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Abstract. Since stream ciphers have the reputation to be inefficient in software 
applications the new stream cipher Hermes8 has been developed. It is based on a 
8-bit-architecture and an algorithm with low complexity. The two versions 
presented here are Hermes8-80 with 23 byte state and 10 byte key and furthermore 
Hermes8-128 with 37 byte state and 16 byte key. Both are suited to run efficiently 
on 8-bit micro computers and dedicated hardware (e.g. for embedded systems). 
The estimated performance is up to one encrypted byte per 118 CPU cycles and 
one encrypted byte per nine cycles in hardware. The clarity and low complexity of 
the design supports cryptanalytic methods. The 8x8 sized S-BOX provides the 
non-linear function needed for proper confusion. Hermes8 uses the well-
established AES S-BOX, but works also excellent with well-designed random S-
BOXes. Hermes8 withstands so far several ‘attacks’  by means of statistical tests, 
e.g. the Strict Avalanche Criterion and FIPS 140-2 are met successfully. 

 
 
1   Introduction 
 
Stream ciphers of today have the reputation to be very efficient in hardware, but slow 
and costly in software. Often Linear Feedback Shift Registers (LFSRs) are taken as 
building blocks, because their hardware efficiency and their statistical properties are well 
known [1,2,3]. The cryptographic community is well served by a variety of efficient and 
trusted block ciphers. However, the same doesn’ t seem to hold for stream ciphers. 
 
In 2004 the ECRYPT Network of Excellence (NoE) initiated a multi-year effort to 
identify new stream ciphers suitable for widespread adoption. Algorithm designers were 
invited to submit new stream cipher proposals (http://www.ecrypt.eu.org/stream).  
   Following public discussions at the State of the Art of Stream Ciphers (SASC) 
Workshop in Bruegge (October 2004) the ECRYPT NoE proposed to develop new 
stream ciphers with respect to two profiles : 
 Profile-1: Stream ciphers for software applications with high throughput 
                                needs. 
 Profile-2: Stream ciphers for hardware applications with restricted resources. 
Main criteria are long-term security, efficiency (performance), flexibility, and market 
requirements. Hermes8 has been designed to serve both profiles and these main criteria, 
concentrating on clarity of design, efficiency, flexibility, and security. 
    The next chapter and its sub-chapters describe the specification of Hermes8, the 
algorithm, security properties, strength and advantages, design choices, computational 
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efficiency in software and hardware, implementation items to avoid weaknesses, and 
early hardware evaluations. After the conclusions, also an outlook is given. 
 
2   Specification of Hermes8 
 
2.1   Description 
 
Hermes8 is based on the Substitution-Permutation-Network (SPN) principle [1,2,3,10]. 
The substitution (confusion) is performed by means of an S-BOX. The permutation and 
diffusion is performed by means of addressing the different state bytes, the different key 
bytes, and most importantly by the chaining with help of the Accu (Figure 1). 
 

 
Figure 1.  Principle of Hermes8 core operation round 

 
Hermes8-80 is based on 10 key bytes and 23 state bytes, whereas the larger Hermes8-
128 contains 16 key bytes and 37 state bytes. There are two pointers involved: p1 
addresses one of the state bytes, p2 addresses one of the key bytes (Figure 2). The 
pointers obey modulo addition operation in order to assure that they always address valid 
register space.  
   The core operation (sub-round) consists of 

1. Select a certain state byte and EXOR it with Accu, 
2. Select a certain key byte and EXOR it with the previous result, 
3. Take the previous result and apply the S-BOX function, 
4. Store the previous result in Accu, 
5. Copy Accu into the same state byte selected in step1. 

 
The S-BOX is 8-bit wide in order to provide the non-linear Boolean function needed for 
substitution, i.e. confusion [8,9]. One choice is the known SBOX of AES [4,5] which is 
strong w.r.t. Differential Cryptanalysis. – But random number based S-BOXes are also 
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suitable, if their differential distribution table (ddt) demonstrates good quality [15, 23] 
with respect to DC attacks. Such random S-BOXes are especially interesting when 
algebraic attacks are successfully applied to AES in the future [24]… 

 
 

Figure 2.  Byte-Architecture of Hermes8 with registers, ALU, and S-BOX 
 
 

 
 

Figure 3.  Key Modification and Scheduling Method of Hermes8 

 
The key bytes are modified every KEY_STEP3, i.e. seven steps, during the sub-round 
loops depending on the position of p2. The details are shown in Figure 3 :  Two 
temporary pointers p3 and p4 are addressing the key bytes that following the byte 
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addresses selected by p2. The byte k[p2] is not modified because it has to be used in the 
following sub-round. But the bytes k[p3] and k[p4] are ‘ rather old’  and are therefore 
candidates for modification; they are replaced by  SBOX[ k[p3] exor k[p2] ]  and  
SBOX[ k[p4] exor k[p2] ] respectively. The exor’ ing with k[p2] is advantageous over the 
direct application of the SBOX, because the inverse function of the SBOX does exist. 
Therefore, backtracking is hampered by means of this method. The dashed pointer in 
Figure 3 represents the next p2 position (because KEY_STEP1=3) when addressing the 
next key byte needed for the next sub-round. 
 
Figure 4 describes how the output bytes for the key stream ks[] are derived from the state 
bytes state[]. Since the pointer p1 has been incremented after the last sub-round, it points 
to the ‘oldest’  available state byte. This is the first byte to be packed into the key stream 
block of e.g. eight bytes for Hermes8-80 or sixteen bytes for Hermes8-128. Then further 
bytes follow by means of output pointer po, that is incremented by two in order to 
separate consecutive sub-round results from each other.  
    Since a new output block of key stream bytes does not follow earlier than the next 
STREAM_ROUNDS=3 are completed, the state byte contents corresponding to the same 
address are separated by 3 x 23 sub-rounds respectively 3 x 37 sub-rounds. 
 

 
 

Figure 4.  Output Function of Hermes8 

 
During the 69 Hermes8-80 sub-rounds there are nearly ten occurrences of key modi-
fication, i.e. about 20 key bytes are modified per output block in relation to ten key byte 
registers.  ---  During the 111 Hermes8-128 sub-rounds there are nearly 16 occurrences 
of key modification, i.e. about 32 key bytes are modified per output block in relation to 
16 key byte registers. 
 
 
A related mechanical model consists of two wheels. One has 23 teeth and needs 23 steps 
per round, the second one has only ten teeth, but rotates with a three-fold speed. When 
the first one has performed three rounds with 69 steps, the smaller one has rotated for 
207 steps, i.e. nearly 21 turns. 
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2.2   Pseudo-Code of Hermes8-80 
 
1 nx  23  
2 nk  10 
3 OUTPUTBYTES  8  
4 
5 INIT_ROUNDS  10 
6 STREAM_ROUNDS    3 
7 KEY_STEP1   3 
8 KEY_STEP2   5 
9 KEY_STEP3   7 
10 
11 k[]       load(  nk key  bytes) 
12 state[]  load(  nx  IV bytes ) 
13 
14 p1     ( k[0] exor k[1] exor k[2] ) mod nx 
15 p2     ( k[3] exor k[4] exor k[5] ) mod nk 
16 accu    k[6] exor k[7] exor k[8]  
17 src    ( k[9] exor k[0] exor k[3] ) mod KEY_STEP3 
18 round  0 
19 
20 for    INIT_ROUNDS    do 
21 begin 
22  round  round + 1 
23  /* begin of core */ 
24  for  nx subrounds  do 
25  begin 
26   accu  accu   exor   state[p1]   exor   k[p2] 
27   accu  SBOX[ accu ] 
28   state[p1]  accu  
29   p1  ( p1 + 1 ) mod nx 
30   p2  ( p2 + KEY_STEP1 ) mod nk 
31   src  src + 1 
32   if( src  KEY_STEP3 ) 
33   then 
34     begin  /* two key modifications */ 
35    src  src – KEY_STEP3 
36    p3  ( p2 + 1 ) mod nk 
37    p4  ( p3 + 1 ) mod nk 
38    k[p3]  SBOX[ k[p3] exor k[p2] ] 
39    k[p4]  SBOX[ k[p4] exor k[p2] ] 
40     endif 
41  endfor 
42  if ( round  mod  KEY_STEP2  equal 0)  then  p2  ( p2 + 1 ) mod nk 
43  /* end of core */ 
44 
45 
46 endfor 
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47 /* initialization completed */ 
48 
49 pc   0 
50 for    MAX_ROUNDS    do 
51 begin 
52  for    STREAM_ROUNDS    do             // corrected 14.Jul.2006 
53       round  round + 1                             // corrected 14.Jul.2006 
54        /* begin of core */ 
55       for     nx   subrounds    do 
56       begin 
57   accu  accu   exor   state[p1]   exor   k[p2] 
58   accu  SBOX[ accu ] 
59   state[p1]  accu  
60   p1  ( p1 + 1 ) mod nx 
61   p2  ( p2 + KEY_STEP1 ) mod nk 
62   src  src + 1 
63   if( src  KEY_STEP3 ) 
64   then 
65     begin  /* two key modifications */ 
66    src  src – KEY_STEP3 
67    p3  ( p2 + 1 ) mod nk 
68    p4  ( p3 + 1 ) mod nk 
69    k[p3]  SBOX[ k[p3] exor k[p2] ] 
70    k[p4]  SBOX[ k[p4] exor k[p2] ] 
71     endif 
72       endfor 
73       if ( round  mod  KEY_STEP2  equal 0) then  p2  (p2+1) mod nk 
74       /* end of core */ 
75  endfor 
76  /* key stream round completed */ 
77 
78  po  p1 
79  for  1  to  OUTPUTBYTES  do 
80  begin 
81   ciphertext[pc]   plaintext[pc]  exor  state[po]   /* encrypt */ 
82   pc   pc + 1 
83   po   (po + 2)  mod nx 
84  endfor 
85 endfor 
 
For Hermes8-128 only the three lines 1 - 3 are changed to nx  37, nk  16, and   
OUTPUTBYTES  16. 
    Lines 14 to 47 show the initialization phase assuming the IV has already been loaded 
into the state registers. The cyclic pointer p2 to the key registers is incremented in steps 
larger than 1 in order to assign a certain key byte to every state byte over time. 
Additionally, the pointer p2 is also incremented after every 5th round (line 42, 
KEY_STEP2); this shifts the key assignment pattern, too. After every 7 sub-rounds 
(KEY_STEP3) two key bytes are modified by means of the S-BOX (lines 31-40).  
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MAX_ROUNDS (line 50) specifies how many multiples of OUTPUTBYTES bytes shall 
be encrypted. It is assumed that the plaintext is also a multiple of OUTPUTBYTES bytes, 
i.e. has been padded accordingly. 
    The encryption by means of the key stream bytes in the state register is shown in lines 
53-84. 
    During ‘key streaming’  the inner core of the algorithm (54-74) is the same as 
described for the initialization phase (23-43). The number of rounds between the output 
of two blocks of  key-stream bytes is defined by STREAM_ROUNDS. 
    The complete C-code of Hermes8 and some test environment C-code for SAC tests 
and FIPS 140-2 tests can be found in [21]. 
 
3   Security properties, security levels, attacks 
 
3.1   Strict Avalanche Criterion 
 
The initialization phase has been evaluated with respect to the Strict Avalanche Criterion 
(SAC) [1,10].   This has been done not only for the key sensitivity but also for the IV 
sensitivity. Only two rounds are needed to get very close to the 50% goal (see appendix 
A for the related SAC plots). If ten rounds are performed during the initialization, the 
security level is assumed to be so high, that only exhaustive search can find the correct 
key or IV value from known plaintext / cipher text pairs. 
 
3.2   Differential and Linear Cryptanalysis 
 
The algorithm has been tested for DC and LC weakness (sensitivity, affinity, correlation) 
with respect to the initialization phase of ten rounds. No problems were found. 
    Several parts of the output stream (e.g.192 bits) were applied to the Berlekamp-
Massey algorithm. There was no exponential found below X^93 . 
 
3.3   Random Number Quality tests 
 
The algorithm has been tested for FIPS 140-2;  no problems were found. The algorithm 
was also tested by means of the Diehard test suite; no problems could be discovered. 
 
3.4   Some Attack Scenarios 
 
In [22] some attacks on pseudorandom number generators (PRNG) are described: a) 
direct cryptanalytic attack, b) input-based attacks, c) state compromise extension attack. 
Since PRNGs are very similar to stream ciphers, the same attacks shall be considered 
here. 
 
3.4.1   Direct Cryptanalytic Attack 
Since the SAC is fulfilled quite well after only three rounds, a direct attack on ten rounds 
initialization seems to be unfeasible with respect to  exhaustive search. -  However the 
key stream generation is based on shorter rounds, i.e. only three. But only 8 of 23 
respectively 16 of 37 state bytes can be directly seen in the output block pattern. 
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3.4.2    Input-Based Attacks 
An adversary might use the initialization phase and the IV value for known-input, 
replayed-input or chosen-input attacks. However, there is a stream cipher application 
rule that the first IV has to be chosen as a good random number; sub-sequent IVs might 
be derived from that, and no (IV, key)-pair must be used twice. – In Hermes8 the IV is 
not used to derive any initial pointer value or similar variable. -- Since the SAC 
properties are strong, it is assumed that input-based attacks are not more efficient than 
exhaustive search. 
 
3.4.3   State Compromise Extension Attacks 
The key stream consists of consecutive blocks of  8 bytes (Hermes8-80) or 16 bytes 
(Hermes8-128). Two consecutive blocks are separated by 69 sub-rounds respectively 
111 sub-rounds. And during these 69  (111) steps the key bytes are modified 20 (32) 
times. This leads to a certain number of unknown bits, i.e. a certain complexity: 
   
            |     b  y  t  e  s      |   b y t e s    |   
            |        state   state   | state    key   |  bits 
  Version   | nx  nk output distance |unknown unknown | unknown   
Hermes8-80  | 23  10    8      69    |  61       20   |   648 
Hermes8-128 | 37  16   16     111    |  95       32   |  1016 

 
If the number of unknown bits is not enough, the algorithm can be made harder by 
extending the number of  STREAM_ROUNDS to more than three. 
 
3.5   Weak Keys 
 
Due to the method of the key scheduling all keys with equal byte pattern are weaker than 
randomly generated keys. 
    Example: If the initial key is all zero we obtain for Hermes8-80 after the 10 initial 
rounds: 
 
Key: 0x  4b 4b b0 4d ba 44 02 a0 f3 25 
 
and for Hermes8-128 the related result is 
 
Key: 0x  a3 c2 ee bf 3a a3 b2 45 e0 70 1b a3 c2 ee bf 3a 
 
The repetition of bytes here is also caused by the application of KEY_STEP3 = 5, i.e. the 
pointer p2 is only one time during initialization increased additionally.  – Of course, one 
could change KEY_STEP3 from 5 to 1 for the initialization phase only, but generally the 
key bytes have to be produced by means of a good random number generator. 
 
 
4   Design Choices, Strength and Advantages 
 
The strength and advantages listed below are the result of the following design choices, 
options, and alternatives: 
- The state size is more than twice as the key size, in order to prevent time-memory  
   trade-off attacks [19]; 
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- Substitution Permutation Network (SPN), 
- Clarity of design, low complexity [20], 
- Use of only registers, three pointers, EXORs, one S-BOX [8,9], small control logic, 
- Constants KEY_STEP1, 2, and 3 are chosen as primes not being factors of nx or nk, 
- Prevention against related key attacks [4] due to key modification/scheduling, 
- Prevention against backtracking attacks [22] due to special key modification/scheduling, 
- No bit-shifting, no LFSRs in order to avoid slowdown of software implementations, 
- No additions, subtractions, multiplications, divisions in the core data flow, 
- No constraint on IV length, beside nx as maximum, 
- Low-power architecture [16], 
- Scalable architecture concept (StateSize > 37 bytes, KeySize > 16 bytes). 
 
Strength: 
- one 8x8 S-BOX (e.g. AES S-BOX), 
- the S-BOX is used in every sub-round [10], 
- the S-BOX is used for a specialized key scheduling, 
- every sub-round involves one state-byte and one key-byte, 
- no conditional branch is dependent  directly on key content, 
- learned from AES [4,5,11,12]. 
 
Advantages: 
- number crunching of bytes ( => fast on 8-bit micros), 
- no bit-shifting ! ( => high efficiency in software), 
- low complexity [20]. 
 
 
5   Computational efficiency 
 
5.1   Computational efficiency in software 
 
The following estimations are based on a an 8-bit microcomputer with two-operand 
instruction set and RISC architecture. The S-BOX access is assumed to be a one cycle 
operation, i.e. table look-up. The mod operation is performed by means of conditional 
subtraction; this is an important software speed-up compared to full modular division. 
    The Key setup takes 1 cycle per byte. The setup of the primitive including the loading 
of the IV is described in details in appendix B1 and results in equation (1), i.e. N1, the 
number of cycles for the setup, is dependent on the state size and the number of initial 
rounds. 
 

 N1 =  nx   +   13   +   INIT_ROUNDS  •  (  3  +    nx •14  +  1/7• nx • 13     +  2   )      (1) 
 
The streaming part (see appendix B2) results in the number N2 of cycles needed to 
produce one block of key stream bytes and the related block of cipher text output bytes. 
Equation (2) shows the dependence of N2 on the state size and OUTPUTBYTES. 
 

N2 =  3 • (  3  +  2 +  nx •14  +  1/7• nx • 13    +  2  )    +   OUTPUTBYTES • 7           (2) 
 
Both graphs below show the asymptotic efficiency curves (limes = 147 or 119 for n ); 
the efficiency for large amounts of data depends therefore as expected on the streaming 
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loop performance. Some savings can be obtained by means of loop un-rolling, e.g. 
reducing the cycle count by OUTPUTBYTES• 2 for the encryption loop. 
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Figure 5.  Cycles/byte  versus  bytes  processed  for Hermes8-80 

 

cycles/byte vs. bytes processed   for   nx=37
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Figure 6.  Cycles/byte  versus  bytes  processed  for Hermes8-128 

 
 
5.2 Computational efficiency in hardware 
 
As described in the previous chapter, the key stream generation loop and the encryption 
loop are dominating the efficiency. In hardware, therefore, it is important to perform as 
many operations in parallel as possible. Since the ROM containing the S-BOX table is 
pre-charged with clock CLK=1 and read out with the falling edge of CLK, other 
operations are executed with the rising edge of CLK, e.g. update of registers and round 
counter. The related control logic (finite state machine, FSM) has the responsibility for 
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the correct timing of the operations, especially the conditional modification of the key 
byte replacement by means of S-BOX application (line 63-71).  This is described in 
detail in appendix C. 
    The resulting efficiency depends on the degree of parallelism reached and the amount 
of pipeline registers that are spent additionally.  A performance of 16 bytes per 143 clock 
cycles seems reasonable, therefore (based on equation 3 and nx=37). 
 

 N3  =  3 • (   nx   +  1/7• nx • 2   )    for    OUTPUTBYTES                            (3) 
 
 

6   Implementation items to avoid weaknesses 
 
Compared to other ciphers, the literature about side-channel attacks on stream ciphers is 
rare; an overview is given in [18].  For Hermes8-80 and Hermes8-128 the following 
countermeasures are proposed: 
a) When the key is loaded from non-volatile memory into 
   the key byte array, the related bus should have bus-scrambling, 
   or 2x8 wire differential drivers, or similar DPA [13,14] protection. 
b) The S-BOX should be implemented as ROM with pre-charge technique. 
   This is favorable over the algebraic S-BOX [11,12] in GF(16) with  
    three internal multipliers that are sensitive to products of zero. 
c) The Accu should be built with 16 DFFs, so that the inverted output 
    of the S-BOX is stored as well and DPA attacks are hampered. 
d) All DFFs in the registers and Accu should be built in CSEM style [16] 
    in order to avoid hazards and minimize DPA susceptibility. 
e) The first IV must be generated by means of a TRNG, later IVs can be 
    built by continuously incrementing the first IV [19]. 
 
 
7   Early Hardware Evaluations 
 
An electrical Spice3 simulation was performed in an early design stage. The following 
hardware parts were connected for the simulation schematic: 

- SBOX ROM  8 x 8 with pre-charged N-channel MOS transistor array 
- Accu ( 8 D-FlipFlops (DFFs) ) 
- State: one S-Register ( 8 DFFs) 
- Eight capacitors ( as replacement for the other nx-1 state registers)  
- Key: one K-Register (instead of 8 multiplexers with nk inputs) 
- 16 EXOR gates 
- One clock driver 
 

Based on the models of a 0.35 CMOS DLP TLM process, a current consumption of only 
5uA was obtained when simulating with f=500kHz, VCC=2V, models=typical, tempe-
rature=27°C. -- However, the technology allows decreasing the VCC to the sum of one 
N-channel transistor threshold voltage and one P-channel transistor threshold voltage. 
This is especially advantageous because the power dissipation is proportional to the 
supply voltage squared, but only proportional to the clock frequency. 
    The area estimation (gate count) regarding the CMOS process mentioned above and 
the method of estimation in [17] is depicted below: 
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  |         0.35 CMOS |      process in  [17]  |           _      
Hermes8-80 | 1711  |  4026  | gates 
Hermes8-128 | 2400  |  5946  | gates 
 
The higher numbers regarding [17] are caused by the much higher gate count for the 
DFF compared to the 0.35 m CSEM DFF [16],  i.e.  12  instead of  4.3 ! 
 
8   Conclusions 
 
A new Stream Cipher module, Hermes8, is presented. Following the eSTREAM 
competition profile rules it comes in two designs: An 80 bit key version, and a 128 bit 
key version. Both versions fulfill the main criteria of security, efficiency, flexibility and 
clarity of design. The Hermes8 design is based on a byte-architecture of low complexity 
and serves low-power applications such as RFID and other embedded systems. Therefore, 
it is suited to run efficiently on 8-bit micro computers and dedicated hardware; and a 
comparison with other 32-bit algorithms seems to be difficult. 
 
9   Outlook on Hermes16 and Hermes32 
 
The algorithm principle is not only extendable w.r.t. the number of bytes for state and 
key, but also w.r.t. the word length of the registers. For example, an architecture with 16 
bit words and two S-BOXes (resp. S-BOX calls) could be build with the same property 
of low complexity [15]. Especially interesting is the low-power processor MSP430 [25] 
in this case. - The same holds for an architecture with four S-BOXes (resp. S-BOX calls) 
on a 32-bit digital signal processor (DSP) such as the TMS320C2xxx or the 
TMS320C5xxx [26] where circular addressing is well supported. – A dedicated hardware 
can lead to a nearly four-fold throughput, then. 
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Appendix 
 
A   Strict Avalanche Criterion (SAC) Plots with Min-Mean-Max 

 
 

Figure A1.  Strict Avalanche Criterion Test regarding IV variation for Hermes8-128 
 

 
Figure A2.  Strict Avalanche Criterion Test regarding IV variation for Hermes8-80 
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Figure A3.  Strict Avalanche Criterion Test regarding key variation for Hermes8-128 

 

 
 

Figure A4.  Strict Avalanche Criterion Test regarding key variation for Hermes8-80 
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B  Computational efficiency in software 
 
B1  Primitive Setup Part 
   1 cycle per byte loading the IV, padding with constant 
   12 cycles  initialize pointers, counters, accu 
   1 cycle   reset round counter 
   2 cycles  loop control for INIT_ROUNDS 
    1 cycle   increment round counter 
      2 cycles  loop control for nx sub-rounds 
    2 cycles  2 times EXOR 
    1 cycle   S-BOX accecss 
    1 cycle   new state byte 
    3 cycles  update p1 
    3 cycles  update p2 
    1 cycle   increment src 
    1 cycle   conditional key 
       modification 
     1 cycle   decrement src 
     3 cycles   calculate p3 
     3 cycles   calculate p4 
     3 cycles   new k[p3] 
     3 cycles   new k[p4] 
   2 cycles average conditional increment p2 

 
B2  Streaming Part 
   2 cycles  loop control for MAX_ROUNDS 
       1 cycle               increment round counter 
       2 cycles      loop control for 
STREAM_ROUNDS 
      2 cycles  loop control for nx sub-rounds 
    2 cycles  2 times EXOR 
    1 cycle   S-BOX accecss 
    1 cycle   new state byte 
    3 cycles  update p1 
    3 cycles  update p2 
    1 cycle   increment src 
    1 cycle   conditional key  
       modification 
     1 cycle   decrement src 
     3 cycles   calculate p3 
     3 cycles   calculate p4 
     3 cycles   new k[p3] 
     3 cycles   new k[p4] 
   2 cycles average conditional increment p2 
 
   2 cycles   loop control for encryption 
    1 cycle   EXOR operation on 
       plaintext byte 
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    1 cycle   increment P/C pointer
    3 cycle   increment po pointer 
 
 
 
C  Computational efficiency in hardware 
 
CLK rising edge operations: 
52  round  round + 1 
       /* the following three lines, if output is required */ 
81       ciphertext[pc]   plaintext[pc]  exor  state[po]   /* enc. */ 
82       pc   pc + 1 
83       po   (po + 2)  mod nx 
58a   accu  sbox_out 
59   state[p1]  sbox_out 
57   address  accu   exor   state[p1]   exor   k[p2] 
 
CLK falling edge operations: 
58b   sbox_out  S-BOX-TABLE[ address ] 
60   p1  ( p1 + 1 ) mod nx 
61   p2  ( p2 + KEY_STEP1 ) mod nk 
82   src   src + 1 
73  if ( round  mod  KEY_STEP2  equal 0)  then  p2  ( p2 + 1 ) mod nk 
 
The operations above are executed  7  times (KEY_STEP3); then the following has to be 
inserted : 
66    src  src – KEY_STEP3 
67    p3  ( p2 + 1 ) mod nk 
68    p4  ( p3 + 1 ) mod nk 
69    k[p3]  SBOX[ k[p3] exor k[p2] ] 
70    k[p4]  SBOX[ k[p4] exor k[p2] ] 
that means 
 
CLK rising edge operations: 
  /* p3 and p4 are always calculated in parallel to p2, line 61 */ 
69a   address �   k[p2] exor k[p3]  
CLK falling edge operations: 
69b   sbox_out �  S-BOX-TABLE[ address ] 
50   src �   src - 7 
CLK rising edge operations: 
69c   k[p3] �  sbox_out  
70a   address �   k[p2] exor k[p4]  
CLK falling edge operations: 
70b   sbox_out �  S-BOX-TABLE[ address ] 
CLK rising edge operations: 
70c   k[p4] �  sbox_out  
57   address  accu   exor   state[p1]   exor   k[p2]    
 a.s.o. 


