
Sound Computational Interpretation of Formal

Hashes

Flavio D. Garcia and Peter van Rossum

Institute for Computing and Information Science
Radboud University Nijmegen

PO Box 9010, 6500 GL Nijmegen, The Netherlands

{flaviog,petervr}@sci.ru.nl
January 13, 2006

Abstract

This paper provides one more step towards bridging the gap between
the formal and computational approaches to cryptographic protocols. We
extend the well-known Abadi-Rogaway logic with probabilistic hashes and
we give precise semantic to it using Canetti’s oracle hashing. Finally, we
show that this interpretation is computationally sound.

1 Introduction

The analysis of security protocols is being carried out mainly by means of two
different techniques. On the one hand, from a logical perspective, messages
are seen as algebraic objects, generated by some grammar from elementary
objects such as keys, nonces, and constants. Cryptographic operations are seen
as algebraic operations and as perfect. Attackers are typically modelled as
so-called Dolev-Yao attackers [DY83], having total control over the network,
having no computational limitations, and being only (but absolutely) incapable
of breaking cryptographic operations. These logical methods are appealing,
because they are relatively easy to use and capture most mistakes commonly
made in security protocols.

On the other hand, from a complexity-theory perspective, messages are seen
as bit strings and cryptographic operations as functions on bit strings satisfy-
ing certain security properties [GB]. An attacker here is a resource bounded
probabilistic algorithm, limited by running time and/or memory, but capable
of breaking cryptographic operations if that is computationally feasible. The
complexity based methods are more general and more realistic, but also more
complex.

In the last few years much research has been done to relate these two per-
spectives [AR02, AJ01, MW04]. Such a relation takes the form of a function

1

mapping algebraic messages m to (distributions over) bit strings [[m]]. This
map then should relate messages that are observationally equivalent in the al-
gebraic world (meaning that a Dolev-Yao attacker can see no difference between
them) to indistinguishable distributions over bit strings (meaning that a com-
putationally bounded adversary can only with negligible probability distinguish
the distributions). Such a map allows one to use algebraic methods, possibly
even automated, to reason about security properties of protocols and have those
reasonings be valid also in the computational world.

The work carried out in the literature on relating these two perspectives deals
with encryption [AR02, MW04, AJ01] but never with hashes. The problem
with hashes is that in the algebraic world h(m) and h(m′) are indistinguishable
for a Dolev-Yao attacker if the attacker does not know m and m′. In the
computational world, however, the normal security definition — it must be
computationally infeasible to compute any pre-image of a hash value or a hash
collision [RS04] — does not guarantee that the hash function hides all partial
information about the message; hence there is no guarantee that [[h(m)]] and
[[h(m′)]] are computationally indistinguishable. A possible solution to this can
be found in the work of Canetti and others [Can97a, CMR98] on perfectly one-
way functions (a.k.a. oracle hashing). These are probabilistic hash functions
that hide all partial information.

Our contribution. We propose an extension to the commonly used Abadi-
Rogaway logic of algebraic messages introducing a probabilistic hash operator
hr(m) in the logic, next to the probabilistic symmetric encryption operator
{|m|}r

k. Just as the original logic introduces a ¤-operator to put in place of un-
decryptable ciphertext (for us ¤r, since we also deal with repetitions of cipher-
texts), we introduce a £r-operator to put in place of the hash of an unknown
message. In the computational world, we interpret h as a perfectly one-way
function and prove that the resulting interpretation is sound.

Overview. Section 2 introduces the message algebra, including the probabilis-
tic encryption and probabilistic hash operators. It also defines the observational
equivalence relation on messages. Section 3 then introduces the computational
world, giving the security definitions for encryption and hashes. In Section 4
the semantic interpretation [[−]] is defined and Section 5 proves the soundness
of this interpretation. Finally, Section 6 discusses further research directions.

2 The algebraic setting

This section describes the message space and the observational equivalence ex-
tending the well known Abadi-Rogaway logic [AR02] of algebraic messages.
These messages are used to describe cryptographic protocols and the observa-
tional equivalence tells whether or not two protocol runs are indistinguishable

2

for a global eavesdropper. Here a protocol run is simply the concatenation of
all the messages exchanged in the run.

Definition 2.1. Key is an infinite set of key symbols, Nonce an infinite set of
nonce symbols, Const a finite set of constant symbols, and Random an infinite
set of randomness labels. Keys are denoted by k, k′, . . . , nonces by n, n′, . . . ,
constants by c, c′, . . . , and randomness labels by r, r′, There is one special
key called k¤ and for every randomness label r there is a special nonce called
nr

£. Using these building blocks, messages are constructed using algebraic en-
cryption, hashing, and pairing operations:

Msg 3 m := c | k | n | {|m|}r
k | hr(m) | 〈m,m〉 | ¤r | £r .

Here k and n do not range over all keys/nonces, but only over the non-special
ones. Special symbols (¤r and £r) are used to indicate undecryptable cipher-
texts or hash values of unknown messages. When interpreting messages as
(ensembles of distributions over) bit strings, we will treat ¤r as if it were {|0|}r

k¤
and £r as if it were hr(nr

£).
A message of the form {|m|}r

k is called an encryption and the set of all such
messages is denoted by Enc. Similarly, messages of the form hr(m) are called
hash values and the set of all these messages is denoted by Hash. Finally Box
denotes the set of all messages of the form ¤r or £r. The set of all messages
that involve a “random choice” at their “top level”, i.e., Key ∪ Nonce ∪ Enc ∪
Hash ∪ Box, is denoted by RanMsg.

The closure of a set U of messages is the set of all messages that can be
constructed from U using tupling, detupling, encryption, and decryption. It
represents the information an adversary could deduce knowing U .

Definition 2.2 (Closure). Let U be a set of messages. The closure of U ,
denoted by U , is the smallest set of messages satisfying:

1. Const ⊆ U ;
2. U ⊆ U ;
3. m,m′ ∈ U =⇒ 〈m,m′〉 ∈ U ;
4. {|m|}r

k, k ∈ U =⇒ m ∈ U ;
5. 〈m, m′〉 ∈ U =⇒ m,m′ ∈ U .

For the singleton set {m}, we write m instead of {m}.
We define the function encpat : Msg → Msg as in Abadi-Rogaway [AR02]

which takes a message m and reduces it to a pattern. Intuitively this is the
pattern that an attacker sees in a message given that he knows the messages in

3

U . This function does not replace hashes.

encpat(m) = encpat(m,m)
encpat(〈m1,m2〉, U) = 〈encpat(m1, U), encpat(m2, U)〉

encpat({|m|}r
k, U) =

{ {|encpat(m,U)|}r
k, if k ∈ U ;

¤R({|m|}r
k), otherwise.

encpat(hr(m), U) = hr(encpat(m,U))
encpat(m,U) = m in any other case.

Here R : Enc ∪ Hash ↪→ Random is an injective function that takes an encryp-
tion or a hash value and outputs a tag that identifies its randomness. We need
this tagging function to make sure that the function encpat is injective. That
is, we need to make sure that distinct undecryptable messages get replaced by
distinct boxes and similarly for hashpat below.

Now we define the function hashpat : Msg → Msg which takes a message m
and reduces all hashes of unknown (not in U) sub-messages, to £. This function
does not replace encryptions.

hashpat(m) = hashpat(m,m)
hashpat(〈m1,m2〉, U) = 〈hashpat(m1, U), hashpat(m2, U)〉

hashpat({|m|}r
k, U) = {|hashpat(m,U)|}r

k

hashpat(hr(m), U) =
{

hr(hashpat(m,U)), if m ∈ U ;
£R(hr(m)), otherwise.

hashpat(m, U) = m in any other case.

Naturally, we now define pattern as pattern = encpat ◦ hashpat.

Example 2.3. Consider the message

m = 〈{|{|1|}r′
k′ , h

r̃(n)|}r
k, hr̂(k), k〉.

hashpat(m) = 〈{|{|1|}r′
k′ , £t |}r

k, hr̂(k), k〉, because n is not in m,Then

pattern(m) = 〈{| ¤s , £t |}r
k,hr̂(k), k〉, because k′ is not in m,and

where t = R(hr̃(n)), s = R({|1|}r′
k′).

Definition 2.4 (Observational equivalence). Two messages m and m′ are said
to be observationally equivalent, notation m ∼= m′, if there is a type preserving
permutation σ of Key∪Nonce∪Box such that pattern(m) = pattern(m′)σ. Here
pattern(m′)σ denotes the simultaneous substitution of x by σ(x) in pattern(m′),
for all x ∈ Key ∪Nonce ∪ Box.

From the original setting in [AR02] we inherit the requirement that messages
must be acyclic for the soundness result to hold.

Definition 2.5 (Acyclicity). Let m be a message and k, k′ two keys. The key
k is said to encrypt k′ in m if m has a submessage of the form {|m′|}r

k with

4

k′ being a submessage of m′. A message is said to be acyclic if there is no
sequence k1, k2, . . . , kn, kn+1 = k1 of keys such that ki encrypts ki+1 in m for
all i ∈ {1, . . . , n}.

3 The computational setting

This section gives a brief overview of the concepts used in the complexity the-
oretic approach to security protocols. Much of this is standard; the reader
is referred to [GB, BDJR97] for a thorough treatment of the basic concepts,
to [AR02] for the notion of type-0 security for cryptographic schemes (see Sec-
tion 3.2 below), and to [Can97a] for the notion of oracle hashing (see Section 3.3
below).

In the computational world, messages are elements of Str := {0, 1}∗. Cryp-
tographic algorithms and adversaries are probabilistic polynomial-time algo-
rithms. When analyzing cryptographic primitives, it is customary to consider
probabilistic algorithms that take an element in Param := {1}∗ as input, whose
length scales with the security parameter. By making the security parameter
large enough, the system should become arbitrary hard to break.

This idea is formalized in the security notions of the cryptographic opera-
tions. The basic one, which is what is used to define the notion of semantically
equivalent messages, is that of computational indistinguishability of probability
ensembles over Str. Here a probability ensemble over Str is a sequence {Aη}η∈N
of probability distributions over Str indexed by the security parameter.

Definition 3.1 (Computational indistinguishability). Two probability ensem-
bles {Aη}η and {Bη}η are computationally indistinguishable if for every proba-
bilistic polynomial-time algorithm A, for all polynomials p, and for large enough
η,

P[x $← Aη; A(1η, x) = 1]− P[x $← Bη; A(1η, x) = 1] <
1

p(η)
.

After a brief interlude on probabilistic polynomial-time algorithms in Sec-
tion 3.1, we give the formal definition of an encryption scheme and its security
notion in Section 3.2 and of oracle hashing in Section 3.3.

3.1 Probabilistic algorithms

In Definition 3.1, the notion of probabilistic polynomial-time algorithm was
already used. Doubtlessly, the reader will know what these are. Nevertheless,
because we explicitly use two different views of these algorithms and in order
to fix notation, we give a more precise definition.

Definition 3.2. Coins is the set {0, 1}ω, the set of all infinite sequences of 0’s
and 1’s. We equip Coins with the probability distribution obtained by flipping
a fair coin for each element in the sequence.

5

Definition 3.3. A probabilistic algorithm A can be seen as a Turing machine
with access to special “coin flip” operation, writing with equal probability a 0
or 1 on the tape. The result A(x) of running the machine on an input x ∈ Str is
then a probability distribution over Str. Alternatively and equivalently, it can
be seen as a Turing machine with two tapes, the second of which is filled with
a random sequence of 0’s and 1’s and used as source for the “coin flips”. The
result of running such a two-tape machine on x is the probability distribution
over Str obtained by choosing the contents of the second tape according to
Coins. When we need to explicitly write the randomness used when running
A, we write A(x, ρ) with ρ ∈ Coins. Using this notation, A(x) and [ρ $←
Coins; A(x, ρ)] are the same probability distribution. When confusion is unlikely,
we will also denote the support of this probability distribution, {y ∈ Str|P[ρ $←
Coins; A(x, ρ = y)] > 0}, by A(x).

A probabilistic Turing machine is said to run in polynomial time if there
exists a polynomial p such that for all inputs x the machine terminates within
p(|x|) steps, regardless of the coin flips/contents of the second tape. Now such
a probabilistic polynomial-time Turing machine can also be seen as an ordinary
deterministic Turing machine with two (finite) inputs x and y (either on one tape
or on two tapes). The result of running the machine on x is then the probability
distribution obtained by choosing y uniformly from {0, 1}q(|x|) for a suitably
large polynomial q (say, q = p, the running time). Letting Coinsp(|x|) denote
the uniform probability distribution on {0, 1}p(|x|), we get that the probability
distribution A(x) can also be written as [ρ $← Coinsp(|x|); A(x, ρ)].

3.2 Encryption scheme

For each security parameter η ∈ N we let Plaintextη ⊆ Str be a non-empty set
of plaintexts, satisfying that for each η ∈ N : Plaintextη ⊆ Plaintextη+1 as in
Goldwasser and Belare [GB]. Let us define Plaintext =

⋃
η Plaintextη. There is

a set Keys ⊆ Str of keys and also a set Ciphertext ⊆ Str of ciphertexts. Further-
more, there is a special bit string ⊥ not appearing in Plaintext or Ciphertext.
An encryption scheme Π consists of three algorithms:

1. a (probabilistic) key generation algorithm K : Param → Keys that out-
puts, given a unary sequence of length η, a randomly chosen element of
Keys;

2. a (probabilistic) encryption algorithm E : Keys× Str → Ciphertext∪ {⊥}
that outputs, given a key and a bit string, a possibly randomly chosen
element from Ciphertext or ⊥;

3. a (deterministic) decryption algorithm D : Keys× Str → Plaintext ∪ {⊥}
that outputs, given a key and a ciphertext, an element from Plaintext or
⊥.

These algorithms must satisfy that the decryption (with the correct key) of a
ciphertext returns the original plaintext. The element ⊥ is used to indicate
failure of en- or decryption, although there is no requirement that decrypting
with the wrong keys yields ⊥.

6

Now we define type-0 security of an encryption scheme as in [AR02] , which
is a variant of the standard semantic security definition, enhanced with some
extra properties. In particular a type-0 secure encryption scheme is which-key
concealing, repetition concealing and length hiding. We refer to the original
paper for motivation and explanations on how to achieve such an encryption
scheme.

Definition 3.4. An adversary (for type-0 security) is a probabilistic polyno-
mial-time algorithm AF(−),G(−) : Param → {0, 1} having access to two prob-
abilistic oracles F ,G : Str → Str. The advantage of such an adversary is the
function AdvA : N→ R defined by

AdvA(η) = P[κ, κ′ $← K(1η); AE(κ,−),E(κ′,−)(1η) = 1]−
P[κ $← K(1η); AE(κ,0),E(κ,0)(1η) = 1].

Here the probabilities are taken over the choice of κ and κ′ by the key generation
algorithm, over the choices of the oracles, and over the internal choices of A.
An encryption scheme 〈K, E ,D〉 is called type-0 secure if for all polynomial-time
adversaries A as above, the advantage AdvA is a negligible function of η. This
mean that for all positive polynomials p and for large enough η, AdvA(η) ≤ 1

p(η) .

In the sequel we need an extra assumption on the encryption scheme, namely
that the ciphertexts are well-spread as a function of the coins tosses of E . It
means that for all plaintexts µ and all keys κ, no ciphertext is exceptionally
likely to occur as the encryption of µ under κ. Note that this not follow from,
nor implies type-0 security; also note that every encryption scheme running in
cipherblock chaining mode automatically has this property.

Definition 3.5 (Well-spread). An encryption scheme 〈K, E ,D〉 is said to be
well-spread if for every polynomial p

∀η À 1.∀x ∈ Ciphertext.∀κ ∈ K(1η).∀µ ∈ Plaintextη : P[E(κ, µ) = x] <
1

p(η)
.

3.3 Oracle hashing

The underlying secrecy assumptions behind formal or Dolev-Yao hashes [DY83]
are very strong. It is assumed that given a hash value f(x), it is not possible for
an adversary to learn any information about the pre-image x. In the literature
this idealization is often modelled with the random oracle [BR93]. Such a prim-
itive is not computable and therefore it is also an idealization. Practical hash
functions like SHA or MD5 are very useful cryptographic primitives even though
this functions might leak partial information about their input. Moreover, un-
der the traditional security notions (one-wayness), a function that reveals half
of its input is considered secure. In addition, any deterministic hash function
f leaks partial information about x, namely f(x). Through this paper we con-
sider a new primitive introduced by Canetti [Can97a] called oracle hashing, that

7

mimics what semantic security is for encryption schemes. This hash function is
probabilistic and therefore it needs a verification function, just as in a signature
scheme. A hash scheme consists of two algorithms H and V. The probabilistic
algorithm H : Param × Str → Str takes a unary sequence and a message and
outputs a hash value; the verification algorithm V : Str×Str → {0, 1} that given
two messages x and c correctly decides whether c is a hash of x or not. As an
example we reproduce here a hash scheme proposed in the original paper. Let
p be a large (i.e., scaling with η) safe prime. Take H(x) = 〈r2, r2·h(x) mod p〉,
where r is a randomly chosen element in Z∗p and h is any collision resistent prac-
tical hash function. The verification algorithm V(x, 〈a, b〉) just checks whether
b = ah(x) mod p. We refer to Canetti [Can97a] for security notions for a hash
scheme, like collision freeness, secrecy and oracle indistinguishability. The latter
is used here and is defined as follows.

Definition 3.6. A hash scheme 〈H,V〉 is said to be oracle indistinguishable if for
every family of probabilistic polynomial-time predicates {Dη : Str → {0, 1}}η∈N
and every positive polynomial p there is a polynomial size family {Lη}η∈N of
subsets of Str such that for all large enough η and all x, y ∈ Str \ Lη:

P[Dη(H(1η, x)) = 1]− P[Dη(H(1η, y)) = 1] <
1

p(η)
.

Here the probabilities are taken over the choices made by H and the choices
made by Dη. This definition is the non-uniform [Gol01] version of oracle in-
distinguishability proposed by Canetti [Can97a] as it is finally used throughout
the proof (See the full version [Can97b] Appendix B).

In the sequel we also need an extra assumption on the hash scheme, namely
that the hash-values are well-spread. Formally

Definition 3.7 (Well-spread). A hash scheme 〈H,V〉 is said to be well-spread
if for every polynomial p,

∀η À 1.∀x, µ ∈ Str : P[H(1η, µ) = x] <
1

p(η)
.

Note that any hash function H with public randomness, like the one in the
example, fulfills this requirement.

4 Interpretation

Section 2 describes a setting where messages are algebraic terms generated by
some grammar. In Section 3 messages are bit strings and operations are given by
probabilistic algorithms operating on bit strings. This section shows how to map
algebraic messages to (distributions over) bit strings. This interpretation is very
much standard. We refer to [AR02, AJ01, MW04] for a thorough explanation. In
particular this section introduces notation that allows us to assign, beforehand,
some of the random coin flips used for the computation of the interpretation of
a message. This notation becomes useful throughout the soundness proof.

8

Definition 4.1. For every message m and set of messages V we define the set
R(m,V) ⊆ RanMsg of random messages in m relative to V as follows:

if m ∈ V , then R(m,V) = ∅
otherwise R(c, V) = ∅

R(n, V) = {n}
R(k, V) = {k}

R({|m|}r
k, V) = R(m,V) ∪ {k, {|m|}r

k}
R(hr(m), V) = R(m,V) ∪ {hr(m)}

R(〈m1,m2〉, V) = R(m1, V) ∪ R(m2, V)
R(¤r, V) = {k¤, ¤r}
R(£r, V) = {nr

£, £r}

The set of random messages in m is defined as R(m) := R(m, ∅) and the set of
random messages in m relative to m′ as R(m,m′) := R(m, {m′}).

Note that R(m) is nearly equal to the set of all sub-messages of m that
are in RanMsg; the only difference is that R(m) also may contain the special
key k¤ or special nonces nr

£. When interpreting a message m as (ensembles
of distributions over) bit strings (Definition 4.4 below), we will first choose a
sequence of coin flips for all elements of R(m) and use these sequences as source
of randomness for the appropriate interpretation algorithms.

Also note that R(m,m′) is the set of all random messages in m except those
that only occur as a sub-message of m′ (see Definition 4.5 below).

Example 4.2. Let m be the message 〈k, {|0|}r
k, hr′({|0|}r

k, n), n′〉 and let m̃ be
the message inside the hash: 〈{|0|}r

k, n〉. Then the randomness in m is R(m) =
{k, {|0|}r

k, hr′({|0|}r
k, n), n′, n}, the randomness inside the hash is R(m̃) = {{|0|}r

k,

k, n}, and the randomness that occurs only outside the hash is R(m, hr′(m̃)) =
R(m) \ {hr′(m̃), n}. The randomness that is shared between the inside of the
hash and the outside of the hash is R(m,hr′(m̃)) ∩ R(m̃) = {{|0|}r

k}.
Definition 4.3. For every finite set X we define Coins(X) as {τ : X → Coins}.
We equip Coins(X) with the induced product probability distribution. Further-
more, for every message m we write Coins(m) instead of Coins(R(m)).

An element of τ of Coins(m) gives, for every sub-message m′ of m that
requires random choices when interpreting this sub-message as a bit string, an
infinite sequence τ(m′) of coin flips that will be used to resolve the randomness.

Now we are ready to give semantic to our message algebra. We use E to
interpret encryptions, K to interpret key symbols, and H to interpret for hashes.
We let C : Const → Str be a function that (deterministically) assigns a constant
bit string to each constant identifier. We let N : Param → Str be the nonce
generation function that, given a unary sequence of length η, chooses uniformly
and randomly a bit string from {0, 1}η.

9

Definition 4.4. For a message m, a value of the security parameter η ∈ N, a
finite set U of messages containing R(m), and for a choice τ ∈ Coins(U) of (at
least) all the randomness in m, we can (deterministically) create a bit string
[[m]]τη ∈ Str as follows:

[[c]]τη = C(c)
[[k]]τη = K(1η, τ(k))

[[n]]τη = N (1η, τ(n))

[[{|m|}r
k]]τη = E([[k]]τη , [[m]]τη , τ({|m|}r

k))

[[hr(m)]]τη = H(1η, [[m]]τη , τ(hr(m)))

[[〈m1, m2〉]]τη = [[m1]]
τ
η [[m2]]

τ
η

[[¤r]]τη = E([[k¤]]τη , C(0), τ(¤r))

[[£r]]τη = H(1η, [[nr
£]]τη , τ(£r)

Note that [[m]]τη = [[m]]τ |R(m)
η .

For a fixed message m and η ∈ N, choosing τ from the probability distribu-
tion Coins(R(m)) creates a probability distribution [[m]]η over Str:

[[m]]η := [τ $← Coins(m); [[m]]τη].

Note that although the codomain of τ ∈ Coins(m) is Coins, the set of infinite
bit strings, when interpreting a fixed message m at a fixed value of the security
parameter η, only a predetermined finite initial segment of each sequence of coin
flips will be used by K, N , E , and H (cf. Definition 3.3). Denoting by Coinsη(m)
the probability distribution (on {τ : R(m) → Str}) that is actually being used
when computing [[m]]η, we could also write

[[m]]η = [τ $← Coinsη(m); [[m]]τη].

Furthermore, letting η range over N creates an ensemble of probability distri-
butions [[m]] over Str:

[[m]] := {[[m]]η}η∈N.

Definition 4.5. We will also need a way of interpreting a message as a bit
string when the interpretation of certain sub-messages has already been chosen
in some other way. For this, let e be a function from some set Dom(e) ⊆ Pat
to Str and let τ ∈ Coins(U,Dom(e)) with U a finite set of messages containing

10

R(m). We interpret a message m using e whenever possible and τ otherwise:

if m ∈ Dom(e), then [[m]]e,τ
η = e(m)

otherwise [[c]]e,τ
η = C(c)

[[k]]e,τ
η = K(1η, τ(k))

[[n]]e,τ
η = N (1η, τ(n))

[[{|m|}r
k]]e,τ

η = E([[k]]τη , [[m]]e,τ
η , τ({|m|}r

k))

[[hr(m)]]e,τ
η = H(1η, [[m]]e,τ

η , τ(hr(m)))

[[〈m1,m2〉]]e,τ
η = [[m1]]

e,τ
η [[m2]]

e,τ
η

[[¤r]]e,τ
η = E([[k¤]]e,τ

η , C(0), τ(¤r))

[[£r]]e,τ
η = H(1η, [[nr

£]]e,τ
η , τ(£r)).

Definition 4.6. We also need a way of pre-specifying some of the random
choices to be made when interpreting a message. For this, let τ ∈ Coins(U)
for some finite set of messages U . Then for every η ∈ N and every message m,
the distribution [[m]]τη is obtained by randomly choosing coins for the remaining
randomness labels in m. Formally,

[[m]]τη := [τ ′ $← Coins(R(m) \ U); [[m]]τ∪τ ′

η],

where τ ∪ τ ′ ∈ Coins(m) denotes the function which agrees with τ on U ∩R(m)
and with τ ′ on R(m) \ U .

This can also be combined with the previous way of preselecting a part
of the interpretation. For a function e from a set Dom(e) ⊆ Pat to Str and
τ ∈ Coins(U) as above, we define

[[m]]e,τ
η := [τ ′ $← Coins(R(m) \ U); [[m]]e,τ∪τ ′

η].

5 Soundness

This section shows that the interpretation proposed in the previous section is
computationally sound. Throughout this section we assume that the encryption
scheme 〈K, E ,D〉 is type-0 secure, that the probabilistic hash scheme 〈H,V〉 is
oracle indistinguishable, and that both are well-spread.

The following lemma uses all these assumptions. It claims that if you pre-
specify some, but not all, of the sequences of coins to be chosen when interpreting
a message m, then no single bit string x is exceptionally likely to occur as the
interpretation of m.

Lemma 5.1. Let m be a message, U R(m). Let p be a positive polynomial.
Then

∀η À 1.∀τ ∈ Coins(U).∀x ∈ Str.P[α $← [[m]]τη ;α = x] <
1

p(η)
.

11

Proof. The proof follows by induction on the structure of m.
• If m is a nonce n, then U = ∅ since it must be a proper subset of R(n) =

{n}. Then P[α $← [[n]]τη ;α = x] = 1
2η < 1

p(η) .
• If m is a key k, then again U = ∅. Suppose that for infinitely many η

there is a τ ∈ Coins(U) and an x ∈ Str for which

P[α $← [[k]]τη ; α = x] = P[α $← K(1η); α = x] ≥ 1
p(η)

. (1)

Now we build an adversary AF(−),G(−) : Param → {0, 1} that breaks type-0
security.

algorithm AF(−),G(−)(1η) :

ν
$← N (1η)

ε
$← F(ν)

κ
$← K(1η)

if D(κ, ε) = ν then return 1
else return 0

This adversary generates a random nonce ν and gives it to the oracle F to
encrypt. The adversary tries to guess if the oracle was instantiated with E(k,−)
or with E(k, 0) by simply randomly generating a key itself and trying to decrypt.
We will show that the probability that the oracle and the adversary choose the
same key non-negligible and hence the probability that this adversary guesses
correctly is also non-negligible. Omitting G as it is not used by A, we get

AdvA(η)

= P[κ $← K(1η); ν $← N (1η); ε $← E(κ, ν); κ′ $← K(1η);D(κ′, ε) = ν]

− P[κ $← K(1η); ν $← N (1η); ε $← E(κ, 0); κ′ $← K(1η);D(κ′, ε) = ν]

≥ P[κ, κ′ $← K(1η); κ = κ′]

−
∑

y∈{0,1}η

P[ν $← N (1η); y = ν] · P[κ, κ′ $← K(1η);D(κ′, E(κ, 0)) = y]

(because it is always possible to decrypt with the proper key)

≥ 1
p(η)2

− 2−η
∑

y∈{0,1}η

P[κ, κ′ $← K(1η); ε $← E(κ, 0);D(κ′, ε) = y]

(bounding the first term by the probability of getting x two times)

≥ 1
p(η)2

− 2−η
∑

κ0,κ′0,ε0

(
P[κ, κ′ $← K(1η); κ = κ0; κ′ = κ′0; E(κ, 0) = ε0]

·
∑

y∈{0,1}η

P[D(κ′0, ε0) = y]
)

≥ 1
p(η)2

− 2−η ≥ 1
p(η)3

(for large enough η).

12

• Consider the case m = 〈m1,m2〉. We get by induction hypothesis that
the statement holds either for m1 or m2, which suffices for the proof given that
concatenating a bit string might just lower the probability of hitting a particular
element.

• The cases m = {|m1|}r
k, m = hr(m1), £r and ¤r are trivial due to well-

spreadness (Definitions 3.5 and 3.7).
• The case m = c does not occur since U must be a proper subset of R(c) =

∅.
Theorem 5.2. Let m be a message with a sub-message of the form hr(m̃).
Assume that m̃ 6∈ m. Take m′ := m[hr(m̃) := £s], where s = R(hr(m̃)). Then
[[m]] ≡ [[m′]].

Proof. Assume that [[m]] 6≡ [[m′]], say A : Param×Str → {0, 1} is a probabilistic
polynomial-time adversary and p a positive polynomial such that

1
p(η)

≤ P[µ $← [[m]]η; A(1η, µ)]− P[µ $← [[m′]]η; A(1η, µ)] (2)

for infinitely many η ∈ N. We will use this to build a distinguisher as in
Definition 3.6 that breaks oracle indistinguishability of 〈H,V〉.

Let η ∈ N, abbreviate R(m, m̃) ∩ R(m̃) to U and let τ ∈ Coins(U). Note
that τ chooses coin flips for the randomness that occurs both inside and outside
the hash. Then define a probabilistic polynomial-time algorithm Dτ

η : {0, 1}∗ →
{0, 1} as follows:

algorithm Dτ
η(α) :

µ
$← [[m]]{h

r(m̃)7→α},τ
η

β
$← A(1η, µ)

return β

This algorithm tries to guess if a given bit string α was drawn from [[hr(m̃)]]τη
or from [[£s]]τη = [[hs(ns

£)]]τ
η
. It does so by computing an interpretation for m,

where it forces the interpretation of the sub-message hr(m̃) to be α and where
it forces randomness that is shared between the inside of the hash (m̃) and the
rest of the message to be resolved using hard-coded sequences of coin flips τ .
It then uses the adversary A to guess if the resulting interpretation was drawn
from [[m]]η (in which case it guesses that α was drawn from [[hr(m̃)]]η) or from
[[m′]]η (in which case it guesses that α was drawn from [[£s]]η).

Even though τ has values in Coins, i.e., infinite strings, this is still a well-
defined probabilistic polynomial-time algorithm, as it uses only a finite, pre-
determined amount of bits from τ (cf. Definitions 3.3 and 4.4). However,
(1η, α) 7→ Dτ

η(α) would not be a well-defined probabilistic polynomial-time al-
gorithm.

13

Now consider one of the infinitely many values of η for which (2) holds.
Using Dτ

η we can rephrase (2) as follows:

1
p(η)

≤ P[τ $← Coinsη(U), α $← [[hr(m̃)]]τη ; Dτ
η(α) = 1]−

P[τ $← Coinsη(U), α $← [[£s]]τη ; Dτ
η(α) = 1]

=
∑

τ∈Coinsη(U)

(
P[α $← [[hr(m̃)]]τη ; Dτ

η(α) = 1]−

P[α $← [[£s]]τη ; Dτ
η(α) = 1]

)
· P[T $← Coinsη(U); T = τ]

=
∑

τ∈Coinsη(U)

(
P[α $← [[m̃]]τη ; Dτ

η(H(1η, α)) = 1]−

P[α $← [[ns
£]]τη ;Dτ

η(H(1η, α)) = 1]
)
· P[T $← Coinsη(U); T = τ].

Note that τ selects the randomness that is shared between the inside of the hash
and the outside of the hash; when α is drawn from [[m̃]]τη the randomness that
appears only inside the hash is chosen (and the assumption on m̃ means that
there is really something to choose); H chooses the randomness for taking the
hash; and Dτ

η itself resolves the randomness that appears only outside the hash.
This means there must be a particular value of τ , say τ̄η, such that

1
p(η)

≤ P[α $← [[m̃]]τ̄η

η ; Dτ̄η
η (H(1η, α)) = 1]− P[α $← [[ns

£]]τ̄η

η ;Dτ̄η
η (H(1η, α)) = 1].

(3)

Gathering all D
τ̄η
η together for the various values of η, let D be the non-

uniform adversary {Dτ̄η
η }η∈N. Note that we have not actually defined D

τ̄η
η for

all η, but only for those (infinitely many) for which (2) actually holds. What D
actually does for the other values of η is irrelevant.

We will now show that D breaks the oracle indistinguishability of 〈H,V〉.
For this, let L = {Lη}η∈N be a polynomial size family of subsets of Str. We have
to show that for infinitely many values of η, there are x, y ∈ Str \ Lη such that
D meaningfully distinguishes between H(1η, x) and H(1η, y). To be precise, we
will see that there are x, y ∈ Str \ Lη such that

1
2p(η)

≤ P[Dτ̄η
η (H(1η, x)) = 1]− P[Dτ̄η

η (H(1η, y))].

Once again, take one of the infinitely many values of η for which (2) holds.

14

Continuing from (3) we get

1

p(η)
≤

X

α∈[[m̃]]
τ̄η
η

P[Dτ̄η
η (H(1η, α)) = 1] · P[[[m̃]]τ̄η

η = α]

−
X

α∈[[ns
£]]τ̄η

η

P[Dτ̄η
η (H(1η, α)) = 1] · P[[[ns

£]]τ̄η
η = α]

=
X

α∈[[m̃]]
τ̄η
η ∩Lη

P[Dτ̄η
η (H(1η, α)) = 1] · P[[[m̃]]τ̄η

η = α]

+
X

α∈[[m̃]]
τ̄η
η \Lη

P[Dτ̄η
η (H(1η, α)) = 1] · P[[[ns

£]]τ̄η
η = α]

−
X

α∈[[ns
£]]τ̄η

η
∩Lη

P[Dτ̄η
η (H(1η, α)) = 1] · P[[[m̃]]τ̄η

η = α]

−
X

α∈[[ns
£]]τ̄η

η
\Lη

P[Dτ̄η
η (H(1η, α)) = 1] · P[[[ns

£]]τ̄η
η = α]

(splitting cases on ∈ Lη and 6∈ Lη)

≤ P[[[m̃]]τ̄η
η ∈ Lη] +

X

α∈[[m̃]]
τ̄η
η \Lη

P[Dτ̄η
η (H(1η, α)) = 1] · P[[[m̃]]τ̄η

η = α]

−
X

α∈[[ns
£]]τ̄η

η
\Lη

P[Dτ̄η
η (H(1η, α)) = 1] · P[[[ns

£]]τ̄η
η = α]

(approximating the first sum by the size of Lη and leaving out the third)

≤ 1

2p(η)
+

X

α∈[[m̃]]
τ̄η
η \Lη

P[Dτ̄η
η (H(1η, α)) = 1] · P[[[m̃]]τ̄η

η = α]

−
X

α∈[[ns
£]]τ̄η

η
\Lη

P[Dτ̄η
η (H(1η, α)) = 1] · P[[[ns

£]]τ̄η
η = α]

(by Lemma 5.1 using the polynomial 2p(η)|Lη|, provided that η is large)

≤ 1

2p(η)
+

X

α∈[[m̃]]
τ̄η
η \Lη

β∈[[ns
£]]τ̄η

η
\Lη

h“
P[Dτ̄η

η (H(1η, α)) = 1]− P[Dτ̄η
η (H(1η, β)) = 1]

”

· P[[[m̃]]τ̄η
η = α] · P[[[ns

£]]τ̄η
η = β]

i

(since
X

α∈[[m]]
τ̄η
η \Lη

P[[[m̃]]τ̄η
η = α] ≤ 1 and similarly for [[ns

£]]τ̄η
η)

In particular, there must be an x ∈ [[m̃]]τ̄η

η \ Lη and a y ∈ [[ns
£]]τ̄η

η
\ Lη such

that
1

2p(η)
≤ P[Dτ̄η

η (H(1η, x)) = 1]− P[Dτ̄η
η (H(1η, y))].

Hence D breaks oracle indistinguishability, contradicting the assumption on
〈H,V〉.

15

Theorem 5.3 (Abadi-Rogaway). Let m be an acyclic message. Then [[m]] ≡
[[encpat(m)]].

Proof. The proof follows just like in Abadi-Rogaway [AR02]. Note that encpat
does not replaces the hashes themselves. We refer the reader to the original
paper for a full proof.

Theorem 5.4 (Soundness). Let m and m′ be acyclic messages. Then m ∼=
m′ =⇒ [[m]] ≡ [[m′]].

Proof. The assumption that m ∼= m′ means that there is a permutation σ
of Key ∪ Nonce ∪ Box such that pattern(m) = pattern(m′)σ. Therefore we get
[[pattern(m)]] ≡ [[pattern(m′)]]. By definition of pattern, [[encpat ◦ hashpat(m)]] ≡
[[encpat ◦ hashpat(m′)]]. Now, by applying Theorem 5.3 two times, we obtain
[[hashpat(m)]] ≡ [[hashpat(m′)]]. Finally, by repeatedly applying Theorem 5.2 on
both sides we get [[m]] ≡ [[m′]].

6 Conclusions and future work

We have proposed an interpretation for formal hashes that is computationally
sound. For the proof we consider non-uniform adversaries and the assump-
tion that the encryption and hash schemes are well-spread. Further research
directions include proving completeness, for collision free hash systems.

7 Acknowledgements

We are thankful to David Galindo for providing the reference to [Can97a] and
insightful comments.

References

[AJ01] Mart́ın Abadi and Jan Jürjens. Formal eavesdropping and its com-
putational interpretation. In N. Kobayashi and B. Pierce, editors,
Proceedings of the Fourth International Symposium on Theoretical
Aspects of Computer Software, volume 2215 of Lecture Notes in Com-
puter Science, pages 82–94. Springer, 2001.

[AR02] Mart́ın Abadi and Phillip Rogaway. Reconciling two views of cryptog-
raphy (the computational soundness of formal encryption). Journal
of Cryptology, 15(2):103–127, 2002.

[BDJR97] Mihir Bellare, Anand Desai, Eron Jokipii, and Philip Rogaway. A
concrete security treatment of symmetric encryption. In 38th Annual
Symposium on Foundations of Computer Science (FOCS ’97), pages
394–405. IEEE, 1997.

16

[BR93] M. Bellare and P. Rogaway. Random oracles are practical: A
paradigm for designing efficient protocols. In Proceedings of the 1st
ACM CCS, pages 62–73. ACM Press, 1993.

[Can97a] Ran Canetti. Towards realizing random oracles: Hash functions that
hide all partial information”. In Burt Kaliski, editor, Proceedings
CRYPTO ’97, pages 455–469. Springer-Verlag, 1997. Lectures Notes
in Computer Science No. 1294.

[Can97b] Ran Canetti. Towards realizing random oracles: Hash functions
that hide all partial information. Cryptology ePrint Archive, Re-
port 1997/007, 1997. http://eprint.iacr.org/.

[CMR98] Ran Canetti, Danielle Micciancio, and Omer Reingold. Perfectly one-
way probabilistic hash functions (preliminary version). In Proceed-
ings of the thirtieth annual ACM symposium on theory of computing
(STOC ’98), pages 131–140. ACM, 1998.

[DY83] D. Dolev and A. Yao. On the security of public key protocols. IEEE
Transactions on Information Theory, 29(2):198–208, 1983.

[GB] Shafi Goldwasser and Mihir Bellare. Lecture Notes on Cryptography.

[Gol01] Oded Goldreich. Foundations of Cryptography, volume 1. Cambridge
University Press, 2001.

[MW04] Daniele Micciancio and Bogdan Warinschi. Completeness theorems
of the Abadi-Rogaway logic of encrypted expressions. Journal of
Computer Security, 12(1):99–129, 2004.

[RS04] Phillip Rogaway and Thomas Shrimpton. Cryptographic hash-
function basics: Definitions, implications, and separations for preim-
age resistance, second-preimage resistance, and collision resistance.
In FSE, pages 371–388, 2004.

17

