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Abstract

With the development of provable security techniques, cryptographers have seen tension arise be-
tween what is practical and what can be proven. In particular, the use of simulation to prove security
of protocols against malicious parties requires that “special powers” be available to the simulator.
To allow the simulator to exploit its special powers, cryptographers modify their protocols. These
modifications can complicate the protocol and increase its overhead.

In this paper, we take preliminary steps towards resolving this tension. We propose a novel frame-
work and techniques for security proofs that leverage existing techniques while allowing the provably-
secure use of more efficient cryptographic primitives. Our framework utilizes translators that map
outputs of one cryptographic primitive to corresponding outputs of a different primitive. We describe
conditions under which one cryptographic primitive may be securely substituted for another in a large
class of protocols. As an example, we apply our techniques to a simulatable coin-flipping protocol.

1 Introduction

Traditionally, cryptographers had no systematic method for establishing the security of protocols; a pro-
tocol was considered ‘secure’ if sustained cryptanalytic efforts failed to prove it insecure. As security
research progressed, however, new attacks were discovered against old protocols. Researchers then mod-
ified the protocol to avoid these attacks, cryptanalysts searched for new flaws, and the cycle repeated
endlessly. The evolution of SRP password authentication protocol illustrates the elusiveness of true
security in the absence of principled analysis [35, 33, 34, 5, 36].

With the development of provable security techniques such as reduction and simulation, we have the
tools to break this cycle. Today, we can provide proofs of security subject to cryptographic assumptions,
such as the hardness of factoring [30]. It appears to be difficult or impossible to prove the security
of many reasonable protocols using these techniques. For example, certain zero-knowledge protocols
cannot be proved secure using black-box techniques [2, 13]. Researchers modify their protocols in order
to construct proofs of security using these standard techniques. Some of these modifications introduce
additional overhead, make the protocol more complicated, or rely on cryptographic assumptions irrelevant
to the original protocol. For example, several variations on the basic commitment primitive, such as
trapdoor and equivocal commitments, are designed specifically to aid these modifications [24, 18, 22].
Unfortunately, these commitment schemes are less efficient and more complicated than the standard
commitment schemes they replace. Because these modifications have negative repercussions, there is
tension between efficiency and provable security in cryptographic protocols.

Consider the standard method for proving the security of a protocol against malicious players. In such
a proof, one compares the execution of a protocol against the execution of an ideal trusted third party
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(TTP) that computes the same function. A TTP takes all players’ inputs, computes the appropriate
output function for each player, and returns the results. In order to argue that a cryptographic protocol
is ‘as secure’ as utilizing a TTP, a simulator interacts with the malicious parties through the protocol,
obtains their private inputs, submits these inputs to the TTP, and returns the results. If the simulator
can perform this task without detection by the malicious players, then the protocol is secure. We describe
such a proof in Figure 1. The fact that the simulator can perform these tasks in the execution of a secure
protocol implies that the simulator must have knowledge or powers not accessible to even malicious
players during execution in the ‘real world’. For example, the simulator may be able to ‘rewind’ players
and provide them with suitably chosen inputs, or may ‘open’ equivocal commitments to a value of its
choice. The modifications that create the tension between practicality and provable security are designed
to allow the simulator to utilize its special powers; they often lead to a protocol that employs expensive,
seemingly useless primitives.

We take a step towards resolving this tension by introducing a new framework for proofs of security
that leverage existing simulator proofs, while removing the need for the simulator’s special powers. Our
framework utilizes translation between cryptographic primitives; translation is a formal way of expressing
an intuitive equivalence between two primitives that ‘behave equivalently’. We introduce novel techniques
for proofs of security in our framework. These techniques allow us to construct proofs of security for a
large class of protocols that cannot be proved secure using standard techniques. In this framework,
we can transform adversaries against one protocol into adversaries that attack a different protocol. By
comparing the behavior of these transformed adversaries against the behavior of the original adversaries,
we can obtain a proof of security. Depending on the cryptographic primitives employed in the protocols,
it is possible that our framework may be achieved in the standard model.

We demonstrate our techniques by applying them to a simulatable coin-flipping protocol. A simulator
may manipulate the output of the simulatable coin-flipping protocol; this ability allows proofs of security
of larger protocols that utilize coin-flipping. By proving the security of a more efficient coin-flipping
sub-protocol in our translator framework, we conserve the security of the larger protocol while improving
its efficiency.

We make the following contributions:

• We introduce a new framework for proving security in which special translators map outputs of
one cryptographic primitive to outputs of a different cryptographic primitive. We suggest several
scenarios for realizing such translators.
• We define conditions that allow us to carry out secure substitution of one cryptographic primitive

for another in a protocol. We show that if these conditions are met, then security properties are
preserved after substitution. Our security proofs allow us to re-use existing proofs of security for
cryptographic protocols.
• We apply secure substitution to a coin-flipping protocol, greatly increasing its efficiency. We show

that in our translator framework, the new protocol retains guarantees of security for protocols that
incorporate the transformed protocol. We leave the specific construction of the necessary translators
as an open problem.

We stress that this work is intended as a preliminary step towards reconciling practical and provable
protocols. In particular, we do not address the question of composition of cryptographic protocols.
Nevertheless, we show that one can use the translator framework to leverage existing proofs of security
to obtain new proofs of security for more efficient protocols.
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Outline. We discuss related work in Section 2, before proceeding to preliminaries in Section 3 and
definitions in Section 4. We then prove the security of tool substitution for a large class of protocols
under translation assumptions in Section 5. We discuss these assumptions in Section 6. We then describe
the use of secure substitution, in Section 7, as well as a specific example of its application. Finally, we
conclude in Section 8 by discussing directions for future work. In addition, we provide in Appendix A a
list of the notation used in this paper.

2 Related Work

We introduce a new proof technique in this work, namely the use of special translators that are used in the
proof of security. These translators resemble the “imaginary angels” in the Los Angeles Network-Aware
Security framework of Prabhakaran and Sahai [29]. In their framework, angels are super-polynomial
entities that exist only for purposes of the proof. All parties in the protocol are given oracle access to the
angels. These angels are capable of finding collisions in hash functions used as part of the protocol. The
key idea of the framework is that the angels answer only certain collision queries but not others, carefully
chosen to aid a simulation proof of the protocol in question. Under a cryptographic assumption about the
hash function, access to the angels’ output does not aid the adversary in breaking the protocol’s security.
They are able to show strong composition results for many natural protocols in the resulting framework.

Our work differs from Prabhakaran and Sahai in that our translators do not find hash collisions or
otherwise explicitly ‘break’ the security of any cryptographic tool. Instead, our translators map outputs
of one tool to outputs of a different tool; an encryption of x under one cryptosystem is translated to an
encryption of x under another cryptosystem. Moreover, we leverage existing proofs of security to show
that protocols using workalike cryptographic tools are secure; it is not required to give a wholly new
proof of security for a protocol in our framework. To do so, we leverage the concept of indifferentiability,
as introduced by Maurer et al. [23]. Indifferentiability provides a framework for reasoning about when
one tool is “basically equivalent to” a different cryptographic tool. Maurer et al. introduced the concept
to show negative results about the Random Oracle Model, generalizing the negative results of Canetti,
Goldreich, and Halevi [7]. Here we use indifferentiability to show positive results about the substitution
of one cryptographic tool for another.

Finally, a great deal of recent work has studied composability of cryptographic protocols, including
the Los Angeles Network-Aware Security framework and Canetti’s Universal Composability [29, 6]. Our
present work does not discuss composability. Instead, we focus on leveraging existing proofs of security
for a protocol to justify replacing an expensive cryptographic tool with an inexpensive one. Future work
will focus on how our techniques affect composition of cryptographic protocols.

3 Preliminaries

Allowed malicious adversaries. A malicious adversary may behave arbitrarily. In particular, we
cannot hope to prevent malicious parties from refusing to participate in the protocol, choosing arbitrary
values for its private input set, or aborting the protocol prematurely.

We will frequently make use of the notion of an allowed adversary ; this means that we consider
adversaries in a particular class of algorithms, such as all probabilistic polynomial time (PPT) algorithms.
Except where noted, however, our results do not depend on the choice of the class.

The standard definition of cryptographic security for multi-party computation (see, e.g., [12]) is based
on a comparison between the ideal model and a trusted third party (TTP), where a malicious party may
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Figure 1: Basic outline of a standard simulation proof.

give arbitrary input to the TTP. The security definition is also limited to the case where at least one of
the parties is honest. A simulation proof is a common method of proving security under such a definition:
the simulator G provides a concrete method of translating any strategy executed by Γ to a strategy in
the TTP model. We illustrate such a proof in Figure 1.

Indistinguishability. Let D1, D2 be probability distributions over arbitrary domains. Denote the
samples x1 ← D1, x2 ← D2. x1 ∼ x2 if, for any allowed algorithm D (i.e. an allowed adversary) D,
|Pr [D(x1) = 1]−Pr [D(x2)] | is negligible [24]. If the allowed class of adversaries consists of probabilistic
polynomial time adversaries, we say that D1 and D2 are computationally indistinguishable [24].

Indifferentiability. Let two tools Z, Y have private interfaces (accessible to the honest play-
ers Υ) Z1, Y1 and public interfaces (accessible to the malicious players Γ) Z2, Y2, respec-
tively. Y is indifferentiable from Z, denoted Y @ Z, if there exists an algorithm S such
that for any allowed distinguisher D,

∣∣∣Pr
[
DY1,Y2

= 1
]
− Pr

[
DZ1,SZ2

= 1
]∣∣∣ (in the original notation,∣∣Pr

[
D(Y1,Y2) = 1

]
− Pr

[
D(Z1,S(Z2)) = 1

]∣∣) is negligible [23].

Turing machines and circuits. A Turing machine is a theoretical computing device with a finite state
machine attached to am infinitely long tape. The machine may write and read symbols from the current
position on the tape, as well as move the tape in either direction. Turing machines form the basis of a
standard model of computation [32]. Note that polynomial-sized uniform computational circuits, another
standard model of computation, are essentially equivalent in computational power to polynomial-time
Turing machines [27].

4 Definitions

In this section, we formally define the novel terms used in this paper. Our main security result states
that, for any cryptographically secure replacement friendly protocol using a cryptographic tool Z, if the
protocol is also secure when using an ideal tool I, then it is secure when using a workalike tool Y. To prove
this result, we utilize a framework that incorporates translators. These translators translate handles of
tool Z to handles of tool Y, or vise versa.
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Definition 1. A cryptographic tool is a Turing machine that has a defined set of interfaces, utilized
in cryptographic protocols. Each interface operates as follows: when data is written to an input tape, the
corresponding function (defined as part of the cryptographic tool) is computed on that input. The result of
that computation is written to the corresponding output tape. The tool may also specify that only certain
players may have access to an interface; this restriction is generally enforced by means of a secret key,
such as in decryption.

Definition 2. An ideal tool I is a cryptographic tool, which may be accessed as an oracle by all players,
with a defined set of interfaces I1, . . . , IF .

Definition 3. A tool Z is simulation-secure with respect to some ideal tool I if there exists a
simulator for the tool Z that establishes that no adversary Γ can, with non-negligible probability, gain
more information by interaction with the interfaces of Z than by use of I.

Definition 4. Tool Y is a workalike of tool Z for ideal tool I if:

• Zis simulation-secure with respect to I
• Y @I for all players

For simplicity, we denote interfaces of Y and Z in the arbitrary order used to label the interfaces of I;
that is, Yi, Zi, and Ii (1 ≤ i ≤ F ) are corresponding interfaces.

Note that Y 6@ Z for most pairs of workalike cryptographic tools. For example, the Pederson com-
mitment scheme [28] is differentiable from the Naor commitment scheme [25], as they utilize different
domains for their commitments.

Definition 5. Let HO be a minimal set of interfaces such that {Ii}i6∈HO is indistinguishable from
{Z}i6∈HO to any allowed adversary. The output of any interface in HO is a handle.

Definition 6. A replacement-friendly protocol using tool Z is one in which:

• no player is required to compute a function of any handle from Z, other than through black-box
invocation of an interface of Z
• there exists a PPT eavesdropper algorithm that can determine with overwhelming probability, for

each handle the protocol requires a player to send, the interface i (i ∈ HO) that an honest player
would have used to construct that handle

Note that copying a handle does not disqualify a protocol from being replacement-friendly, but com-
puting any non-identity function of a handle (such as equality) does. Thus, replacement-friendly protocols
do not include certain pathological protocols, such as those of [7], that ‘detect’ that they are using a certain
tool and purposely break.

Definition 7. Let HY ,HZ be equal-sized, ordered lists of handles. (associated with cryptographic tools Y
and Z, respectively). Let the interfaces of two tools Z and Y that accept |HY | = |HZ | handles as input
be denoted HI. We recursively define HY and HZ to be translation-indistinguishable if

• ∀x∈{0,1}∗ {Yi(HY , x)}i∈HI ∼ {Zi(HZ , x)}i∈HI

• Let corresponding subsets H′
Y ,H′

Z be defined such that for some list L of set indices which specify
subsets of size |HY | − 1, L ∈

( [|HY |]
|HY |−1

)
, j ∈ L ⇔ (HY)j ∈ H′

Y ∧ (HZ)j ∈ H′
Z . All corresponding

subsets H′
Y ,H′

Z must be translation-indistinguishable.
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Definition 8. Let H1, H2 be ordered lists of handles. Let CD((H1)j) (1 ≤ j ≤ |H1|) be the
list of bit strings passed to a cryptographic tool to output handle (H1)j. The lists of handles H1

and H2 are handleset indistinguishable, denoted H1∼νH2, if {CD((H1)1), . . . , CD((H1)|H1|)} ∼
{CD((H2)1), . . . , CD((H2)|H2|)}.

Definition 9. Let cryptographic tool A be a workalike of tool B, or vice versa, with respect to ideal tool
I. A translator T inputs handles from A, and outputs the corresponding handles (handles output by the
corresponding functionality) from B; formally, T = {TH1 , . . . , THO|HO|}, Ti : Range(Ai) → Range(Bi)
(i ∈ HO).

Such translation is correct in the presence of an allowed adversary Γ if, with overwhelming probability,
for an x ∈ {0, 1}∗ and i ∈ HO both chosen by Γ after interaction with T , A, B:

• Let h1 ← Ai(x), h2 ← Bi(x)
• T (h1) ∼ h2

• T (h2) and h2 are translation-indistinguishable

In most cases, we will utilize translators that are correct against a class of adversaries, e.g. all probabilistic
polynomial time adversaries. In this case, we will drop the explicit dependence on Γ and simply refer to
a correct translator T .

5 Proof of Secure Replacement

In order to complete our proofs, we prove several lemmas in Section 5.1. We then give a general proof
of secure translation, given abstract translators T ′ and T . In Section 6, we explore several scenarios in
which we may construct such translators; these constructions prove security in each scenario.

5.1 Lemmas

Lemma 1. For all functions f computable by an allowed adversary, x ∼ y → f(x) ∼ f(y).

Proof. If f(x) is distinguishable from f(y) by an allowed adversary, then there exists an adversary who
can distinguish x and y, through calculation of f . By the definition of indistinguishability, there exists
no such adversary. Thus, by contradiction, f(x) is indistinguishable from f(y).

Corollary 2. Lemma 1 holds for any number of function parameters `. Formally, if each parameter
xj ∼ yj (1 ≤ j ≤ `), then for all {w1, . . . , w` | wj ∈ {xj , yj}}, f(w1, . . . , w`) are mutually computationally
indistinguishable.

Corollary 3. Let A and B be black-box subroutines such that ∀x∈{0,1}∗A(x) ∼ B(x). Lemma 1 also holds
for functions f which receive access to either A or B. Formally, for all functions f , x ∼ y → fA(x) ∼
fB(x) ∼ fA(y) ∼ fB(y). Similarly to Lemma 2, this lemma may be extended to allow for any number of
function parameters.

5.2 General proof of security.

We now prove a general theorem of security against allowed adversaries for substitution of the workalike
cryptographic tool Y for the tool Z. This theorem requires generic correct translators from Y to Z and
vice versa. To ensure security, we prove an indistinguishability condition is preserved through execution
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Figure 2: To prove security, we prove that Γ cannot distinguish between scenarios: (a) the normal operation of
the protocol using Y; (b) translations of handles to and from the honest players, where Υ utilizes Z.

of the generic replacement-friendly protocol P(·). We denote as P(Z) (resp. P(Y)) the protocol using
the tool Z (resp. Y).

Theorem 4. Let Y be a workalike of Z with respect to ideal tool I. Let P(Z) be a replacement-friendly
protocol. Let the translator T ′ (T ′ = {T ′

H1
, . . . , T ′

H|H|
}, T ′

i : Range(Yi) → Range(Zi) (i ∈ H)) correctly
translate handles from Y to Z. Let the translator T (T = {TH1 , . . . , TH|H|}, Ti : Range(Zi)→ Range(Yi)
(i ∈ H)) correctly translate handles from Z to Y.
Any allowed adversary Γ utilizing P(Y) cannot distinguish between a scenario in which he interacts with
Υ utilizing P(Y), and a scenario in which he interacts (through T and T ′) with Υ utilizing P(Z), as
shown in Figure 2.

Proof. We prove that any allowed adversary Γ cannot distinguish between scenarios (a) and (b) of Figure 2
by proving that the view of Γ is indistinguishable between these scenarios. To formalize the views of Γ
and Υ, we give a general functional decomposition of a generic protocol in Figure 3. The operation of
any protocol can be represented as a call-and-response style generic protocol between the adversaries Γ
and honest players Υ. In this generic protocol, Γ is given the opportunity to send some data o0 to Υ,
who may respond with o′1; Γ then responds with o1. The protocol continues sequentially from there until
the honest player makes the last move o′z−1 or the malicious player makes the last move oz. Note that
any real protocol may use any combination of possible communication between groups of malicious and
honest adversaries; we have given a completely generic representation of any protocol P for purposes of
our proof.

In this generic protocol, we can break the computation performed by Γ in the steps 0, . . . , z into
a series of functions Γ0, . . . ,Γz. Each of these functions at step ` takes as input the last state of Γ,
denoted s`−1, and the last move of Υ, denoted o′`−1, and outputs new state s` and output o` to be sent
to Υ. We may also perform a similar decomposition on the operation of Υ. We describe a full functional
decomposition, for both scenarios (a) and (b) in Figure 3.

Thus, given this representation, to prove that no Γ can distinguish scenarios (a) and (b), we prove that
the view of Γ is indistinguishable between the two scenarios. All indistinguishability in this proof is given
the previous execution visible to Γ. Formally, we must prove that: {sa

0, . . . , s
a
z , o

a
0, . . . , o

a
z , o

′
0
a, . . . , o′z−1

a} ∼
{sb

0, . . . , s
b
z, o

b
0, . . . , o

b
z, T (o′0

b), . . . , T (o′z−1
b)}.

We prove this through use of induction on the steps of the protocol. In fact, we prove a more
restrictive statement. Let ν(·) output the set of handles included in its argument, and ν̄(·) output all non-
handle data in its argument. We prove that {sa

0, . . . , s
a
z , o

a
0, . . . , o

a
z , o

′
0
a, . . . , o′z−1

a, ν̄(s′0
a), . . . , ν̄(s′z−1

a)} ∼
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Protocol Operation:

Γ o0 →
← o′0 Υ

Γ o1 →
...

← o′z−1 Υ
Γ oz →

Scenario (a):
Malicious Players Honest Players (Y)
oa
0 , sa

0 ← Γ0(initial inputs)
o′

a
0 , s′

a
0 ← ΥY

0 (initial inputs, oa
0)

oa
1 , sa

1 ← Γ1(sa
0 , o′

a
0)

...
o′

a
z−1, s

′a
z−1 ← ΥY

z−1(s
′a
z−2, o

a
z−1)

oa
z , sa

z ← Γz(sa
z−1, o

′a
z−1)

Scenario (b):
Malicious Players Honest Players (Z)
oc
0, s

c
0 ← Γ0(initial inputs)

o′
c
0, s

′c
0 ← ΥZ

0 (initial inputs, T ′(oc
0))

oc
1, s

c
1 ← Γ1(sc

0, T (o′c0))
...

o′
c
z−1, s

′c
z−1 ← ΥZ

z−1(s
′c
z−2, T

′(oc
z−1))

oc
z, s

c
z ← Γz(sc

z−1, T (o′cz−1))

Figure 3: Let the Protocol Operation show the operation of a generic protocol. The operation of malicious players
Γ in such a protocol may be represented as a series of functions Γ0, . . . ,Γz. We may thus represent the operation
of the malicious and honest players in scenarios (a) and (b) of Figure 2. We call this a functional representation of
a protocol.

Crypto
Tool, 

interface i
save/substitute
handles for refs

substitute refs.
for handles

i,refs. to handles,
non-handle data

non-handle results,
ref. to handle results

Figure 4: In our proof, Υ utilizes subroutines A or B to perform all calculation on handles. We illustrate their
operation here: they take an interface identifier i, and arguments to that interface (but using handle references
instead of handles); the subroutine then substitutes handles for handle references applies the cryptographic tool’s
ith interface, and erases all intermediate results; the subroutine then saves any new handles created (substituting
handle references) and returns the results.
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Tool Y
in (a)

Tool Z
in (a)

Tool Z
in (b)

Figure 5: When examining the operation of Υ, we may note that the results of using tool Y in scenario (a) is
indistinguishable from using tool Z in scenario (a). We may then observe that the result of using tool Z in scenario
(a) is indistinguishable from using tool Z in scenario (b). We may thus conclude that using tool Y in scenario (a)
gives indistinguishable results from using tool Z in scenario (b).

{sb
0, . . . , s

b
z, o

b
0, . . . , o

b
z, T (o′0

b), . . . , T (o′z−1
b), ν̄(s′0

b), . . . , ν̄(s′z−1
b)} and {ν(s′0

a), . . . , ν(s′z−1
a), ν(oa

0), . . . , ν(oa
z), ν(o′0

a), . . . , ν(o′z−1
a)}∼ν

{ν(s′0
b), . . . , ν(s′z−1

b), ν(ob
0), . . . , ν(ob

z), T (ν(o′0
b)), . . . , T (ν(o′z−1

b))}.
Our inductive base case is that the execution of the protocols P(Y) (in scenario (a)) and P(Z) (in

scenario (b)) is indistinguishable. To prove this, we may simply observe that (by Lemma 2 and the
definitions of the variables in our functional decomposition of Figure 3):

initial inputs ∼ initial inputs
Γ0(initial inputs) ∼ Γ0(initial inputs)

{sa
0, o

a
0} ∼ {sb

0, o
b
0}

ν(oa
0) ∼ν ν(ob

0)

In the remainder of the proof, we make the inductive assumption that all execution up to the current
step ` has been indistinguishable between scenarios (a) and (b). In order to apply the strong inductive
principle, we must now prove that the next step of execution is also indistinguishable between scenarios
(a) and (b). To do this, we divide the proof into two possible cases: one in which Υ last sent data to Γ,
and one in which Γ last sent data to Υ.

Honest mover. We now prove that {sa
0, . . . , s

a
` , o

a
0, . . . , o

a
` , o

′
0
a, . . . , o′`

a, ν̄(s′0
a), . . . , ν̄(s′`

a)} ∼
{sb

0, . . . , s
b
`, o

b
0, . . . , o

b
`, T (o′0

b), . . . , T (o′`
b), ν̄(s′0

b), . . . , ν̄(s′`
b)} and

{ν(s′0
a), . . . , ν(s′`

a), ν(oa
0), . . . , ν(oa

` ), ν(o′0
a), . . . , ν(o′`

a)}∼ν

{ν(s′0
b), . . . , ν(s′`

b), ν(ob
0), . . . , ν(ob

`), T (ν(o′0
b)), . . . , T (ν(o′`

b))} → {sa
`+1, o

a
`+1} ∼ {sb

`+1, o
b
`+1} and

ν(oa
`+1)∼νν(ob

`+1)
We may prove the truth of this statement as follows (by Lemma 2, the definition of correct translation,

and the definitions of the variables in our functional decomposition of Figure 3):

{sa
` , o

′
`
a} ∼ {sb

`, T (o′`
b)}

Γ`+1(sa
` , o

′
`
a) ∼ Γ`+1(sb

`, T (o′`
b))

{sa
`+1, o

a
`+1} ∼ {sb

`+1, o
b
`+1}

ν(oa
`+1) ∼ν ν(ob

`+1)

Malicious mover. We now prove that {sa
0, . . . , s

a
` , o

a
0, . . . , o

a
` , o

′
0
a, . . . , o′`−1

a, ν̄(s′0
a), . . . , ν̄(s′`−1

a)} ∼
{sb

0, . . . , s
b
`, o

b
0, . . . , o

b
`, T (o′0

b), . . . , T (o′`−1
b), ν̄(s′0

b), . . . , ν̄(s′`−1
b)} and {ν(s′0

a), . . . , ν(s′`−1
a), ν(oa

0), . . . , ν(oa
` ), ν(o′0

a), . . . , ν(o′`−1
a)}∼ν

{ν(s′0
b), . . . , ν(s′`−1

b), ν(ob
0), . . . , ν(ob

`), T (ν(o′0
b)), . . . , T (ν(o′`−1

b))} → {ν̄(s′`
a), o′`

a} ∼ {ν̄(s′`
b), o′`

b} and
{ν(o′`

a), ν(s′`
a)}∼ν{ν(T (o′`

b)), ν(s′`
a)}
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In order to complete this section of the inductive proof, we must examine the class of functions that
Υ may compute as part of a replacement-friendly protocol. The most important properties, at this
juncture, are that: (1) P(·) requires no player to compute a function of any handle; and (2) P(Z) (resp.,
P(Y)) requires no non-black-box usage of Z (resp., Y). We may observe from this that Υ does not
require the handles themselves in order to calculate Υ`, if it can indirectly specify the handles needed for
cryptographic computation.

We will therefore, without loss of generality, represent the execution of the function Υ` as a function f
(identical in scenarios (a) and (b)) computed upon non-handle data, with access to the cryptographic tool
via a subroutine. In order to specify a handle for cryptographic computation, Υ` will utilize a reference
to the handle, denoted R(·). These references are simply non-handle data utilized to specify a handle,
such as numbers assigned in the order the handles were calculated.

Instead of allowing f to calculate black-box cryptographic results directly, we give it access to an
subroutine, run internally by Υ. All workings of this subroutine, including the intermediate results of
black-box computation, are erased by Υ after use. Formally, we define two subroutines, A and B, used
by Υ to perform all computation on handles from Y and Z, respectively. These subroutines take as input
an interface identifier i (1 ≤ i ≤ F ), all non-handle data to be used as input to the interface Yi, and a
list of handle references for all handles to be used as input to the cryptographic tool. The subroutine the
applies the tool, removes and saves any handles in the result (substituting a reference to the handle), and
returns the result to f . We illustrate the operation of these subroutines in Figure 4.

A request from f for cryptographic tool computation by A (or B) is denoted: the interface identifier
ia (or ib) (1 ≤ i ≤ F ), non-handle arguments xa (or xb), and a list of references to the handle arguments
La (or Lb). By the inductive assumption:

{sa
` , o

a
`} ∼ {sb

`, o
b
`}

ν̄(oa
` ) ∼ ν̄(ob

`)

{ν(oa
` ), ν(s′`−1

a)} ∼ν {ν(ob
`), ν(s′`−1

b)}

Thus, by Lemma 2 for the first such call, note that the requests made of A (in scenario (a)) and B (in
scenario (b)) are indistinguishable:

{ν̄(s′`−1
a), ν̄(o`

a),R({ν(s′`−1
a), ν(o`

a)})} ∼ {ν̄(s′`−1
b), ν̄(o`

b),R({ν(s′`−1
b), ν(o`

b)})}

f(ν̄(s′`−1
a), ν̄(o`

a),R{{ν(s′`−1
a), ν(o`

a)})) ∼ f(ν̄(s′`−1
b), ν̄(o`

b),R({ν(s′`−1
b), ν(o`

b)}))
{ia, xa, La} ∼ {ib, xb, Lb}

We may also note that, by Lemma 2, the set of handles specified by the handle references La or Lb,
denoted {ν(s′`−1

a), ν(o`
a)}La or {ν(s′`−1

b), ν(o`
b)}Lb , are handleset-indistinguishable:

La ∼ Lb

{ν(s′`−1
a), ν(o`

a)} ∼ν {ν(s′`−1
b), ν(o`

b)}

{ν(s′`−1
a), ν(o`

a)}La ∼ν {ν(s′`−1
b), ν(o`

b)}Lb

Thus, by the correctness of translation and Lemma 2, all non-handle data computed in response to
the request by f is indistinguishable, and the handles computed are handleset-indistinguishable: (we
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illustrate the transitivity property exploited in this section of the proof in Figure 5)

ν̄(Yia(xa, {ν(s′`−1
a), ν(o`

a)}La)) ∼ ν̄(Zia(xa, T ′({ν(s′`−1
a), ν(o`

a)}La)))
ν(Yia(xa, {ν(s′`−1

a), ν(o`
a)}La)) ∼ν ν(Zia(xa, T ′({ν(s′`−1

a), ν(o`
a)}La)))

ν̄(Zia(xa, T ′({ν(s′`−1
a), ν(o`

a)}La))) ∼ ν̄(Zib({ν(s′`−1
b), ν(xb, o`

b)}Lb))

ν(Zia(xa, T ′({ν(s′`−1
a), ν(o`

a)}La))) ∼ν ν(Zib({ν(s′`−1
b), ν(xb, o`

b)}Lb))

ν̄(Yia(xa, {ν(s′`−1
a), ν(o`

a)}La)) ∼ ν̄(Zib({ν(s′`−1
b), ν(xb, o`

b)}Lb))

ν(Yia(xa, {ν(s′`−1
a), ν(o`

a)}La)) ∼ν ν(Zib({ν(s′`−1
b), ν(xb, o`

b)}Lb))

We may now observe that, for the first call made to A or B, A ∼ B; the output of the subroutines is
indistinguishable. Similarly, by following the proof given above for the first call (but using Lemma 3 to
examine the subsequent operation of f), we may observe that for all calls made to A or B by f , the data
returned to f is indistinguishable: A ∼ B. Thus, by Lemma 3, we give the concise proof of our inductive
statement:

ν̄(s′`−1
a
, oa

` ) ∼ ν̄(s′`−1
b
, T ′(ob

`))

ν(s′`−1
a
, oa

` ) ∼ν ν(s′`−1
b
, T ′(ob

`))

ν̄(fA(s′`−1
a
, oa

` )) ∼ ν̄(fB(s′`−1
b
, T ′(ob

`)))

ν̄(Υ`(s′`−1
a
, oa

` )) ∼ ν̄(Υ`(s′`−1
b
, T ′(ob

`)))

ν(Υ`(s′`−1
a
, oa

` )) ∼ν ν(Υ`(s′`−1
b
, T ′(ob

`)))

ν(Υ`(s′`−1
a
, oa

` )) ∼ T (ν(Υ`(s′`−1
b
, T ′(ob

`))))

Corollary 5. Let Y be a workalike of Z with respect to ideal tool I. Let P(Z) be a replacement-friendly
protocol. Let the translator T ′ (T ′ = {T ′

H1
, . . . , T ′

H|H|
}, T ′

i : Range(Yi) → Range(Zi) (i ∈ H)) correctly
translate handles from Y to Z. Let the translator T (T = {TH1 , . . . , TH|H|}, Ti : Range(Zi)→ Range(Yi)
(i ∈ H)) correctly translate handles from Z to Y.
If P(Z) and P(I) are cryptographically secure against any allowed adversary Γ, then P(Y) is also cryp-
tographically secure against Γ.

6 Instantiating Translators

In the general proof of security (Theorem 4), we utilize translators to compare the security of P(Y)
and P(Z). While these translators are never utilized during execution of the protocol, we still examine
the conditions under which they can be constructed. To do so, we discuss several generic assumptions
that may be utilized to construct translators between workalike cryptographic tools, as well as specific
examples that point to the possibility of useful constructions in the standard model.

6.1 Generic Assumptions

The following assumptions can be applied to any pair of cryptographic tools. The plausibility of each
assumption will vary, however, for each translator construction.
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Non-constructive assumptions. One method for constructing a translator is to simply stipulate that
one exists, without actually constructing it. For example, we may construct a non-uniform circuit that
utilizes ‘hints’ for handle translation, without specifying any method for computation of these hints. In
some scenarios, this may be an acceptable assumption, as a translator of this type does not seem to allow
any sort of new attack on a protocol in a non-composed setting. We intend to examine this question in
future work.

Non-black-box assumptions. Let us assume that the translator can extract the parameters to the
cryptographic tool utilized to create each handle, or determine the handle is invalid. With this data, the
translator may utilize the other cryptographic tool to create a translated handle. One method for this
data extraction is through a non-black-box assumption. In such a scenario, the translator observes Γ
calculating the output of a cryptographic tool; from these observations, the translator can determine the
parameters to the tool. While these assumptions are controversial, as they are not generally efficiently
falsifiable, they have been studied in several contexts [8, 15, 16, 3, 2]. Note that Υ may cooperate with
the translator, making a non-black-box assumption necessary only for Y.

Oracle assumptions. Similar to the use of non-black-box assumptions, use of oracles can allow a
translator to extract the parameters used to create a handle. Unlike non-black-box assumptions, however,
oracle assumptions may never be realized in the real world. As there exist protocols secure in an oracle
model that may never be executed securely in the real word (e.g., [7]), a certain level of caution must be
utilized when allowing oracle-based translation.

6.2 Toward Real-World Translators

We have identified several cryptographic tools in previous work that act as translators, or for which
translators can be constructed under standard assumptions. We stress that these tools only allow for a
restricted form of translation in the sense that we translate from one secret key for the tool to a different
secret key. Nevertheless, they show that some kind of translation facility is realizable without extra
assumptions.

The most intuitive of these tools is proxy re-encryption, in which a semi-trusted proxy translates
ciphertexts under one key to ciphertexts under an unrelated key [4, 9]. Importantly, the proxy does not
learn the plaintext being translated during this process. While a re-encryption proxy is semi-trusted,
unlike a translator, it points to the possibility of translators that function in the standard model and
do not extract private information. Similarly, proxy re-signatures convert signatures under one key to
signatures under an unrelated key. Ateniese and Hohenberger give several constructions that translate
signatures, and list translation as an intriguing open problem. For example, one might map, RSA to
Schnorr signatures [1].

Pedersen commitments are an example of a tool where a nearly-correct translator can be constructed
under standard assumptions [28]. Given the parameters q (prime), g, g1, g2 ← Z∗

q , recall that the compu-
tation of a commitment to x with opening data r is defined as

r ← Zq

Comg,g1(x) = gxgr
1

Note that the commitment opening DComg,g1(x, r) returns true.
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We may observe the following:

∃y g1 = gy
2

Comg,g1(x) = gxgr
1

= gx (gy
2)r

= Comg,g2(x)

However, DComg,g2(x, r) returns false, while DComg,g2(x, yr) returns true. We must mark thus the
opening data as a handle, and construct a translator function for it. Let T ′ be a translator for
handles of (Comg,g1 ,DComg,g1) to handles of (Comg,g2 ,DComg,g2), and T a translator for handles of
(Comg,g2 ,DComg,g2) to handles of (Comg,g1 ,DComg,g1). We can easily construct these translator func-
tions under standard assumptions, given knowledge of y.

T ′(r) = yr

T (r′) =
r′

y

The functions T ′, T form a correct translation between the handles of the cryptographic tools Comg,g1

and Comg,g2 . While this translation does not allow us to appreciably reduce the complexity of a protocol,
the example also points to the possibility of finding translators for more interesting pairs of cryptographic
tools, while utilizing only standard cryptographic assumptions.

7 How to Apply Secure Substitution

In this section, we describe the general procedure for applying secure substitution to a replacement-
friendly protocol, before applying our techniques to a specific example.

7.1 An Outline of Application

For convenience in applying our techniques, we describe the process of proving the security of substitution.
Let a protocol using the tool Z be denoted P(Z). A general process for proving the security of P(Y) is
as follows:

1. Verify that P(Z) is a replacement-friendly protocol secure against all allowed adversaries.
2. Identify a suitable ideal tool I, available to all players like an oracle, such that:

• Z is simulation-secure with respect to I against all allowed adversaries.
• Y@I for all players.
• P(I) is secure against all allowed adversaries.

This is generally a simple process; the difficult parts of this proof have almost always been completed
in the proof of security for P(Z). To prove security of P(Z), one generally proves the security of
P(I), then proves that Z is simulation-secure with respect to I. Thus, in most cases, all that remains
is to prove that Y@I.

3. Construct translators T and T ′ that translate handles of Y to handles of Z and vice versa. We
provide an outline of several methods of translator construction in Section 6.

4. Cite Theorem 4 to prove cryptographic security of P(Y) against all allowed adversaries. All nec-
essary preconditions for this proof of standard cryptographic security have been fulfilled in steps
1-3.
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CRS TPk
Υ(Z) Γ(Z)

c1=TComTPk(b1)
�

c2=TComTPk(b2)
-

c2=b2,r2 -

c1=b1,r1�

Result b1 ⊕ b2

(a) Simulatable with CRS

CRS TPk
Υ(Y) Γ(Y)

c1=Com(b1)
�

c2=Com(b2)
-

c2=b2,r2 -

c1=b1,r1�

Result b1 ⊕ b2

(b) Efficient with CRS

Υ(Y) Γ(Y)
c1=Com(b1)

�

c2=Com(b2)
-

c2=b2,r2 -

c1=b1,r1�

Result b1 ⊕ b2

(c) Efficient without CRS

Figure 6: Three variants of a coin-flipping protocol. In (a), a trapdoor commitment scheme which uses a common
reference string (CRS) allows a simulator to replace Alice and manipulate the result of the protocol. The protocol
in (b) more efficiently duplicates this functionality for all real-world players; it does not preserve the powers of the
simulator. In protocol (c), we have removed the need for the common reference string needed for protocol (a).

7.2 An example: Coin-Flipping

Coin-flipping protocols are utilized as sub-protocols in a wide variety of applications [17, 19, 20, 26, 14].
In many of these uses, a simulator must dictate the outcome of the coin flip in order to prove the
protocol’s security [11, 14]. We apply our techniques for secure substitution to increase the efficiency of
a simulatable coin flipping sub-protocol (illustrated in Figure 6(a)), while retaining the provable security
of the full protocol.

Our protocol follows that of Liskov et al. [21] for “mutually independent announcements” that uses
non-trapdoor commitments. In the protocol, Alice first commits to a bit b1, followed by Bob committing
to a bit b2. Then Bob reveals his bit and randomness r2 required to check that the bit matches his
previous commitment. Finally, Alice does the same with randomness r1. Liskov et al. show that the
output bits are guaranteed to be non-correlated when the commitments are opened; as a result, the final
result is a fair coin flip if both parties open. We could further simplify the protocol by having Bob simply
send b2 directly, but we keep this presentation to show the symmetry in Alice and Bob’s algorithms.

We use the trapdoor property of the commitment, however, to obtain a ‘cheating’ interface for the
simulator. By using the “fake” commitment interface of the trapdoor commitment, the simulator can
obtain a “fake” commitment for Alice. Then, at reveal time, the simulator can use the trapdoor to obtain
randomness for Alice’s opening stage that will allow the simulator to force the final output to any desired
value.

We stress that our example is intended only to be illustrative of how our techniques are applied, and
that we do not give concrete constructions for the translators utilized in this section. To construct, for
example, a univerally-composable coin-flipping protocol adds many complications not considered in this
paper [31].

The trapdoor property of the commitment scheme utilized in the coin-flipping protocol of Figure 6(a)
allows the simulator to control the result of the coin flip. (We describe the ideal version of a trapdoor
commitment tool in Figure 7.) Unfortunately, in practice, trapdoor commitments require more computa-
tion or stronger assumptions than standard commitment schemes, as well as use of a common reference
string (CRS) available to all players. Pedersen trapdoor commitments require a modular exponentiation
and rely on a number-theoretic assumption. Feige and Shamir showed that trapdoor commitments can
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Tool state: a table T = {0, 1}k × {0, 1}k.
ICom(m): Pick rm ← {0, 1}k. Insert (rm,m) into T . Return rm.
IDCom(r,m): If there exists (r, m) ∈ T , then return true else return false.
IFakeCom(): Pick rf ← {0, 1}k. Insert (rf , fake) into T . Return rf .
IFakeDCom(r,m): If there exists (r, fake) ∈ T , then insert (r, m) into T and return r, else return ⊥.

Figure 7: The ideal tool I for a trapdoor commitment scheme.

be constructed from one-way functions, but with high overhead [10]. In contrast, the commitment scheme
of Naor requires only the computation of a PRG [25]. In practice this might be instantiated using AES
in counter mode, yielding an extremely efficient construction.

We address the inefficiency of trapdoor commitment schemes by applying our translator framework
to provide secure substitution. Recall that in the “real world” the secret trapdoor for the commitment
scheme is unknown to all players; no party can access the ‘cheating’ interfaces TFakeCom or TFakeDCom,
though these interfaces are needed for the proof of security of the protocol using coin-flipping. Therefore,
we can use our techniques to substitute an efficient standard commitment scheme, which we denote Y,
for the expensive trapdoor commitment Z to obtain a new coin-flipping sub-protocol P(Y). We illustrate
these protocols in Figure 6(a) and (b).

To prove that a protocol utilizing coin-flipping as a sub-protocol remains secure when utilizing Y in
the place of Z, we need only prove that the coin-flipping sub-protocol P(Y) is secure. Observe that
we may consider the any player executing the large protocol as an adversary; if this adversary cannot
distinguish between the results of utilizing P(Y) in place of P(Z) in the real world, then the large protocol
must remain secure.

To complete this proof of secure substitution, we isolate an ideal tool I and verify that our preconditions
for secure substitution hold with respect to this ideal tool. Then we utilize our proof of secure subsitution
to prove the security of P(Y). As P(Y) does not utilize the common reference string (as illustrated in
Figure 6(b)), we may securely remove it; we prove the security of this final modification (as illustrated
in Figure 6(c)) in Appendix B.1.

7.3 Security of Substitution in Coin-Flipping

We define the ideal tool I for a trapdoor commitment scheme as a cryptographic tool with the interfaces
(ICom, IDCom, IFakeCom, IFakeDCom) defined as in Figure 7. Consider a protocol P(I) defined as P(Z),
except that all parties, including the simulator in the proof of security, utilize oracle access to I instead
of the tool Z. Note that only the simulator may access all interfaces; the players in the protocol may
only utilize ICom and IDCom. We claim that the protocol P(I) also satisfies the properties of a mutually
independent announcement, as defined by Liskov et al. [21], i.e. the commitments of both players are
guaranteed not to be correlated with each other at the time of announcing the decommitments. For
completeness, we include the relevant definitions in the Appendix.

By the definition of a secure trapdoor commitment scheme, we see that such a scheme is simulation-
secure with respect to the ideal tool I. Also, a standard commitment scheme with appropriate domain
and range is indifferentiable from the ideal tool I:

Lemma 6. Let Y be the commitment scheme (Com,DCom). Let Uk denote the uniform distribution over
{0, 1}k. Suppose ∀x∈{0,1}∗Com(x) ∼ Uk. Suppose the domain of DCom is {0, 1}k. Then Y @ I.

We can then conclude the following:
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Lemma 7. Y = (Com,DCom) is a workalike of Z = (TCGen,TCom,TDCom,TFakeCom,TFakeDCom)
with respect to the ideal tool I.

Finally, we observe that P(Z) is a replacement-friendly protocol, because the honest player utilizes
the commitment scheme as a black-box tool. We therefore conclude that if we can translate handles
of Z to Y (and vice versa), we may apply Theorem 5 to prove the security of P(Y) in our translator
framework.

Theorem 8. Let the translator T ′ correctly translate handles of Y to handles of Z. Let the translator T
correctly translate handles of Z to handles of Y. The protocol P(Y) is simulatable and provides mutually
independent announcements against all allowed adversaries.

Proof. In this section, we have proved that all conditions for applying our technique of secure substitution
apply: P(Z) is a replacement-friendly protocol that is simulatable and provides mutually independent
announcements against all allowed adversaries, Z is simulation-secure with respect to I, P(I) is secure
against all allowed adversaries, and Y@I for all players. Thus, by application of Theorem 5, P(Y) is also
simulatable and provides mutually indpendent announcements against all allowed adversaries.

8 Conclusion and Future Work

In this paper we have presented a new model for proving security of a protocol against malicious parties.
We have introduced new proof techniques to this area; we believe they will be applicable to a wide range
of cryptographic problems. We then applied this proof technique to a coin-flipping protocol, greatly
increasing its efficiency while removing the need for a common reference string. Our work opens up
several avenues of exploration that we believe will be fruitful:

• In this work, we require several characteristics of a replacement-friendly protocol. We believe that
these requirements are overly restrictive, and that a much larger class of protocols can be proved
secure using the techniques we introduce in this paper. Determining a minimal set of requirements,
or a less-restrictive set of requirements, remains an open problem.
• When we prove security of the protocol P(Y) in Theorem 5, we concentrate only on the standard

definition of security against malicious players (i.e., [12]). There is nothing in this proof, however,
that depends on the definition of security; it simply proves indistinguishability of the state of Γ. This
implies that different notions of security, as well as other interesting properties, may be conserved
under this proof. Finding useful properties preserved between P(Z) and P(Y) by our proof of
security remains an open problem.
• In this paper, we have outlined the characteristics required by a translator. It remains an open

problem, however, to find useful pairs of workalike tools (and useful protocols in which they may
be utilized) for which translators may be constructed under plausible cryptographic assumptions.
In addition, we have not sufficiently explored the security implications of utilizing non-constructive
translator assumptions.
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A Notation

• a, b - scenarios used in the general proof of security (see Figure 3)
• [x] - the set {1, . . . , n}
• Dom(f) - domain of function f
• Range(f) - range of function f
• neg(·) - a negligible function
• x ∼ y - x is distributed indistinguishably from y, given some specified information
•

(
S
x

)
- all subsets of S of size x

• Y - an efficient cryptographic tool, a workalike of Z
• Z - an expensive cryptographic tool. Y is a workalike
• I - an ideal functionality for both Y and Z
• P(Z) - a replacement-friendly protocol
• T ′ - translator from handles of Y to handles of Z
• T - translator from handles of Z to handles of Y
• z - an input to a cryptographic tool
• D1, D2 - probability distributions over some domain
• h - a handle
• h1∼νh2 - h1 is indistinguishably translation-indistinguishable from h2 if the handles were con-

structed from indistinguishable data
• ν(·) - the handle portion of the argument data
• ν̄(·) - the non-handle portion of the argument data
• R(·) - non-handle references to the handles contained in the argument data, utilized in the proof of

Theorem 5
• CD(h) - the data used to create handle h
• A - a generic oracle, indistinguishable from B
• B - a generic oracle, indistinguishable from A
• Γ - a malicious PPT adversary
• Υ - honest players
• X - a non-black-box extractor
• G - simulator party from Figure 1
• D - distinguisher for indifferentiability
• S - sanitizer for indifferentiability
• f - generic function
• x, x1, . . . , x` - generic function parameters
• y, y1, . . . , y` - generic function parameters, distributed computationally indistinguishably from

x, x1, . . . , x`

• w1, . . . , w` - generic function parameters, wj ∈ {xj , yj} (1 ≤ j ≤ `)
• r - random function parameter
• ` - number of function parameters to a generic function
• j - index over function parameters or sets
• i - index over interfaces
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• ` - index over protocol steps
• F - number of interfaces of ideal tool I
• H - the set of interfaces that produce handles for some pair of workalikes Y, Z, with respect to

ideal tool I; H ⊆ F
• L - a set of indicies into another set
• z - number of steps in functional representation of protocol
• o0, oz, o′0, . . . , o

′
z−1 - output of honest and malicious players in functional representation of protocol

• s0, . . . , sz, s′0, . . . , s
′
z−1 - internal state of honest and malicious players in functional representation

of protocol
• (Com,DCom) - a standard commitment scheme
• (TCGen,TCom,TDCom,TFakeCom,TFakeDCom) - a trapdoor commitment scheme
• (TPk,TSk) - public and secret key for trapdoor commitment scheme
• (ICom, IDCom, IFakeCom, IFakeDCom) - an ideal commitment scheme
• IT - an ideal cryptographic tool for the ideal commitment scheme
• < P, V > (x) - interaction of prover and verifier on input x in interactive proof
• (Pa, Va) - prover and verifier in 3-round honest-verifier zero-knowledge protocol
• (Pb, Vb) - prover and verifier in Damgard modification of 3-round honest-verifier zero-knowledge

protocol
• (Pc, Vc) - prover and verifier in Damgard modified protocol with trapdoor commitment replaced by

standard commitment
• (Pd, Vd) - prover and verifier in Damgard modified protocol with trapdoor commitment replaced by

standard commitment and common reference string removed

B Proofs

In this section, we give the proofs for several lemmas not included in the body of the paper.

Lemma 6. Let Y be the commitment scheme (Com,DCom). Let Uk denote the uniform distribution over
{0, 1}k. Suppose ∀x,Com(x) ∼ Uk. Suppose the domain of DCom is {0, 1}k. Then Y @ I.

Proof. Note that the adversary has access only to the (ICom, IDCom) interfaces of I. We set the required
algorithm S to be the identity function. Now we claim that no adversary can distinguish interactions
with Y from interactions with I. To do so, notice that by construction, for all x, ICom(x) = Uk. By our
hypothesis, for all x, Com(x) ∼ Uk. Therefore, for all x, Com(x) ∼ ICom(x). To finish the proof, we note
that by the correctness of DCom, for all strings c ∈ {0, 1}k, the behavior of DCom(c) is the same as the
behavior of ICom(c).

B.1 Removing the CRS

Let the protocol P’(Y) be identical to P(Y), except that it functions in a model without a common
reference string. As Y, unlike Z, does not utilize the CRS, we may now prove that P’(Y) is secure.

Theorem 9. Let the translator T ′ correctly translate handles of Y to handles of Z. Let the translator
T correctly translate handles of Z to handles of Y. Then the protocol P ′(Y) is simulatable and provides
mutually independent announcements against all allowed adversaries.
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Proof. Proof sketch. The main idea is that P’(Y) differs from P(Y) only in the presence of the common
reference string. This common reference string is generated independently of other parts of the view of
an adversary against P(Y). Furthermore, we know that P(Y) has the desired security properties. We
can then transform an adversary ΓP ′(Y) against P’(Y) that breaks one of the security properties into
an adversary ΓP(Y) against P(Y) by randomly generating a CRS and providing it to ΓP ′(Y). Thus, the
adversary ΓP ′(Y) can compromise the security of P’(Y) with only negligible probability; P’(Y) is thus
secure.

C Mutually Independent Announcements

For completeness, we now give the definition due to Liskov et al. [21] of a mutually independent an-
nouncement protocol. As noted above, this is two-party protocol that ensures non-correlation of secret
committed values provided that both parties open their commitments. Liskov et al. consider several
other notions, but we choose to focus only on mutually independent announcements.

First, however, we fix some notation. A protocol (A,B) is a pair of probabilistic polynomial time
interactive Turing Machines A and B. We further divide into a pair of machines (AC , BC) that make
up the commit stage of the protocol, and a pair (AR, BR) that make up the reveal stage of the protocol.
On each protocol run, both machines receive a security parameter 1k. The machine A further receives
a private input a and a private random tape rA, while the machine B receives a private input b and a
private random tape rB.

Then, during a protocol run, in the commit stage the machines AC and BC interact and each outputs
either “accept” or “reject.” Then in the reveal stage, the machines AR and BR interact (we assume state
is kept between stages). At the end of the reveal stage, the machine AR outputs the value β, which may
be a string or the special symbol “reject”; this value β is the value revealed to A by B. The machine BR

outputs the value α, which is the value revealed to B by A; this may also be a string or “reject.” For
convenience, we impose a consistency condition: if AC outputs “reject” then AR must output “reject”
and similarly for BC and BR.

Finally, we denote the output of AR from the interaction between A and B on inputs (1k, a, b, ra, rb)
by OUTA(1k, a, b, rA, rB). We denote the output of BR by OUTB(1k, a, b, rA, rB). When necessary, we
refer to the outputs of AC and BC by making the appropriate substitution of subscripts. When an input
is replaced by the symbol ·, we mean the probability space induced when that input is picked uniformly
at random.

Definition 10. A protocol (A,B) is a mutually independent announcement protocol if it satisfies the
following properties:

• A-completeness. If A and B are honest, then A can commit and reveal her value successfully with
only a negligible probability of failure. That is, for all inputs a and b and neg(k) negligible, it holds
that Pr[OUTB(1k, a, b, ·, ·) 6= a] = 1− neg(k).

• A-soundness. If A is honest, then for all cheating players B′, the cheating player B′ cannot influence
which value is committed to by A. More formally, for all inputs a, b, and for all random tapes
tC , tR, rA, rB, we have that if OUTAC

(1k, a, rA, tC) = “accept” and OUTBR
(1k, b, rB, tC ◦ tR) = α,

then α = a.

• Computational A-hiding. No cheating adversary B′ interacting only with AC can break the GM-
security of A’s commitments. That is, for all bit-strings a0 and a1 and neg(k) negligible, we have
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that Pr[v ← {0, 1}; z ← OUTB′(av, (a0, a1), ·, ·) : z = v] < 1
2 + neg(k).

• Perfect A-binding. If the commit stage BC of B outputs “accept,” then the reveal stage BR will
accept only one revealed value. This value depends only on the transcript of the reveal stage, not on
the private input of B.

• A-non-correlation at opening. The main idea of this definition is that for any polynomial-time
relation R, any cheating adversary B′ that engages in a protocol with A and then opens his committed
value as β has no more chance of achieving R(a, β) than a simulator that does not engage in any
interaction with A at all. We explicitly require that R(a, “reject”) = 0, so that forcing A to reject
does not allow B′ to do better than a simulator simply by rejecting always. We call polynomial-time
relations that meet this requirement allowable; note that the identity relation is allowable, so we do
not allow B′ to copy A’s commitment string.

More formally then, we require for all B′, there exist a simulator S such that for all allowable R and
all efficiently sampleable distributions D and neg(k) negligible, the following holds: Pr[a← D;β ←
OUTA(1k, a,−, ·, ·) : R(a, β) = 1] < Pr[a← D;β ← S(1k, D) : R(a, β) = 1] + neg(k)

• The protocol must also satisfy the versions of these properties defined analogously with respect to
the party B.
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