
Pairing Calculation on Supersingular Genus 2 Curves

Colm Ó hÉigeartaigh and Michael Scott

School of Computing, Dublin City University.
Ballymun, Dublin 9, Ireland.

{coheigeartaigh,mike }@computing.dcu.ie

Abstract. In this paper we describe how to efficiently implement pairing calcu-
lation on supersingular genus 2 curves over prime fields. We find that, contrary
to the results reported in [8], pairing calculation on supersingular genus 2 curves
over prime fields is efficient and a viable candidate for practical implementation.
We also show how to eliminate divisions in an efficient manner when computing
the Tate pairing, and how this algorithm is useful for curves of genus greater than
one.

Keywords: Tate pairing, hyperelliptic curves, pairing computation.

1 Introduction

Following a seminal paper by Boneh and Franklin [5] in2001, there has been an explo-
sion of interest in the exploitation of the properties of bilinear pairings on elliptic curves
for cryptographic protocols. Naturally, there has also been much focus on the efficient
implementation of pairings. Victor Miller gave the first algorithm [17] for computing
a bilinear pairing, specifically the Weil pairing. However in practice the Tate pairing is
used, as it is computationally less expensive.

In an important paper, Barreto et. al. [2] gave criteria under which divisions in
Miller’s algorithm can be eliminated entirely. According to [20], this reduces the cal-
culation time by almost50%. Other papers which describe important improvements to
computing the Tate pairing on elliptic curves are [11] and [3]. Numerous papers de-
scribe the actual implementational details, for example see [21].

Although the vast majority of work has been done using elliptic curves, an increas-
ing amount of attention is being focused on computing pairings using hyperelliptic
curves of genus 2. Choie and Lee [8] investigate the implementation of the Tate pairing
on supersingular genus 2 curves over prime fields, with embedding degree4. Barreto
et. al. [1] describe an efficient implementation of the Tate pairing using the eta pairing
construct on supersingular genus 2 curves, over fields of characteristic 2. The signifi-
cance of this paper is that it not only shows that pairing computation is comparable on
genus 2 curves to elliptic curves, but that it can in fact be even faster.

In this paper, we first of all give an improvement to Miller’s algorithm for calculat-
ing the Tate pairing when working over quadratic extension fields, for arbitrary curves.
This algorithm is more efficient than the GHS algorithm [11], but not as efficient as

the denominator elimination technique of Barreto et. al [2] in the general case. How-
ever, we show that the new algorithm is more efficient than the denominator elimination
algorithm for special cases using curves of genus greater than one.

We then report the first efficient implementation of the Tate pairing on genus 2
curves over prime fields. We detail various enhancements to Miller’s algorithm that are
in the literature, explaining how to apply them to the genus 2 case using prime fields
for the first time. Finally, we give more efficient formulae for computing the functions
required in Miller’s algorithm for the genus 2 case than that reported in [8], the saving
being a squaring and a multiplication in each iteration.

This paper is organised as follows. Section 2 gives an overview of the Tate pairing
and Miller’s Algorithm. Section 3 details an algorithm for computing the Tate pairing,
assuming an even embedding degree, without using the two-variable approach of [11].
Section 4 shows how to apply various techniques from the literature for speeding up
pairing computation to the specific genus 2 case over prime fields. Section 5 gives
experimental results, and we draw our conclusions in section 6.

Section 3 was partly presented in a short paper on the ePrint archive (see [13]), and
was presented in the rump session at the ECC 2006 conference.

2 The Tate Pairing

We say that a subgroup of the divisor class group of a hyperelliptic curveC defined
over a finite fieldFp has embedding degreek, if the orderr of the subgroup divides
pk − 1, but does not dividepi− 1 for all 0 < i < k. The Tate pairing maps the discrete
logarithm in the subgroup, to the discrete logarithm in the finite fieldFpk , which is the
basis of the Frey-R̈uck attack [10].

Using the notation above, letr be a prime number which is coprime top. Let G =
JC(Fpk) be the Jacobian Variety ofC overFpk and letG[r] be ther-torsion group and
G/rG the quotient group. Then the Tate pairing is defined as;

〈·, ·〉r : G[r]×G/rG → F∗pk/(F∗pk)r

We follow Galbraith et. al. [11] in defining the first argument over the smaller field
Fp instead ofFpk . This greatly improves computational efficiency, as all the coefficients
of the functions in Miller’s Algorithm will also be defined over the fieldFp. To allow
for an efficient implementation of the extension field arithmetic, we also assume that
the embedding degreek is even. The Tate pairing as detailed above is only defined up
to r-th powers. As a unique value is required for cryptographic purposes, we define the
reducedpairing;

e(D1, D2) = 〈D1, D2〉(p
k−1)/r

r .

The Tate pairing is both well-defined and non-degenerate. However its most im-
portant property isbilinearity. We define bilinearity for any integern as,〈[n]P,Q〉 ≡
〈P, [n]Q〉 ≡ 〈P,Q〉n (modulorth powers). The Tate pairing can be computed using an
algorithm due to Miller [17], as described in Algorithm 1 for an arbitrary hyperelliptic
curve. This algorithm is basically the usual ”double and add” algorithm combined with
an evaluation of certain intermediate functions (see chapter 9 of [4] for more details).

2

In Algorithm 1 the divisions are postponed until the end of the loop, to avoid per-
forming a division each loop iteration. To do this we use two variables in the loop, to
effectively replace a division with a squaring each loop iteration, which is considerably
less expensive to compute. This is an idea given by Galbraith et. al. [11]. However as
we shall see in the next section, when the embedding degree is even, this optimisation
is unnecessary.

After the main loop, the final exponentiation of(pk − 1)/r is performed to obtain a
unique value overFpk . It is this unique value which can then be used for cryptographic
purposes. It is well known that if arithmetic inFpk is implemented using quadratic
extensions, an element in this field can be exponentiated to the power ofpk/2 using
a simple conjugation. Conjugation is denoted byx = (a − bi) for an elementx =
(a + bi) ∈ Fpk .

Taking advantage of this, it is standard to efficiently compute the final exponentia-
tion asf = f/f followed byf = f (pk/2+1)/φk(p) andf = f (φk(p)/r), whereφd(x) is
thedth cyclotomic polynomial. The finalf = f (φk(p)/r) exponentiation can be com-
puted efficiently using Lucas Sequences [23, 24].

Algorithm 1 Miller’s algorithm to compute the Tate pairing
INPUT: P ∈ JC(Fp), Q ∈ JC(Fpk) whereP has orderr.
OUTPUT: e(P, Q)
1: fc ← 1, fd ← 1
2: T ← P
3: for i← blog2(r)c − 1 downto 0 do
4: . ComputeT ′ = [2]T − div(c/d)
5: T ← [2]T
6: fc ← f2

c · c(Q)
7: fd ← f2

d · d(Q)
8: if ri = 1 then
9: . ComputeT ′ = T + P − div(c/d)

10: T ← T + P
11: fc ← fc · c(Q)
12: fd ← fd · d(Q)
13: end if
14: end for
15: f ← fc/fd

16: f ← f/f

17: f ← f (pk/2+1)/φk(p)

18: f ← f (φk(p)/r)

19: return f

An important improvement on Miller’s Algorithm as detailed above was given
in [2]. If the x-coordinate of the image pointQ is defined over a subfield ofFpk , then
the denominator, or thefd variable in algorithm 1, will also be defined over a subfield
of Fpk . This is because the denominator function relies solely on the evaluation at the
x-coordinate ofQ each iteration. As any value defined over a subfield ofFpk will be

3

destroyed by the final exponentiation of(pk/2 − 1), the fd variable can be removed
from algorithm 2 completely.

Some distortion maps naturally map thex-coordinate of a point to a subfield of
Fpk . When this is not the case, a simple transformation of the point as detailed in the
next section will have the desired effect. However, as will be seen, this approach is
problematic for curves of genus greater than one.

3 Eliminating divisions in Miller’s Algorithm

In this section, we show how the denominator elimination technique is problematic
with curves of genus greater than one, assuming that a suitable distortion map does not
exist. We then present a more efficient algorithm for computing the Tate pairing over
quadratic extension fields than is given in algorithm 1, which overcomes the problems
associated with denominator elimination in certain contexts.

As seen in the previous section, another approach is required to get the denomi-
nator elimination technique to work, when no distortion map exists that maps thex-
coordinate of a point from the ground field to a subfield of the fieldFpk . Instead we
must apply an idea given in a paper by Barreto et. al. [3]. To apply denominator elim-
ination in this case, generate a distorted pointQ over Fpk and get a trace-zero point

with: R = Q − Qpk/2
. The pointR will have anx-coordinate defined over a subfield,

and so the denominator elimination technique can be used.
However, this technique is problematic when the genus is greater than one, as it

increases the weight of the image divisor. For example, if we are evaluating at a de-
generate divisor in the genus 2 setting, that consists of a single point on the support,
then the above mapping will result in a more general divisor with two points. This will
not happen using elliptic curves, as the divisor class group consists solely of divisors
with a single point on the support. So in the genus 2 setting, instead of evaluating the
functions in Miller’s algorithm at a single point, they must be evaluated at two points
to use the denominator elimination technique. This drastically reduces the efficiency of
denominator elimination.

We now present an alternative way to proceed, by introducing a new variant of
Miller’s algorithm, assuming that field arithmetic is implemented using quadratic ex-
tension fields. In recent papers based on implementing the Weil Pairing [14, 22], the
output of the pairing is raised to(pk/2 − 1). When this is done, it is possible to replace
inversions with conjugations, effectively replacing an expensive operation with one that
is free to compute. The following simple lemma is presented as a means of explanation;

Lemma 1. Letx = (a + ib) ∈ Fpk , wherea, b ∈ Fpk/2 . Then the following holds;

(
1
x

)pk/2−1 = (x)pk/2−1

Proof. (1
x)pk/2−1 = 1

(a+ib)pk/2−1
= (a+ib)

(a−ib) . Similarly, xpk/2−1 = (a + ib)
pk/2−1

=

(a− ib)pk/2−1 = (a+ib)
(a−ib) .

4

Our observation on how to apply this is a simple one. When computing the Tate
pairing, the final exponentiation to obtain a uniquerth root of unity includes this value.
As seen in the previous section, the final exponentiation can be written as(pk− 1)/r =
(pk/2 − 1)(pk/2 + 1)/r. So as the output of the loop is implicitly raised to the power
of (pk/2 − 1), there is no need of the GHS strategy of using two variables to eliminate
divisions, as a division in the main loop can be replaced by a multiplication and a
conjugation. The new algorithm is described in Algorithm 2.

As the variablefd is eliminated from the pairing calculation, the saving is a squaring
overFpk each iteration of the loop compared to the GHS approach. This is still not as
efficient as performing denominator elimination, which would save a multiplication
over this again each iteration. However, when computing the Tate pairing with curves
of genus greater than one, and using a distortion map that does not allow denominator
elimination directly, algorithm 2 is a slightly more efficient algorithm.

The reason for this is that the denominator elimination algorithm consists of two
evaluations at the line function each iteration (or one evaluation of a more complicated
form if Mumford representation (see Cantor [6]) is used). Algorithm 2 consists of one
evaluation at the line function, and one evaluation at the vertical line function, which
requires less computation to evaluate than the line function. Algorithm 2 is also less
restrictive than using denominator elimination, as it places no conditions on the form of
the image divisor, unlike denominator elimination.

Table 1 illustrates the complexity of the different algorithms in more detail.

Algorithm 2 An improved algorithm for computing the Tate Pairing
INPUT: P ∈ JC(Fp), Q ∈ JC(Fpk) whereP has orderr.
OUTPUT: 〈P, Q〉r
1: f ← 1
2: T ← P
3: for i← blog2(r)c − 1 downto 0 do
4: . ComputeT ′ = [2]T − div(c/d)
5: T ← [2]T
6: f ← f2 · c(Q) · d(Q)
7: if ri = 1 then
8: . ComputeT ′ = T + P − div(c/d)
9: T ← T + P

10: f ← f · c(Q) · d(Q)
11: end if
12: end for
13: f ← f/f

14: f ← f (pk/2+1)/φk(p)

15: f ← f (φk(p)/r)

16: return f

5

4 Implementing the pairing

In this section, various techniques that allow for an efficient implementation of the Tate
pairing using supersingular genus 2 curves over prime fields are described. Timings are
given in section 5.

Table 1.Complexity of function calculation in Miller’s Algorithm

case description complexity
1 Original Approach 1I, 2M, 1S
2 Two-variable Approach 2M, 2S
3 Algorithm 2 2M, 1S
4 Denominator Elimination 1M, 1S

4.1 The Curve

Following [7] and [8], we implement the Tate pairing on the supersingular genus 2
curve;

y2 = x5 + a, a ∈ F∗p, p ≡ 2, 3 mod 5

In practice, we takea = 1 for convenience. The other supersingular genus 2 curve de-
fined over a prime field with a low embedding degree that was given in [7], is unsuitable
for cryptography as it is isogenous to a product of elliptic curves [12].

The order of the Jacobian of this curve is#JC(Fp) = p2 +1, and hence the embed-
ding degree of the curve is4. Thedistortion map that maps points on the curve defined
over the fieldFp to the larger fieldFp4 is given as;

φ(x, y) = (ζ5x, y)

whereζ5 is a primitive5th root of unity defined overFp4 . Note thatζ5 maps thex-
coordinate toFp4 , and hence does not give denominator elimination directly. Choie and
Lee give explicit formulae [8] for calculating the functions required for the genus 2 Tate
pairing, which are derived from Tanja Lange’s explicit genus 2 formulae [15].

Doubling a divisor is by far the most important part of the group arithmetic for
pairings, under the assumption that we are using a prime-order subgroup which has an
order of low Hamming Weight. In [8] the given cost of doubling a general divisor (in
the overwhelmingly common case) and extracting the functions required for Miller’s
algorithm is1 inversion,23 multiplications and5 squarings overFp. However, we save
a squaring and a multiplication over this. In table 5 of the appendix, we give the for-
mulae for doubling a general divisor as per [8], with these optimisations built in (the
multiplication is saved in step 8). Note our assumption that, as the characteristic of the
field is odd, theh polynomial is zero, where theh polynomial comes from the definition
of the curve asy2 + h(x)y = f(x).

6

We suggest that the formulae in table 5 are optimal, as they have the same compu-
tational cost as simply doubling a divisor as given in [15], ie. calculating the functions
required for Miller’s algorithm is for free.

4.2 Prime-order subgroup

We use the conventions suggested by Lenstra and Verheul [16] and used by Scott [22],
to define the levels of security required. We define them as(160/1024), (192/2048)
and(224/4096), where the first number in each term is the group size, and the second
number is the size of the fieldkF . As our embedding degree isk = 4, we are required
to work with finite fieldsFp, wherep ∼ 256, 512 and1024-bits.

When considering what group size to use there are two options, either to use a
prime-order subgroup or the full order of the Jacobian. The latter has the advantage that
the order of the Jacobian often has a small Hamming weight, and the final exponen-
tiation can be far less expensive. However, if we choose the order of the prime-order
subgroup such that it has a low Hamming weight, and if it is far smaller than the order
of the Jacobian, then the former method is better.

Rather than using a random prime-order subgroup, we choose a special prime of
low Hamming Weight known as aSolinas prime [25]. These primes require only two
additions in Miller’s algorithm. As Duursma and Lee noted [9], the final addition can
be skipped assuming that denominator elimination is applied. See section 5 for further
details on the parameters used.

4.3 Finite Field Representation

The best way to represent elements of the fieldFp4 is to represent them as a quadratic
extension ofFp2 , which is in turn a quadratic extension ofFp. If the primep is congru-
ent to1 mod 4, then the irreducible polynomialx2 + 2 can be used to represent the
quadratic extension fieldFp2 .

So, assuming thati = −2 is a quadratic non-residue, we represent elements of the
field Fp2 as(a + b

√
i), wherea, b ∈ Fp, and we represent elements of the fieldFp4 as

(c + d 4
√

i), wherec, d ∈ Fp2 . As our curve is defined over a primep ≡ 2, 3 mod 5,
we will use a primep ≡ 5 mod 8 to take advantage of our finite field representation.
An advantage of using a prime of this form is the resulting simple formula for modular
square roots, as required for generating points on the curve.

4.4 Using Degenerate Divisors

Duursma and Lee [9] introduced the notion of working with a degenerate divisor for
pairing applications with curves of genus greater than1. In the genus 2 context, we will
define a degenerate divisor as a divisor with only one point in its support, rather than the
more general two. There is no advantage to be gained in using a degenerate divisor as
the first argument to Miller’s algorithm, as with the first doubling the divisor will turn
into a more general divisor with two points on the support, unless one takes advantage
of an automorphism that keeps the divisor in its special shape (eg. see [1]).

7

However, as we are evaluating the second divisor at a function, we achieve a speedup
by evaluating at a degenerate divisor (ie. a single point). Evaluating at a more general
divisor requires evaluation at two points, or else using the divisor’s Mumford represen-
tation.

4.5 Evaluating functions

Each iteration of the loop requires the evaluation of the functionfc = y1−((x1ζ5)3s1+
(x1ζ5)2l2 +(x1ζ5)l1 + l0), wheres1, l0, l1, l2 are from Cantor’s algorithm,ζ5 is a prim-
itive 5th root of unity defined overFp4 andx1 is thex-coordinate of the point at which
we are evaluating. As(x1ζ5)3, (x1ζ5)2 and(x1ζ5) can be precomputed, this leaves 12
multiplications overFp to be computed each time the function is evaluated. However, a
multiplication may be saved by examining relations between various powerings of the
5th root of unity.

If ζn is a primitiventh root of unity in a fieldK, then its conjugates over the prime
subfieldK0 of K are also primitiventh roots of unity [18]. Also,ζa

n is a primitiventh

root of unity if and only ifa andn are coprime. In our case, the third power of a5th

primitive root of unity overFp4 is related to the second power by conjugation:ζ3
5 = ζ2

5

So instead of evaluating an equation of the forma + bζ5 + cζ2
5 + dζ3

5 , let the real
component ofζ2

5 ber and the imaginary componenti (both of which are defined over
Fp2), and we can computea + bζ5 + ((c + d) ∗ r, (c − d) ∗ i). Computingb = x1l1,
c = x2

1l2 andd = x3
1s1 takes3 multiplications in total (assuming the precomputation

of the powers ofx1), thus the total multiplication count in evaluating the function is11
multiplications, a saving of one multiplication.

4.6 Using Denominator Elimination

As detailed in section 3, it is more efficient to use Algorithm 2 than denominator elim-
ination, assuming a distortion map that does not give denominator elimination directly,
and that the image divisor is a degenerate divisor. However, it is possible to reduce
the performance gap by using customized multiplication routines, as detailed in this
section.

Given a pointQ = (x, y) ∈ Fp4 , the transformationR = Q − Qp2
gives a divisor

R suitable for use with denominator elimination. Writing this asR = (x, y) + (x,−y)
avoids using Cantor’s algorithm overFp4 and keeps the two points on the support of the
divisor separate. A benefit of this approach is that the function calculated in the main
doubling loop,fc = y1 − ((x1ζ5)3s1 + (x1ζ5)2l2 + (x1ζ5)l1 − l0), can be reused for
the calculation of the required function for the second point.

Let the functionfc = ((a, b), (c, d)) for the first point(x, y). Then, for the second
point(x,−y), the functionfc = ((a−y−y, b), (c, d)). So the calculation of the second
function is effectively for free, as it simply involves two subtractions and a conjugation
using the function generated by the first point. However, we still have to multiply the
two functions together.

In each iteration of the loop, the functionfc is evaluated twice, ie. at the two points.
As seen above, the two functions are closely related. It is possible to exploit these

8

relations to speed-up the calculation. So instead of calculating each function separately
and multiplying them separately by the overall accumulating variable, we multiply the
functionsfc1 andfc2 together first, before multiplying the result with the accumulating
function.

Normally, multiplying two general elements inFp4 can be done with only9 multi-
plications overFp, using the Karatsuba technique. For the functionsfc1 = (a, ib) and
fc2 = (c,−ib), wherea, b, c ∈ Fp2 , thefc1fc2 multiplication is unrolled as;

(a, ib)(c,−ib) = ac + 2b2 + b(c− a)

Note that(c− a) ∈ Fp, rather thanFp2 . We can also take advantage of the form of the
ac multiplication, where;

ac = (e, if)(g, if) = eg − 2f2 + if(e + g)

So the total cost is2M + S for theac multiplication, plus2M + 2M for the overall
multiplication, which results in6M +S instead of the general9M . When this technique
is used, the performance of denominator elimination and algorithm 2 is roughly the
same, for the genus 2 case under consideration. However, we suggest that algorithm 2
is a more natural algorithm to use in practice, as it is simpler to implement than the type
of customised multiplication routines given in this section.

4.7 Lucas Exponentiation

As detailed in algorithm 1, the final exponentiation is split into two parts. The first part
can be computed with a conjugation and division, and then Lucas exponentiation, as
detailed in the paper by Scott and Barreto [23], is used for the(p2+1)/r exponentiation.

4.8 Coding Issues

We use MIRACL [19] to provide the cryptographic primitives needed. In particular, we
make use of special assembly-language routines that MIRACL provides, which can be
used when working with moduli with a fixed number of bits. All of the implementation
was written in C/C++ and timed on a Pentium IV, 2.8 Ghz.

5 Experimental Results

In this section, we give experimental results for computing the Tate pairing using the
techniques detailed in this paper for the supersingular genus 2 curve defined overFp, as
defined in section 4.1. We will use the three different levels of security defined earlier
for testing, namely(160/1024), (192/2048) and(224/4096).

The only condition on our prime-subgroup orderr is that it be congruent to1
mod 4. r, and notr2, must divide the order of the Jacobian,p2+1. The primep must be
congruent to5 mod 8, and also congruent to2 or 3 mod 5, for reasons stated earlier.
The parameters used are detailed in appendix A.

9

Table 2 details the timings for the implementation of the Tate pairing for the
(160/1024) security level, table 3 is for the(192/2048) case, and table 4 is for the
(224/4096) case. There are four cases in each table. The first is evaluating using a sin-
gle point. The second case is evaluating at the more general two points, which is the
case when the divisor is the sum of two rational points. The third case uses Mumford
representation, instead of keeping the points separate. This case has the advantage that
it also handles the case when the points on the divisor are defined over a larger field.
All these cases use algorithm 2. The fourth cases are timings that are reported in [22]
using elliptic cases, with the equivalent level of security.

In the Choie and Lee paper [8], they give implementations of the pairing that range
between500 and600 ms on a Pentium 4 2 Ghz for a(160/1024) bit security level.
However, as seen in table 2, our timings far outperform this. These timings indicate that
genus 2 pairings over prime fields are valid candidates for practical implementations.
However, as can be seen from the tables, the elliptic cases are roughly twice as fast as
the genus 2 timings. This is roughly what we would expect, due to the more complicated
group law in the genus 2 case.

Table 2.Running times -(256/1024) security level

case description pairing time (ms)
1 evaluating at degenerate divisor 16
2 evaluating at general divisor 20.7
3 evaluating using Mumford rep 20.45
4 elliptic curve timing [22] 8.9

Table 3.Running times -(192/2048) security level

case description pairing time (ms)
1 evaluating at degenerate divisor 49
2 evaluating at general divisor 62
3 evaluating using Mumford rep 61
4 elliptic curve timing [22] 20.5

6 Conclusion

We have introduced a new variant of Miller’s algorithm over quadratic extension fields
by showing how divisions can always be eliminated. This algorithm is not as fast as

10

Table 4.Running times -(224/4096) security level

case description pairing time (ms)
1 evaluating at degenerate divisor 183
2 evaluating at general divisor 232
3 evaluating using Mumford rep 229
4 evaluating at degenerate divisor (denom elim) 175

using denominator elimination in the general case, but can be faster when working with
curves of genus greater than one and distortion maps of a certain form.

We have implemented the Tate pairing on supersingular genus 2 curves over prime
fields, detailing various optimisations, and showing how genus 2 curves over prime
fields are valid candidates for pairing implementation.

7 Acknowledgements

We would like to thank Steven Galbraith and Caroline Sheedy for comments on this
paper, and Noel McCullagh for pointing out an error in a previous draft.

References

1. P. S. L. M. Barreto, S. Galbraith, C.Ó hÉigeartaigh, and M. Scott. Pairing computation on
supersingular abelian varieties. Cryptology ePrint Archive, Report 2004/375, 2004. Avail-
able fromhttp://eprint.iacr.org/2004/375 .

2. P. S. L. M. Barreto, H. Y. Kim, B. Lynn, and M. Scott. Efficient algorithms for pairing-based
cryptosystems. InAdvances in Cryptology – Crypto’2002, volume 2442 ofLecture Notes in
Computer Science, pages 354–368. Springer-Verlag, 2002.

3. P. S. L. M. Barreto, B. Lynn, and M. Scott. On the selection of pairing-friendly groups. In
Selected Areas in Cryptography – SAC’2003, volume 3006 ofLecture Notes in Computer
Science, pages 17–25. Springer-Verlag, 2003.

4. I. F. Blake, G. Seroussi, and N. P. Smart.Advances in elliptic curve cryptography. Cam-
bridge, 2005.

5. D. Boneh and M. Franklin. Identity-based encryption from the Weil pairing.SIAM Journal
of Computing, 32(3):586–615, 2003.

6. D. G. Cantor. Computing in the jacobian of a hyperelliptic curve.Math. Comp., 48(177):95–
101, 1987.

7. Y. Choie, E. Jeong, and E. Lee. Supersingular hyperelliptic curves of genus 2 over finite
fields. Cryptology ePrint Archive, Report 2002/032, 2002.http://eprint.iacr.
org/2002/032 .

8. Y. Choie and E. Lee. Implementation of tate pairing on hyperelliptic curves of genus 2.
In Information Security and Cryptology - ICISC 2003, volume 2971 ofLecture Notes in
Computer Science, pages 97–111. Springer-Verlag, 2004.

9. I. Duursma and H.-S. Lee. Tate pairing implementation for hyperelliptic curvesy2 = xp −
x + d. In Advances in Cryptology – Asiacrypt’2003, volume 2894 ofLecture Notes in
Computer Science, pages 111–123. Springer-Verlag, 2003.

11

10. G. Frey and H.-G. R̈uck. A remark concerningm-divisibility and the discrete logarithm
problem in the divisor class group of curves.Math. Comp., 52:865–874, 1994.

11. S. Galbraith, K. Harrison, and D. Soldera. Implementing the Tate pairing. InAlgorithmic
Number Theory – ANTS V, volume 2369 ofLecture Notes in Computer Science, pages 324–
337. Springer-Verlag, 2002.

12. S. D. Galbraith. Personal communication, 2005.
13. C.Ó hÉigeartaigh. Speeding up pairing computation, 2005.http://eprint.iacr.

org/2005/293 .
14. Neal Koblitz and Alfred Menezes. Pairing-based cryptography at high security levels. Cryp-

tology ePrint Archive, Report 2005/076, 2005.http://eprint.iacr.org/ .
15. T. Lange. Formulae for arithmetic on genus 2 hyperelliptic curves. InApplicable Alge-

bra in Engineering, Communication and Computing, Online publication. Springer-Verlag,
2004.http://www.springerlink.com/openurl.asp?genre=article&id=
doi:10.1007/s0%0200-004-0154-8 .

16. A. K. Lenstra and E. R. Verheul. Selecting cryptographic key sizes.Journal of Cryptology,
14(4):255–293, 2001.

17. V. S. Miller. Short programs for functions on curves. Unpublished manuscript, 1986.http:
//crypto.stanford.edu/miller/miller.pdf .

18. P. Ribenboim.Classical Theory of Algebraic Numbers. Springer-Verlag, 2001.
19. M. Scott. Miracl (multiprecision integer and rational arithmetic c/c++ library). Available

from http://indigo.ie/˜mscott/ .
20. M. Scott. Faster identity based encryption.Electronics Letters, 40(14):861, 2004.
21. M. Scott. Computing the tate pairing. InTopics in Cryptology - CT-RSA 2005, volume 3376

of Lecture Notes in Computer Science, pages 293–304. Springer-Verlag, 2005.
22. M. Scott. Scaling security in pairing-based protocols. Cryptology ePrint Archive, Report

2005/139, 2005.http://eprint.iacr.org/ .
23. M. Scott and P. Barreto. Compressed pairings. InAdvances in Cryptology – Crypto’ 2004,

volume 3152 ofLecture Notes in Computer Science, pages 140–156. Springer-Verlag, 2004.
Also available fromhttp://eprint.iacr.org/2004/032/ .

24. P. Smith and C. Skinner. A public-key cryptosystesm and a digital signature system based
on the lucas function analogue to discrete logarithms. InAdvances in Cryptology – Asi-
acrypt’1994, Lecture Notes in Computer Science, pages 357–364. Springer-Verlag, 1995.

25. J. Solinas. Generalized mersenne numbers. Technical Report CORR 99-39, Univer-
sity of Waterloo, 1999. Available fromhttp://www.cacr.math.uwaterloo.ca/
techreports/1999/corr99-39.pdf .

A Curve Parameters

Here we give the subgroup and prime field parameters that were used for the different
security levels;

160/1024 security level:

r = 2159 + 217 + 1
p = 63324531451181148200275171731203125718855624493339065310878459331886717065893

192/2048 security level:

12

r = 2191 + 22 + 1
p = 89284651228083788426899503684145515482879124715345625109737480602016411174689
53363599067244027908076232256944699958875614648564192943960634648749730387013

224/4096 security level:

r = 2223 + 213 + 1
p = 15572288413151584018732355885170470078314521100905501866179797721305996406660
92216915248013505987797528664804210783695074492197917546846433974048512730952
93761493705843127836052457915167872334351960770506641541305942224943595487772
602516676106413200532581353024750990143717859982402535061826066311255496083453

B Doubling Formulae

13

Table 5.Formulae for doubling when degu1 = 2, gcd(u1, 2v1) = 1)

Input D1 = [u1, v1] whereu1 = x2 + u11x + u10, v1 = v11x + v10, f = x5 + a
OutputD3 = [u3, v3], l(x) such thatD3 + div((y − l)/u3) = 2D1.
Step Expression Cost

1 Computeṽ1 ≡ (2v1)(mod u1) = ˜v11x + ˜v10

˜v11 = 2v11, ˜v10 = 2v10

2 Computer = res(u1, ṽ1) 2S + 3M
w0 = v2

11, w1 = u2
11, w2 = 4w0, w3 = u11 ˜v11,

r = u10w2 + ˜v10(˜v10 − w3)

3 Compute almost inverse ofinv′ = r(2v1)
−1(mod u1)

inv′1 = − ˜v11, inv′0 = ˜v10 − w3

4 Computek′ =
F−v2

1
u1

(mod u1) = k′1x + k′0 1M

w3 = w1, w4 = 2u10, k
′
1 = 2w1 + w3 − w4

k′0 = u11(2w4 − w3)− w0

5 Computes′ = k′inv′(mod u1) 5M
w0 = k′0inv′0, w1 = k′1inv′1
s′1 = ˜v10k

′
1 − ˜v11k

′
0, s

′
0 = w0 − u10w1

If s′1 = 0 then goto step6′.
6 Computes = s1x + s0 ands−1

1 1I, 1S, 5M
w1 = (rs′1)

−1, w2 = s′1w1, w3 = r2w1,
s1 = s′1w2, s0 = s′0w2

7 Computel(x) = su1 + v1 = s1x
3 + l2x

2 + l1x + l0 3M
l2 = s1u11 + s0, l0 = s0u10 + v10

l1 = (s1 + s0)(u11 + u10)− s1u11 − s0u10 + v11

8 Computeu′ = monic(F−l2

u2
1

) = x2 + u31x + u30 1S + 2M

u30 = w3(2v11 + w3(2u11 + s2
0)

u31 = 2s0 − w3

9 Computev3 = −l(mod u3) = v31x + v30 3M
w1 = u31, u31 = w3u31, w3 = l2 − w1, w3 = u30w2

v31 = (u31 + u30)(w2 + s1)− w3 − w1 − l1, v30 = w3 − l0
1I, 4S, 22M

6’ Computel(x) = s0u1 + v1 1I + 3M
inv = 1/r, s0 = s′0inv, l1 = s0u11 + v11, l0 = s0u10 + v10

7’ Computeu3 = monic(F−l2

u2
1

) = x + u30 1S

u30 = −2u11 − s2
0

8’ Computev3 = −l(mod u3) = v30 2M
v30 = u30(l1 − u30s0)− l0

1I, 3S, 14M

14

