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Abstract. It has been noted recently that algebraic (annihilator) immu-
nity alone does not provide sufficient resistance against algebraic attacks.
In this regard, given a Boolean function f , just checking the minimum
degree annihilators of f, 1 + f is not enough and one should check the
relationsips of the form fg = h, and a function f , even if it has very
good algebraic immunity, is not necessarily good against fast algebraic
attack, if degree of g becomes very low when degree of h is equal to or
little greater than the algebraic immunity of f . In this paper we theo-
retically study the two currently known constructions having maximum
possible algebraic immunity from this viewpoint. To the end, we also ex-
perimentally study some cryptographically significant functions having
good algebraic immunity.
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1 Introduction

Algebraic attack and fast algebraic attack have recently received a lot of at-
tention in cryptographic literature [3, 4, 15–19, 24, 27]. The study on algebraic
attack identified an important property for Boolean functions to be used in
crypto systems, which is called algebraic immunity [27, 21]. Using good alge-
braic immunity one may achieve resistance against algebraic attacks done in a
particular way, i.e., using linearization. In fact, one may not need linearization
if algorithms using Gröbner bases can be properly exploited. This is the reason
in one of the recent papers [23], the term annihilator immunity is used instead
of algebraic immunity. Further it should be noted that based on some recent
works related to fast algebraic attacks [2, 19, 9, 1], one should concentrate more
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carefully on the design parameters of Boolean functions for proper resistance.
The weakness of algebraic (annihilator) immunity against fast algebraic attack
has been demonstrated in [20] by mounting an attack on SFINKS [8].

Let Bn be the set of all Boolean functions {0, 1}n → {0, 1} on n input
variables. One may refer to [21] for the definitions of truth table, algebraic normal
form (ANF), algebraic degree (deg), weight (wt), nonlinearity (nl) and Walsh
spectrum of a Boolean function.

The ANF of a Boolean function can be considered as a multivariate polyno-
mial over GF(2). It is shown in [18] that, given any n-variable Boolean function
f , it is always possible to get a Boolean function g with degree at most dn

2 e such
that fg has degree at most dn

2 e. Thus, while choosing a function f , the cryp-
tosystem designer should be careful that it should not happen that the degree
of fg falls much below dn

2 e with a nonzero function g whose degree is also much
below dn

2 e.

Definition 1. Given f ∈ Bn, define AN(f) = {g ∈ Bn| f∗g = 0}. Any function
g ∈ AN(f) is called an annihilator of f .

Note that we are mostly interested in the lowest degree nonzero annihilator.

Definition 2. Given f ∈ Bn, its algebraic immunity is defined as [21] the min-
imum degree of all nonzero annihilators of f or f + 1, and it is denoted by
AIn(f).

Note that AIn(f) ≤ deg(f), since f ∗ (1 + f) = 0. It can also be deduced
from [18] that AIn(f) ≤ dn

2 e. Boolean functions and related results with alge-
braic (annihilator) immunity has currently received serious attention [5–7, 10, 11,
14, 12, 21–23, 27, 25] and the first two constructions of Boolean functions having
maximum algebraic (annihilator) immunity is presented in [22, 23].

Now consider a function f with maximum possible algebraic immunity dn
2 e.

It may very well happen that in that case fg = h, where deg(h) = dn
2 e, but

deg(g) < dn
2 e. In that case the lower degree of g may be exploited to mount a

fast attack (well known as fast algebraic attack) even if the algebraic immunity
of f is the maximum possible. In fact, there are examples, where one can get
a linear g too. Initial study of Boolean functions in this area has been started
in [9, 1]. Since algebraic immunity is now understood as a necessary (but not
sufficient) condition against resisting algebraic and fast algebraic attacks, we
feel there is a need to consider the functions with full algebraic immunity for
their performance in terms of fg = h relationship. That is for the functions f
with full algebraic immunity we consider deg(h) ≥ dn

2 e, and then after fixing the
degree of h, we try to get the minimum degree g.

It is always meaningful to consider fg = h only when deg(g) ≤ deg(h) as
otherwise fg = h will imply fh = h. So for all the discussion in this paper we
will consider deg(g) ≤ deg(h) for a relation fg = h unless mentioned otherwise.

In the next subsection we present a few preliminary technical results. In
Section 2, we study the construction presented in [22]. In Section 3, we explore
the symmetric and rotation symmetric functions. We also study the (modified)
balanced Patterson-Wiedemann type functions in this direction [28, 29, 26].



1.1 Preliminary technical results

Proposition 1. Consider an n-variable (n odd) function f having AIn = dn
2 e.

Then there will always exist g, h, such that fg = h, where deg(g) = bn
2 c and

deg(h) = dn
2 e.

Proof. By [19, Theorem 7.2.1], we know that there always exists g, h, such that
fg = h, with deg(g)+deg(h) = n. Thus, if we fix deg(g) = bn

2 c and deg(h) = dn
2 e,

we get the required result. ut

Note that this always means that even if a function on odd number of variables
n has full algebraic immunity dn

2 e, one will always get a g one degree lower than
that. However, for even n, this may or may not be true. In this paper we will
show that given a Boolean function on n variables with full algebraic immunity
n
2 , one may or may not get a g having degree < n

2 such that fg = h when
deg(h) = n

2 .

Proposition 2. Consider an n-variable function f . Consider the relationship
fg = h, such that deg(h) = AIn(f). Then if degree of g < AIn(f) then both
f, 1 + f have minimum degree annihilators at degree AIn(f).

Proof. It is clear that at least one of f or 1+f will have an annihilator at degree
AIn(f). Without loss of generality, consider that f has the minimum degree
annihilator at degree AIn(f) and 1 + f has the minimum degree annihilator at
degree ν ≥ AIn(f). Consider the relations of the form fg = h, when deg(g) <
deg(h). From [9, Lemma 1], fg = h iff f(g + h) = 0 & (1 + f)h = 0. As
deg(g) < deg(h), we have deg(g + h) = deg(h) = AIn(f). Thus 1 + f has an
annihilator at degree AIn(f). ut

The following corollary is immediate from Proposition 2.

Corollary 1. Let only one of f, 1+f has minimum degree annihilator at AIn(f)
and the other one has minimum degree annihilator at degree > AIn(f). Then
there is no fg = h relation having deg(h) = AIn(f) and deg(g) < AIn(f).

We also present the following result that can be used to find minimum degree
g in the relation fg = h, where deg(h) = AIn(f).

Proposition 3. Consider that f, 1+f have minimum degree annihilators at the
same degree AIn(f) and let h be a function at that degree. Let A be the set of
annihilators of f and B be the set of annihilators of 1 + f at degree AIn(f).
Then the minimum degree of g such that fg = h is min

βA∈A,βB∈B
deg(βA + βB).

Also we present the following technical relation relating g and h only.

Proposition 4. If fg = h, then gh = h, i.e., g is the annihilator of 1 + h.

Proof. We have, fg = h, i.e., fgg = gh, i.e., fg = gh, i.e., h = gh. ut



Consider two functions τ1, τ2 ∈ Bn having full algebraic immunity dn
2 e when

n is odd. If we consider the function τ = (1+xn+1)τ1 +xn+1τ2, on even number
of variables, it can be checked using [21, Proposition 1(2)] that this is again of
full algebraic immunity n+1

2 which is actually dn
2 e.

However, the situation is not as simple when we take n even. In such a
situation we start with two functions τ1, τ2 ∈ Bn having full algebraic immunity
n
2 . In that case, τ = (1 + xn+1)τ1 + xn+1τ2, on odd number of variables may or
may not have full algebraic immunity dn+1

2 e = n
2 + 1.

Consider τ1, τ2 have annihilators π1, π2 at degree n
2 and 1 + τ1, 1 + τ2 have

annihilators π′1, π
′
2 at degree n

2 . Then following [21, Proposition 1(2)], τ will have
algebraic immunity n

2 , iff deg(π1 + π2) < n
2 or deg(π′1 + π′2) <

n
2 .

Now consider that τ1, τ2 have minimum degree annihilators π1, π2 at degree
n
2 and n

2 + 1 respectively. Further 1 + τ1, 1 + τ2 have minimum degree annihila-
tors π′1, π

′
2 at degree n

2 + 1 and n
2 respectively. Then one can check that τ has

algebraic immunity n
2 + 1. Note that the functions φ2k (in Section 2) and the

functions ψ2k (in Section 3) have the properties like τ1 and 1 + φ2k, 1 + ψ2k

have the properties like τ2. Thus the availability of the functions φ2k, ψ2k having
full algebraic immunity k presents a clear construction using them to get func-
tions with full algebraic immunity k + 1 on odd number of variables 2k + 1. As
concrete examples, x2k+1 + φ2k, x2k+1 + ψ2k, (1 + xn+1)φ2k + xn+1(1 + ψ2k),
(1 + xn+1)ψ2k + xn+1(1 + φ2k) are functions on odd number of variables with
full algebraic immunity.

Proposition 5. Suppose f ∈ B2k for k ≥ 0 such that f and 1 + f have no
annihilator of degree < k and < k+1 respectively. Then wt(f) = 22k−1−

(
2k−1

k

)
.

Proof. Since f and 1 + f have no annihilator of degree < k and < k+ 1 respec-
tively, following the proof of [21, Theorem 1] we have wt(f) ≥

∑k−1
i=0

(
2k
i

)
and

wt(1+f) ≥
∑k

i=0

(
2k
i

)
. This implies wt(f) is exactly

∑k−1
i=0

(
2k
i

)
= 22k−1−

(
2k−1

k

)
.
ut

As a corollary of this result we can get exact weights 22k−1 −
(
2k−1

k

)
of φ2k and

ψ2k which is already given in [13, 23].

2 Study of the construction from [22]

In [22], for the first time functions with full algebraic immunity have been con-
structed. The construction is as follows.

Construction 1 Denote by φ2k ∈ B2k the function defined by the recursion:

φ2k+2 = φ2k||φ2k||φ2k||φ1
2k, (1)

where || denotes the concatenation. In terms of algebraic normal form, φ2k+2 =
φ2k +x2k+1x2k+2(φ2k +φ1

2k), and where φ1
2k is defined itself by a doubly indexed

recursion
φi

2j = φi−1
2j−2||φ

i
2j−2||φi

2j−2||φi+1
2j−2, (2)



i.e., in terms of algebraic normal form, φi
2j = φi−1

2j−2 + (x2j−1 + x2j)(φi−1
2j−2 +

φi
2j−2) + x2j−1x2j(φi−1

2j−2 + φi+1
2j−2) for j > 0, i > 0,

with base step φ0
j = φj for j > 0, φi

0 = i mod 2 for i ≥ 0.

What we actually prove now is the minimum degree annihilators of φ2k are
at the degree k and the the minimum degree annihilators of 1 + φ2k are at the
degree k+1. Then using Corollary 1, we get that there is no g having degree < k
such that φ2kg = h, where deg(h) = k. Note that the proof technique follows
the similar line as it has been presented in [22, 13], but there are some necessary
technical modifications to get the results.

Lemma 1. Assume that the function φ2i ∈ B2i has been generated by Construc-
tion 1 for 0 ≤ i ≤ k and f+φ2i has no annihilator of degree < i+1 for 0 ≤ i ≤ k
and f is a nonzero function of other variables. If, for some 0 ≤ i ≤ k and j ≥ 0,
there exist g ∈ AN(f+φj

2i) and h ∈ AN(f+φj+1
2i ) such that deg(g+h) ≤ i−1−j

then g = h.

Proof. We prove Lemma 1 by induction on i.
For the base step i = 0, deg(g + h) ≤ 0 − 1 − j ≤ −1 implies that such a

function cannot exist, i.e., g + h is identically 0, which gives g = h.
Now we prove the inductive step. Assume that, for i < `, the induction

assumption holds (for every j ≥ 0). We will show it for i = ` (and for every
j ≥ 0). Suppose that there exist g ∈ AN(f + φj

2`) and h ∈ AN(f + φj+1
2` ) with

deg(g + h) ≤ `− 1− j. By construction, if j > 0 then we have

φj
2` = φj−1

2(`−1)||φ
j
2(`−1)||φ

j
2(`−1)||φ

j+1
2(`−1),

φj+1
2` = φj

2(`−1)||φ
j+1
2(`−1)||φ

j+1
2(`−1)||φ

j+2
2(`−1)

and if j = 0 then

φ0
2` = φ0

2(`−1)||φ
0
2(`−1)||φ

0
2(`−1)||φ

1
2(`−1).

Let us denote

g = v1||v2||v3||v4,
h = v5||v6||v7||v8.

Since deg(g + h) ≤ ` − 1 − j, from the ANF of g + h = (v1 + v5) + x2`−1(v1 +
v5 + v2 + v6) + x2`(v1 + v5 + v3 + v7) + x2`−1x2`(v1 + · · · + v8) we deduce the
following.

– deg(v1 + v5) ≤ ` − 1 − j = (` − 1) − 1 − (j − 1). If j > 0 then v1 ∈
AN(f + φj−1

2(`−1)), v5 ∈ AN(f + φj
2(`−1)) implies that v1 = v5, according to

the induction assumption. If j = 0, then we have v1, v5 ∈ AN(f + φ2(`−1)),
and therefore (v1+v5) ∈ AN(f+φ2(`−1)), with deg(v1+v5) ≤ `−1. Suppose
that v1 + v5 6= 0, then we would have deg(v1 + v5) ≥ `, since f + φ2(`−1))
has no annihilator of degree ≤ ` − 1, by hypothesis; a contradiction. Hence
v1 + v5 = 0 i.e. v1 = v5.



– deg(v2+v6) ≤ (`−1)−1−j and v2 ∈ AN(f+φj
2(`−1)), v6 ∈ AN(f+φj+1

2(`−1)),
imply that v2 = v6, according to the induction assumption.

– deg(v3+v7) ≤ (`−1)−1−j and v3 ∈ AN(f+φj
2(`−1)), v7 ∈ AN(f+φj+1

2(`−1)),
imply that v3 = v7, according to the induction assumption.

– deg(v4 + v8) ≤ (`− 1)− 1− (j + 1) and v4 ∈ AN(f + φj+1
2(`−1)), v8 ∈ AN(f +

φj+2
2(`−1)), imply that v4 = v8, according to the induction assumption.

Hence we get g = h. ut

Lemma 2. Assume that the function φ2i ∈ B2i has been generated by Construc-
tion 1 for 0 ≤ i ≤ k and that f+φ2i where f is a nonzero function other variables
has no annihilator of degree < i + 1 for 0 ≤ i ≤ k. If, for some 0 ≤ i ≤ k and
j ≥ 0, there exists g ∈ AN(f +φj

2i)∩AN(f +φj+1
2i ) such that deg(g) ≤ i+ j+1,

then g = 0.

Proof. We prove Lemma 2 by induction on i− j.
For the base step (i.e., i− j ≤ 0), we have from Construction 1 f + φj+1

2i =
1 + f + φj

2i (this can easily be checked by induction). Hence, g ∈ AN(f + φj
2i)∩

AN(f + φj
2i + 1), and g = 0.

Now we prove the inductive step. Assume that the induction assumption
holds for i − j ≤ `, ` ≥ 0, and let us prove it for i − j = ` + 1. So let g ∈
AN(f + φj

2i) ∩AN(f + φj+1
2i ) where i− j = `+ 1.

If j > 0, we have:

φj
2i = φj−1

2(i−1)||φ
j
2(i−1)||φ

j
2(i−1)||φ

j+1
2(i−1),

φj+1
2i = φj

2(i−1)||φ
j+1
2(i−1)||φ

j+1
2(i−1)||φ

j+2
2(i−1).

Let us denote

g = v1||v2||v3||v4, we have

v1 ∈ AN(f+φj−1
2(i−1))∩AN(f+φj

2(i−1)), v2, v3 ∈ AN(f+φj
2(i−1))∩AN(f+φj+1

2(i−1))

and v4 ∈ AN(f + φj+1
2(i−1)) ∩AN(f + φj+2

2(i−1)).

1. Since deg(g) ≤ i+ j + 1, we have deg(v4) ≤ i+ j + 1 = (i− 1) + (j + 1) + 1.
Since (i − 1) − (j + 1) = i − j − 2 < `, we have v4 = 0, according to the
induction assumption. So the ANF of g is v1 +x2i−1(v1 +v2)+x2i(v1 +v3)+
x2i−1x2i(v1+v2+v3). Then deg(v1+v2),deg(v1+v3),deg(v1+v2+v3) ≤ i+j,
which implies deg(v1),deg(v2),deg(v3) ≤ i+ j.

2. We have then deg(v2) ≤ i + j = (i − 1) + j + 1 and deg(v3) ≤ i + j =
(i − 1) + j + 1. Since (i − 1) − j = i − j − 1 ≤ `, we have v2 = v3 = 0,
according to the induction assumption.

3. Since v2 = v3 = v4 = 0, the ANF of g is (1 + x2i−1 + x2i + x2i−1x2i)v1. So,
deg(v1) ≤ i+ j − 1 = (i− 1) + (j − 1) + 1. Here (i− 1)− (j − 1) = `+ 1. So,



we can not use the induction assumption directly. Now we break v1 again
into four parts as

φj−1
2(i−1) = φj−2

2(i−2)||φ
j−1
2(i−2)||φ

j−1
2(i−2)||φ

j
2(i−2),

φj
2(i−1) = φj−1

2(i−2)||φ
j
2(i−2)||φ

j
2(i−2)||φ

j+1
2(i−2),

v1 = v1,1||v1,2||v1,3||v1,4.

Using similar arguments as in Item 1,2, we have v1,2 = v1,3 = v1,4 = 0.
So, deg(v1,1) ≤ i + j − 3. Doing the similar process j times, we will get
some function v ∈ AN(f + φ2(i−j)) ∩ AN(f + φ1

2(i−j)). At every step of
this sub-induction, the degree decreases by 2, and we have then deg(v) ≤
i + j + 1 − 2j = i − j + 1. Breaking v a last time into four parts and using
that v ∈ AN(f + φ2(i−j)) ∩AN(f + φ1

2(i−j)), we have

φ2(i−j) = φ2(i−j−1)||φ2(i−j−1)||φ2(i−j−1)||φ1
2(i−j−1),

φ1
2(i−j) = φ2(i−j−1)||φ1

2(i−j−1)||φ
1
2(i−j−1)||φ

2
2(i−j−1),

v = v′||v′′||v′′′||v′′′′.

Using similar arguments as in Item 1,2, we have v′′ = v′′′ = v′′′′ = 0. So,
deg(v′) ≤ i− j− 1. And v′ ∈ AN(f +φ2(i−j−1)) implies that, if v′ 6= 0, then
deg(v) ≥ i− j, a contradiction. Hence, v′ = 0 which implies g = 0.

If j = 0, then the proof is similar to the last step in Item 3 above. ut

Theorem 1. Let f ′ ∈ B2k+l = f + φ2k where f ∈ Bl is a non zero function
depends on variables {x2k+1, . . . , x2k+l} and φ2k ∈ B2k depends on variables
{x1, . . . , x2k} for k, l ≥ 0. Then f ′ has no annihilator of degree < k + 1.

Proof. We prove Theorem 1 by induction on k. For k = 0, we have f ′ = f and
hence there is no annihilator of degree < 1. In the inductive step, we assume the
hypothesis true until k and we have to prove that any nonzero function g2k+2

such that g2k+2f
′ = 0 has degree at least k + 2. Suppose that such a function

g2k+2 with degree ≤ k + 1 exists. Then, g2k+2 can be decomposed as

g2k+2 = g2k||g′2k||g′′2k||h2k,

where g2k, g
′
2k, g

′′
2k ∈ AN(f+φ2k), and h2k ∈ AN(f+φ1

2k). The algebraic normal
form of g2k+2 is then g2k+2(x1, . . . , x2k+2) = g2k +x2k+1(g2k +g′2k)+x2k+2(g2k +
g′′2k) + x2k+1x2k+2(g2k + g′2k + g′′2k + h2k).

If g2k+2 has degree ≤ k+1, then (g2k +g′2k) and (g2k +g′′2k) have degrees ≤ k.
Because both functions lie in AN(f + φ2k) and according induction assumption
f + φ2k has no annihilator of degree < k + 1, we deduce that g2k + g′2k = 0
and g2k + g′′2k = 0, which give, g2k = g′2k = g′′2k. Therefore, g2k+2 = g2k +
x2k+1x2k+2(g2k +h2k), deg(g2k) ≤ k+1 and deg(g2k +h2k) ≤ k−1. According to
Lemma 1, we have g2k = h2k. According to Lemma 2, we have then g2k = h2k = 0
that gives, g2k+2 = 0. This completes the proof. ut



Remark 1. If f ∈ Bl (in above theorem) has no annihilator of degree < t where
t ≥ 2, then the question is whether f+φ2k has no annihilator < t+k. In general,
the answer is no. Because in the Lemma 1 we have to consider deg(g + h) ≤
i − 2 − j + t and in the base step in the proof of the lemma, i.e., for i = 0,
deg(g + h) ≤ −2 − j + t. So for j = 0, deg(g + h) ≤ t − 2 where t − 2 ≥ 0. So,
we can not tell that g + h = 0. So, it is always true for the case t ≤ 1, but not
for t ≥ 2.

Corollary 2. 1 + φ2k has no annihilator of degree < k + 1, but has annihilator
at degree k + 1.

Proof. In the Theorem 1, we take f ∈ B0 is constant 1 function, i.e., the truth
table of f contains a single 1. As f is nonzero, following the Theorem 1, 1 +φ2k

has no annihilator of degree ≤ k.
From [13], we have wt(φ2k) = 22k−1 −

(
2k−1
k−1

)
. Thus, wt(1 + φ2k) = 22k−1 +(

2k−1
k−1

)
. Then following the proof of [21, Theorem 1], we find that 1 + φ2k must

have an annihilator at degree k + 1 as it has the weight 22k−1 +
(
2k−1
k−1

)
. ut

Theorem 2. Consider g, h ∈ B2k such that φ2kg = h, where deg(h) = k. Then
deg(g) ≥ k.

Proof. Note that for any function on 2k variables, either the function or its
complement must have an annihilator at degree k. Since 1+φ2k has no annihilator
at degree k, φ2k must have an annihilator at degree k. Also it is known [22,
13] that φ2k has minimum degree annihilator at degree k. Thus the degree of
minimum degree annihilator of φ2k and 1+φ2k are different, k, k+1 respectively.
Then the proof follows using Corollary 1. ut

Note that this means one cannot get a lower degree (than AI2k(φ2k) = k)
g by fixing h at a degree k. Note that in [1, Table 3], the functions on 2k
variables are not φ2k, but the functions [22, Example 1] of the form x1x2 +
φ2k−2(x3, . . . , x2k) which are also of full algebraic immunity k. That is why those
functions [22, Example 1] are weak against fast algebraic attack. Further in case
of deg(h) > k, we present the following experimental results for the φ2kg = h
relationships for 6 ≤ 2k ≤ 14. We present the minimum degree of g in the table
till it becomes 1.

2k deg(g) deg(h)

6 1 4

8 1 5

2k deg(g) deg(h)

10 2 6

10 2 7

10 1 8

2k deg(g) deg(h)

12 3 7

12 3 8

12 1 9

2k deg(g) deg(h)

14 4 8

14 3 9

14 2 10

14 1 11

Table 1. Experimental results on φ2kg = h relationship.



From Table 1, it is clear that with the increase of deg(h), the degree of g
decreases as expected, but the rate of decrease is not sharp. In fact, if one uses
φ14, then one gets a linear g only when h is of degree 11. Thus we like to point
out that though the function φ2k is not good in terms of nonlinearity [13], its
structure is good for immunity against both algebraic and fast algebraic attacks.

3 Study on symmetric and rotation symmetric functions

The following construction for symmetric functions with maximum algebraic
immunity has been presented in [23, 10]. Consider ψ2k ∈ B2k, k ≥ 0, as follows:

ψ2k(x) =

{
1 for wt(x) < k,

0 for wt(x) ≥ k.

One can check using the proof technique in [23, Lemma 3] that ψ2k has
minimum degree annihilator at degree k and 1 +ψ2k has minimum degree anni-
hilator at degree k + 1. This, using Corollary 1, proves that for g, h ∈ B2k such
that ψ2kg = h, where deg(h) = k, we will always get deg(g) ≥ k. This result
has already been proved in a different technique in [9]. Further some interesting
f ∗ g = h relationship has been studied in [9].

We now present a few more experimental results (see also [1, Table 4]) to
compare the profile of ψ2k with φ2k as in Table 1 in previous section. Note
that up to 10 variables, the results are same. However, for 2k = 12, we get
a deg(g) = 2,deg(h) = 8 relationship for ψ2k. Further for 2k = 14, we get
deg(g) = 3,deg(h) = 8 and deg(g) = 1,deg(h) = 9 relationships for ψ2k. Thus
following these experimental results, it seems that the ψ2k functions have worse
profile than φ2k. Note that the weight and nonlinearity of ψ2k and φ2k are same,
but the algebraic degree of φ2k is in general greater than that of ψ2k [23, 13].

However, a more general class of functions with maximum possible algebraic
immunity has been proposed in [23].

Construction 2 Consider ζ2k ∈ B2k, k ≥ 0, as follows:

ζ2k(x) =


0 for wt(x) < k,

a for wt(x) = k, a ∈ {0, 1},
1 for wt(x) > k.

Note that if the value of a is same for all the weight k inputs, then it is a
symmetric function. However, we will now specifically consider the case where
the outputs corresponding to weight k inputs take both the distinct values 0, 1
and the function becomes non symmetric.

Proposition 6. Consider ζ2k as described in Construction 2. Then both ζ2k, 1+
ζ2k has minimum degree annihlators at degree k.

Proof. From [23] we already have AI2k(ζ2k) = k. That both ζ2k, 1 + ζ2k has
minimum degree annihlators at degree k can be proved considering their weights
of ζ2k, 1 + ζ2k and following the same kind of arguement as in the proof of [21,
Theorem 1]. ut



Based on Proposition 6, it is not clear whether there exists g having deg(g) < k
such that ζ2kg = h, where deg(h) = k. Thus we go for the following experimen-
tation. We use similar kind of functions as described in [23] as follows.

G(x1, . . . , x2k) = 0 for wt(x1, . . . , x2k) < k,

= 1 for wt(x1, . . . , x2k) > k,

= b(x1, . . . , x2k) for wt(x1, . . . , x2k) = k,

where b(x1, . . . , x2k) is a Maiorana-McFarland type bent function.

1. If wt(G) < 22k−1, then we choose 22k−1 − wt(G) points randomly from the
inputs having weight k and output 0 of G and toggle those outputs to 1 to
get ζ2k.

2. If wt(G) > 22k−1, then we choose wt(G) − 22k−1 points randomly from the
inputs having weight k and output 1 of G and toggle those outputs to 0 to
get ζ2k.

Thus we get balanced ζ2k. As we have already described in Proposition 6, the
fg = h relationships for the functions of the type of ζ2k may not be decided
immediately. Thus we present some experimental results for this purpose for a
randomly chosen ζ2k for each 6 ≤ 2k ≤ 14.

2k nl(ζ2k) deg(ζ2k) deg(g) deg(h)

6 22 5 3 3
1 4

8 92 7 3 4
1 5

10 384 9 4 5
2 6
2 7
1 8

2k nl(ζ2k) deg(ζ2k) deg(g) deg(h)

12 1584 11 5 6
3 7
3 8
1 9

14 6470 13 6 7
4 8
1 9

Table 2. Profiles for the functions ζ2k.

3.1 Experimental Results on Rotation Symmetric Boolean
Functions

We also consider the following rotation symmetric Boolean functions with good
cryptographic properties and full algebraic immunity as they have been studied
in [21].

First we consider the 7-variable, 2-resilient, nonlinearity 56 rotation symmet-
ric Boolean functions with algebraic immunity 4. There are 12 such functions.
For all these functions f , we got f ∗g = h relationship where g is a linear function



and h has degree 4. Thus these functions are not good in resisting fast algebraic
attacks.

Next we consider the 8-variable, 1-resilient, nonlinearity 116 rotation sym-
metric Boolean functions with algebraic immunity 4. There are 6976 such func-
tions. Out of them there are 6080 many functions f , for which we get good
profile. For these functions, we get the profile like deg(g) = 3,deg(h) = 4,
deg(g) = 2,deg(h) = 5 and deg(g) = 1,deg(h) = 6. In all these cases we fix
degree of h and then find the minimum degree g. Thus there exist 8-variable,
1-resilient, nonlinearity 116 rotation symmetric Boolean functions where we get
good profile in terms of fast algebraic attack. Further note that these functions
are of degree 6 by itself. The truth table of one of these functions is as below in
hexadecimal format:

0005557337726F4A1E6E7B4C3CAB7598
03FD7CB86ADA61F41FE48C9E7A26C280

3.2 Experimental Results on (Modified) Balanced
Patterson-Wiedemann type Functions

Patterson and Wiedemann [28, 29] considered the Boolean functions on odd num-
ber of input variables n and succeeded to find out functions having nonlinearity
strictly greater than 2n−1 − 2

n−1
2 for odd n ≥ 15. This result is pioneering as

this is the first instance when such a high nonlinearity has been demonstrated
and further till date there is no other strategy to get such functions. Later in [26]
these functions have been changed heuristically to get highly nonlinear balanced
functions. We consider one of the functions presented in [26], which is a balanced
function on 15 variables having nonlinearity 16262 > 215−1 − 2

15−1
2 . We found

that the algebraic immunity of the function we have considered is 7 (not 8, which
is the maximum possible for 15-variable functions). Given this function f , we
experimented on the fg = h relationships fixing deg(h) ≥ 7 and then finding
out the minimum degree g. The (deg(g),deg(h)) relationships for the function f
is as follows: (6, 7), (6, 8), (3, 9), (3, 10), (2, 11), (2, 12), (1,13).
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