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Abstract

We present a certificate-based encryption scheme which is fully se-
cure in the standard model. Our scheme owes a lot to the identity-based
scheme of Waters [16]. Although there are generic constructions from IBE
to CBE, they are not practical in the standard model. The technique used
to prove the security of our scheme stem from the paper of Boneh and
Katz [9], in which they give a generic construction for a fully secure PKE
scheme from an IBE scheme achieving a weak notion of security. Our
security proof provides a good example of how this technique also applies
in a more general setting.
Part of our security proof can be generalized to provide a generic construc-
tion for CBE, whenever another encryption scheme which is very similar
to a 2-level tree encryption scheme without key escrow in the first level,
exists. The strategy of our proof is the correct one to obtain full security
in other settings also closely related to identity-based cryptography.
Finally, we point out a flaw in the security proof of one of the existing
generic constructions going from IBE to CBE.

Keywords: identity-based encryption, certificate-based encryption, selective-
ID security, CCA security.

1 Introduction

In traditional public key cryptography the authenticity of the public keys must
be certified by a trusted third party, the Certification Authority or CA. The
infrastructure required to support traditional PKC is the main difficulty in its
deployment. Many of the problems of PKI (public key infrastructure) come
from the management of certificates, which should include storage, revocation
and distribution.
In 1984, Shamir proposed the concept of Identity-Based Encryption (IBE),
which sought to reduce the requirements on the infrastructure by using a well-
known aspect of the client’s identity as its public key. With this approach,
certification becomes implicit, that is, the sender of a message does not need
to check whether the client is certified or not. Instead, prior to decryption, the
receiver must identify himself to a trusted authority, who will send him his pri-
vate key. The first practical IBE scheme, was proposed by Boneh and Franklin
in 2001, using bilinear maps on elliptic curves and proven secure in the random
oracle model.
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A different approach to the problem is the concept of Certificate-Based Encryp-
tion, proposed by Gentry in 2003 ([14]). In this model, certificates are a part
of the secret key, so certification is also implicit. Further, it has two important
advantages over IBE: first, there is no key escrow, because certificates are only a
part of the secret key, while the other is owned by the user alone and second, the
revocation of users is easy in certificate-based encryption, since time is divided
into different periods and to revoke a user simply means not sending him the
certificate for the next period.
The original scheme of Gentry relied heavily on the original IBE scheme of Boneh
and Franklin and then on the Fujisaki Okamoto transform to obtain full secu-
rity in the random oracle model. Recently [16] presented a new identity-based
scheme which is secure against chosen-plaintext attacks in the standard model,
improving significantly on previous results [8]. It is natural to try building a
CBE scheme on this new scheme, in a parallel way to the construction of Gentry
from the scheme of Boneh and Franklin. However, the available techniques for
a proof in the standard model are entirely different than in the random oracle
model and this alone is enough to motivate this paper.
Previous results ([11],[17]) for constructing a certificate-based encryption scheme
in a generic way from an identity-based scheme exist, but are not comparable
in efficiency to our scheme.

1.1 Our results

We present a certificate-based encryption scheme which is fully secure in the
standard model and which is much more efficient than any of the previous
schemes in the standard model (coming from the generic constructions of [11],[17]).
Further we point out a security flaw in the proof of [17].
The proof is divided in three steps. The first two show how to construct a
new encryption scheme called ExtendedCBE from the scheme of Waters. This
model satisfies the minimal properties which are necessary to apply a variant
of the techniques proposed by [9] to obtain a fully secure CBE scheme. Further
we point out that whenever a scheme satisfying these minimal properties exist,
a fully secure CBE also exists, that is, that the last step of our proof can be
generalized.

1.2 Organization

In section 2, we focus on the concept of certificate-based encryption and we give
an overview of the existing generic constructions. In section 3, we sketch the
security proof and give a brief account of the results that we are going to use. In
section 3 we give the necessary formal definitions. In section 4, 5 and 6 we build
our scheme and conclude that the last step of the proof can be generalized.
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2 Certificate-based Encryption

As we noted in the introduction, the interest of certificate-based encryption
compared to its predecessor, identity-based encryption, is that it overcomes two
of its principal drawbacks, the inherence of the key escrow and the impossibility
of revoking the users. Accordingly, the security model considers two types of
adversaries, an uncertified client and a dishonest certifier.
The attack of an uncertified client models a client who is not certified for a
given period but tries to obtain some kind of information about the encrypted
messages for that period. The client may have been certified before that period
or may be certified after that period, so in such an attack, the adversary is al-
lowed to make certification queries and choose the challenge period adaptively.
Further, the client is also allowed to choose his pair of public key -secret key
adaptively and to make decryption queries for any period, including the chal-
lenge one.
The attack of the certifier was weakened by Al-Riyami and Paterson, since the
original definition of Gentry was inconsistent with the concrete scheme he pre-
sented. The original model also made some assumptions about the underlying
IBE scheme which were unnecessarily restrictive.
In a certifier’s attack, the adversary is allowed to make decryption queries for
any period of its choice (in the original definition, the certifier could choose a
part of its parameters adaptively, but not all the IBE schemes allow that). As
Al-Riyami and Paterson argue, it is hard to think of an scenario where this
security requirement is necessary and the weakened version suffices to model
any realistic attack.
In this section we give the formal definitions for CBE, as well as an overview of
the generic constructions of [17],[11].

2.1 Definitions

A certificate-based encryption scheme is a tuple of six algorithms (Setup, SetKeyPair,
Certify, Consolidate, Enc,Dec), where:

-SetupCBE is a probabilistic algorithm taking as input a security parame-
ter k. It returns SKCA (the certifier’s master-key) and public parameters
params that include the description of a string space Λ. Usually this
algorithm is run by the CA.
-SetKeyPair is a probabilistic algorithm that takes params as input. It
returns a pair public key - private key (PK, SK).
-Certify is a (possibly randomized) algorithm that takes as input 〈SKCA,
params, periodi, userinfo PK〉. It returns Cert′periodi, which is sent
to the client. Here periodi is a string identifying a time period, while
userinfo ∈ Λ contains other information needed to certify the client such
as the client’s identifying information, and PK is a public key.
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-Consolidate is a (possibly randomized) certificate consolidation al-
gorithm taking as input 〈params, periodi, userinfo, Cert′periodi〉 and
optionally Certperiodi−1.
-Enc is a probabilistic algorithm taking as inputs
〈params,M, periodi, userinfo, PK, 〉 where M ∈ M is a message.
It returns a ciphertext C ∈ C for message M or ⊥ if PK is not a valid
public key.
-Dec is a deterministic algorithm taking as inputs
〈params,Certperiodi, SK,C〉 as input in time period periodi. It re-
turns either a message M ∈ M of the special symbol ⊥ indicating a
decryption failure.
Naturally, we require that if C is the result of applying algorithm
Enc with input 〈periodi, userinfo, params, PK, M〉 and (PK, SK)
is a valid key-pair, then M is the result of applying algorithm
Dec on input 〈params,Certperiodi, SK, C〉, where Certperiodi is
the output of the Certify and Consolidate algorithms on input
〈SKCA, params, periodi, userinfo, PK〉. We write:
DecCertperiodi,SK(Encperiodi,userinfo,PK(M)) = M .
We note that a concrete CBE scheme need not involve certificate con-
solidation. In this situation, algorithm Consolidate will simply output
Certperiodi = Cert′periodi

The security model for CBE is defined with the help of two games:

CBE Game 1. Attack of an uncertified client
Setup The challenger runs Setup, gives params to the adversary AI and
keeps SKCA to itself.
Phase 1 The adversary issues queries q1, . . . , qm where each qj is one of:
a) Certification query 〈periodi, userinfo, PK, SK〉. To answer
this query, the challenger checks that userinfo ∈ Λ and that
〈PK, SK〉 is a valid key-pair. If so, it runs Certify on input
〈SKCA, params, periodi, userinfo, PK〉 and returns Cert′i; else it re-
turns ⊥.
b) Decryption query 〈periodi, userinfo, PK, SK,C〉, the challenger
checks that 〈PK, SK〉 is a valid key-pair. If so, it generates
Certperiodi by using algorithms Certify and Consolidate with inputs
〈SKCA, params, periodi, userinfo, PK〉 and outputs DecCertperiodi,SK(C),
else it returns ⊥.
These queries may be asked adaptively, that is, they may depend on the
answers to previous queries.
Challenge On challenge query 〈periodi∗, userinfo∗, PK∗, SK∗,M0,M1〉,
where M0,M1 ∈ M are of equal length, the challenger checks that
userinfo∗ ∈ Λ and that 〈PK∗, SK∗〉 is a valid key pair. If so, it chooses
a random bit b and returns C∗ = Encperiodi∗,userinfo∗,PK∗(Mb) ; else it
returns ⊥.
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Phase 2 As in phase 1, except that decryption queries
〈periodi∗, userinfo∗, PK∗, SK∗, C∗〉 are disallowed.
Guess The adversary AI outputs a guess b′ ∈ {0, 1}.
The adversary wins the game if b = b′. We define the advantage of AI as
AI := |Pr[b = b′]− 1

2 |.

CBE Game 2. Attack of the certifier
Setup The challenger runs Setup, gives params and SKCA to the ad-
versary AII . The challenger then runs SetKeyPair to obtain a key-pair
〈PK, SK〉 and gives PK∗ to the adversary AII

Phase 1 The adversary issues decryption queries q1, . . . , qm where each
qj is a decryption query 〈periodi, userinfo, PK, C〉. On this query,
the challenger generates Certperiodi by using algorithms Certify and
Consolidate with inputs 〈SKCA, params, periodi, userinfo, PK〉 and out-
puts DecCertperiodi,SK(C), else it returns ⊥.
These queries may be asked adaptively, that is, they may depend on the
answers to previous queries.
Challenge On challenge query 〈periodi∗, userinfo∗,M0,M1〉, where
M0,M1 ∈ M are of equal length, the challenger checks that
userinfo∗ ∈ Λ. If so, it chooses a random bit b and returns C∗ =
Encperiodi∗,userinfo∗,PK(Mb); else it returns ⊥.
Phase 2 As in phase 1.
Guess The adversary AI outputs a guess b′ ∈ {0, 1}. The adversary wins
the game if b = b′.
The adversary wins the game if b = b′. We define the advantage of AII as
AII := |Pr[b = b′]− 1

2 |.

Definition A CBE scheme is said to be secure against an adaptive chosen
ciphertext attack (or IND-CBE-CCA secure) if no probabilistic polynomially
bounded adversary has non-negligible advantage in either CBE Game 1 or CBE
Game 2.

2.2 Generic constructions

It is clear that the notion of IBE and CBE are very closely related and in fact
most of the generic constructions that have been proposed so far start from an
IBE scheme IND-ID-CCA secure, except the construction of [?] which goes from
certificateless public key cryptography to certificate-based public key cryptog-
raphy. We will not go into this last construction, since we are not aware of any
scheme in this paradigm which is secure in the standard model.
The first remark that one ought to make is that these constructions suffer from
the same drawback than ours, namely, that the most efficient IBE scheme se-
cure in the standard model is based on the scheme of Waters [16], in a way
that we will detail later. The resulting scheme IND-ID-CCA secure has several
problems, mainly that the reduction is far from tight and the parameters are
too long (these problems come from the scheme of Waters).
While the scheme we propose does only add one pairing, two exponentiations,
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a MAC and an encapsulation to the original encryption process of the resulting
IBE, the existing generic constructions it is used in combination with a public
key encryption scheme [11] or it is even used twice for double encryption [17],
so clearly our construction is much more efficient than these generic ones.

The proposal of Dodis and Katz: In [11], Dodis and Katz study the
security of double encryption. They point out that double encryption with
two different public key scheme (cascade encryption, as they sometimes call it),
Epk1(Epk2(M)) does not necessarily yield full security, even if the two public
key schemes are IND-CCA. We are going to use some remarks of this paper to
criticize the proof of Yum and Lee below.
They also give a generic construction for CBE. The certifier generates the pa-
rameters for an identity-based encryption scheme IND-ID-CCA and the user
chooses a pair public key- secret key for a public key encryption scheme IND-ID-
CCA. Messages for periodi, Bob are divided into two shares M1⊕M2. M1 is en-
crypted using the public key of the user Bob and M2 is encrypted in the identity-
based scheme with respect to identity (Bobinfo||periodi||PK). The two result-
ing ciphertexts are then signed using a one-time signature σ = Sigsk(C1, C2) to
obtain full security.

The proposal of Yum and Lee At EuroPKI 2004, Yum and Lee proved
the equivalence between identity-based and certificate-based encryption, that
is, whenever a fully secure IBE exists (that is IND-ID-CCA), a fully secure
IND-CBE-CCA exists, and conversely, the existence of a CBE scheme IND-
CBE-CCA implies the existence of an IND-ID-CCA secure IBE scheme.
Briefly, their construction is as follows. They generate the parameters for two
different instantiations of the IBE scheme, which yield two pairs, (paramsCA,
mskCA) and (paramsuser,mskuser). Then mskCA will serve as a the cer-
tifier’s master secret key in the CBE scheme and the user secret and pub-
lic key (PK, SK) will be the public key and the secret key corresponding
to identity userinfo in the second instantiation of the IBE. Encryption is
done by running twice the IBE encryption algorithm IDEnc, first with in-
puts 〈M,userinfo, paramsuser〉 and output C ′, then with input 〈C ′, (userinfo,
periodi, PK), paramsCA〉.
We note that this construction does not achieve the required security for certificate-
based schemes, at least in the case of an attack of the certifier. We outline how
would an attack form a certifier work. Remember that the certifier is equipped
with his own secret key and that it is allowed to make decryption queries,
with the natural limitation that he cannot ask for the challenge ciphertext.
The attack begins once the certifier obtains the challenge ciphertext C∗ for
userinfo∗, periodi∗, PK∗.
1. The certifier generates the certificate for userinfo∗, periodi∗, PK∗.
2. This certificate is used to decrypt and obtain C ′ = IDEnc(Mb, userinfo∗, paramsuser).
3. Reencrypt and C ′′ = IDEnc(C ′, (userinfo∗, periodi∗, PK), paramsCA)〉.
4. Ask the decryption oracle for the decryption of C ′′.
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3 Our construction

3.1 A powerful tool for obtaining full security in the stan-
dard model

In 2004 [10], Canetti, Halevi and Katz introduced a generic construction in the
standard model from any IBE IND-sID-CPA secure to a public key encryption
scheme.
Briefly, their idea was to take the public key of the user to be the parameters
of an IBE scheme, while his secret key was set to be the master secret key of
the IBE. A sender must generate a pair (sk, vk) of a one-time signature scheme,
encrypt with respect to identity vk and send 〈C = Evk(M), vk, σ = Sigsk(C)〉.
Informally, this works because decryption queries in the PKE scheme become
extraction queries in the IBE scheme. Namely, if there is an adversary A against
the PKE scheme, then, when B makes decryption queries 〈C, vk, σ〉,A responds
by asking the challenger for the secret key corresponding to SKvk. The only
difference between the real game and the simulated game occurs if B asks for the
decryption of a ciphertext with vk∗, where vk∗ is the verifier’s key of a one-time
signature scheme that A has chosen as challenge identity in the initialization
step. But this would only occur with negligible probability before the challenge
phase, and also after, because we assume the one-time signature scheme to be
secure in the sense of strong unforgeability.
Boneh and Katz improved this construction and made it much more efficient,
specially improving on key generation. Their idea was to use message authen-
tication codes instead of signatures. The key for the MAC cannot then be the
identity, though, because the identity must go on the open. The solution is
to use also a commitment. In the resulting scheme, then a random value r is
encapsulated to obtain (r, com, dec) and then the message M ||dec is encrypted
with respect to com. The proof is somewhat trickier because only the receiver
can make the verification, but the main idea behind it is the same as in [10]. In
our construction we will use this technique [9].
Further the technique of [10] can also be extended to go from a l-HIBE which is
selective identity chosen plaintext secure to an (l − 1)-HIBE which is selective-
identity chosen ciphertext secure (IND-sID-CCA, see for example [7]. In partic-
ular this means it is possible to construct a IBE scheme from a 2-HIBE scheme.

3.2 The scheme of Waters

The first IBE fully secure in the standard model was proposed by [8] and has
been recently improved by Waters [16]. The scheme of Waters is only IND-ID-
CPA secure, but if extended to a 2-HIBE it could proven fully secure in the
standard model.
However, since the construction of Boneh and Katz only requires selective-
identity chosen plaintext security and the scheme of Waters has a security
reduction which is not tight, it is more convenient to extend the level in the
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second level using the scheme of Boneh and Boyen [7] which is selective-identity
chosen-plaintext secure, an idea which Waters himself suggests in [16].
This yields 2-HIBE satisfying a very unusual definition of security, namely,
where the suffix of the challenge identity must be chosen before the beginning
of the attack but the prefix is chosen at the challenge step.

3.3 The construction of Gentry

As we said, the construction of Gentry relies very much on the scheme of Boneh
and Franklin. As an intermediate step in their construction, they build a scheme
called BasicIBE, and Gentry introduces a scheme called BasicCBE. Without
going into details, the only difference between both schemes is that Boneh and
Franklin use a BLS [3] signature as a decryption key and Gentry uses an aggre-
gate BGLS [5] signature.
The scheme of Gentry is then constructed applying the Fujisaki Okamoto trans-
form to BasicCBE, and Boneh and Franklin also obtain the full scheme in this
way.
It is reasonable to do the same thing with respect to the scheme of Waters.
Thus, it is possible to obtain a CBE scheme which is IND-CBE-CPA secure
in a straightforward way. The problem is now to obtain CCA security in the
standard model.

3.4 Proof’s strategy

A first approach would be to try to follow the suggestion of Waters and build
an hybrid 2-HIBE using the schemes of Waters and Boneh-Boyen. From this
scheme apply the result of [?] to obtain a fully secure IBE and then construct a
CBE scheme by using an aggregate BGLS signature. If this proof worked, then
we would have proven the full security of our scheme without having to use very
unusual cryptographic primitives. However, when building the scheme in this
way we only managed to prove a weaker notion of security.
The strategy we follow instead is: we build the same hybrid HIBE as we specified
above and then build another scheme by using a BGLS siganture instead of a
BLS one. Then we adapt the proof of Boneh and Katz to obtain full security.

4 Review on Pairings

Bilinear Diffie-Hellman Parameter Generator A randomized algorithm
IG is a BDH parameter generator if it takes as input security parameter k ≥ 0,
runs in time polynomial in k and returns the description of two groups G, G1 of
the same prime order p together with the description of an admissible pairing
e : G1 ×G1 → G. Formally, the output of IG(1k) is 〈G, G1, e〉.
The BDH problem in G is as follows: given a tuple g, ga, gb, gc ∈ G as input,
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output e(g, g)abc. An algorithm A has advantage ε in solving BDH in G if:
Pr[A(g, ga, gb, gc) = e(g, g)abc] ≥ ε,
where the probability is over the random choice of generator g in G∗, the ran-
dom choice of a, b, c in Zp, and the random bits used by A.
Similarly we say that an algorithm B that outputs b ∈ {0, 1} has advantage ε
in solving the decision BDH problem in G if: |Pr[B(g, ga, gb, gc, e(g, g)abc) =
0]− Pr[B(g, ga, gb, gc, T ) = 0]| ≥ ε,
where the probability is over the random choice of generator g ∈ G∗, the ran-
dom choice of T ∈ G1, and the random bits consumed by B. We refer to the
distribution on the left as PBDH and the distribution on the right as RBDH .
Definition The (Decision) (t, ε)-Bilinear Diffie Hellman (BDH) assumption
holds in G if no t-time algorithm has advantage at least ε in solving the (Deci-
sion) BDH problem in G.

We will make use of bilinear pairings. Admissible pairings are maps e :
G×G→ G1 with the following properties:
1. Bilinear: e(ga

1 , gb
2) = e(g1, g2)ab

2. Non-degenerate: e(g, g) 6= 1 for all g ∈ G
3. Computable: there exists an efficient algorithm to compute e(g1, g2) for any
g1, g2 ∈ G.

5 Security definitions

The building blocks for our scheme will be the identity-based scheme of Waters
[16] only IND-ID-CPA secure, the identity-based scheme of Boneh and Boyen
[7] (only IND-sID-CPA secure) and the technique of [9] (which make use of a
message authentication code and a encapsulation scheme). For the proof we will
need to define some very unusual primitives and their security model, which we
hope to motivate in the next section. Here only the definitions are introduced.

5.1 Message Authentication

Definition A message authentication code is a pair of PPT algorithms (Mac, V rfy),
where:
1. Mac is an algorithm which takes as input a message M and a secret key sk
and outputs a string tag.
2. V rfy takes as input a message M , a secret key sk, and a string tag. It
outputs either 1 or 0, in case it succeeds or not.
The security requirement we will need for our construction is the same as in [9],
that is, one-time security. More formally,

Definition A message authentication code (Mac, V rfy) is secure against a
one-time chosen-message attack if the success probability of any PPT adver-
sary A in the following game is negligible in the security parameter k:
1. A random key sk ∈ {0, 1}k is chosen.
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2. A outputs a message M and is given in return tag = Macsk(M).
3. A outputs a pair (M ′, tag).
We say that A succeeds if (M, tag) 6= (M ′, tag′) and V rfysk(M ′, tag′) = 1
In the above, the adversary succeeds even if M = M ′ but tag 6= tag′.

5.2 Encapsulation

Definition An encapsulation scheme is a triple of PPT algorithms (SetupENC ,S,R)
such that:
1. SetupENC takes as input the security parameter 1k and outputs a string pub.
2. S takes as input 1k and pub, and outputs (r, com, dec) with r ∈ {0, 1}k. We
refer to com as the public commitment string and dec as the de-commitment
scheme string.
3. R takes as input (pub, com, dec) an outputs an r ∈ {0, 1}k ∪ {⊥}.

Definition An encapsulation scheme (Setup,S,R) is secure if it satisfies both
hiding and binding as follows:
Hiding The following is negligible for all PPT A
|Pr[(pub ← SetupENC(1k); r0 ← {0, 1}k; (r1, com, dec) ← S(1k, pub); b ∈
{0, 1}) : A(1k, pub, com, rb) = b]− 1

2 |
Binding The following is negligible for all PPT A
|Pr[(pub← SetupENC(1k); (r, com, dec)← S(1k, pub)) : dec′ ← A(1k, pub, r, com, dec);
R(pub, com, dec′) /∈ {⊥, r}]

5.3 HIBE

A l-HIBE consists of four algorithms: SetupHIBE ,KeyGen,Enc, Dec, where:

-SetupHIBE is a probabilistic algorithm taking as input a security para-
meter k. It returns msk (the Public Key Generator’s master secret key)
and the public parameters params.
-KeyGen is a possibly randomized algorithm that takes as input an iden-
tity ID = (I1, . . . , Ij) (j ≤ l) and outputs the secret key corresponding to
ID, dID .
-Enc is a probabilistic algorithm that takes as input 〈params, M, ID, 〉.
It returns a ciphertext C = Encparams,(I1∗,I2∗)(M).
-Dec is a deterministic algorithm taking as input 〈params,C, ID, dID〉. It
returns a plaintext M .
Naturally, we require that if C is the result of running algorithm Enc with
input 〈params,M, ID〉, then M is the result of applying algorithm Dec
with input 〈params,C, ID, dID〉.

A new definition of security for a 2-HIBE
A 2-HIBE is secure against 2nd-level selective identity chosen plaintext attacks if
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for all polynomially bounded functions l() the advantage of any PPT adversary
A in the following game is negligible in the security parameter k:

Init A outputs a sufix I2∗ ∈ {0, 1}l(k) of the identity it wants to attack.
(That is, the challenge identity will be of the form (I1, I2∗)).
Setup SetupHIBE(1k, l(k)) outputs (msk, params). The adversary is
given PK.
Phase 1 The adversary issues private key or extraction queries q1, . . . , qm

for identities 〈IDi〉,i = 1 . . .m, which can be either in level one IDi = I1
or level two IDi = (I1, I2), with I2 6= I2∗. The challenger responds by
running algorithm KeyGen to generate the private key dIDi corresponding
to the public key 〈IDi〉. Then dIDi is sent to the adversary.
These queries may be asked adaptively, that is, depending on the answers
to preceding queries.
Challenge When the adversary decides that phase 1 is over it outputs two
messages M0 and M1 and a first level identity I1∗ on which it wants to
be challenged. This identity should not have been the subject of a private
key query in phase 1. The challenger flips a fair coin to obtain a bit b and
sets the challenge ciphertext to be C = Encparams,(I1∗,I2∗)(Mb).
Phase 2 As in phase 1, except with the additional restriction that A may
not ask for the secret key corresponding to identity I1∗.
Guess The adversary outputs a guess b′ ∈ {0, 1}. The adversary wins the
game if b = b′.
We define the advantage of the adversary A in this game as:
AdvA = |Pr[b = b′]− 1

2 |.

5.4 Extended CBE

The concept that we are going to define next is very unusual in identity-based
cryptography, but it is motivated by the requirements of the security proof.
Our model is a depth two tree encryption scheme, where a given message M
can be encrypted for a 1st level entity or a 2nd level entity, and where 1st level
entities can decrypt any of the messages intended for a 2nd level entity.
In this model there is also a certification authority (CA) and a number of clients,
each of whom chooses a pair public key, secret key (PK, SK). Each client has
also an identifying public information userinfo. The time is divided into different
periods (the number of which does not necessarily have to be specified before-
hand). For each time period the certification authority computes a certificate
Cert′periodi, from its own master secret key SKCA and 〈userinfo, periodi, PK〉
and sends it to the authorized clients, who may perform some operations on the
certificate to obtain Certperiodi.
In our scheme, then, the entities in the 1st level are certified clients, that is,
messages are encrypted for a certain period, a certain public information iden-
tifying the client and a certain public key. To decrypt such a message, both the
secret key of the client and the updated certificate Certperiodi are needed. The
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entities in the first level are noted (userinfo, period i, PK).
The 2nd level entities will also be called sons of certified clients and will be noted
((userinfo, periodi, PK), I2). When a message is intended for a second level
entity, the key necessary to decrypt is derived from both Certperiodi and SK.
However, this same key will not be useful to decrypt any message for any of
its siblings, i.e entities ((userinfo, periodi, PK), I2′), where Certperiodi is the
certificate corresponding to (userinfo, periodi, PK) and I2 6= I2′.
The keys for the sons of the certified clients are computed by the clients and
sent to their sons.
For the security model, two types of adversary are considered. Again, these
types respond to the needs of the last proof, and it is hard to motivate them
otherwise. Type I adversary is a client who can adaptively choose its private/
public key pair, its public identifying information and make certification queries
for any period and extraction queries for any second level entity (with a suffix
different than the second level challenge identity).
Type II adversary has access to the certifier’s master secret key and can also
make extraction queries for any entity in level 2.
In both types of attack, the entity attacked must be in the second level, since
this is the case that will be used in proof C.

Definition An extended CBE scheme consists of seven algorithms: (SetupEXTCBE ,
SetKeyPair, Certify, Consolidate, KeyGen2, Enc,Dec), where:

-SetupEXTCBE is a probabilistic algorithm taking as input a security
parameter k. It returns SKCA (the certifier’s master-key) and public
parameters params that include the description of a string space Λ.
Usually this algorithm is run by the CA.
-SetKeyPair is a probabilistic algorithm that takes as input params. It
returns a public key PK and a private key SK.
-Certify is a (possibly randomized) algorithm that takes as input 〈SKCA,
params, periodi, userinfo, PK〉. It returns Cert′periodi, which is sent
to the client. Here periodi is a string identifying a time period, while
userinfo ∈ Λ contains other information needed to certify the client such
as the client’s identifying information, and PK is a public key.
-Consolidate is a (possibly randomized) certificate consolidation al-
gorithm taking as input 〈params, periodi, userinfo, Cert′periodi〉 and
optionally Certperiodi−1. It returns a ciphertext C ∈ C for message M .
-KeyGen2 is a (possibly randomized) algorithm that takes as input
params, a pair (PK, SK), a period periodi, a string userinfo ∈ Λ,
the updated certificate Cert′periodi corresponding to this input and a
second level identity I2. It then generates the secret key SKID necessary
corresponding to second level entity to decrypt all ciphertexts intended for
identity ((periodi, userinfo, PK), I2).
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-Enc is a probabilistic algorithm taking as input 〈ID,M〉, where ID is
the string identifying either a certified client or a son of a certified client
and M ∈M is a message.
-Dec is a deterministic algorithm taking as inputs 〈params, ID, SKID, C〉
as input in time period periodi, where ID is a string corresponding either
to a first or a second level entity. If ID identifies a first level entity then
SKID is the pair (Cert′periodi, SK), else it is the output of algorithm
KeyGen2 with these inputs. Algorithm Dec returns either a message
M ∈M or the special symbol ⊥ indicating a decryption failure.

Naturally, we require that if C is the result of applying algorithm Enc with input
〈periodi, userinfo, params, PK, M〉 and (PK, SK) is a valid key-pair, then M
is the result of applying algorithm Dec on input 〈params,Certperiodi, SK,C〉,
where Certperiodi is the output of the Certify and Consolidate algorithms on
input 〈SKCA, params, periodi, userinfo ∈ Λ, PK〉. We write:
DecCertperiodi,SK(Encperiodi,userinfo,PK(M)) = M .
We note that a concrete ExtendedCBE scheme need not involve certificate
consolidation. In this situation, algorithm Consolidate will simply output
Certperiodi = Cert′periodi

Security for Extended CBE is defined with the help of two different games.

Extended CBE Game 1
Init The adversary BI outputs a second level identity I2∗ it wants to
attack.
Setup: The challenger runs SetupEXTCBE , gives params to the adversary
and keeps SKCA to itself.
Phase 1 The adversary issues queries q1, . . . , qm where each qj is:
a) a certification query 〈periodi, userinfo, PK, SK〉. To answer this
query, the challenger checks that userinfo ∈ Λ and that 〈PK, SK〉 is a
valid key-pair and runs algorithm Certify on these inputs. The output
Cert′periodi is the answer to the query.
b) an extraction query 〈ID, SK〉, where ID =
((periodi, userinfo, PK)), I2) is a second level identity. To answer
this query, the challenger checks that 〈PK, SK〉 is a valid key-pair. Then
it runs algorithms Certify, Consolidate and KeyGen2 with the adequate
inputs.
These queries may be asked adaptively, that is, they may depend on the
answers to previous queries.

Challenge On challenge query 〈periodi∗, userinfo∗, PK∗, SK∗,M0,M1〉,
where M0,M1 ∈ M are of equal length, the challenger checks that
userinfo∗ ∈ Λ and that 〈PK∗, SK∗〉 is a valid key pair. If so,
it chooses a random bit b and returns C∗ = EncID∗(Mb), where
ID∗ = ((periodi∗, userinfo∗, PK∗), I2∗), else it returns ⊥.
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Phase 2 As in phase 1, except that certification queries
〈periodi∗, userinfo∗, PK∗, SK∗〉 are no longer allowed, but decryp-
tion queries for any identity ID = ((periodi∗, userinfo∗, PK∗), I2), with
I2 6= I2∗ are.
Guess The adversary outputs a guess b′ ∈ {0, 1}.

The adversary wins the game if b = b′. We define the advantage of BI as
BI := |Pr[b = b′]− 1

2 |.

Extended CBE Game 2

Init The adversary outputs a second level identity I2∗ it wants to attack.
Setup: The challenger runs SetupEXTCBE and gives params and SKCA

to the adversary. Then it runs algorithm SetKeyPair to obtain a challenge
pair (PK∗, SK∗) and gives PK∗ to the adversary.
Phase 1 The adversary issues queries q1, . . . , qm where each qj is an ex-
traction query 〈((periodi, userinfo, PK∗)), I2) for a second level identity.
To answer this query, the challenger checks that userinfo ∈ Λ. If so it
generates Certperiodi by using algorithms Certify and Consolidate with
these inputs. Then it runs algorithm KeyGen2 with these inputs.
These queries may be asked adaptively, that is, they may depend on the
answers to previous queries.
Challenge On challenge query 〈periodi∗, userinfo∗,M0,M1〉, where
M0,M1 ∈M are of equal length, the challenger checks that userinfo∗ ∈ Λ.
If so, it chooses a random bit b and returns C∗ = EncID∗(Mb), where
ID∗ = ((periodi∗, userinfo∗, PK∗), I2∗), else it returns ⊥.
Phase 2 As in phase 1.
Guess The adversary outputs a guess b′ ∈ {0, 1}.

The adversary wins the game if b = b′. We define the advantage of BII as
BII := |Pr[b = b′]− 1

2 |.
Definition An Extended CBE scheme is said to be secure against adaptive

chosen ciphertext attack (or IND-extCBE-CPA secure) if no probabilistic poly-
nomially bounded adversary has non-negligible advantage in either CBE Game
1 or CBE Game 2.

6 First construction: an hybrid 2-HIBE

In the rest of the article, given a string λ = λ1 . . . λn ∈ {0, 1}n, let νλ ⊂ {1 . . . n}
be the set of indices j for which λj = 1.
Let identities in the first level be n-bit strings and identities in the second level
elements of {0, 1}n × Zp and note them as ID = (I1, I2). As it is obvious,
the scheme is the scheme of Waters when restricted to the first level and the
scheme of Boneh and Boyen IND-sID-CPA secure in the second. Therefore, an
adversary against our scheme has to specify at first which identity in the second
level it is going to attack, that is,the suffix of the challenge identity. No identity
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with that suffix can be subject to an extraction query.
New2-HIBE

SetupHIBE Input: 1k.
Run IG on input 1k and obtain 〈G, G1, e〉, G, G1 of order p.
Choose g, g2, f2 ← G∗, α← Zp. Set g1 = gα ∈ G
Choose u′, u1, . . . , un ← G. Set U = (u′, u1, ..., un).
The space of messages is G1 and the system parameters are params =
(U, p, n, G, G1, e, g, g1, g2, f2). The PKG’s master secret key is msk = α. Define the
following function F2 : Zp −→ G as F2(x) = gx

1f2.

KeyGen Input: 〈params,msk, ID〉.
To generate the private key corresponding to ID, dID do:
(a) if ID is in level 1, the PKG sets r1 ← Zp and sets: dID = (d0, d1) =
(gα

2 (u
′ ∏

j∈νID
uj)r1 , gr1).

(b) Else, the PKG chooses r1, r2 ← Zp and sets: dID = (d0, d1, d2) =
(gα

2 (u
′ ∏

j∈νI1
uj)r1F2(I2)r2 , gr1 , gr2).

Obviously, any identity in level 1 I1 with secret key dID = (d0, d1), can compute
the secret key for all of its children by choosing r2 ← Zp and computing d(I1,I2) =
(d0F2(I2)r2 , d1, g

r2).

Enc Input: 〈M, ID〉.
Choose t← Zp.
Set C = (Me(g1, g2)t, gt, (u

′ ∏
j∈νID

uj)t) if user is in level 1, else set C =
(Me(g1, g2)t, gt, (u

′ ∏
j∈νI1

uj)t, F2(I2)t) .

Dec Input: 〈C, ID〉.
(a) If ID is in level 1, compute:
C1e(d1, C3)
e(d0, C2)

=
Me(g1, g2)te(gr1 , (u′

∏
j∈νI1

uj)t)
e(gα

2 (u′
∏

j∈νID
uj)r1 , gt)

= . . . = M

(b) Else, compute:
C1e(d1, C3)e(d2, C4)

e(d0, C2)
=

Me(g1, g2)te(gr1 , (u′
∏

j∈νI1
uj)t)e(gr2 , F2(I2)t)

e(gα
2 (u′

∏
j∈νI1

uj)r1F2(I2)r2 , gt)
= . . . = M

6.1 Security Proof

For the security reduction we distinguish between first and second level extrac-
tion queries. The number of first level extraction queries is qE and the number
of extraction queries for the second level qD.
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Theorem The previously defined New 2-HIBE is (t, qE , qD, ε) 2nd-level selective
identity secure if the (t + O(ε−2ln(ε−1)λ−1ln(λ−1) + qD), ε

32(n+1)qE
) Decisional

Bilinear Diffie Hellman Assumption holds in G (where λ = 1
8(n+1)qE

and it is
assumed that each exponentiation in G takes unit time.
Proof
Let C be an adversary against the 2-HIBE hybrid scheme, then we are going to
use C to build an adversary D against DBDH in G.
D is given as input a 5-tuple (g, ga, gb, gc, T ), which could be either a random
tuple or a BDH-tuple.
Set g1 = ga, g2 = gb, g3 = gc. Adversary D will output a guess γ as to whether
the challenge tuple is a BDH tuple or not. D interacts with C as follows:

Init Adversary C outputs the second level challenge identity I2∗ ∈ Zp. That
means that in the challenge, C may ask to be challenged on any identity of the
form ID = (I1, I2∗).

SetupHIBE Adversary D first sets m = 4qE and chooses an integer, k, between
0 and n. It then chooses a random n-length vector, −→x = (xi), and a value
x′. The components of the vector and x′ are chosen u.a.r. among the integers
between 0 and m − 1. By X∗, we denote the pair (x′,−→x ). Additionally, also
chooses y′, y1, . . . yn ∈ Zp.
Finally, D also picks α2 ← Zp. These values are all kept internal to adversary
D.
Given a set ν ⊂ {0, . . . n}, we define the following functions and values:

(a)F (ν) = (p−mk) + x′ + Σi∈νxi

(b)J(ν) = y′ + Σi∈νyi

(c) K(ν), where K(ν) = 0 if x′ + Σi∈νxi ≡ 0 mod m and K(ν) = 1, otherwise.
(d) F2 : Zp → G, defined as F2(x) = gx−I2∗

1 gα2

(e) f2 = g−I2∗

1 gα2 ∈ G
(f) U = (u′, u1, . . . un), where u′ = gp−km+x′

2 gy′ and ui = gxi
2 gyi for i = 1 . . . n

Then C is given params = (U, p, n, G, G1, e, g, g1, g2, f2).

Phase 1 C issues private key queries ql for different identities IDl, to which D
responds in the following way:

a) If IDl = I1l is in level 1, D checks if K(νI1l) = 0. If this is the case, it aborts
and outputs a random bit b′.

Else, it chooses rl ← Zp and sets dI1l = (d0l, d1l) = (g
− J(νI1l)

F (νI1l)

1 (u′
∏

j∈νI1l
uj)rl , grl).

Set sl := rl − a
F (νI1l)

. Note that the following two equalities hold:
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d0l = g
− J(νI1l)

F (νI1l)

1 (u′
∏

j∈νI1l
uj)rl

= g
− J(νI1l)

F (νI1l)

1 (gF (νI1l)
2 gJ(νI1l))rl

= ga
2 (gF (νI1l)

2 gJ(νI1l))rl

= ga
2 (gF (νI1l)

2 gJ(νI1l))−
a

F (νI1l) (gF (νI1l)
2 gJ(νI1l))rl

= ga
2 (u′Πj∈νI1l

uj)
rl− a

F (νI1l)

= ga
2 (u′Πj∈νI1l

uj)sl

d1l = g
−1

F (νI1l)

1 gr
l

= g
rl− a

F (νI1l)

= gsl

Therefore, dI1l = (d0l, d1l) = (gα
2 (u′

∏
i∈νI1l

uj)sl , gsl) is a valid key for identity
IDl.

b) If it is in level 2, i.e IDl = (I1l, I2l), then D checks if I2l = I2∗, in
which case it aborts, else it chooses r1l, r2l ← Zp and sets dIDl

= (d0l, d1l, d2l)

= (g
α2

I2l−I2∗
2 (u′

∏
j∈νI1l

uj)r1lF2(I2l)r2l , (u′
∏

j∈νI1l
uj)r1l , g

−1
I2l−I2∗
2 gr2l).

Let sl = r2l − b
I2l−I2∗ . Then, dIDl

is a valid secret key for IDl, since the fol-
lowing two equalities hold:

d0l = (u′
∏

j∈νI1l
uj)r1lg

−α2
I2l−I2∗
2 F2(I2l)r2l

= (u′
∏

j∈νI1l
uj)r1lg

−α2
I2l−I2∗
2 (gI2l−I2∗

1 gα2)r2l

= (u′
∏

j∈νI1l
uj)r1lga

2 (gI2−I2∗

1 gα2)r2l− b
I2l−I2∗

= ga
2 (u′

∏
j∈νI1l

uj)r1lF2(I2l)sl

d2l = g
−1

I2l−I2∗
2 gr2l

= gr2l− b
I2l−I2∗

= gsl

Challenge When C decides that Phase 1 is over, it outputs two messages
M0,M1 ∈ G1 and a level one identity I1∗ on which it wants to be challenged. If
x′+Σi∈νI1∗ 6= 0 mod p, D aborts and outputs a random bit b′. Else,it picks a ran-
dom bit b and responds with the ciphertext C = (MbT, g3, g

J(νI1∗ )
3 , gα2

3 ). Since
F2(I2∗)c = (gα2)c = gα2

3 and g
J(νI1∗ )
3 = (gJ(νI1∗))c = (gJ(νI1∗)g

F (νI1∗ )
2 )c =

(u′
∏

i∈νI1∗
uj)c (because F (νI1∗) = 0 mod p, then C will only be a ciphertext

for Mb if T = e(g, g)abc.

Phase 2 As in phase 1, except that queries for identity I1∗ are no longer allowed,
while queries for any of its children (except with suffix I2∗) are.
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Guess Finally C outputs a guess b′. The simulator D outputs γ′ = 1 if b = b′,
else it outputs γ′ = 0.

Artificial Abort The probability of aborting when making first level extrac-
tion queries is not necessarily independent of the probability of making a correct
guess of the bit b, since different sets of queries may have a different probability
of aborting.
To compute the abort probability, the additional step artificial abort is intro-
duced. If −→v = v1 . . . vqE

is the vector of all first level extraction queries made
and v∗ is the first level challenge identity, the following function is defined:

τ(X ′,−→v , v∗) =
{

0 if (K(v1) = 1) ∧ . . . ∧ (K(vqE
) = 1) ∧ (x′ + Σi∈νv∗xi = km)

1 otherwise

Note that the function evaluates to zero for a given set of extraction and chal-
lenge queries and simulation values X ′ when those choices lead to an abort.
The probability of aborting for a given set of queries v∗,−→v , η = PrX′ [τ(X ′,−→v , v∗)]
is sampled O(ε−2ln(ε−1)λ−1ln(λ−1)) times, by choosing random X ′ and eval-
uating τ(X ′,−→v , v∗) (sampling does not involve running the adversary again).
The estimated value is η′, while λ is the lower bound on the probability of not
aborting for any set of queries (see [16] on how to compute λ).
If η′ ≥ λ, adversary D will abort with probability η′−λ

η′ and take a random guess
γ′. Otherwise, the simulator will not abort.
If D has not aborted at this point, it checks whether adversary C’s guess b′ is
equal to b. If so it outputs the guess γ′ = 1, else it outputs γ′ = 0.

Analysis When the input tuple is a random tuple, then Pr[γ′ = 1] = 1
2 .

On the other hand, when the input tuple is a Diffie Hellman tuple:
Pr[γ′ = 1] = Pr[γ′ = 1|abort]Pr[abort] + Pr[γ′ = 1|abort]Pr[abort]
Clearly, when the adversary does nor abort, then C makes the correct guess with
advantage ε, so Pr[γ′ = 1|abort] = 1

2 + ε, while Pr[γ′ = 1|abort] = 1
2 , because

then the simulator outputs a random guess.
The probability of aborting comes exclusively from the first level extraction
queries and the challenge query. In other words, the simulator aborts if and
only the simulator in the security proof of Waters [16] would also abort (making
the same choices for U,−→x , etc). Therefore, the probability of aborting can be
calculated exactly in the same way as in the Waters IBE scheme and the theo-
rem follows.

7 Second construction: an Extended CBE scheme

We do not include algorithm Consolidate because it is trivial in this scheme, that
is, if the outputs of the algorithm are 〈params, periodi, userinfo, Cert′periodi〉,
it simply outputs Certperiodi = Cert′periodi (as it is also the case in [14]). This
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will also be the case for our final scheme New CBE.
To make the exposition more compact, we sometimes use the secret key of
a first level entity for a given period SKID = (Cert0h

β
2 , Cert1), instead of the

certificate for that period and the secret key of the client, although this quantity
is not explicitly defined in the execution of the algorithm.

ExtendedCBE

SetupEXTCBE : Input: 1k.
Run IG on input 1k and obtain 〈G, G1, e〉, G, G1 of order p.
Choose g, g2, f2 ← G∗, α← Zp. Set g1 = gα ∈ G
Choose u′, u1, . . . , un ← G. Set U = (u′, u1, ..., un) and choose a collision resistance hash
function H1 : {0, 1}∗ → {0, 1}n.
The space of messages is G1 and the system parameters are params =
(U, p, n, G, G1, e, g, g1, g2, f2,H1). The CA’s master secret key is SKCA = α.

SetKeyPair Input: params.
Choose β ← Zp, h2 ← G and sets h1 = gβ ∈ G. The user’s secret key is SK = (β, hβ

2 )
and his public key is PK = (h1, h2).
Define the following function F2,h1 : Zp −→ G as F2,h1(x) = gx

1hx
1f2.

Certify Input: 〈 params, SKCA, periodi, userinfo, (h1, h2)〉.
Let I1 = H1(periodi||userinfo||(h1, h2)). Pick r ← Zp and output:
Cert(periodi,userinfo,(h1,h2)) = (Cert0, Cert1) = (gα

2 (u
′ ∏

j∈νI1
uj)r, gr).

KeyGen2 Input: 〈params, β, Cert(periodi,userinfo,(h1,h2)), periodi, userinfo, (h1, h2),
I2〉.
Compute I1 = H1(periodi||userinfo||(h1, h2)). Choose r1, r2 ← Zp. Set:
SKID = (d0, d1, d2) = (gα

2 (u
′ ∏

j∈νI1
uj)r1F2,h1(I2)r2hβ

2 , gr1 , gr2).

Enc Input: 〈params, M, periodi, userinfo, (h1, h2)〉 and, optionally I2.
Choose t← Zp.
Set C = (Me(g1, g2)te(h1, h2)t, gt, (u

′ ∏
j∈νI1

uj)t) if user i is in level 1, else C =
(Me(g1, g2)te(h1, h2)t, gt, (u

′ ∏
j∈νI1

uj)t, F2,h1(I2)t).
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Dec Input: 〈params,C, periodi, userinfo, (h1, h2), SKID〉 and optionally I2, where
SKID is the secret key for the certified client (Cert0h

β
2 , Cert1) or for its son (d0, d1, d2).

Set I1 = H1(periodi||userinfo||(h1, h2)).
(a) If I2 is not an input of the algorithm, compute:
C1e(d1, C3)
e(d0, C2)

=
Me(g1, g2)te(h1, h2)te(gr1 , (u′

∏
j∈νID

uj)t)

e(gα
2 (u′

∏
j∈νI1

uj)r1hβ
2 , gt)

= . . . = M

(b) Else, compute:
C1e(d1, C3)e(d2, C4)

e(d0, C2)
=

Me(g1, g2)te(h1, h2)te(gr1 , (u′
∏

j∈νI1
uj)t)e(gr2 , F2(I2)t)

e(gα
2 (u′

∏
j∈νI1

uj)r1F2(I2)r2hβ
2 , gt)

= . . . =

M

7.1 Security proof: Adversary in game 1 against Extended
CBE

Theorem Assuming H1 to be a collision resistant hash function, if an adversary
BI succeeds in Extended CBE-Game 1 against the previously defined Extend-
edCBE scheme, in time t, with advantage at most ε and making at most qC

certification queries and qE extraction queries for second level identities, then
there is an adversary C which succeeds in time t′ ≤ t − Θ(qC + qE) and with
advantage ε in the game against the New 2-HIBE scheme. (where it is assumed
that each evaluation of the hash function H1 and each exponentiation in G take
unit time).

Proof
Algorithm C interacts with algorithm BI as follows:

Init When BI outputs a second level identity I2∗ it wants to attack, C outputs
the same identity.

Setup: The challenger runs SetupHIBE , gives paramsHIBE to the adversary
C and keeps msk to itself. Then paramsEXTCBE = (paramsHIBE ,H1), where
H1 is a collision resistant hash function H1 : {0, 1}∗ → {0, 1}n. are given to the
adversary BI .

Phase 1 The adversary issues queries q1, . . . , qm where each qj is:

a) a certification query 〈periodi, userinfo, (h1, h2), (β, hβ
2 )〉. To answer this

query, C checks that userinfo ∈ Λ and that 〈(h1, h2), (β, hβ
2 )〉 is a valid key-

pair. If so, it asks the challenger for the secret key corresponding to identity
I1 = H1((periodi||userinfo||(h1, h2))). This same answer is given to BI .

b) an extraction query 〈ID, (β, hβ
2 )〉, where ID = ((userinfo, periodi, (h1, h2)), I2)
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is a second level identity. To answer this query, C checks that 〈(h1, h2), (β, hβ
2 )〉

is a valid key-pair. If so, it asks the challenger for the secret key correspond-
ing to identity (H1(periodi||userinfo||PK), I2) = (I1, I2) = ID, and obtains
dID = (d0, d1, d2) = (gα

2 (u
′ ∏

j∈νI1
uj)r1F2(I2)r2 , gr1 , gr2).

Then C gives BI the tuple SKID = (d0h
β
2dβI2

2 , d1, d2). This is a valid secret
since the following holds:

F2,h1(I2)r2 = (f2g
I2
1 hI2

1 )r2

= F2(I2)r2(hI2
1 )r2

= F2(I2)r2(gr2)βI2

= F2(I2)r2dβI2
2

Therefore, SKID = (d0h
β
2dβI2

2 , d1, d2) = (gα
2 hβ

2 (u
′ ∏

j∈νI1
uj)r1F2,h1(I2)r2 , gr1 , gr2)

is of the correct form.
These queries may be asked adaptively, that is, they may depend on the answers
to previous queries.

Challenge On challenge query 〈ID∗, (β∗, h∗2)
β∗, M0,M1〉, where ID∗ = (periodi∗,

userinfo∗, (h∗1, h
∗
2)) and M0,M1 ∈M of equal length, C checks that userinfo∗ ∈

Λ and that 〈(h∗1, h∗2), (β∗, (h∗2)β∗)〉 is a valid key pair. If not, it outputs ⊥, else it
makes a challenge query 〈M0,M1, I1∗〉, where I1∗ = H1(ID∗). The challenger
responds by flipping a fair coin to choose a random bit b and returning the
ciphertext C = (C1, C2, C3, C4) = (Me(g1, g2)t, gt, (u

′ ∏
j∈νI1∗

uj)t, F2(I2∗)t).
Then, C gives BI the challenge ciphertext C∗ = (C1e(C2, h

β
2 ), C2, C3, C4(C2)β) =

(Me(g1, g2)te(h1, h2)t, gt, (u
′ ∏

j∈νI1∗
uj)t, F2,h1(I2∗)t).

Phase 2 As in phase 1 , except that certification queries 〈ID∗, (β∗, (h∗2)
β∗)〉

are no longer allowed, but decryption queries for any identity ID = ((periodi∗,
userinfo∗, (h∗1, h

∗
2)), I2), with I2 6= I2∗ are.

Guess The adversary BI outputs a guess b′ ∈ {0, 1}, and C outputs the same
guess.

The view of BI is exactly the same as in the real attack, therefore the theorem
follows.

7.2 Adversary in game 2 against ExtendedCBE

Theorem Assuming H1 to be a collision resistant hash function, if an adversary
BII succeeds in Game 2 against the previously defined ExtendedCBE scheme,
in time t, with advantage at most ε and making at most qE extraction queries
for second level identities, then there is an adversary C which succeeds in time
t′ ≤ t − Θ(qE) and with advantage ε in the game against the New 2-HIBE
scheme. (where it is assumed that every exponentiation in G takes unit time).
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Proof
Algorithm C interacts with algorithm BII as follows:

Init Adversary BII outputs a second level identity I2∗ it wants to attack. Then
C outputs the same identity.

Setup The challenger runs SetupHIBE , gives paramsHIBE = (U, p, n, G, G1, e, g,
g′1, g

′
2, f2) to the adversary C and keeps msk = (g′2)

α′ to itself.
Adversary C runs algorithm SetKeyPair to obtain a pair public key - secret key
((h′1, h

′
2), (h

′
2)

(α′)). Then SKCA and paramsEXTCBE are given to BII , where
SKCA = gα

2 = (h′2)
β′ and paramsEXTCBE = (U, p, n, G, G1, e, g, g1 = h′1,

g2 = h′2, f2,H1), where H1 : {0, 1}∗ → {0, 1}n is a collision resistant hash func-
tion. Finally, C gives to BII , the challenge public key (h1 = g′1, h2 = g′2).

Phase 1 The adversary BII issues queries q1, . . . , qm where each qj is an ex-
traction query for a second level identity ID = ((periodi, userinfo, PK), I2).
Then C asks for the secret key corresponding to (H1(periodi||userinfo||PK), I2) =
(I1, I2), and obtains d(I1,I2) = (d0, d1, d2) = ((g′2)

α′(u
′ ∏

j∈νI1
uj)r1F2(I2)r2 , gr1 , gr2) =

(hβ
2 (u

′ ∏
j∈νI1

uj)r1F2(I2)r2 , gr1 , gr2). Then C gives to BI the secret key SKID =
(d0g

α
2 dαI2

2 , d1, d2). This is a valid secret key, since the following holds:

F2,h1(I2)r2 = (f2g
I2
1 hI2

1 )r2

= F2(I2)r2(gI2
1 )r2

= F2(I2)r2(gr2)αI2

= F2(I2)r2dαI2
2

These queries may be asked adaptively, that is, they may depend on the answers
to previous queries.

Challenge On challenge query 〈periodi∗, userinfo∗,M0,M1〉, where M0,M1 ∈
M are of equal length, C checks that userinfo∗ ∈ Λ and that 〈(h1, h2), (h2)β〉
is a valid key pair. If any of these steps fails, it outputs ⊥, else it makes the
challenge query 〈M0,M1, I1∗〉, where I1∗ = (periodi∗, userinfo∗, (h∗1, h

∗
2)). To

respond to this query, the challenger flips a fair coin to obtain a random bit b
and returns C = Encparams,(I1∗, I2∗)(Mb) = (C1, C2, C3, C4) = (Me(g′1, g

′
2)

t, gt,

(u
′ ∏

j∈νI1∗
uj)t, F2(I2∗)t) = (Me(h1, h2)t, gt, (u

′ ∏
j∈νI1∗

uj)t, F2(I2∗)t). Then
adversary C sets the challenge ciphertext to be C∗ = (C1e(C2, g

α
2 ), C2, C3, C4C

α
2 ) =

(Me(g1, g2)te(h1, h2)t, gt, (u
′ ∏

j∈νI1∗
uj)t, F2,h1(I2∗)t).

Phase 2 As in phase 1.

Guess The adversary BII outputs a guess b′ ∈ {0, 1}, and C outputs the same
guess.

The view of BII is exactly the same as in the real attack, therefore the
theorem follows.
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8 A new CBE scheme without random oracles

NewCBE

SetupCBE : Input: 1k.
Run IG on input 1k and obtain 〈G, G1, e〉, G, G1 of order p.
Choose g, g2, f2 ← G∗, α← Zp. Set g1 = gα ∈ G
Choose u′, u1, . . . , un ← G. Set U = (u′, u1, ..., un). Let H1 : {0, 1}∗ −→ {0, 1}n,
H2 : {0, 1}∗ −→ Zp be two collision resistant hash functions.
Run SetupENC(1k) to generate a string pub of an encapsulation scheme.
The space of messages is G1 and the system parameters are params =
(U, p, n, G, G1, e, g, g1, g2, f2,H1,H2, pub). The CA’s master secret key is SKCA = α.

SetKeyPair Input: params.
The user chooses β ← Zp, h2 ← G and sets h1 = gβ ∈ G. The user’s secret key is
SK = (β, hβ

2 ) and his public key is PK = (h1, h2).
We define the following function F2,h1 : Zp −→ G as F2,h1(x) = gx

1hx
1f2.

Certify Input: 〈 params, csk, periodi, userinfo, (h1, h2)〉.
Let I1 = H1(periodi||userinfo||(h1, h2)). Pick r ← Zp and output:
Cert(periodi,userinfo,(h1,h2)) = (Certi0, Certi1) = (gα

2 (u
′ ∏

j∈νI1
uj)r, gr).

Enc Input: 〈params, M, periodi, userinfo, (h1, h2)〉.
(a) Encapsulate a random value r by running S(1k, pub) to obtain (r, com, dec)
(b) Let I2 = H2(com) and I1 = H1(periodi||userinfo||(h1, h2)). Choose t ← Zp and
encrypt in the following way:
Set C = ((M ||dec) e(g1, g2)te(h1, h2)t, gt, (u

′ ∏
j∈νI1

uj)t, F2,h1(I2)t).
(c) Compute tag = Macr(C).
(d) Send 〈com, C, tag〉.

Dec Input: 〈params,Certperiodi,userinfo,(h1,h2), (β, hβ
2 ) C, periodi, userinfo, (h1, h2)〉,

where C = 〈com, (C1, C2, C3, C4), tag〉.
Let I1 = H1(periodi||userinfo||(h1, h2)), I2 = H2(com)
(a) Derive the secret key corresponding to this period and com, by choosing r2 ← Zp

SKcom,i = (d0, d1, d2) = (Certi0h
β
2F2,h1(I2)r2 , Certi1, g

r2)
(b) Decrypt in the following way:
C1e(d1, C3)e(d2, C4)

e(d0, C2)
=

=
(M ||dec) e(g1, g2)te(h1, h2)te(gr, (u′Πj∈νI1uj)t)e(gr2 , F2,h1(I2)t)

e(gα
2 (u′Πj∈νI1uj)rF2,h1(I2)r2 , gt)e(hβ

2 , gt)
=

= . . . = M ||dec
(c) Obtain the string r = R(pub, com, dec) and verify if tag = Macr(C). If this is the
case, M is the correct decryption of C, else decryption fails.
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8.1 Security Proof: Attack of an uncertified client

It is important to use that this and the following proof are generic, since they
do not make use of any special properties of the underlying schemes.

Theorem Assuming the message authentication code and the encapsulation
scheme used in New CBE above satisfy the security definitions given in sections
5.1 and 5.2, if an adversary CI succeeds in time t and with advantage ε against
the previously defined New CBE, then there is an adversary in game 1 against
ExtendedCBE which succeeds with advantage negligibly close to ε and in time
t′ ≤ t−Θ(qD), where V alid1 is the event described below and each evaluation
of the hash function H2, pairing computation in G, and execution of algorithms
R and V rfy takes unit time.

Proof
Algorithm BI interacts with algorithm AI as follows:

Init BI runs SetupENC(1k, l(k)) to generate pub, and runs S(1k, pub) to obtain
(r∗, com∗, dec∗). BI outputs com∗ as the second level identity it wants to attack.

Setup The challenger runs SetupEXTCBE(1k) to generate SKCA and paramsEXTCBE .
Then paramsEXTCBE are given to BI . Then AI is given paramsCBE =
(paramsEXTCBE ,H2, pub), where H2 : {0, 1} → Zp is a collision resistant hash
function.

Phase 1 AI outputs queries q1, ...qm where each of the qi is:
a) Certification query 〈periodi, userinfo, (h1, h2), (β, hβ

2 )〉. To answer this query,
BI checks that userinfo ∈ Λ and that 〈(h1, h2), (β, hβ

2 )〉 is a valid key-pair. If
so, it makes this same certification query to the challenger.
b) Decryption queries 〈periodi, userinfo, (h1, h2), (β, hβ

2 ), com, C, tag〉. BI checks
that com 6= com∗ and that 〈(h1, h2), (β, hβ

2 )〉 is a valid key-pair. If this is
not the case it outputs ⊥, else it makes a second level extraction query for
〈ID, (β, hβ

2 )〉 = 〈((periodi, userinfo, (h1, h2)), I2), (β, hβ
2 )〉, where I2 = H2(com).

Then BI obtains the corresponding secret key SKID and uses it to decrypt C,
obtain M ||dec and r = R(pub, com, dec) and V rfyr(C, tag) = 1. If any of this
steps fails, C outputs ⊥.

Challenge On challenge query 〈I1∗, SK∗,M0,M1〉 = 〈periodi∗, userinfo∗, (h∗1, h
∗
2),

(β∗, (h∗2)
β∗),M0,M1〉, where M0,M1 ∈ M are of equal length, BI checks that

userinfo∗ ∈ Λ and that SK∗ is a valid key pair. If so, it submits to the
challenger the challenge query: 〈I1∗, SK∗,M0 ||dec∗,M1||dec∗〉. The challenger
chooses a random bit b and returns C = Enc(I1∗, I2∗) (Mb ||dec∗); else it returns
⊥. Finally, BI computes tag∗ = Macr∗(C) and sets the challenge ciphertext to
be C∗ = 〈com∗, C∗, tag∗〉.
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Phase 2 As in Phase 1, except that certification queries for 〈periodi∗, userinfo∗,
(h∗1, h

∗
2), (β

∗, (h∗2)
β∗)〉, are no longer allowed (but decryption queries for 〈periodi∗,

userinfo∗, (h∗1, h
∗
2), (β∗, (h∗2)

β∗)〉 are).

Guess Finally, AI outputs a guess b′ ∈ {0, 1}. This same guess is output by
BI .
A ciphertext is valid if it does not lead the simulator to abort in either CBE-
game 1 or CBE-game 2 against NewCBE. Valid1 is the event that AI ever
makes a decryption query 〈I1, (β, hβ

2 ), com∗, C, tag〉 which is valid where I1 =
(periodi, userinfo, (h1, h2)). We implicitly assume that 〈com∗, C, tag〉 6= 〈com∗, C∗, tag∗〉,
since it occurs with only negligible probability before the challenge and it is dis-
allowed after it).
Note that the only difference between the real game and the simulated game is
when event Valid1 occurs.

Claim Pr[Valid1] is negligible.

We omit the proof here since it is a paraphrase of the proof of Boneh and Katz,
except that now, to answer decryption queries the simulator is going to make
second level extraction queries to the challenger instead of extraction queries as
in the original proof of [9]. We just point out that this follows because of the
security of the encapsulation and the commitment schemes.
Therefore, the theorem follows since:
Pr[b′ = b] = Pr[b′ = b|abort]Pr[abort]+Pr[b′ = b|abort]Pr[abort] = ( 1

2 +ε)(1−
Pr[Valid1]) + 1

2Pr[Valid1] = 1
2 + ε(1− Pr[Valid1])

8.2 Attack of the certifier

Theorem Assuming the message authentication code and the encapsulation
scheme used in New CBE satisfy the security definitions given in sections 5.1 and
5.2, if an adversary CII succeeds in time t and with advantage ε against the previ-
ously defined New CBE, then there is an adversary in game 2 against Extended-
CBE which succeeds with advantage negligibly close to ε in time t′ ≤ t−Θ(qD),
where V alid2 is the event described below and where it is assumed that every
evaluation of H2, pairing computation in G, execution of algorithm R and V rfy
take unit time.

Proof
Algorithm BII interacts with algorithm AII as follows:

Init BII runs SetupENC(1k, l(k)) to generate pub, and runs S(1k, pub) to ob-
tain (r∗, com∗, dec∗). BII outputs com∗ as the second level identity it wants to
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attack.

Setup The challenger runs SetupEXTCBE(1k) to generate SKCA = gα
1 and

paramsEXTCBE . It also runs algorithm SetKeyPair to obtain a challenge pub-
lic key - secret key pair ((h1, h2), (β, hβ

2 )). Then paramsCBE = (paramsEXTCBE ,H2, pub)
are given to AII , where where H2 : {0, 1} → Zp is a collision resistant hash func-
tion. The user’s public key PK = (h1, h2) is also given to AII .

Phase 1 AII outputs queries q1, ...qm where each of the qi is a decryption
query 〈periodi, userinfo, com, C, tag〉. BII checks that com 6= com∗. If this
is not the case it outputs ⊥, else it makes a second level extraction query
for ID = ((periodi, userinfo, (h1, h2)), I2), where I2 = H2(com). The chal-
lenger responds to this query with the secret key SKID and BII uses it to
decrypt C, obtain M ||dec and r = R(pub, com, dec). Then BII checks that
V rfyr(C, tag) = 1. If any of this steps fails, C outputs ⊥, else BII responds to
this query with M .

Challenge On challenge query 〈periodi∗, userinfo∗, M0,M1〉, where M0,M1 ∈
M are of equal length, BII checks that userinfo∗ ∈ Λ. If so, it submits to the
challenger the challenge query: 〈periodi∗, userinfo∗, M0||dec∗,M1||dec∗〉. The
challenger chooses a random bit b and returns C∗ = Enc(I1∗,I2∗) (Mb ||dec∗),
where (I1∗, I2∗) = ((userinfo∗, periodo∗, (h∗1, h

∗
2)), H2(com∗)). If any of these

steps, fails it returns ⊥. Finally, BII computes tag∗ = Macr∗(C) and sets the
challenge ciphertext to be 〈com∗, C∗, tag∗〉.

Phase 2 As in Phase 1.

Guess Finally, AII outputs a guess b′ ∈ {0, 1}. This same guess is output by
BII .

A ciphertext is valid if it does not lead the simulator to abort in either CBE-
game 1 or CBE-game 2 against NewCBE. Valid2 is the event that AII ever
makes a decryption query 〈I1, (β, hβ

2 ), com∗, C, tag〉 which is valid where I1 =
(periodi∗, userinfo∗). We implicitly assume that 〈com∗, C, tag〉 6= 〈com∗, C∗, tag∗〉,
since it occurs with only negligible probability before the challenge and it is dis-
allowed after it).
Note that the only difference between the real game and the simulated game is
when event Valid2 occurs.

Claim Pr[Valid2] is negligible.

We omit the proof here since it is again a paraphrase of the proof of Boneh
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and Katz, except that now, to answer decryption queries the simulator is going
to make second level extraction queries to the challenger instead of extraction
queries as in the original proof of [9]. As before, the theorem follows from the
preceding claim.

9 Conclusion

In this paper we show how to use the techniques of Boneh and Katz in to ob-
tain full security for a CBE scheme. We reduce the problem to building an
ExtendedCBE scheme, which seems a reasonable goal. If the result of Water
is improved and more practical IBE scheme is proposed, the strategy for con-
structing a CBE would most probably be the same if the improved scheme made
use of BLS signatures and it could extend to a 2-HIBE. (We note that the notion
of second level IND-sID-CPA security is weaker that IND-ID-CPA security so
it is just necessary to extend the hypothetical new IBE scheme to a 2-HIBE to
follow our proof, in case the scheme of Boneh and Boyen [7] could not be used
in the second level). Given the previous existing HIBE or IBE schemes, the fact
that an improved IBE satisfies these requirements is not an unlikely event at
all.
Further, the strategy of our proof can be also used in other settings. For in-
stance, it would yield a fully secure SKIE-OT [4] scheme in the standard model
in a straightforward way.
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