states that no effective procedure D(·) (with randomness given
by a sample from {1, . . . ,RND}) can distinguish triples of the form 〈γx, γy, γxy〉
from triples of the form 〈γx, γy, γz〉 with a chance better than εddh.

In our formalism we assume but do not precisely define the meanings of
“small”, “large”, “better” and “effective”, as they are not required in the actual
proof transformations. However, one should keep in mind that indeed these pa-
rameters need to be fixed a priori, as for example the DDH assumption is not
true if D(·) has too many resources (e.g. computing power) w.r.t. q.

Semantic Security The semantic security game [9] for ElGamal cryptosystem
consists of the following four steps: (1). Setup: x is sampled from Z∗

q and r is
sampled from RND . (2). Attacker chooses m0,m1 using inputs γx, r. (3). y is
sampled from Z∗

q , bit b is sampled uniformly, and let c = γxy ·mb. (4). Attacker
chooses b′ using inputs γxy, γy, r, c.

Now, the attacker wins this game if it outputs b′ equating b, that is the
attacker can guess b with a non-negligible probability (in our case, better than
1/2 + εddh). A standard proof (e.g. the one given in [18]) reduces the security of
this notion (i.e. that the attacker cannot win the game) to the DDH assumption
described above. We now describe a similar proof within our formalism.

ElGamal Security Analysis in pL In our formalism, the DDH assump-
tion ensures that for any effective procedure D(v1, v2, v3, v4, v5, x1) with inputs
v1, v2, v3, v4, v5 and output boolean x1, the following is a valid Hoare triple.

10 Ricardo Corin and Jerry den Hartog

{P(true) = 1}
x← Z∗

q ; y← Z∗
q ; r1← RND ; b1← Bool ; D(γx, γy, γxy, r1, b1, out1);

z← Z∗
q ; r2← RND ; b2← Bool ; D(γx, γy, γz, r2, b2, out2)

{|P(out1)− P(out2)| ≤ εddh}

Here, the extra provided randomness b1 and b2 to procedure D(·) are given
solely to ease the exposition (as r1 and r2 already provide enough randomness).

ElGamal Semantic security We assume three attacker functions A0(v1, v4),
A1(v1, v4) and A2(v1, v2, v3, v4). Functions A0(v1, v4) and A1(v1, v4) return
two numbers m0 and m1 from Z∗

q . Similarly, function A2(v1, v2, v3, v4) re-
turns a boolean. From these attacker functions we define another procedure
S(v1, v2, v3, v4, v5, x1) : BS , where the body BS is defined as follows:

BS
4
= m0 :=A0(v1, v4); m1 :=A1(v1, v4);

if v5 =false then tmp := v3· m0 else tmp := v3· m1 fi;
b :=A2(v1, v2, tmp, v4)
if v5 = b then x1:=true else x1:=false fi;

Proving the semantic security of ElGamal amounts to establish:

Theorem 7. The following is a valid probabilistic Hoare Triple:

{P(true) = 1}
x← Z∗

q ; y← Z∗
q ; r1← RND ; b1← Bool ; S (γx, γy, γxy, r1, b1, out1)

{|P(out1)− 1/2| ≤ εddh}
To establish this result, we first show the following lemma.

Lemma 8. The following is a valid Probabilistic Hoare Triple:

{RZ∗
q
3,RND,Bool(γx, γy, γz, r2, b2)} S(γx, γy, γz, r2, b2, out2) {P(out2) = 1/2}

Proof. The plan is to use rule (3) from Section 3 on the definition of pro-
cedure S(·) to obtain the desired result. Therefore, we have the precondition
RZ∗

q
3,RND,Bool(v1, v2, v3, v4, v5) and the postcondition P(x1) = 1/2 to program

BS . To conclude the proof, we establish the validity of the following triple
(shown in full detail in the Appendix B):

{RZ∗
q
3,RND,Bool(v1, v2, v3, v4, v5)} BS {P(x1) = 1/2}

Now, to establish Theorem 7, we start by showing the validity of the following
Hoare triple:

{P(true) = 1}
x← Z∗

q ; y← Z∗
q ; z← Z∗

q ; r2← RND ; b2← Bool ;
{RZ∗

q
3,RND,Bool(x, y, z, r2, b2)} → {RZ∗

q
3,RND,Bool(γx, γy, γz, r2, b2)}

S(γx, γy, γz, r2, b2, out2)
{P(out2) = 1/2}

A Probabilistic Hoare-style logic for Cryptographic Proofs 11

The lower part of the triple is given by Lemma 8. For the upper part, we
use Lemma 4(1) to obtain to obtain {RZ∗

q
3,RND,Bool(x, y, z, r2, b2)} from the

random samples. The implication follows from standard properties of the group
Z∗

q and the generator γ, which is a permutation of Z∗
q (In Appendix B, we derive

formally a similar property). Finally, we combine the two triples using rule (Seq).
The next step consists in adding the orthogonal statements (shown boxed

below) between the assignments of y and z of the above triple. Since the added
statements are orthogonal (they assign to r1,b1,out1 only, which do not occur
in the above triple), by Theorem 6 we get that the following triple is valid:

{P(true) = 1}

x← Z∗
q ; y← Z∗

q ; r1← RND ; b1← Bool ; S (γx, γy, γxy, r1, b1, out1);
z← Z∗

q ; r2← RND ; b2← Bool ; S (γx, γy, γz, r2, b2, out2)
{P(out2) = 1/2}

This is the DDH assumption when D(·) is instantiated by S(·). We use rule
(And) and join the postconditions {P(out2) = 1/2} and {|P(out1)− P(out2)}:

{P(true = 1)}
x← Z∗

q ; y← Z∗
q ; r1← RND ; b1← Bool ; S (γx, γy, γxy, r1, b1, out1);

z← Z∗
q ; r2← RND ; b2← Bool ; S (γx, γy, γz, r2, b2, out2)

{P(out2) = 1/2 ∧ |P(out1)− P(out2)| ≤ εeddh} → {|P(out1)− 1/2| ≤ εeddh}

The last application of rule (Cons) follows from replacing P(out2) with 1/2.
Finally, we remove the last line of statements thanks to orthogonality (as the
assigned to variables do not occur elsewhere), and obtain the desired theorem:

{P(true) = 1}
x← Z∗

q ; y← Z∗
q ; r1← RND ; b1← Bool ; S (γx, γy, γxy, r1, b1, out1);

{|P(out1)− 1/2| ≤ εddh}

5 Conclusions and Future Work

Cryptographic proofs are complex constructions that use both cryptography and
programming languages concepts. We believe that our approach has the potential
to be a useful tool in the formalization of cryptographic proofs, thus preventing
subtle errors from being introduced. In our opinion, both the cryptographic and
programming languages communities can easily understand and benefit from
our approach: First, Hoare logic is well known in the programming languages
community, and has been used to prove algorithm correctness for more than
three decades. There are readily available computer aided verification systems
that can handle Hoare logic reasoning systems (e.g. HOL [15], PVS [14]). Second,
developing cryptographic proofs as games, which consist of transformations of
simple probabilistic imperative programs, are well known in the cryptographic
community [3, 10, 18]. Our logic allows to derive correctness proofs directly from
these imperative programs, without code modifications.

12 Ricardo Corin and Jerry den Hartog

Future Work There are several possible directions to continue our work. A short
term goal is to cover more complex examples (e.g. cryptographic proof of the
Cramer-Shoup cryptosystem [6], and the examples of [3, 10, 18]). This would
probably require to refine the notion of equivalence between Hoare triples (as
for instance ensured by Theorem 6 for orthogonal statements) to equivalence up-
to ε, to model transitions based on “bad events unlikely to happen” instead of the
standard equivalence that models transitions based on pure indistinguishability.

The price to pay for having a rigorous proof of ElGamal is in proof length, as
the detailed proofs can quickly become lengthy. An axiomatization of the logic
along with a library of ready-to-use proofs for standard constructions would help
into reducing the complexity and length of proofs (this is a matter of ongoing
work). Along the same lines, a longer term goal would be to develop an im-
plementation on a theorem prover (e.g. PVS [16]) to provide machine-checkable
cryptographic proofs, following e.g. earlier work on (standard) Hoare logic for-
malization [14]). Here axioms and pre-computed proofs would also greatly in-
crease efficiency and usability.

References

1. K.R. Apt. Ten years of Hoare’s logic: A survey-part I. ACM Transactions on
Programming Languages and Systems, 3(4):431–483, 1981.

2. K.R. Apt. Ten years of Hoare’s logic: A survey-part II: nondeterminism. Theoretical
Computer Science, 28:83–109, 1984.

3. M. Bellare and P. Rogaway. The game-playing technique, December 2004. At
http://www.cs.ucdavis.edu/∼rogaway/papers/games.html.

4. D. Boneh. The decision diffie-hellman problem, 1998. In Proceedings of the Third
Algorithmic Number Theory Symposium, Lecture Notes in Computer Science, Vol.
1423, Springer-Verlag, pp. 48–63, 1998. At http://crypto.stanford.edu/∼dabo/
abstracts/DDH.html.

5. D. Boneh and M. K. Franklin. Identity-based encryption from the weil pairing. In
CRYPTO ’01: Proceedings of the 21st Annual International Cryptology Conference
on Advances in Cryptology, pages 213–229, London, UK, 2001. Springer-Verlag.

6. R. Cramer and V. Shoup. Design and analysis of practical public-key encryp-
tion schemes secure against adaptive chosen ciphertext attack. SIAM Journal on
Computing, 33(1):167–226, 2003.

7. T. ElGamal. A public-key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory, IT-31:469–472, 1985.

8. D. Galindo. Boneh-franklin identity based encryption revisited. In ICALP, pages
791–802, 2005.

9. S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and
System Sciences, 28:270–299, 1984.

10. S. Halevi. A plausible approach to computer-aided cryptographic proofs, 2005. At
http://eprint.iacr.org/2005/181/.

11. J.I. den Hartog. Probabilistic Extensions of Semantical Models. PhD thesis, Vrije
Universiteit Amsterdam, 2002.

12. J.I. den Hartog and E.P. de Vink. Verifying probabilistic programs using a Hoare
like logic. International Journal of Foundations of Computer Science, 13(3):315–
340, 2002.

A Probabilistic Hoare-style logic for Cryptographic Proofs 13

13. C.A.R. Hoare. An axiomatic basis for computer programming. Communications
of the ACM, 12:576–580, 1969.

14. J. Hooman. Program design in PVS. In K.Berghammer, J.Peleska, and B. Buth,
editors, Workshop on Tool Support for System Development and Verification, Bre-
men, Germany, 1997. Available at www.cs.kun.nl/ita/publications/papers/

hooman/PDPVS.ps.
15. M.J.C. Gordon. Mechanizing programming logics in higher-order logic. In G.M.

Birtwistle and P.A. Subrahmanyam, editors, Current Trends in Hardware Verifica-
tion and Automatic Theorem Proving (Proceedings of the Workshop on Hardware
Verification), pages 387–439, Banff, Canada, 1988. Springer-Verlag, Berlin.

16. S. Owre, S. Rajan, J.M. Rushby, N. Shankar, and M.K. Srivas. PVS: Combining
specification, proof checking, and model checking. In Rajeev Alur and Thomas A.
Henzinger, editors, Computer-Aided Verification, CAV ’96, volume 1102 of Lecture
Notes in Computer Science, pages 411–414, New Brunswick, NJ, July/August 1996.
Springer-Verlag.

17. A. Ramanathan, J. C. Mitchell, A. Scedrov, and V. Teague. Probabilistic bisim-
ulation and equivalence for security analysis of network protocols. In FoSSaCS,
pages 468–483, 2004.

18. V. Shoup. Sequences of games: a tool for taming complexity in security proofs,
May 2005. At http://www.shoup.net/papers/games.pdf.

19. S. Tarento. Machine-checked security proofs of cryptographic signature schemes.
In ESORICS, pages 140–158, 2005.

A Proof of Theorem 6

In this section we give a proof outline for the orthogonality Theorem 6. To reason
about affected and unaffected parts of states we introduce restriction (↓V) to
and equivalence (=V) for a subset V of the program variables PVar: Restriction
of a deterministic state σ to a set V is denoted σ ↓V . Restriction is lifted to
probabilistic states by applying it element wise: To obtain θ ↓V we replace each
ρ · σ in θ by ρ · σ ↓V . As before, the probabilities of states that collapse into the
same state are added. We write θ =V θ′ if θ ↓V = θ′ ↓V .

Lemma 9. If θ =Var(p) θ′ then θ |= p iff θ′ |= p.

Only the distribution of the variables actually occurring in p are used in the
computation of its validity making this property intuitively clear. A formal proof
proceeds by induction on the structure of the predicate p.

Lemma 10. If V ∩Vara(s) = ∅ and s ⊥ s′ then D(s ; s′)(θ) =V D(s′)(θ).

Proof. We note that a program does not affect the variables it does not assign
to, i.e. if V ∩Vara(s) = ∅ then θ =V D(s)(θ) (1). Also, if two states agree on all
variables used in a program, execution of the program will not affect this, i.e. if
Var(s) ⊆ V and θ =V θ′ then D(s)(θ) =V D(s)(θ′) (2). These two facts can be
proven by structural induction on the program s.

If we take V ′ = V ∪ Var(s′) then V ′ ∩ Vara(s) = ∅ so by fact (1) we have
θ =V ′ D(s)(θ) and thus by fact (2) D(s ; s′)(θ) = D(s′)(D(s)(θ)) =V ′ D(s′)(θ).
As V ′ contains V this implies D(s ; s′)(θ) =V D(s′)(θ).

14 Ricardo Corin and Jerry den Hartog

By combining these two lemmas we obtain Theorem 6.

Theorem 6. If s′ ⊥ q and s′ ⊥ s′′ then { p } s; s′ ; s′′ { q } is valid if and only
if { p } s ; s′′ { q } is valid.

Proof. Recall that a Hoare triple { p } s { q } is valid when for any state θ s.t.
θ |= p we have D(s)(θ) |= q. By Lemma 10, D(s′ ; s′′)(θ′) =Var(q) D(s′′)(θ′) for
any θ′. Thus D(s ; s′ ; s′′)(θ) = D(s′ ; s′′)(D(s)(θ)) =Var(q) D(s′′)((D(s)(θ)) =
D(s ; s′′)(θ) for any θ.

Now, by Lemma 9, for all θ, D(s;s′ ;s′′)(θ) |= q exactly when D(s;s′′)(θ) |=
q, thus certainly for any θ s.t. θ |= p. Thus { p } s ; s′ ; s′′ { q } is valid exactly
when { p } s ; s′′ { q } is valid.

B Deriving {RZ∗
q
3,RND,Bool(v1, v2, v3, v4, v5)} BS {P(x1) =

1/2}

We derive {RZ∗
q
3,RND,Bool(v1, v2, v3, v4, v5)} BS {P(x1) = 1/2} in Table 1, in

bottom up fashion. In the last line we use rule (Cons). To show implication (I7),
let θ be a state s.t. θ |= {P(x1) = 1/2}+ {P(x1) = 0}. So there exist θ1 and θ2

s.t. θ = θ1 + θ2, with θ1 |= {P(x1) = 1/2} and θ2 |= {P(x1) = 0} (see (1)). We
use the following general rule, for dp a predicate and r1, r2 real numbers:
If θ1 |= P(dp) = r1 and θ2 |= P(dp) = r2, then θ1 + θ2 |= P(dp) = r1 + r2
For dp = x1, r1 = 0 and r2 = 1/2 since θ = θ1 + θ2 we get our desired result.

Then we apply rule (If). Implication (I6) is trivial, as any state θ satisfies
θ |= P(false) = 0. To show implication (I5), let θ be a state s.t. θ |= (v5 =
b)?(P(v5 = b) = 1/2). We now use two facts we deduce from (2), for c predicate
and r real number:
(i). If θ |= c?(P(c) = r) then θ |= P(¬c) = 0 and θ |= P(c) = r
(ii). P(true) = P(c) + P(¬c)
For c = (v5 = b) and r = 1/2, combining (i) and (ii) we get θ |= P(true) = 1/2
as desired.

Implication (I4) follows from Definition 3, as I(v5, b) is ∀i, j.P(v5 = i, b =
j) = P(v5 = i) · P(b = j), and since we know RBool(v5) then ∀i, j.P(v5 =
i, b = j) = 1/2 · P(b = j). So P(v5 = b) = P(v5 = true ∧ b = true) + P(v5 =
false ∧ b = false) = 1/2 · (P(b = true) + P(b = false)) = 1/2, given the fact
that P(true) = 1 since P(v5 = false) + P(v5 = true) = 1 by RBool(v5).

Then we use rule (Assign). Implication (I3) follows from Lemma 4(2),4(3).
Implication (I2) is straightforward from the definition of R(·). The following

steps are straightforward from rules (If) and (Assign). Implications (I1a) and
(I1b) follow from the fact that multiplication · has an inverse / in the group: for
any a, b, c we have a · b = c ⇐⇒ a = c/b. Eliminating the ∀j, k, l,m in the
assumption by substituting the expression j/m0, k, l and m for j, k, l and m re-
spectively gives P(v3 = j/m0, v1 = k, v2 = l, v4 = m, v5 = true) = 1/2·1/(q3 · r)
by using the equivalence above we get: P(v3·m0 = j, v1 = k, v2 = l, v4 = m, v5 =

A Probabilistic Hoare-style logic for Cryptographic Proofs 15

{RZ∗
q 3,RND,Bool(v1, v2, v3, v4, v5)} (1)

m0 :=A0(v1, v4); (2)

m1 :=A1(v1, v4); (3)

{RZ∗
q 3,RND,Bool(v1, v2, v3, v4, v5)}

if v5 = false then (4)

{∀j, k, l ∈ Z∗
q , m ∈ RND :

P(v3 = j, v1 = k, v2 = l, v4 = m, v5 = false) = 1/2 · 1/(q3 · r)} (I1a)→
{∀j, k, l ∈ Z∗

q , m ∈ RND :
P(v3 · m0 = j, v1 = k, v2 = l, v4 = m, v5 = false) = 1/2 · 1/(q3 · r)}
tmp := v3· m0 (4a)

p1
4
= {∀j, k, l ∈ Z∗

q , m ∈ RND :

P(tmp = j, v1 = k, v2 = l, v4 = m, v5 = false) = 1/2 · 1/(q3 · r)}
else

{∀j, k, l ∈ Z∗
q , m ∈ RND :

P(v3 = j, v1 = k, v2 = l, v4 = m, v5 = true) = 1/2 · 1/(q3 · r)} (I1b)→
{∀j, k, l ∈ Z∗

q , m ∈ RND :
P(v3 · m1 = j, v1 = k, v2 = l, v4 = m, v5 = true) = 1/2 · 1/(q3 · r)}
tmp := v3· m1 (4b)

p2
4
= {∀j, k, l ∈ Z∗

q , m ∈ RND :

P(tmp = j, v1 = k, v2 = l, v4 = m, v5 = true) = 1/2 · 1/(q3 · r)}
fi

{p1 + p2} (I2)→ {RZ∗
q 3,RND,Bool(v1, v2, tmp, v4, v5)}

(I3)→
{RBool(v5) ∧ I(v5, A2(v1, v2, tmp, v4))}
b :=A2(v1, v2, tmp, v4) (5)

{RBool(v5) ∧ I(v5, b)} (I4)→ {P(v5 = b) = 1/2}
if v5 = b then (6)

{(v5 = b)?(P(v5 = b) = 1/2)} (I5)→ {P(true) = 1/2)}
x1:=true (6a)

{P(x1) = 1/2}
else

{(v5 6= b)?(P(v5 = b) = 1/2)} (I6)→ {P(false) = 0)}
x1:=false (6b)

{P(x1) = 0)}
fi

{P(x1) = 1/2}+ {P(x1) = 0} (I7)→
{P(x1) = 1/2} (7)

Table 1. Derivation of {RZ∗
q
3,RND,Bool(v1, v2, v3, v4, v5)} BS {P(x1) = 1/2}

16 Ricardo Corin and Jerry den Hartog

true) = 1/2 · 1/(q3 · r) thus (by using ∀-introduction) we obtain the required re-
sult. Finally the lines (2) and (3) of Table 1 can be derived trivially, as the pre
and post conditions coincide, i.e. they are both RZ∗

q
3,RND,Bool(v1, v2, v3, v4, v5),

in which neither m0 nor m1 occur.

