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Abstract. We propose an efficient anonymous authentication scheme which might be deployed in the
setting of trusted computing platform. Our construction implements features such as total anonymity,
variable anonymity, and rogue TPM tagging. The new scheme is significantly simpler, and more efficient
than the current solution that has been adopted in the standard specification. We have proved the new
scheme is secure under the strong RSA assumption, and the decisional Diffie-Hellman assumption.
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1 Introduction

The Trusted Computing Group [19] is an industry consortium to develop standards for Trusted Computing
Platforms. A trusted computing platform is a computing device embedded with a cryptographic chip called
trusted platform module (TPM). The TPM is the root of trust. It is designed and manufactured in specific
way such that all other remote parties trust some cryptographic computing results from this TPM. A trusted
computing platform implements many security related features based on the TPM such as secure boot, sealed
storage, software integrity attestation, etc. More introduction about TPMs, and trusted computing platforms
can be found at the website of trusted computing group [19].

However, the deployment of the TPM introduces privacy concerns. A TPM holds an RSA keypair called
Endorsement Key (EK) which uniquely identifies this TPM. During a transaction a remote server knows
public key of EK for a TPM. Therefore, all the transaction by the same TPM can be linked, and analyzed.
To protect the privacy of a TPM owner, it is desirable to implement anonymous authentication, i.e, a TPM
can prove its authenticity to a remote server without disclosing its real identity, EK.

Two solutions have been proposed in the specification of the TPM. TPM v1.1 is based on a trusted third
party, called Privacy CA. A TPM generates a second RSA keypair called Attestation Identity Key (AIK).
The TPM sends the AIK to the Privacy CA applying for a certificate on this AIK. After the TPM prove
its ownership on a valid EK, the Privacy CA issues the certificate on the AIK. Later, the TPM sends the
certificate for the AIK to a verifier, and proves it owns this AIK. This way, the TPM hides its identity during
the transaction. Obviously, this is not a satisfactory solution, since each transaction needs the involvement
of the Privacy CA, and the compromise of the Privacy CA will disclose all mappings between AIKs and EKs.

The solution in TPM v1.2 is called Direct Anonymous Attestation (DAA). A Privacy CA is not necessary
in the new method. A TPM can directly proves its authenticity to a verifier. The current solution is based
on the research results from group signature which has been introduced by Chaum and Heyst [11]. More
specifically, the current solution [4] is based on the Camenisch-Lysyanskaya signature scheme [5] and the
group signature scheme in [1]. DAA can be seen as a group signature without open capability. In the rest of
the paper, we refer to the current solution as the BCC scheme.



In this paper, we propose a construction that can efficiently carry out anonymous authentication similar
to DAA. Our method is much simpler, and more efficient than the BCC scheme. The rest of this paper is
organized as follows. Section 2 analyzes the characteristics of TPMs and our method. Section 3 reviews some
definitions and cryptographic assumptions, and building block for our proposed scheme. We introduces our
construction in Section 4. Security proofs are provided in Section 5. The paper concludes in Section 6.

2 The Characteristics of TPM

A TPM is a tamper-resistance cryptographic chip. When a TPM is manufactured, a unique RSA keypair,
called Endorsement Key (EK), is produced and stored in the protective area of a TPM. The EK might be
generated internally inside a TPM, or imported from an outside key generator. The public part of EK is
authenticated by the manufacturer, while private part of EK will never be revealed to the outside. TPMs
independently accomplish cryptographic computation inside themselves. Even manufacturer should not be
able to obtain the knowledge of these computation. TPMs are embedded into computing devices by device
manufacturers. These devices (e.g., personal computers) are called trusted computing platforms.

At the heart of trusted computing platforms is the assumption that TPMs should independently work
as expected, and be “trusted” by its manufacturer as well as remote parties. If we see TPM as a group
member in group signature schemes, the manufacturer is the group manager. However, in a group signature
scheme, the group manager and a member are mutual distrustful. This difference has profound impacts on
the protocol design. Essentially, the whole initiative of trusted computing platforms is based on the trust of
TPMs. It is a hardware-assisted technique to enhance computer securities.

If the authentications for TPMs are directly based on EKs, all transactions by the same TPM can be
linked. Furthermore, if a TPM is associated with a user’s identity, the user may suffer from privacy abuse.
The current solution to direct anonymous authentication, the BCC scheme, adopts the techniques from group
signatures: a TPM applies for a credential from an issuer. Later, the TPM generates a special signature based
on this credential. A remote verifier can verify the signature has been constructed from a valid credential
without the ability to recover the underlying credential. Different signatures based on the same credential
might be linkable, or unlinkable depending on a verifier’s requirements. If the method implements unlinkable
authentications, it is called “Total Anonymity”.

“Variable Anonymity” is a conditionally linkable anonymous authentication mechanism, in which the
signatures signed by the same TPM in a certain time interval are linkable. However, when the signing
parameters change, the signatures across different time periods cannot be linked. When time interval becomes
short, the method works like perfect unlinkable authentications. When the period never expires, this leads
to pseudo-anonymity. A verifier can adjust the time interval to detect suspicious attestation. If too many
attestation requests come from the same TPM in a period, it is likely this TPM has been compromised.

Rogue TPM tagging deals with the revocation of corrupted TPMs. When a broken TPM is being iden-
tified, its secrets (e.g, EK, credential) should be published on the revocation list. Verifiers can identify and
exclude rogue TPMs on the list.

The current solution, the BCC scheme, is quite a complex construction with high computing intensity.
To expedite authentication, computation has been distributed among a TPM and the Host into which the
TPM is embedded. The TPM finishes the computation related to the signature, while the Host finishes the
computation related to anonymity. The BCC schemes works fine on personal computers with high computing
capabilities. However, it is still an expensive solution to low end devices.

In this paper, we proposed a scheme which also implements anonymous authentications with features
such as total anonymity, variable anonymity, and rouge TPM tagging. We adopt a different method for the



credential creation, which is more like the key generation for the Endorsement Key. We suggest a new keypair
for a TPM, called Anonymous Authentication Key (AAK). This keypair is produced during manufacturing
just as the EK, and solely used for anonymous authentication. We also introduce a Join protocol for the
generation of AAKs after TPMs are shipped. Due to the much lower computation overhead for our method,
it becomes unnecessary for the computation distribution among TPMs and Hosts. This makes our method
more attractive for devices with lower computing capability, such as mobile devices.

To facilitate the later discussion, we abstract the security requirements for the anonymous authentication
in the trusted computing platform as follows.

Definition 1 (The Model). A manufacturer creates TPMs. After creation, TPMs independently work as
expected, and cannot be interfered by the outside. The manufacturer and TPMs forms a group in which the
manufacturer holds group master key, while TPMs hold their anonymous authentication keypairs (AAK).
The scheme includes four protocols:

– KeyGen: the manufacturer adopts KeyGen protocol to generate system parameters and its master key,
and AAKs for TPMs.

– Sign: A TPM signs an anonymous signature following Sign protocol.
– Verify: A verifier follows Verify protocol to validate a signature by a TPM.
– Rogue TPM tagging: A verifier identifies the signatures by corrupted TPMs on revocation list.

The scheme should satisfy the following security requirements.

– Forgery Resistance: AAK can only be created using manufacturer’s group master key.
– Total Anonymity: A TPM can directly anonymous prove its authenticity to a remote server, without

the help of a trusted third party. It is infeasible to link the transactions by the same TPM.
– Variable Anonymity The scheme also supports “Variable Anonymity” authentication.

3 Definitions and Preliminaries

This section reviews some definitions, widely accepted complexity assumptions that we will use in this paper,
and building blocks for our scheme.

3.1 Number-Theoretic Assumption

Definition 2 (Special RSA Modulus). An RSA modulus n = pq is called special if p = 2p′ + 1 and
q = 2q′ + 1 where p′ and q′ also are prime numbers.

Definition 3 (Quadratic Residue Group QRn). Let Z∗

n be the multiplicative group modulo n, which
contains all positive integers less than n and relatively prime to n. An element x ∈ Z∗

n is called a quadratic
residue if there exists an a ∈ Z∗

n such that a2 ≡ x (modn). The set of all quadratic residues of Z∗

n forms a
cyclic subgroup of Z∗

n, which we denote by QRn. If n is the product of two distinct primes, then |QRn| =
1
4 |Z

∗

n|.

In the rest of the paper, n, QRn will refer to special RSA modulus and quadratic residue group modulo
n without explicitly suggestion. We list some properties which will be used shortly.

Property 1 If n is a special RSA modulus, with p, q, p′, and q′ as in Definition 2 above, then |QRn| = p′q′

and (p′ − 1)(q′ − 1) elements of QRn are generators of QRn .



Property 2 If g is a generator of QRn, then ga mod n is a generator of QRn if and only if GCD(a, |QRn|) =
1.

The security of our techniques relies on the following security assumptions which are widely accepted in
the cryptography literature. (see, for example, [2, 14, 8, 9, 1]).

Assumption 1 (Strong RSA Assumption) Let n be an RSA modulus. The Flexible RSA Problem is the
problem of taking a random element u ∈ Z∗

n and finding a pair (v, e) such that e > 1 and ve = u (mod n).
The Strong RSA Assumption says that no probabilistic polynomial time algorithm can solve the flexible RSA
problem with non-negligible probability.

Assumption 2 (Decisional Diffie-Hellman Assumption for QRn) Let n be a special RSA modulus,
and let g be a generator of QRn. For two distributions (g, gx, gy, gxy), (g, gx, gy, gz), x, y, z ∈R Zn, there is
no probabilistic polynomial-time algorithm that distinguishes them with non-negligible probability.

Kiayias et al. have investigated the Decisional Diffie-Hellman Assumption over the subset of QRn in [16],
i.e., x, y, z are randomly chosen from some subsets of QRn. They showed that the Decisional Diffie-Hellman
Assumption is still attainable over subset of QRn with the size down to at most |QRn|

1/4. The unlinkability
of our construction for direct anonymous attestation will depend on this variation of DDH assumption.
Readers refer to their paper for deep discussion.

3.2 Building Block

We review a knowledge protocol which will be used as building block to implement direct anonymous
attestation in this paper. It is a zero-knowledge proof of the discrete logarithm in certain interval which
was introduced in [10, 15]. It has been proved secure under the strong RSA assumption in the honest-verifier
mode.

Definition 4 (Protocol 1). Let n be a special RSA modulus, QRn be the quadratic residue group modulo
n, and g is a generator of QRn. α, l, lc are security parameters that are all greater than 1. X is a constant
number. A prover Alice knows x, the discrete logarithm of T1, and x ∈ [X − 2l, X + 2l]. Alice demonstrates
her knowledge of x as follows.

1. Alice picks a random t ∈ ±{0, 1}α(l+lc) and computes T2 = gt (mod n). Alice sends (T1, T2) to a verifier
Bob.

2. Bob picks a random c ∈ {0, 1}lc and sends it to Alice.
3. Alice computes

w = t − c(x − X),

and w ∈ ±{0, 1}α(l+lc)+1. Alice sends w to Bob.
4. Bob checks w ∈ ±{0, 1}α(l+lc)+1 and

gw−cXT c
1 =? T2 (mod n).

If the equation holds, Alice proves knowledge of the discrete logarithm of T1 lies in the range [X −
2α(l+lc), X + 2α(l+lc)].

Remark 1. It needs to be pointed out that Alice knows a secret x in [X − 2l, X + 2l], the protocol only
guarantees that x lies in the extended range [X − 2α(l+lc), X + 2α(l+lc)].

Remark 2. Using the Fiat-Shamir heuristic[13], the protocol can be turned into a non-interactive “signature
of knowledge” scheme, which is secure in the random oracle model [3]. We will introduce the proposed scheme
in the manner of “signature of knowledge” in next section.



4 The Protocol to Implement Direct Anonymous Attestation

The manufacturer, the producer of TPMs, sets various parameters, the lengths of which depend on a security
parameter, which we denote by σ.

4.1 System Parameter Setting

The system parameters are set by manufacturer, these values are:

– n, g: n is a special RSA modulus such that n = pq, p = 2p′ + 1, and q = 2q′ + 1, where p and q are each
at least σ bits long (so p, q > 2σ), and p′ and q′ are prime. g is a generator of the cyclic group QRn. n
and g are public values while p and q are kept secret by the administrator.

– α, lc, ls, lb: security parameters that are greater than 1.
– X, Y : X, Y are constant integers. Y > 2α(lc+lb)+1, and X > Y + 2α(lc+lb) + 2α(ls+lc)+2.
– The choice of X, ls satisfies X + 2ls < 2(X − 2ls).
– H : {0, 1}∗ → {0, 1}lc : a strong collision-resistant hash function.

4.2 Generation of Anonymous Authentication Key (AAK)

The specification for the generation of the Endorsement Key (EK) states: “The TPM can generate the EK
internally using the TPM CreateEndorsementKey or by using an outside key generator. The EK needs to
indicate the genealogy of the EK generation” [20] 1. The AAK is our proposal for TPMs, we would like to
follow the same specification for the generation of the AAK.

Outside Key Generation. The method for key creation is straightforward. The manufacturer picks a
random prime number s ∈ [X − 2ls , X + 2ls ] and computes

E = gs−1

(mod n),

where s−1 is the inverse of s modulo |QRn| = p′q′. (E, s) is a TPM’s AAK. s must be kept private by
the TPM, E may also be kept private. The manufacturer feeds (E, s) into the TPM, and records E in its
database. After that, s should be destroyed by the manufacturer.

Internal Key Generation (Method I) A TPM internally generate s ∈ [X − 2ls , X + 2ls ] that will never
be revealed to outside. p′q′ is temporally fed into the the TPM, and the TPM computes s−1 modulo p′q′

and E. Since the TPM is totally a passive chip created by the manufacturer, it is surely “trusted” by the
manufacturer. The TPM accomplishes these computation “honestly”. After the key generation, the copy of
p′q′ should be destroyed by the TPM.

Internal Key Generation (Method II) A TPM internally generates s ∈R [X −2ls , X +2ls ], and another
random prime number s about the same size as s. The TPM submits T = ss′ to the manufacturer. The
manufacturer computes E′ = gT−1

(mod n) and feeds it into the TPM. The TPM computes

E = E′s′

= gs−1

(mod n).

In this method, there are some restrictions on the choice of s, s′ such that it infeasible to factorize T .
Readers refer to [6, 12] for the deep discussion.

1 In practice, EK is generally produced internally by TPM.



Remark 3. To ensure that TPMs be correctly produced, we would imagine certain entities, “independent
evaluators”, may take the responsibilities for the evaluation for TPMs’ manufacturing processes. For example,
the evaluator could require a manufacturer to prove n is really a special RSA modulus, this can be done by the
protocol in [7]. The evaluator may verify whether the manufacturing processes conforms to the specification.
It may even deploy some reverse-engineering processes to make sure no backdoors exist in TPMs.

4.3 Join Protocol

The outside key generation, internal key generation method I and II are accomplished in the manufacture
process of TPMs. Therefore, TPMs are authenticated by the manufacturer. We can extend the internal key
generation method II to a Join protocol as in generic group signature schemes. That is, a TPM can apply
for a keypair/credential for direct anonymous attestation from other trusted third party, we may called it
AAK issuer.

In a simplified Join protocol, a TPM calculates its signature on T = ss′ using its private key of EK,
and sends T and the signature to an issuer. The TPM may also uses the issuer’s public key to encrypt the
message. The Issuer follows the method II to obtain E′, and encrypts it by the TPM’s public key. The issuer
may also calculates its signature on E′. The TPM follows the same way to obtain the keypair/credential as
in method II. In this case, the issuer trusts a TPM should work “correctly” and “honestly”.

An AAK issuer may only trust computation related to the endorsement key EK, and doubts other
behaviors of TPMs. In such cases, a full Join protocol could be deployed which has been introduced in [6]
for a group signature scheme. A TPM sends T1 = ss′, T2 = gs (mod n), T3 = gs′

(mod n) to issuer. The
TPM proves:

– T1 is the product of two prime numbers.
– The discrete logarithms of T2, gT1 (mod n) with respect to g, T3 are equal, and lies in the interval

[X − 2ls , X + 2ls ].

After the issuer is convinced that (T1, T2, T3) are correctly constructed by a real TPM, it computes

E = T
T−1

1

3 = (gs′

)(ss′)−1

= gs−1

(mod n),

and sends E to TPM.
The full Join protocol is less efficient than the one in the BCC scheme, due to the proof for T1 being the

product of two prime numbers. However, a Join protocol runs rather infrequently, therefore it should not
affect the system performance at all. We would imagine an AAK/credential should have rather long lifetime.
Otherwise, frequently updating AAKs would make the system work in a manner like TPM v1.1, Privacy
CA model. Besides, in the context of trusted computing platform, we believe the simplified Join protocol
should satisfy the requirement because TPMs are the “root of trust”. If this is the case in practice, the Join
protocol is indeed an efficient one.

4.4 Total Anonymity Authentication

The idea of our method to implement “Total Anonymity” authentication is: A TPM picks a random blinding
integer b, computes T1 = Eb = gs−1b (mod n), T2 = gb (mod n). Then the TPM sends (T1, T2) to a verifier.
The TPM proves that (T1, T2) is constructed from a legitimate keypair.

Definition 5 (Sign Protocol). For a message m, TPM proceeds the following steps:



1. Generate a random b ∈R [Y − 2lb , Y + 2lb ], t1 ∈R ±{0, 1}α(ls+lc), t2 ∈R ±{0, 1}α(lb+lc), and compute

T1 = Eb (mod n), T2 = gb (mod n); d1 = T t1
1 (mod n), d2 = gt2 (mod n); .

2. Compute:
c = H(g||T1||T2||d1||d2||m);

w1 = t1 − c(s − X), w2 = t2 − c(b − Y ).

3. Output (c, w1, w2, T1, T2, m).

Definition 6 (Verify Protocol).

1. Compute
c′ = H(g||T1||T2||T

w1−cX
1 T c

2 ||g
w2−cY T c

2 ||m).

2. Accept the signature if and only if c = c′, w1 ∈ ±{0, 1}α(ls+lc)+1, and w2 ∈ ±{0, 1}α(lb+lc)+1,

4.5 Variable Anonymity Authentication

We mentioned the Variable Anonymity is actually the pseudo-anonymity in a period of time. Our method
is similar to the BCC scheme: in a period of time, a verifier produces a random generator h derived from its
base name and other information, for instance, current time. Suppose a random generator h be computed
as follows

h = (H(bsn||cnt))2 (mod n).

Due to the property of QRn, h is a random generator of QRn. To implement variable anonymity, we add
the following computations to Sign protocol, i.e., a TPM further computes

T3 = hs (mod n), d3 = ht1 (mod n),

c = H(g||h||T1||T2||T3||d1||d2||d3||m);

and output (c, w1, w2, T1, T2, T3, m). Meantime, a verifier computes

c′ = H(g||h||T1||T2||T3||T
w1−cX
1 T c

2 ||g
w2−cY T c

2 ||h
w1−cXT c

3 ||m).

Since h will be kept unchanged for certain time, therefore the same TPM will always produce the same
T3. The frequency of T3 will be used by verifiers to identify suspicious attestation requests: if the same T3

appear too much in a time period, this could be the indication the TPM has been compromised. Since h
changes from time to time, the unlinkability of the same TPM is achieved.

4.6 Rogue TPM Tagging

We mentioned TPMs should be produced tamper-resistance. Otherwise, the whole efforts of trusted comput-
ing platforms become meaningless. Even though, if in extreme circumstances, a TPM is compromised and
its keypair is being exposed, verifiers should be able to identify the attestation request from a rogue TPM.
To do so, the AAKs of exposed TPMs should be published on the revocation list. For a keypair (E, s) on
the revocation list, a verifier can check

T s
1 =? T2 (mod n).

If the equation holds, the request comes from a revoked TPM.



4.7 Performance Analysis

The computation complexity in the protocol is dominated by the modular squaring and multiplication. To
estimate the computation overhead, it is enough to count total modular squarings and multiplications in
the protocol. For simplicity, we estimate the computation overhead based on the techniques for general
exponentiation [17]. Let the bit length of the binary representation of exponent be t1, and t2 be the number
of 1’s in the binary representation, the total computation overhead can be treated as t1 squarings and t2
multiplications. For example, if y = gx (mod n), and x ∈R {0, 1}160. We assume half of 160 bits of s will be
1. Then the total computation includes 160 squarings and 80 multiplications.

Suppose we set σ = 1024, then n is 2048 bits (p, q 1024 bits respectively). We further choose α = 9/8,
lc = 160, ls = 300, lb = 240. We also set X = 2512 (64 bytes), Y = 2456 (57 bytes). The parameter setting
conforms to the requirement of the Decisional Diffie-Hellman Assumption over the subset of QRn. We should
notice that significant part of s, b in binary representation are 0’s. The computation with exponent b has 456
squarings and 121 multiplications. For Total Anonymity authentication, a TPM needs 1880 (456 × 3 + 512)
squarings, and 726 (121 × 2 + 512/2 + 456/2) multiplications.

We have counted the total exponent bit-length in the BCC scheme which is 25844 for Total Anonymity
authentication. However, due to computation distribution among a TPM and its Host, some efficient expo-
nentiation algorithm has been used in the Host part. According to their method, a TPM needs 4088 bits
exponentiation, and Host needs at least 12098 exponentiation. The total exponent bit-length is 16186, which
includes 16186 squarings and 8093 multiplications. If we assume the cost of squaring is equal to that of
multiplication 2, our scheme is about 9 (24279/2606) times more efficient than the BCC scheme. Even if we
only consider the computation in TPMs, our scheme is still more than 2 (6132/2606) times efficient than the
BCC scheme.

It should be noticed that, if we want to, we can also distribute computation in our scheme. T1, T2, d2, w2

can be calculated by the Host, d1, w1 should be computed by the TPM. However, this is unnecessary since
all the computation can be done by the TPM alone. Without computation distribution, the system design
can be simplified. Thus, our method is more appropriate for mobile devices with low computing capabilities.

5 Security Properties of Proposed Scheme

We prepare two lemmas that will be used shortly in the later proof. The first lemma is due to Shamir [18],
the second one can be seen as the first one’s generalization.

Lemma 1. Let n be an integer. For given values u, v ∈ Z∗

n and x, y ∈ Zn such that GCD(x, y) = 1 and
vx = uy (mod n), there is an efficient way to compute the value z such that zx = u (mod n).

Proof. Since GCD(x, y) = 1, we can use the Extended GCD algorithm to find a and b such that ay+bx = 1,
and let z = vaub. Thus

zx ≡ vaxubx ≡ uay+bx ≡ u (mod n).

⊓⊔

Lemma 2. Let n be an integer. Given values u, v ∈ Z∗

n and x, y ∈ Z such that GCD(x, y) = r, and
vx ≡ uy (mod n), there is an efficient way to compute a value z such that zk ≡ u (mod n), where k = x/r.

2 Squaring computation can at most two times faster than multiplication.



Proof. Since GCD(x, y) = r, using the extended Euclidean GCD algorithm, we can obtain values α and β
such that αx/r + βy/r = 1. Then we have

u ≡ uαx/r+βy/r ≡ uαx/ruyβ/r ≡ uαx/rvβx/r ≡ (uαvβ)x/r (mod n).

Therefore, setting k = x/r and z = uαvβ , we have zk ≡ u (mod n). ⊓⊔

We have the following theorem with respect to the security of keypairs.

Theorem 1. Under the strong RSA assumption, only manufacturer with the knowledge of factors of n can
compute a legitimate keypair (E, s) such that Es = g (mod n), and s lies in the correct interval.

Proof. Direct result from the Strong RSA Assumption. ⊓⊔

However, we need to address the issue of keypair forgery. In the context of trusted computing platform,
TPMs are produced tamer-resistance. It should be extremely rare that a TPM can be compromised. If this
happens, we should make it infeasible for attackers to forge a new valid AAK. Therefore, we consider an
attack model in which an attacker can obtain a set of legitimate keypairs. A successful attack is one in which
a new keypair is generated that is valid and different from current keypairs. The following theorem shows
that, assuming the Strong RSA Assumption, it is intractable for an attacker to forge such a keypair.

Theorem 2 (Forgery-resistance). If there exists a probabilistic polynomial time algorithm which takes a
list of valid keypairs, (E1, s1), (E2, s2), . . . , (Ek, sk) and with non-negligible probability produces a new valid
keypair (E, s) such that Es ≡ g (modn) and s 6= si for 1 ≤ i ≤ k, then we can solve the flexible RSA
problem with non-negligible probability.

Proof. Suppose there exists a probabilistic polynomial-time algorithm which computes a new legitimate
keypair based on the available keypairs, and succeeds with some non-negligible probability p(σ). Then we
construct an algorithm for solving the flexible RSA problem, given a random input (u, n), as follows (the
following makes sense as long as u is a generator of QRn, which is true with non-negligible probability for
random instances — we consider this more carefully below when analyzing the success probability of our
constructed algorithm):

1. First, we check if GCD(u, n) = 1. If it’s not, then we have one of the factors of n, and can easily calculate
a solution to the flexible RSA problem. Therefore, in the following we assume that GCD(u, n) = 1, so
u ∈ Z∗

n.
2. We pick random prime numbers s1, s2, . . . , sk in the required range [X − 2ls , X + 2ls ], and compute

r = s1s2...sk,

g = ur = us1s2...sk (mod n).

Note that since the si values are primes, it must be the case that GCD(r, |QRn|) = 1, so Property 2 says
that g is a generator of QRn if and only u is a generator of QRn.

3. Next, we create k group keypairs, using the si values and Ei values calculated as follows:

E1 = us2...sk (mod n)

E2 = us1s3...sk (mod n)

...

Ek = us1s2...sk−1 (mod n)



Note that for all i = 1, . . . , k, raising Ei to the power si “completes the exponent” in a sense, giving
Esi

i = us1s2···sk = ur = g (mod n).
4. We use the assumed forgery algorithm for creating a new valid keypair (E, s), where s ∈ [X−2ls , X+2ls ],

and Es = g = ur (mod n).
5. If the forgery algorithm succeeded, then s will be different from all the si’s. Since X + 2ls < 2(X − 2ls),

it is impossible for s to be an integer multiple of any of the si’s, and since the si’s are prime then it
follows that GCD(s, s1s2 · · · sk) = 1. Therefore, due to lemma 1, we can find a pair (y, s) such that

ys = u (mod n)

so the pair (y, s) is a solution to our flexible RSA problem instance.

We now analyze the probability that the above algorithm for solving the flexible RSA problem succeeds.
The algorithm succeeds in Step 1 if GCD(u, n) 6= 1, so let P1 represent the probability of this event, which
is negligible. When GCD(u, n) = 1, the algorithm succeeds when the following three conditions are satisfied:
(1) u ∈ QRn, which happens with probability 1

4 , (2) u is a generator of QRn, which fails for only a negligible
fraction of elements of QRn, due to Property 1, and (3) the key forgery algorithm succeeds, which happens
with probability p(σ). Putting this together, the probability that the constructed algorithm succeeds is
P1 + (1 − P1)

1
4 (1 − negl(σ)) p(σ), which is non-negligible.

⊓⊔

From the step 5 of the above proof, we can obtain a corollary as follows.

Corollary 1. Under the strong RSA assumption, it is intractable to forge a keypair (E, s) such that s lies
in the interval (0, X − 2ls) or (X + 2ls , (X − 2ls)2), and Es = g (mod n).

Proof. In the step 5 of the proof, if s ∈ (0, X − 2ls), since all si ∈ [X − 2ls , X + 2ls ] are prime, then
GCD(s, s1s2 · · · sk) = 1, and we can solve a flexible RSA problem.

If s ∈ (X + 2ls , (X − 2ls)2), then s can not be the product of any sisj , i, j < k. Therefore either
GCD(s, s1s2 · · · sk) = 1, or GCD(s, s1s2 · · · sk) = si, s = c × si, c ∈ (0, X − 2ls). In the first case, we can
solve a flexible RSA problem. In the second case, we have Es = ur (mod n), we can further have

(Esi)c = us1s2···sk (mod n).

Since GCD(c, s1s2 · · · sk) = 1, due to lemma 1, we can find a pair (y, c) such that

yc = u (mod n)

which means we solve a flexible RSA problem.
Therefore, under the strong RSA assumption, we have the corollary as above. ⊓⊔

Next, we further propose a lemma that will be used for the security proof of our protocol. It also could
be seen generalization of Shamir’s lemma.

Lemma 3. Let n be an integer. For given values u, v ∈ Z∗

n and e, r ∈ Zn such that e > r and ve =
ur (mod n), there is an efficient way to compute the value (x, y) such that xy = u (mod n).

Proof. When e > r, there are three cases:



1. Suppose GCD(e, r) = 1. Due to lemma 1, we can find a pair (y, e) such that

ye = u (mod n).

2. Suppose GCD(e, r) = r. Since e > r, e = kr for k > 1. Thus we have

ve = vkr = ur (mod n), vk = u (mod n).

3. Suppose GCD(e, r) = d such that 1 < d < r. Thus we have e = kd for k > 1. Due to lemma 2, we find

yk = u (mod n).
⊓⊔

Theorem 3. Under the strong RSA assumption, the interactive protocol underlying the Sign and Verify
protocol is a statistical zero-knowledge proof in honest-verifier mode that TPM holds an anonymous authen-
tication keypair (AAK) (E, s) such that Es = g (mod n) and s lies in the correct interval.

Proof (Sketch). The proofs of completeness and statistical zero-knowledge property (simulator) follow the
same method as the proof for protocol 1 (Definition 1) in [6]. Here we only outline the existence of the
knowledge extractor.

In Sign protocol, the TPM follows protocol 1 to prove T2 = gb (mod n), and b ∈ [Y − 2α(lc+lb), Y +
2α(lc+lb)]. This is a statistical honest-verifier zero-knowledge protocol that is secure under the strong RSA
assumption. b can be recovered by a knowledge extractor following the standard method.

We need to show a knowledge extractor is able to recover a legitimate keypair once it has found two
accepting tuples. Let (T1, T2, d1, c, w1), (T1, T2, d1, c

′, w′

1) be two accepting tuples. Without loss of generality,
we assume c > c′. Then we have

T w1−cX
1 T c

2 ≡ T
w′

1
−c′X

1 T c′

2 ≡ d1 (mod n).

It follows
T

(w′

1
−w1)+(c−c′)X

1 ≡ T c−c′

2 ≡ gb(c−c′) (mod n). (1)

By the system parameter setting, X > Y + 2α(lc+lb) + 2α(ls+lc)+2. Then we can have

(c − c′)X > (c − c′)(Y + 2α(lc+lb) + 2α(ls+lc)+2).

Since we also require Y + 2α(lc+lb) > b, we further obtain

(c − c′)X > (c − c′)(b + 2α(ls+lc)+2).

Since w1, w
′

1 ∈ ±{0, 1}α(ls+lc)+1, w′

1 − w1 is at least −2α(ls+lc)+2. Since c − c′ is at least 1, we finally have

(w′

1 − w1) + (c − c′)X > b(c − c′).

By lemma 3, we can solve equation (1) to obtain a pair (E, s) such Es ≡ g (mod n), s ≤ (w′

1 − w1) +
(c − c′)X .

In our parameter setting, (w′

1−w1)+(c−c′)X < (X− ls)
2. By corollary 1, s must be a legitimate keypair

in the correct interval. Therefore, (E, s) is a valid keypair. This shows a knowledge extractor can recover a
legitimate keypair/credential. ⊓⊔



For Variable Anonymity, (h, T3, d3; T1, T2, d1) are used to prove the equality of the discrete logarithms of
T3 with base h, T2 with base T1. This is also a statistical honest-verifier zero-knowledge protocol which has
been proved secure under the strong RSA assumption.

Theorem 4 (Anonymity). Under the decisional Diffie-Hellman assumption over subset of QRn, the pro-
tocol implement anonymous authentication such that it is infeasible to link the transactions by a TPM.

Proof (Sketch). To decide whether two transactions are linked to a TPM, one needs to decide whether two
equations are produced from the same E.

T1 T2 = gb = T s
1 (mod n)

T ′

1, T ′

2 = gb′ = (T ′

1)
s (mod n)

Now, an observer obtains a tuple (T1, T2(= T s
1 ), T ′

1(= T x
1 ), T ′

2(= T xs
1 )). If the observer can link (T1, T2)

to (T ′

1, T
′

2), this means he can decide the discrete logarithm of T ′

2 is the product of the discrete logarithms
of T2, T

′

1 with base T1, respectively (the parameter settings of our scheme make it infeasible to extract the
discrete logarithm of T ′

1, x, with base T1). Thus, under the decisional Diffie-Hellman assumptions over subset
of QRn, it is intractable to link the transactions by a TPM.

The same argument can be applied to Variable Anonymity, in which

T3 = hs (mod n), T ′

3 = h′s (mod n)

where h, h′ are two random generators of QRn in the different time period. ⊓⊔

6 Conclusion and Future Work

In this paper, we have presented an anonymous authentication scheme which provides “Total Anonymity”,
“Variable Anonymity” and “Rouge TPM tagging”. Due to its simplicity and efficiency, all computation
can be done by TPMs alone, making the scheme particularly appropriate for the mobile devices with low
computing capabilities. We have proved the new scheme is secure under the strong RSA assumption and the
Decisional Diffie-Hellman Assumption.

In this paper, we mainly focused on the presentation of our methodology and security proofs. We have not
studied a protocol with implementation details, which would exactly follow the specification of the Trusted
Computing Group. The BCC scheme is already an industrial level protocol such that all technical details
are in place. In the future, we might discuss with the TCG’s standard group the possibility of integrating
our method into the TPM’s specification.
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