
Scrambling Adversarial Errors Using Few Random Bits,
Optimal Information Reconciliation,

and Better Private Codes

Adam Smith∗

Weizmann Institute of Science
adam.smith@weizmann.ac.il

January 17, 2006

Abstract

When communicating over a noisy channel, it is typically much easier to deal with random,
independent errors with a known distribution than with adversarial errors. This paper looks at
how one can use schemes designed for random errors in an adversarial context, at the cost of
relatively few additional random bits and without using unproven computational assumptions.

The basic approach is to permute the positions of a bit string using a permutation drawn
from a t-wise independent family, where t = o(n). This leads to two new results:

• We construct computationally efficient information reconciliation protocols correcting pn
adversarial binary Hamming errors with optimal communication and entropy loss n(h(p)+
o(1)) bits, where n is the length of the strings and h() is the binary entropy function.
Information reconciliation protocols are important tools for dealing with noisy secrets in
cryptography; they are also used to synchronize remote copies of large files.

• We improve the randomness complexity (key length) of efficiently decodable capacity-
approaching private codes from Θ(n log n) to n + o(n).

We also present a simplified proof of an existential result on private codes due to Langberg
(FOCS ’04).

1 Introduction

1.1 Partially Dependent Errors

Suppose Alice sends n bits to Bob over a binary channel, and at most τ = pn of them are flipped.
A code C : {0, 1}k → {0, 1}n can correct all such corruptions if and only if the Hamming distance
between any two codewords (points in the image) is at least 2τ +1. There are proven limits on how
well such codes can perform, and known codes which can be decoded in polynomial time perform
even more poorly. In contrast, codes which correct random errors (say, where each bit is flipped
independently with probability p, or where a random subset of pn bits is flipped) perform much
better: there are explicit, polynomial-time decodable codes which transmit at rates arbitrarily close
to the Shannon capacity 1 − h(p). 1 This is typically a factor of 2 greater than existential upper
bounds on the performance of codes for adversarial errors; the advantage over known, polynomial-
time decodable codes is even greater.

∗Supported by the Louis L. and Anita M. Perlman Postdoctoral Fellowship.
1The function h() is the binary entropy function h(p) = −p lg p − (1 − p) lg(1 − p). All logarithms in this paper

are base 2.

1

We show that for concatenated codes [For66], which can correct random errors at transmission
rates arbitrarily close to the Shannon capacity, decoding continues to work with high probability
even when the errors are only (almost) t-wise independent for t = o(n). In other words, for this
class of codes, the errors need only be slightly random in order to achieve rate close to 1 − h(p)
(the entropy of an almost t-wise independent error distribution can be as low as O(t)). The proof
consists of re-analyzing the performance of concatenated codes using bounds on sums of partially
dependent random variables.

This observation leads to a general strategy for dealing with an adversarial channel, assuming
– crucially – that the errors introduced by the adversary are independent of Alice’s random coins.
We will see two settings in which this assumption is justified: information reconciliation and a class
of private codes. The general approach is:

1. Alice chooses at random a permutation π : [n]→ [n] (where [n] = {1, . . . , n} from a family of
permutations which is t-wise independent, meaning that the images of any t indices i1, . . . , it ∈
[n] look like a sample of t points chosen uniformly without replacement from [n]. Such
permutations can be chosen using only O(t log n) random bits (Kaplan, Naor and Reingold
[KNR05])2. We refer to the algorithm mapping seeds to permutations as the KNR generator.

2. Alice now encodes her message m using a concatenated code C with rate close to capacity,
permutes the bits of C(m) using the inverse π−1. We abuse notation and denote the permuted
string by π−1(C(m)). She sends π−1(C(m)) through the channel to Bob.

3. Bob can ‘unpermute’ the corrupted word which he received by applying π (this assumes that
Alice can somehow send Bob the short description of π). Bob ends up with C(m), corrupted
in a set of positions which was chosen (almost) t-wise independently. That is, if the adversary
added an error vector e ∈ {0, 1}n, the code is faced with decoding the error vector π(e). By
the result mentioned above, the code C will correct the errors introduced by the adversary
with high probability, and Bob can learn the original message m.

The idea of permuting a string to randomize errors and thus reach capacity is by no means
new. However, previous approaches require choosing, and sending or storing, a fully random
permutation [BBR88] (this requires Θ(n log n) random bits) or assume the existence of a pseudo-
random generator [Lip94, DGL04]. Our approach can be seen as a derandomization of the generic
approach, replacing a cryptographic pseudo-random generator based on a hardness assumption with
a specific, combinatorial generator tailored to this application. We now explain two applications of
this idea in more detail.

1.2 Information Reconciliation

Suppose that Alice and Bob share an n-bit secret string. Alice’s copy w of the shared string is
slightly different from Bob’s copy w′. Alice would like to send a short message S(w) to Bob which
allows him to correct the errors in w′ (and thus recover w) whenever w and w′ differ in at most
τ bits. The randomized map S() that Alice applies to w is called a non-interactive information
reconciliation scheme, or simply a sketch, correcting τ binary Hamming errors.3 A typical example
of a sketch is

S(w) = synC(w),

where synC is the syndrome of a linear error-correcting code C with block length n [BBR88]. (The
syndrome is the linear map given by the parity check matrix of the code.) If C has dimension

2The constructions of [KNR05] only produce almost t-wise independent permutations. See Section 3.2 for details.
3This is a different use of the term “sketch” than one sometimes sees in the algorithms literature, where it means,

roughly, a short string allowing one to estimate distances between a particular vector and other points.

2

k, then synC(w) is only n − k bits long. If the minimum distance of C is at least 2τ + 1, then
synC(w) allows Bob to correct any τ errors in w′. Moreover, the correction process is efficient
(polynomial-time) if one can correct τ channel errors using the code in polynomial time.

Formally, a sketch consists of two (randomized) algorithms “sketch” (S : {0, 1}n → {0, 1}`) and
“recover” (Rec : {0, 1}n × {0, 1}` → {0, 1}n). The parameter ` is called the length of the sketch.

Definition 1. A sketch corrects τ adversarial errors with probability 1 − ε if for all pairs w,w′ ∈
{0, 1}n which differ in at most τ positions, Rec(w′, S(w)) = w with probability at least 1 − ε over
the random coins of S and Rec.

No guarantee is provided about the output of Rec when the distance between w and w′ is
more than τ . Also, we assume that w′ is chosen before the value S(w) (that is, the pair w,w′ is
independent of the coins of S(w)).

Sketches are useful for cryptographic settings where secrets may be subject to noise, such as
when keys come from biometrics or other measurements [JW99, JS02, DRS04, BDK+05], quantum
cryptography [BBR88, BBCM95, BS92], Maurer’s bounded storage model [Din05, DS05], and several
variants on settings with correlated randomness, e.g. [RW04, RW05].4 They have also been considered
in communication complexity, e.g. [Orl92, Orl93, CPSV00, MT02, MTZ03].

We focus here on the length of the sketch: how many bits must Alice send to Bob? When w
is drawn uniformly from {0, 1}n, at least nh(p)(1− o(1)) bits are necessary if the scheme corrects
τ = pn errors: S(w) allows Bob to distinguish w from all other strings at distance pn from w′, that
is from about 2nh(p) candidates. The same bound applies to the entropy loss of the sketch, which
we discuss at the end of this section.

Techniques from previous work allow one to construct several protocols matching this bound [BBR88,

Lip94, DGL04, Gur03, DRS04, RW05]. The results are not stated explicitly in the form that interests us;
in Section 3.1 we cast them in the setting of reconciliation protocols and compare the parameters
they achieve. To our knowledge, all of them either

• work only for a known distribution on the error vector w⊕w′ (typically, the errors are assumed
to be independent),

• require an exponential-time computation on Bob’s part to recover w, or

• assume the existence of pseudo-random generators.

The general approach of the previous section yields the first sketch for binary strings which
solves all the problems above: the sketch has length n(h(p) + o(1)), makes no assumptions on
the distribution of the pair w,w′ except that the Hamming distance dist(w,w′) is bounded, allows
Bob to recover w with all but negligible probability in polynomial time, and requires no unproven
computational assumptions. Here we give a high-level description:

Protocol 1. Given a parameter δ > 0:
(Step 1) Alice chooses a permutation π which is almost t-wise independent for t = δn/ log(n).
Using the KNR permutation generator, this takes only O(t log n) = O(δn) bits. (Step 2) Alice
permutes the bits of w using π−1 (the inverse is for technical reasons), and encodes the result using

4In some of these settings, Bob is simply Alice at a later point in time. The sketch is “transmitted” by storing
it– and so having the sketch be non-interactive is important. Nevertheless, the lower bound of nh(p) discussed below
on the communication complexity and entropy loss of sketches applies equally well to interactive schemes, so the
protocols we discuss are optimal even if interaction is possible. There are some reconciliation settings, not directly
relevant to our discussion, where interaction is known to help; see, for example, the work of Orlitsky [Orl90].

3

the concatenated code C described above which has rate (1 − h(p) − δ) and efficiently corrects any
t-wise independent error distribution. (Step 3) Alice sends

S(w) = description of π︸ ︷︷ ︸
O(δn) bits

, synC(π(w))︸ ︷︷ ︸
n(h(p)+δ) bits

.

This sketch corrects pn errors with probability 1 − exp(Ω(δ3n/ log n)), as long as δ is not too
small (larger than some constant times loglog n/

√
log n). See Section 3.2 for a precise analysis.

The Relation to Entropy Loss In cryptographic settings, a sketch is usually used as the first
step of a protocol, following which Alice and Bob derive a shared, secret key from w. Suppose that
Eve is tapping the line and trying to learn as much as possible. The most important parameter of
a sketch is then the entropy loss of the scheme. Entropy loss can be defined in several ways (see,
e.g., [DRS04, RW05]) but in all cases it can be interpreted as the amount of “information,” in bits,
revealed about w by S(w). Typical proofs of security bound the entropy loss of a scheme simply
by bounding the number of bits sent from Alice to Bob which depend on the message w. 5 This
suffices as a definition of entropy loss for our purposes. We refer the reader to [DRS04, RW05] for
discussions of the correct general definition.

The lower bound of n(h(p)− o(1)) applies to the entropy loss as well as the length of a sketch
(again, by considering the special case of random, independent errors). Since the length of a sketch
provides an upper bound on its entropy loss, communication-optimal sketches are also optimal for
entropy loss. Nevertheless, some sketches from previous work are optimal for entropy loss but not
communication, and so we include entropy loss as a separate entry in our comparison of various
protocols (Table 1 in Section 3.1).

1.3 Private Codes

Private codes were named and first studied explicitly by Langberg [Lan04], with the goal of commu-
nicating at the Shannon capacity even in the face of adversarial errors. The idea is that if Alice
and Bob share a key ahead of time —secret from the adversary controlling the channel— then they
can send information at a higher rate than they could by using a standard code.

Definition 2. An adversarial channel introducing pn errors is a randomized map N : {0, 1}n →
{0, 1}n such that for all inputs w, the distance dist(w,N (w)) is at most pn with probability 1.

Definition 3. A [n, k, `key] private code is a pair of algorithms PC,D, where PC : {0, 1}k ×
{0, 1}`key → {0, 1}n and D : {0, 1}n×{0, 1}`key → {0, 1}k. The private code corrects pn errors with
probability 1 − ε if for all messages x ∈ {0, 1}k and for all adversarial channels N introducing at
most pn errors, the probability over r that D(N (PC(x; r)); r) = x is at least 1 − ε. The private
code is efficient if both PC and D run in polynomial time.

Efficient Private Codes For any p ∈ (0, 1), there are efficient private codes which achieve
capacity, in the sense that they correct pn errors with high probability and transmit a message of
k ≈ n(1− h(p)) bits. The rate is optimal since sharing a secret key does not increase the capacity
of a binary symmetric channel, and a private code must, in particular, correct binary symmetric
errors with high probability.

A construction of such private codes is implicit in [DGL04] and described in detail in [Lan04]. The
scheme has key length `key = Θ(n log n), since the key contains a uniformly random permutation

5There are exceptions. For example, the analysis of the code-offset scheme for non-linear codes in [DRS04] does
not have so simple a form, but no instances are known where the generality of non-linear codes is useful.

4

of [n]. The general strategy described in Section 1.1 applies here: the uniform random permutation
can be replaced by an almost t-wise independent permutation, reducing the key length from n log n
to n + o(n). We obtain the following protocol:

Protocol 2. Given a shared key (a, s), where a ∈ {0, 1}n, s ∈ {0, 1}δn:
(Step 1) Alice runs KNR generator with t = δn/ log n on seed s to obtain a permutation πs : [n]→
[n]. (Step 2) Alice encodes x using the concatenated code C of Section 1.1 for partially dependent
errors. (Step 3) Alice sends:

PC(x; a, s) = π−1
s (C(x))⊕ a.

To decode the received string y, Bob runs the decoder for C on π(y)⊕ a.

The scheme corrects pn adversarial errors with error ε = exp(−Ω(δ3n/ log n). The idea of the
analysis is that the mask a eliminates all dependency between the errors in the channel and the
permutation πs, and thus we can apply the general approach from Section 1.1. See Section 4 for a
precise analysis and a comparison to parameters achieved in previous work.

Inefficient Schemes Based on List-Decoding For any p ∈ (0, 1), there exist private codes
which correct pn errors, transmit a message of k ≈ n(1 − h(p)) bits, and use a very short secret
key: only 4 log n + 2 log

(
1
ε

)
bits (Langberg, [Lan04]). This amount of randomness is optimal up to

constant factors [Lan04].
In Appendix A, we present a simplified proof of Langberg’s result, based on a cryptographic

intuition. Roughly: given a good list decodable code LDC, and a message authentication scheme
(MAC), Alice can use the shared randomness as the MAC key and send the encoding of the original
message x together with the tag given by the MAC:

PC(x; r) = LDC(x,mac(x; r)).

Incorrect decoding is roughly equivalent to a forged MAC tag, which occurs with very low prob-
ability. The problem with this construction is that it is not computationally efficient. The scheme
relies on the existence of a good list-decodable code but, as discussed in Section 3.1, polynomial-
time list-decodable codes that approach capacity are only known in the extreme ranges of p (p ≈ 0
or p ≈ 1

2). The scheme of Protocol 2 is, surprisingly, the best known (capacity-achieving) private
code with efficient decoding.

1.4 Organization of this Paper

Section 2 presents a family of capacity-approaching concatenated codes and shows that t-wise
independence of the errors is sufficient to guarantee correct decoding with high probability. Section 3
of the paper discusses communication-optimal reconciliation schemes. We first discuss protocols
which follow directly from ideas in previous work (Section 3.1), and then analyze the performance of
Protocol 1 (Theorem 4). Finally, Section 4 we look at the application to private codes (Theorem 5).
Langberg’s existential construction of good private codes can be found in Appendix A.

2 Codes for Partially Dependent Errors

Definition 4. A random variable E = (E1, . . . , En) on {0, 1}n is t-wise independent of weight pn

if for any set I = {i1, . . . , it} of t indices in [n], the restriction E|I
def= (Ei1 , . . . , Eit) has statistical

distance at most 2−t from the distribution it would have if E was chosen uniformly from the set of
binary vectors with exactly pn ones.

5

We say a code C corrects an error distribution E with probability 1 − ε if there is a decoding
algorithm Dec such that, for all messages m, the probability over E that Dec(C(m) ⊕ E) = m is
at least 1− ε. 6

Theorem 1. For any δ = Ω(log log n/
√

log n), there is a family of linear concatenated codes of
length n and rate R = 1 − h(p) − δ which corrects all t-wise independent error distributions of
weight pn with probability 1− 2−Ω(δ2t) as long as ω(log n) < t < δn/10.

We will typically set t = δn/ log n, in which case the error probability of the decoding scales as
2−Ω(δ3n/ log n).

2.1 Underlying Concatenated Code

The code construction has two parameters: the block size b in bits, which is at most O(log n), and
the overhead δ, which determines the rate R = n(1−h(p)− δ). The block length will ultimately be
set to about log

(
1
δ

)
/δ2, although we will leave it as an explicit parameter to make the construction

easier to follow.

Inner Code: a linear code of block length b and rate R0 = 1− h(p)− δ/2 which corrects random
errors with probability µ = 2−Ω(δ2b). We will later choose b large enough so that µ ≤ δ/10.

This code is a linear code selected by exhaustive search (see details below). It can be decoded
in time poly(2b) = poly(n).

Outer Code: A linear code with length n1 = n/b and rate R1 = 1− δ/2 over an alphabet of size
2R0b, which corrects Ω(δn′) adversarial errors in polynomial time. For concreteness, say the
code corrects δn1/5 errors.

We can use a Reed-Solomon or algebraic-geometric code (details below). These codes can be
decoded in time O(n3) and even, in some cases, in time O(n polylog n).

The final code is the concatenation of the codes above: the message is first encoded with the
outer code, and then each of the symbols is encoded with the inner code. The final block length is
n = n1b, and the final rate is R0R1 ≥ 1− h(p)− δ, as desired.

By a line of analysis due to Forney [For66], and which is now standard, this code will correct
random, independent errors well. The decoder simply attempts to correct errors in each of the
blocks separately, by exhaustive search. Each block corrects all of its errors with probability 1−µ,
where µ = 2−Ω(δ2b). The outcome of the decoding operation within each block is independent of all
the other blocks, and so with overwhelming probability, the number of incorrectly decoded blocks is
at most, say, 2µn1. The decoder then concatenates the resulting messages and attempts to decode
the result using the outer code.

We chose µ < δ/10 and so the high probability bound on the number of bad blocks, 2µn1, is
at most the error-correction threshold of the outer code, δn1/5. As long as the 2µn1 bound is not
exceeded, the outer code corrects all the blocks which decoded incorrectly in the first phase, and
recovers the original message. The overall decoding error of this process is 2−Ω(δ2n).

Note that this is the simplest approach to decoding a concatenated code (it is called hard
decoding), but it is sufficient for our purposes since we do not attempt to optimize the constants in
the exponent.

We now give more detailed information on the component codes of this construction.
6Note that for linear codes, the quantification over m is unimportant since the code is invariant under translation;

we can typically assume that C(m) = 0n without loss of generality.

6

Inner code details: Random linear codes. For any ε1, R0, p, and for sufficiently large b,
there exists a linear code with block length b and rate R0 = 1 − h(p) − ρ which corrects
binary symmetric errors with flip parameter p with error probability at most 2−ρ2b/3. Such a
code can be found with high probability in time poly(2b). The code can be encoded in time
b2 and decoded in time 2b(h(p)+ρ) by exhaustive search. For an analysis of the performance of
random coding, see, e.g., [CT91]. The extension to linear codes follows by noting that pairwise
independence of the codewords is sufficient for the proofs to work, and the running time of
code construction comes from considering a 2b-size subclass of linear codes such as Wozencraft
codes [vL92].

Outer code details: RS and AG codes For any length n, dimension k ≤ n and prime power
alphabet size q > n, Reed-Solomon codes are poly-time constructible and decodable [n, k, d]q
codes with distance d = n − k + 1. For any length n, dimension k ≤ n and (possibly very
small) alphabet size q which is a prime power squared, there exists a poly-time constructible
and decodable family of [n, k, d]q codes with d ≥ n−k− n√

q−1 +1. See [vL92, Sti93] for details.

If the dimension R0b is of the inner code is large enough (at least log(n1)), then one can
use a Reed-Solomon code, which corrects δn1/4 errors. When b is smaller, one may use an
algebraic-geometric code, which corrects 1

4 ·n1(δ− 1/
√

2R0b) errors (we need to round R0b to
an even integer, but this is not a problem as it is at least some large constant). We will later
set b so that the number of corrected errors is at least δn1/5.

2.2 Code Performance with Partially Dependent Errors

We now prove that the hard decoding algorithm mentioned above performs well even when the errors
are only t-wise independent. The main tool is a Chernoff-like bound on a sum of almost t-wise
independent variables. Suppose we have events denoted by binary random variables X1, . . . , Xn

such that every subset of t of the events is close to independent, in the sense that the probability that
they occur simultaneously is not too high. Then the sum of those variables is tightly concentrated
about its mean. The bound we use here is due to Schmidt et al. [SSS95, Eqn. (2)]. It also appears in
Ding et al. [DHRS04, Lemma 5.9].

Fact 2 ([SSS95, DHRS04]). Suppose X1, . . . , Xn are binary random variables, each with expectation
at most µ, such that for every set of t indices i1, . . . , it, we have Pr[Xi1 = · · ·Xit = 1] ≤ 2µt. Then

for B > 1, the probability that the sum
∑n

i=1 Xi exceeds Bµn is at most 2
(
B − t

µn

)−t
.

Let E be any t-wise independent error distribution of weight τn, as in Definition 4. We will
need two claims relating the performance on E to the case of independent errors:

Lemma 3.

1. In each block, the probability of a decoding error with errors from E is at most twice the
probability of a decoding error with random independent errors.

Consequently, each block is wrong with probability at most µ = 2−Ω(δ2b).

2. For any subset of t/b of the blocks, the probability over E that a decoding mistake occurs
simultaneously in all blocks is at most 2µt/b.

We first use the lemma to prove Theorem 1, and then give the proof of the lemma.

Proof of Theorem 1. Let X1, . . . , Xn1 be binary random variables which indicate whether a decod-
ing error occurred in each of the blocks. By part (1) of the lemma, the expectation of Xi is at most

7

µ. Now look at any subset of t′ = t/b blocks. By part (2) of the lemma, the probability that all
Xi’s in that set occur simultaneously is at most 2µt′ . Thus, the Xi’s satisfy the conditions of the
tail bound above (Fact 2) with parameters n1, t

′ and µ. We are interested in the probability that
more than δn1/5 errors occur, so B = δ/(5µ). The probability of a global decoding error is at most

2
(

δ
5µ −

t/b
µn1

)−t/b
. When t < δn/10, this is at most 2

(
10µ
δ

)t/b
. Recall that µ, the probability of

a mistake in each block, is 2−Ω(δ2b). By making b sufficiently large (a constant times log
(

1
δ

)
/δ2),

the fraction µ/δ is dominated by the block decoding error µ, and so the global decoding error is
at most 2−Ω(δ2t), as desired. Since we assumed that δ = Ω(loglog n/

√
log n), the block length b is

always O(log n) and so decoding can always be done in polynomial time.

Remark 2.1. The constants in the proof above are fairly easy to calculate. A random linear code
of length b and rate 1 − h(p) − ρ corrects random, independent errors with probability at least
1−2−ρ2b/3. Going through the proof above, one gets that b should be about 24 log

(
1
δ

)
/δ2, and the

global decoding error is bounded above by 2−δ2t/24. ♦

Proof of Lemma 3. Part 1: Let D1 be the distribution on {0, 1}b obtained by flipping b coins
independently with probability p of outcome 1. Let D2 be the distribution on {0, 1}b obtained by
randomly selecting a substring of exactly b bits from a string of n bits containing pn ones. We can
think of D1 as sampling b positions with replacement from the same string as D2; the distributions
are equal conditioned on D1 never having a collision (i.e. sampling the same position twice). A
collision occurs with probability at most b2/n, which tends to 0 since b = O(log n). Let S ⊆ {0, 1}b
be the set of errors that are incorrectly decoded by a particular linear code.

Pr(D2 ∈ S) = Pr(D1 ∈ S | no collision) ≤ Pr(D1 ∈ S)
Pr(no collision)

≤ Pr(D1 ∈ S)
1− o(1)

We are in fact concerned with the performance of the code on a particular subset of b positions
from the random vector E. By definition, these have statistical difference at most 2−t from D2.
Since t > b, this is much smaller than the probability of a decoding error under D1 or D2 (which
are both 2−Ω(δ2b)). Overall, moving from independent errors to errors from E costs a factor of at
most 2 in the probability of a decoding mistake.

Part 2: Consider any t/b blocks. These involve t bits from E, which are close to an “ideal”
distribution — a sample of exactly t positions from a string of n bits with pn ones. Consider
what happens under this ideal distribution when we decode the inner code using the maximum
likelihood algorithm, which outputs the codeword closest to the received word. The probability of
correct decoding then decreases monotonically with the number of bits flipped in a particular block.
When we condition on the event that a decoding mistake occurs in block 1, the probability of a
decoding mistake then goes down in all other blocks, since fewer bits are likely to be flipped there.
Similarly, conditioning on decoding mistakes happening simultaneously in any i blocks makes a
decoding mistake of any other block less likely. The probability that t/b blocks simultaneously
make mistakes is thus at most µt/b under the ideal distribution (recall µ is the mistake probability
in each block). If we consider now what happens under the distribution E, the probability of
simultaneous decoding mistakes is at most µt/b + 2−t (by the Definition 4). Finally, since µ > 2−b,
we can bound the mistake probability by 2µt/b, as desired.

3 Communication-Optimal Information Reconciliation

3.1 Optimal Reconciliation Protocols Using Previous Work

As mentioned in the introduction, several communication-optimal reconciliation protocols can be
derived directly using ideas from the literature. None of the protocols appears explicitly in the

8

form that interests us and so, in this section, we translate the relevant work to our setting. Table 1
states the parameters and basic properties of various protocols. As a point of comparison we also
include a protocol based on the syndrome of a standard linear code lying on the Gilbert-Varshamov
bound (this corresponds to the best existential results on such codes).

Reducing Random to Worst-Case Errors Assume, for a moment, that the differences
between w and w′ are somehow guaranteed to be random and independent. We could then match
the nh(p) lower bound efficiently by using the syndrome synC of a polynomial-time decodable code
which achieves the Shannon capacity on a binary symmetric channel (e.g. the concatenated code
of Section 2.1). The code has dimension n(1−h(p)− o(1)), and so the sketch is only n(h(p)+ o(1))
bits long.

Of course, we want to avoid such a strong assumption. In all of the settings where sketches are
used, it makes sense to minimize the requirements on the exact stochastic properties of the noise
process being dealt with. For example, it is easy to estimate the number of errors introduced by
some particular noise process, but it is difficult, in general, to estimate the precise distribution on
the errors, or even to test if it satisfies specific “target” properties such as independence. Con-
sider, for example, biometric data. Their binary representations are typically the result of several
transformations of the original non-binary data. Close inputs (say, iris scans) may well correspond
to close binary strings, but there is no reason to suppose errors in different parts of the string
representation would be independent.

A natural way around this is for Alice to choose a random permutation π : [n] → [n] (here
[n] = {1, . . . , n}) and use it to permute the bits of w (Bennett et al. [BBR88, p. 216]). She sends the
pair π, synC(π(w)) to Bob, who computes synC(π(w′)) and XORs this with the received string to
obtain synC(π(w⊕w′)). Now the distribution on π(w⊕w′) depends only on the distance between w
and w′. If it is at most pn, then running the syndrome decoding algorithm on synC(π(w)⊕ π(w′))
will recover the error vector w ⊕ w′ with high probability.7

The problem is that this scheme requires a lot of communication since the description of π is
n log n bits. The next natural step is to use a cryptographic pseudo-random generator to choose π,
and send only the seed of the generator instead of an explicit description of π (this idea is implicit
in, for example, [DGL04]). This reduces the total communication to only n(h(p)+o(1)), but requires
an unproven hardness assumption.

How, then, can we get around this? A first observation is that this solution does not require
the adversary introducing the errors to be computationally bounded; instead, it relies on the fact
that the decoding algorithm for the code is polynomial time. The adversary’s strategy is limited to
the choice of w and w′ and so she can always be described by a circuit of size 2n. The class of tests
which the generator must fool is given by applying the syndrome decoder for C to synC(π(w⊕w′))
and checking if the result is indeed w ⊕ w′. Since we have some control over the choice of the
code C, the problem begins to look more like a classical, algorithmic de-randomization question:
how many random bits are necessary to fool the decoder for C on all inputs? Protocol 1 and our
analysis of concatenated codes show that o(n) bits are sufficient. Removing the assumption of a

7We are in fact using the code to correct errors which are not independent, but rather chosen randomly conditioned
on exactly a certain number of errors occurring. It is not difficult to see that concatenated codes correct such errors
with high probability, e.g. by tracing through the argument of Section 2.1. More generally, say a decoder is monotone
if for every error pattern e which it correctly repairs, it also correctly repairs all error patterns which are subsets of
e. (Since we deal with linear codes it is sufficient to talk about the error pattern, not the actual corrupted word).
Then restricting oneself to uniformly random errors of weight τ ≤ pn can increase the mistake probability of the
code by at most a factor O(

√
n) since (1) the worst case occurs with exactly pn errors and (2) such strings occupy

a Ω(1/
√

n) fraction of the binary symmetric distribution. The hard decoder for concatenated codes may not always
be monotone, but the fraction of errors on which it behaves monotonically is high enough for the same argument to
work.

9

Scheme Entropy Loss Length Decoding error Efficient/ Notes
` log(1/ε) explicit?

Syndrome of code nh(2p) = ent. loss ε = 0 no/no Efficient codes
on GV bound do worse

List-dec. + hash nh(p) + 1 ent. loss + δn 1
2
δn− log n− 2 no/no δ > log n

n

[Gur03, DRS04]

Random perm’n n(h(p) + δ) n(log n + 1) Ω(δ2n) yes/yes δ = Ω(loglog n√
log n

)

[BBR88]

Perm’n via p.r.g. n(h(p) + δ) ent. loss + nα ω(log n) yes/yes δ = Ω(loglog n√
log n

) and

[DGL04] (α constant) cryptographic p.r.g.

t-wise ind. perm’n n(h(p) + δ) ent. loss + δn Ω(δ3n/ log n) yes/yes δ = Ω(loglog n√
log n

)

(this work)

Table 1: Sketches correcting pn out of n adversarial binary Hamming errors. The term “explicit” means that a
description of the protocol can be computed in polynomial time from a unary description of n and binary represen-
tations of the other parameters. The parameters described here assume p is a constant bounded away from 0 and 1

2
.

For p = o(1), standard codes in fact do quite well. For p = 1
2
− o(1), efficient, explicit near-optimal list-decodable

codes are known [GS00].

cryptographic generator additionally allows us to give an exact expression for the probability of a
decoding error.

An Inefficient Solution via List-Decoding A different approach to dealing with adversarial
errors is for Alice to compute and send the syndrome of w with respect to a linear, list-decodable
code. A code LDC : {0, 1}k → {0, 1}n is (L, pn)-list decodable if for every word y ∈ {0, 1}n, there
are at most L codewords at distance pn or less from y.

If Bob receives synLDC(w), he can use it to compute a list of at most L candidates for w which
are within distance pn of w′. If Alice appends a small hash of w to her message then Bob can use
it to select which of the candidates is the correct one.

Linear codes with polynomial with list size L = n are known to exist with dimension n(1−h(p))
− 1 [GHSZ02]. For Bob to select the correct w from the list, it is sufficient to append an almost
pairwise-independent hash of w whose output length is about log L. The description of the hash
function also takes about log L bits. The scheme looks like:

S(w) = description of hash, hash(x)︸ ︷︷ ︸
o(n) bits

, synLDC(w)︸ ︷︷ ︸
nh(p)+1 bits

.

The idea of sieving a list in this way was perhaps always implicit in work on list-decodable
codes. It was used for coding with a “side channel” [Gur03], private codes [Lan04, MPSW05] and
mentioned in the context of reconciliation in [DRS04]. It is also used in complexity-theory, where
the hash is often provided as advice to a small circuit.

The main problem with this approach is efficiency. Except for extreme ranges of the error
rate (p ≈ 0 or p ≈ 1

2), polynomial time constructions of capacity-approaching list-decodable binary
codes are not known, never mind efficient decoding algorithms for them (see [GS00] for a discussion).
Nonetheless, the parameters of this construction are better than those obtained via randomization;
they are included for comparison in Table 1.

3.2 Analysis of Protocol 1

Almost t-wise Independent Permutations A family of permutations π : [n] → [n] is β-
almost t-wise independent if for every t elements i1, . . . , it in [n], the vector of random variables
(π(i1), . . . , π(it)) has statistical difference at most β from the distribution it would have if π were

10

a uniformly random permutation, i.e. from a sample of t points in [n] chosen uniformly without
replacement. Kaplan, Naor and Reingold [KNR05] give a polynomial time construction of such
families from which one can sample using O(t log n + log(1/β)) random bits.

Analysis Suppose Alice runs Protocol 1, setting β = 2−t when she uses the KNR generator, and
uses the code C from Theorem 1. The description of π requires O(δn) bits. We obtain:

Theorem 4. For δ = δ(n) = Ω(loglog n√
log n

), there exists an explicit, polynomial-time computable
and decodable family of sketches tolerating pn errors with length ` = n(h(p) + δ) and error ε =
2−Ω(δ3n/ log n).

Recall, as a point of comparison, that any sketch tolerating pn errors must have length ` at least
n(h(p)−o(1)), since one can use it to transmit any vector of weight pn, and there are 2−n(h(p)−o(1))

such vectors when p is constant.

Proof. Fix particular inputs w,w′. It suffices to show that the distribution π−1(w ⊕ w′) is t-wise
independent, in the sense of Definition 4, for t = δn/ log n. Consider any t locations i1, . . . , it in
π−1(w ⊕ w′). Their values are given by the bits at positions π(i1), . . . , π(it) in w ⊕ w′. This latter
string has at most pn ones. If π were a truly random permutation, this would be a uniform sample
of t positions without replacement. Since π is 2−t-almost t-wise independent, the restriction of
w ⊕ w′ is 2−t close to what it would be if π were random, as required.

By Theorem 1, the decoding algorithm for C recovers the string π−1(w ⊕ w′) with probability
at least 1− ε where ε = 2−Ω(δ2t) = 2−Ω(δ3n/ log n).

4 Improved Efficient Private Codes

Protocol 2 yields the following:

Theorem 5. For any δ = δ(n) = Ω(log log n/
√

log n), there exists an explicit, efficient family
of [n, Rn, `key] private codes correcting pn adversarial errors with probability 1 − ε, where R =
1− h(p)− δ, `key ≤ n(1 + δ) and ε = 2−Ω(δ3n/ log n).

Proof. Because of the mask a, the adversary obtains no information on the string π−1
s ((C(x)), and

so the set of positions corrupted in the channel is independent of πs. Let e be the error vector
introduced by the adversary—we may think of it as fixed. As in the proof of Theorem 4, the code
C is confronted with the error distribution π(e) where π comes from the KNR generator. This
distribution satisfies Definition 4. Applying Theorem 1 yields the desired bound.

Table 2 compares the properties of the new construction with schemes from previous work.

References

[BBCM95] Charles H. Bennett, Gilles Brassard, Claude Crépeau, and Ueli M. Maurer. Generalized privacy
amplification. IEEE Transactions on Information Theory, 41(6):1915–1923, 1995.

[BBR88] C. Bennett, G. Brassard, and J. Robert. Privacy amplification by public discussion. SIAM
Journal on Computing, 17(2):210–229, 1988.

[BDK+05] Xavier Boyen, Yevgeniy Dodis, Jonathan Katz, Rafail Ostrovsky, and Adam Smith. Secure
remote authentication using biometric data. In Ronald Cramer, editor, Advances in Cryptology—
EUROCRYPT 2005, volume 3494 of Lecture Notes in Computer Science, pages 147–163. Spring-
er-Verlag, 2005.

11

Scheme Rate k/n Key length Decoding err. Efficient/ Notes
`key log(1/ε) explicit?

Standard Code 1− h(2p) 0 ε = 0 no/no Efficient codes
on GV bound do worse

[Lan04] 1− h(p)− δ 2δn δn− 2 log n− 2 no/no δ > 2 log n
n

[DGL04] 1− h(p)− δ n(log n + 1) Ω(δ2n) yes/yes δ = Ω(loglog n√
log n

)

[DGL04] 1− h(p)− δ nα ω(log n) yes/yes δ = Ω(loglog n√
log n

) and

(α constant) cryptographic p.r.g.

This work 1− h(p)− δ (1 + δ)n Ω(δ3n/ log n) yes/yes δ = Ω(loglog n√
log n

)

Table 2: Private codes correcting pn out of n adversarial binary Hamming errors. The parameters described here
assume p is a constant bounded away from 0 and 1

2
. See notes for Table 1.

[BS92] P. Berman and G. Schnitger. On the complexity of approximating the independent set problem.
Information and Computation, 96:77–94, 1992.

[CC04] Christian Cachin and Jan Camenisch, editors. Advances in Cryptology—EUROCRYPT 2004,
volume 3027 of Lecture Notes in Computer Science. Springer-Verlag, 2004.

[CPSV00] Graham Cormode, Mike Paterson, Süleyman Cenk Sahinalp, and Uzi Vishkin. Communication
complexity of document exchange. In SODA, pages 197–206, 2000.

[CT91] Thomas Cover and Joy Thomas. Elements of Information Theory. Wiley Series in Telecommu-
nications, 1991.

[DGL04] Yan Zhong Ding, P. Gopalan, and Richard J. Lipton. Error correction against computationally
bounded adversaries. Manuscript. Appeared initially as [Lip94], 2004.

[DHRS04] Yan Zong Ding, Danny Harnik, Alon Rosen, and Ronen Shaltiel. Constant-round oblivious
transfer in the bounded storage model. In TCC 2004, pages 446–472, 2004.

[Din05] Yan Zong Ding. Error correction in the bounded storage model. In Kilian [Kil05].

[DRS04] Yevgeniy Dodis, Leonid Reyzin, and Adam Smith. Fuzzy extractors: How to generate strong
keys from biometrics and other noisy data. In Cachin and Camenisch [CC04].

[DS05] Yevgeniy Dodis and Adam Smith. Correcting errors without leaking partial information. In
Harold N. Gabow and Ronald Fagin, editors, STOC, pages 654–663. ACM, 2005.

[Eli91] Peter Elias. Error-correcting codes for list decoding. IEEE Transactions on Information Theory,
37(1):5–12, 1991.

[For66] G. David Forney. Concatenated Codes. PhD thesis, MIT, 1966.

[GHSZ02] Venkatesan Guruswami, Johan H̊astad, Madhu Sudan, and David Zuckerman. Combinatorial
bounds for list decoding. IEEE Transactions on Information Theory, 48(5):1021–1034, 2002.

[GS00] Venkatesan Guruswami and Madhu Sudan. List decoding algorithms for certain concatenated
codes. In Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing,
pages 181–190, Portland, Oregon, 21–23 May 2000.

[Gur03] Venkatesan Guruswami. List decoding with side information. In IEEE Conference on Compu-
tational Complexity, pages 300–. IEEE Computer Society, 2003.

[JS02] Ari Juels and Madhu Sudan. A fuzzy vault scheme. In IEEE International Symposium on
Information Theory, 2002.

[JW99] Ari Juels and Martin Wattenberg. A fuzzy commitment scheme. In Sixth ACM Conference on
Computer and Communication Security, pages 28–36. ACM, November 1999.

[Kil05] Joe Kilian, editor. First Theory of Cryptography Conference — TCC 2005, volume 3378 of
Lecture Notes in Computer Science. Springer-Verlag, February 10–12 2005.

12

[KNR05] Eyal Kaplan, Moni Naor, and Omer Reingold. Derandomized constructions of k-wise (almost)
independent permutations. In APPROX-RANDOM, pages 354–365, 2005.

[Lan04] Michael Langberg. Private codes or succinct random codes that are (almost) perfect. In FOCS
’04: Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science
(FOCS’04), pages 325–334, Washington, DC, USA, 2004. IEEE Computer Society.

[Lip94] Richard J. Lipton. A new approach to information theory. In Patrice Enjalbert, Ernst W. Mayr,
and Klaus W. Wagner, editors, STACS, volume 775 of Lecture Notes in Computer Science, pages
699–708. Springer, 1994. The full version of this paper is in preparation [DGL04].

[MPSW05] Silvio Micali, Chris Peikert, Madhu Sudan, and David Wilson. Optimal error correction against
computationally bounded noise. In Kilian [Kil05].

[MT02] Yaron Minsky and Ari Trachtenberg. Scalable set reconciliation. In 40th Annual Allerton Con-
ference on Communication, Control and Computing, Monticello, IL, October 2002. See also
tehcnial report BU-ECE-2002-01.

[MTZ03] Yaron Minsky, Ari Trachtenberg, and Richard Zippel. Set reconciliation with nearly optimal
communication complexity. IEEE Transactions on Information Theory, 49(9):2213–2218, 2003.

[Orl90] Alon Orlitsky. Worst-case interactive communication i: Two messages are almost optimal. IEEE
Transactions on Information Theory, 36(5):1111–1126, 1990.

[Orl92] Alon Orlitsky. Average-case interactive communication. IEEE Transactions on Information
Theory, 38(5):1534–1547, 1992.

[Orl93] Alon Orlitsky. Interactive communication of balanced distributions and of correlated files. SIAM
J. Discrete Math., 6(4):548–564, 1993.

[RW04] Renato Renner and Stefan Wolf. The exact price for unconditionally secure asymmetric cryp-
tography. In Cachin and Camenisch [CC04], pages 109–125.

[RW05] Renato Renner and Stefan Wolf. Simple and tight bounds for information reconciliation and pri-
vacy amplification. In Bimal Roy, editor, Advances in Cryptology—ASIACRYPT 2005, Lecture
Notes in Computer Science, Chennai, India, 4–8 December 2005. Springer-Verlag.

[SSS95] Jeanette P. Schmidt, Alan Siegel, and Aravind Srinivasan. Chernoff-hoeffding bounds for appli-
cations with limited independence. SIAM J. Discrete Math., 8(2):223–250, 1995.

[Sti93] Henning Stichtenoth. Algebraic Function Fields and Codes. Springer, 1993.

[vL92] J.H. van Lint. Introduction to Coding Theory. Springer-Verlag, 1992.

[ZP81] Victor V. Zyablov and Mark S. Pinsker. List cascade decoding. Problems of Information Trans-
mission, 17(4):29–34, 1981. (In Russian); pp. 236-240 (in English), 1982.

A A Simple Construction of Private Codes

We present a simple proof of Langberg’s result [Lan04] that private codes with short keys exist for
decoding up to the Shannon capacity. We also observe along the way that one can ensure that the
final code is linear for every particular value of the private key.

Definition 5. A code LDC : {0, 1}k → {0, 1}n is (L, pn)-list decodable if for every word y ∈ {0, 1}n,
there are at most L codewords at distance pn or less from y.

Definition 6. A one-time message authentication code (MAC) with forgery probability γ and mes-
sage length m is a function mac : {0, 1}m×{0, 1}`key → {0, 1}`tag such that for any computationally
unbounded adversary A, and for all messages x ∈ {0, 1}m, the probability over the key r ← {0, 1}`key

and the adversary’s coins that A(x,mac(x; r)) = x′,mac(x′; r), and x′ 6= x, is at most γ.

13

Given a list decodable code LDC and a MAC, a natural private code is to use the shared
randomness as the MAC key, and encode the resulting pair (message, tag), i,e:

PC(x; r) = LDC(x,mac(x; r)).

This reduces the message length slightly, but allows the receiver to uniquely identify the original
message.

Lemma 6. Let LDC : {0, 1}k → {0, 1}n be a (L, pn) list decodable code. Let mac be an authentica-
tion code with forgery probability ε/L and message length k− `tag. Then there is a [n, k− `tag, `key]
private code which corrects any pn errors with probability 1− ε.

Proof. The encoder, given key r and message x, sends LDC(x,mac(x; r)). The decoder computes
a list of at most L candidate messages of the form (x′, tag′) (this is efficient iff the code has an
efficient list-decoding algorithm); it outputs a message x if and only if it is the only message in the
list with a valid tag. On one hand, the correct message and tag will always be in the list. On the
other hand, no matter which pn errors the adversary introduces, she gets at most L − 1 chances
to forge a tag on an invalid message. By a union bound, she succeeds with probability at most
(L− 1)γ < ε.

Fact 7 (Folklore). For any message length m and error γ > 0, there exists a MAC with keys of
length `key ≤ 2(log n + log

(
1
γ

)
+ 1) and tags of length `tag ≤ log n + log

(
1
γ

)
+ 1. For every fixed

key r, the function mac(·; r) is linear.

Fact 8 ([ZP81, Eli91, GHSZ02]). For any p ∈ (0, 1) and integers n, L, there exists a (L, pn) code
with dimension k ≥ n(1− h(p)− 1/L). Moreover, the code can be chosen to be linear.

Taking L = n in the lemma above, we get:

Corollary 9 ([Lan04]). For any p, δ ∈ (0, 1) such that δ < 1− h(p), and for every integer n, there
exists a [n, n(1− h(p)− δ), 2δn] private code which corrects pn errors with probability 1− ε where
ε ≤ n22−δn+1. Moreover, for every fixed key the resulting code is linear.

Notes. The MAC from the fact above is standard: Let s = dlog(m/γ)e. Take the bits of the
message x to give the coefficients of a polynomial x(z) of degree m over the field GF (2s) (and set
the constant term to 0). The key consists of two field elements a, b and the tag is x(a) + b. The
adversary can only forge if he can find a pair x′ and x′(a) − x(a). Now b masks all information
about a, and so we may think of a as chosen after the adversary outputs his guess. The polynomial
(x′ − x) takes on any particular value at most m times since it has degree at least 1 and at most
m. The adversary’s success probability is thus at most m/2s ≤ γ.

The construction of (non-linear) list-decodable codes that achieve the Shannon capacity pro-
ceeds by choosing a random code and throwing out sets of codewords that are too close [ZP81, Eli91].
Ensuring that the code is also linear is more complicated; the result is due to Guruswami et
al. [GHSZ02].

14

	Introduction
	Partially Dependent Errors
	Information Reconciliation
	Private Codes
	Organization of this Paper

	Codes for Partially Dependent Errors
	Underlying Concatenated Code
	Code Performance with Partially Dependent Errors

	Communication-Optimal Information Reconciliation
	Optimal Reconciliation Protocols Using Previous Work
	Analysis of Protocol 1

	Improved Efficient Private Codes
	References
	A Simple Construction of Private Codes

