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Abstract. This paper presents a practical digital signature scheme to be used in conjunction with
network coding. This signature scheme seems to be the first example of a homomorphic signature
scheme. Furthermore, our idea simultaneously provides authentication and detects malicious nodes
that intentionally corrupt content on the network.

1. Introduction

Following the important work of Ahlswede et al and Li et al ([ACLY00, CLY03]), network coding
([CJW03, CJL05, GR05]) has been established as a viable alternative to the store and forward
mechanisms used in peer-to-peer networks. However, network coding is inherently vulnerable to
pollution attacks by malicious nodes in the network. The pollution of packets spreads quickly since
the output of (even an) honest node is corrupted if at least one of the incoming packets is corrupted.
The question of how to prevent pollution attacks in the network coding scheme remained open and
was the subject of the paper by Krohn et al [KFM04] in the generalized setting of rateless erasure
codes (see also [GR06]). They show that a construction based on homomorphic hashing works to
detect the polluted packets. This scheme, however, assumes that there is a separate secure channel
which is used to transmit the hash values of the packets to all the nodes.

In this paper we propose a different solution to the problem of detecting pollution attacks. We
design a new homomorphic signature scheme for use with network coding. The homomorphic
property of the signatures allows nodes to sign any linear comination of the incoming packets
without contacting the signing authority. At first glance one might think that this is a weakness
of the signature scheme. This is not so, in our scheme it is computationally infeasible for a node
to sign a linear combination of the packets without disclosing what linear combination was used
in the generation of the packet. Furthermore, we can prove that the signature scheme is secure
under well known cryptographic assumptions of the hardness of the Discrete-Log problem and the
computational co-Diffie-Hellman problem on elliptic curves. Our scheme has a three-fold advantage
over the scheme based on homomorphic hashing: Firstly, we do not need to securely transmit hash
values of the packets that the source transmits; secondly, since our scheme is based on elliptic
curves smaller security parameters suffice and this translates to improved efficiency since the bit
lengths involved are smaller; finally, our scheme provides authentication of the data in addition to
detecting pollution of packets.

2. Background on elliptic curves

In this section we briefly review some facts about elliptic curves over finite fields, the reader should
consult Chapters III and V of [Sil86] for proofs of the number theoretic claims.

Let Fq be a finite field where q is a power of a prime relatively prime to 2 and 3. An elliptic curve
E over Fq (sometimes abbreviated as E/Fq), is a projective curve in P2(Fq) given by an equation
of the form

Y 2Z = X3 + AXZ2 + BZ3
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with A,B ∈ Fq and 4A3 +27B2 6= 0. The curve has two affine pieces: the piece with Z 6= 0 has the
affine form y2 = x3 + Ax + B (obtained by setting x = X

Z and y = Y
Z ); and the piece with Z = 0

which has only one (projective) point namely (0 : 1 : 0) which we denote O. Let K be a field (not
necessarily finite) that contains Fq, the set

E(K) = {(x, y) ∈ K ×K : y2 = x3 + Ax + B} ∪ {O}
can be given the structure of an abelian group with O as the identity of the group. Moreover,
the group operations can be efficiently computed. In particular, if P and Q are points on E with
coordinates in Fq, then P +Q and −P can be computed in O(log1+ε q) bit operations for any ε > 0.
Hasse’s theorem gives a tight estimate for the size of the group E(Fq):

q + 1− 2
√

q ≤ #E(Fq) ≤ q + 1 + 2
√

q.

The Schoof-Elkies-Atkin algorithm ([BSS99] Chapter VII) is a deterministic polynomial time algo-
rithm that computes #E(Fq).

2.1. The Weil pairing. Let E/Fq be an elliptic curve and let Fq be an algebraic closure of Fq.
If m is an integer such relatively prime to the characteristic of the field Fq, then the group of
m-torsion points, E[m] = {P ∈ E(Fq) : mP = O}, have the following structure:

E[m] = Z/mZ× Z/mZ.

There is a map em : E[m]× E[m] → F∗
q with the following properties:

(1) The map em is bilinear:

em(S1 + S2, T ) = e(S1, T )e(S2, T )

em(S, T1 + T2) = e(S, T1)e(S, T2).

(2) Alternating: em(T, T ) = 1 and so em(T, S) = em(S, T )−1.
(3) Non-degenerate: If em(S, T ) = 1 for all S ∈ E[m] then T = O.

Let E/Fq be an elliptic curve such that the m-torsion points on E have coordinates in Fq. Then
there is a probabilistic algorithm that can evaluate em(S, T ) in O(log2+ε q) bit operations for all
S, T in E[m]. If it is clear from the context we may drop the subscript m when writing em. The
algorithm for computing em was proposed by Miller in [Mil86]. See the paper by Eisenträger et
al ([ELM04]) for a description of Miller’s algorithm and also a deterministic variant for computing
the square of the Weil pairing.

3. The signature scheme

3.1. Network Coding. We briefly describe the standard network coding framework for content
distribution ([CJW03, GR05, CJL05]). Let G = (Ṽ , Ẽ) be a directed graph. A source s ∈ Ṽ

wishes to transmit some data to a set T ⊆ Ṽ of the vertices. One chooses a vector space W/Fp

(say of dimension d), where p is a prime, and views the data to be transmitted as a bunch of
vectors w1, · · · ,wk ∈ W . The source then creates the augmented vectors v1, · · · ,vk by setting
vi = 〈0, · · · , 0︸ ︷︷ ︸

i−1 zeros

, 1, · · · , 0, wi1, · · · , wid〉 where wij is the j-th coordinate of the vector wi. One can

assume without loss of generality that the vectors vi are linearly independent. We denote the
subspace (of Fk+d

p ) spanned by these vectors by V . Each outgoing edge e ∈ Ẽ computes a linear
combination, y(e), of the vectors entering the vertex v = in(e) where the edge originates, that is
to say

y(e) =
∑

f : out(f)=v

me(f)y(f)
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where me(f) ∈ Fp. We consider the source as having k input edges carrying the k vectors wi. By
induction one has that the vector y(e) on any edge is a linear combination y(e) =

∑
1≤i≤k gi(e)vi

and is a vector in V . The k-dimensional vector g(e) = 〈g1(e), · · · , gk(e)〉 is simply the first k-
coordinates of the vector y(e). We call the matrix whose rows are the vectors g(e1), · · · ,g(ek),
where ei are the incoming edges for a vertex t ∈ T , the global encoding matrix for t and denote it
Gt. In practice the encoding vectors are chosen at random so the matrix Gt is invertible with high
probability. Thus any receiver, on receiving y1, · · · ,yk can find w1, · · · ,wk by solving

y′
1

y′
2
...

y′
k

 = Gt


w1

w2
...

wk

 ,

where the y′
i are the vectors formed by removing the first k coordinates of the vector yi.

3.2. The homomorphic signature scheme. Let p be a prime number and q a power of a
different prime with p � q. Let V/Fp be a vector space of dimension d + k and let E/Fq be an
elliptic curve such that R1, · · · , Rk, P1, · · · , Pd are (distinct) points of p-torsion on E(Fq). We can
define a function hR1,··· ,Rk,P1,··· ,Pd

: V → E(Fq) as follows: for v = 〈u1, · · · , uk, v1, · · · , vd〉 ∈ V

hR1,··· ,Rk,P1,··· ,Pd
(v) =

∑
j

ujRj +
∑

i

viPi.

The function hR1,··· ,Rk,P1,··· ,Pd
is a homomorphism (of additive abelian groups) from the vector

space V to the group E[p] of p-torsion points on the curve.

Suppose the server wishes to distribute the augmented vectors v1, · · · ,vk ∈ V . The server chooses
s1, · · · , sk and r1, · · · , rd which are secrets in Fp, then signs the packet vi by computing

hi = hs1R1,··· ,skRk,r1P1,··· ,rdPd
(vi).

The server also publishes R1, · · · , Rk, P1, · · · , Pd, Q, sjQ for 1 ≤ j ≤ k and riQ for 1 ≤ i ≤ d. Here
Q is another point of p-torsion on the elliptic curve distinct from the others such that ep(Rj , Q) 6= 1
and ep(Pi, Q) 6= 1 for 1 ≤ j ≤ k and 1 ≤ i ≤ d.

This signature hj is also appended to the data vj and transmitted according to the distribution
scheme. Now, at any edge e that computes

y(e) =
∑

f :out(f)=in(e)

me(f)y(f)

we also compute

h(e) =
∑

f :out(f)=in(e)

me(f)h(f)

and transmit h(e) together with the data y(e). Since the computation of the signature h(e) is a
homomorphism, we have that if y(e) =

∑
i αivi then

h(e) =
∑

i

αihi.

3



Next we describe the verification process. Suppose y(e) = 〈u1, · · · , uk, v1, · · · , vd〉 we check whether∏
1≤j≤k

e(ujRj , sjQ)
∏

1≤i≤d

e(viPi, riQ) = e(h(e), Q).

This works because if h(e) is the legitimate signature of y(e) then by definition

h(e) =
∑

1≤j≤k

ujsjRj +
∑

1≤i≤d

viriPi,

thus

e(h(e), Q) = e
( ∑
1≤j≤k

ujsjRj +
∑

1≤i≤d

viriPi, Q
)

=
∏

1≤j≤k

e(ujsjRj , Q)
∏

1≤i≤d

e(viriPi, Q) (by bilinearity)

=
∏

1≤j≤k

e(ujRj , sjQ)
∏

1≤i≤d

e(viPi, riQ) (again by bilinearity).

The verification cruicially uses the bilinearity of the Weil-pairing. Note that all the terms in the
above verification can either be computed from the vector y(e) or from the public information.

The signature is a point on the elliptic curve with coordinates in Fq. Thus the size of the signature
is 2 log q bits (which is some constant times log(p) bits, depending on the relative size of p and
q), and this is the transmission overhead. The computation of the signature h(e) at each vertex
requires O(din log p log1+ε q) bit operations, where din is the in-degree of the vertex in(e). The
verification of a signature requires O((d + k) log2+ε q) bit operations.

4. Proof of security

We preserve the notation of the previous section here. To thwart the signature scheme an adver-
sary can either produce a hash collision for the function hs1R1,··· ,skRk,r1P1,··· ,rdPd

or he can forge the
signature such that the verification goes through. Note that in this situation the adversary has no
knowledge of the points s1R1, · · · , skRk and r1P, · · · , rdPd. We first show that even if the adversary
knew these points, producing a collision is still as hard as computing discrete logs. We make the
claim precise next:

Problem: Hash-Collision.
Fix an integer r > 1.
Input: Given P1, · · · , Pr, points on an elliptic curve E/Fq contained in a cyclic subgroup of prime
order p.
Output: Tuples a = 〈a1, · · · , ar〉,b = 〈b1, · · · , br〉 ∈ Fr

p such that a 6= b and∑
1≤i≤r

aiPi =
∑

1≤j≤r

bjPj .

Proposition 4.1. There is a polynomial time reduction from Discrete Log on the cyclic group of
order p on elliptic curves to Hash-Collision.

Proof : First we treat the case when r = 2. Let P and Q be points of order p on E(Fq) that
are not the identity. Assume that Q lies in the subgroup generated by P . Our aim is to find a
such that Q = aP . To this end we apply the alleged algorithm that solves Hash-Collision to the
points P and Q. The algorithm produces two distinct pairs (x, y), (u, v) ∈ F2

p such that

xP + yQ = uP + vQ.
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This gives us a relation (x− u)P + (y − v)Q = O. We claim that x 6= u and y 6= v. Suppose that
x = u, then we would have (y − v)Q = O, but Q is a point of order p (a prime) thus y − u ≡ 0
mod p in other words y = v in Fp. This contradicts the assumption that (x, y) and (u, v) are
distinct pairs in F2

p. Thus we have that Q = −(x−u)(y−v)−1P , where the inverse is taken modulo
p.

If we have r > 2 then we can do one of two things. Either we can take P1 = P and P2 = Q as
before and set Pi = O for i > 2 (in this case the proof reduces to the case when r = 2), or we
can take P1 = r1P and Pi = riQ where ri are chosen at random from Fp. We get one equation in
one unknown (the discrete log of Q). It is quite possible that the equation we get does not involve
the unknown. However, this happens with very small probability as we argue next. Suppose the
algorithm for Hash-Collision gave us that

ar1P +
∑

2≤i≤r

biriQ = O.

Then as long as
∑

2≤i≤r biri 6≡ 0 mod p, we can solve for the discrete log of Q. But the ri’s are
unknown to the oracle for Hash-Collision and so we can interchange the order in which this
process occurs. In other words, given bi, for 2 ≤ i ≤ r, not all zero, what is the probability that the
ri’s we chose satisfy

∑
2≤i≤r biri = 0? It is clear that the latter probability is 1

p . Thus with high
probability we can solve for the discrete log of Q. �

One can also conclude the above proposition from the proof presented in [BGG94] (see Appendix
A of that paper). The proof in that paper deals with finite fields but the argument applies equally
well to the case of elliptic curves.

We have shown that producing hash collisions in our scheme is difficult. The other method by
which an adversary can foil our system is by forging a signature. Our scheme for the signature is
essentially the Aggregate Signature version of the Boneh-Lynn-Shacham signature scheme [BLS04].
In that paper it is shown that forging a signature is at least as hard as solving the so-called
computational co-Diffie-Hellman problem on the elliptic curve. The only known way to solve this
problem on elliptic curves is via computing discrete-logs. Thus forging a signature is at least as
hard as solving the computational co-Diffie-Hellman on elliptic curves and probably as hard as
computing discrete-logs.

5. Setup of the scheme

We preserve the notation of section §3 here. To initialize the signature scheme we need to pick a
prime p and an elliptic curve over a field such that all its p-torsion is defined over that field. We
also need to produce the collection of p-torsion points needed to define the homomorphic signature.
In this section we discuss all these matters and provide an example.

We describe the outline of the steps below and then describe the steps in detail:
(1) Pick a large prime and call it p.
(2) Pick a suitable prime ` (described in §5.1)and an elliptic curve E over F` such that the number

of points #E(F`) is a multiple of p.
(3) Find an extension Fq of the field F` such that E[p] ⊆ E(Fq) (here E[p] refers to the set of all

p-torsion points).
(4) Since #E(F`) ≡ 0 mod p it has p-torsion points. Let O 6= P ∈ E(F`) be a p-torsion point on

the curve. Take Ri = aiP for 1 ≤ i ≤ k and Pj = bjP for 1 ≤ j ≤ d where ai and bi are picked
at random from the set 1, · · · , p− 1.
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(5) One of the requirements of our scheme is that Q be a point such that e(Ri, Q) 6= 1 and
e(Pj , Q) 6= 1. To ensure this, we claim that it suffices to pick a point of p-torsion that is
defined over Fq but not over the smaller field F`. Indeed, let Q be such a point. Then if
e(Ri, Q) = 1, this would imply that e(A,B) = 1 for any A,B ∈ E[p] (since Ri and Q generate
E[p]), which contradicts the non-degeneracy of the Weil-pairing.

(6) Finally, we pick the secret keys s1, · · · , sk and r1, · · · , rd at random from F∗
p.

5.1. Finding a suitable elliptic curve. In general, if we have an elliptic curve E over a finite
field K, then the p-torsion points are defined over an extension of degree Θ(p2) of the field K (see
[CL05] Lemma 2.2). It is crucial for our scheme to have the p-torsion points defined over a small
degree extension field so that the operations can be carried out in polynomial time. In this section
we discuss how one can pick a suitable field F` and an elliptic curve over this field that has all its
p-torsion defined over a small degree extension field.

In the following paragraph we describe a construction that allows one to find an elliptic curve
defined over a finite field F` such that the entire p-torsion is defined over F`2 . Such curves are
said to have embedding degree 2 (the construction we give also generalizes nicely to produce other
embedding degrees). We note that the MOV attack reduces the discrete-log problem on the p-
torsion of such curves to the discrete-log problem in the multiplicative group of the finite field F∗

`2 .
Thus, for security considerations one needs to take the embedding degree k to be large enough so
that the finite field produced by the MOV attack is of cryptographic size. For a detailed discus-
sion of these issues we invite the reader to see [MOV93, MNT01, BLS02] and also the book [BSS99].

The theory of complex multiplication of elliptic curves can be used to generate elliptic curves over
a finite field with a certain number of points on them. The algorithm to do this is described in
many sources [LL90, ALV02, AtMor93, Sch85]. The details of the algorithm are not necessary for
our purposes, but its running time is important, so we describe it next.

Suppose we wish to produce an elliptic curve E/F` (where ` is a prime) that has exactly N points,
where N lies in the interval ` + 1 − 2

√
` ≤ N ≤ ` + 1 + 2

√
`. Write N as ` + 1 − t and set

Dy2 = t2−4`, where D or D/4 is squarefree (note that D is negative because of the Hasse bound).
Then the algorithm to produce such a curve runs in time |D|O(1). In our case, we seek an elliptic
curve with N equal to a small multiple of p. This tells us that the field F` over which we should
look for such a curve must have ` + 1 − 2

√
` ≤ mp ≤ ` + 1 + 2

√
`. The other requirement is that

t2 − 4` should have a small squarefree part, since this determines the running time of the method
to generate such a curve. We pick a prime ` such that 4` = 4p2 − Dy2 for a small (negative) D.
We also require1 ` ≡ −1 mod p, and we set t = 2p. Thus ` + 1− t = ` + 1− 2p ≡ 0 mod p, and so
the number of points on the elliptic curve will be a multiple of p. The time to produce such a curve
will also be reasonable since |D| is small. To produce such a prime `, we pick a (negative) D (with
|D| small) and check to see if (p2 − Dy2

4 ) is prime for y = 0, 1, · · · . Since we are only interested in
primes which are congruent to −1 mod p, we perform the above check only for those values of y
such that −Dy2 ≡ −4 mod p. A conjecture of Lang-Trotter ([LTr76]) tells us that there will be
many values of y that yield a prime. This is also related to a conjecture of Hardy-Littlewood on
the prime values of quadratic polynomials.

Now the complex multiplication method produces for us an elliptic curve E over F` that has some
p-torsion points. However, we need an elliptic curve such that E[p] is defined over a small degree

1To get embedding degree k we instead look for primes ` such that ` ≡ ak mod p where ak is an element of order
k in F∗

p.
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extension of F`. This is where the additional constraint that ` ≡ −1 mod p is used. Since ` ≡ −1
mod p the order of ` in F∗

p is 2. Now a theorem of Koblitz-Balasubramanian (see [BK98], Theorem
1) shows that in this case the entire p-torsion is defined over a degree 2 extension of the base field,
in other words E[p] ⊆ E(F`2). Now we have an elliptic curve E/F` and we know that it has all
its p-torsion defined over F`2 , but how do we find these points? This is the subject of the next
paragraph.

Remark 5.1. We remark that the theory of complex multiplication tells us that, for each D, there
is a finite list of elliptic curves E1, · · · , Eh over some number field K such that Ei mod ` satisfies
our requirements. This is illustrated in the example in §5.3.

5.2. Finding the p-torsion points. Let E/F` be the elliptic curve found using the method given
above. Then #E(F`) = ` + 1− 2p. Let m be the largest divisor of #E(F`) that is relatively prime
to p. Let P be a random point on the curve E(F`). If mP 6= O, then mP is a non-trivial point of
p-power torsion (by Lagrange’s theorem). Let i ≥ 1 be the smallest integer such that mpiP = O
but mpi−1P 6= O. Then mpi−1P is a non-trivial p-torsion point. Of course, if mP = O, we restart
with another random point P . The probability that mP = O for a random point P is at most 1

p ,
so we will find a non-trivial p-torsion point with very high probability.

This gives us the piece of the p-torsion defined over F`. To find the piece of the p-torsion defined over
F`2 we repeat the above process over F`2 . To carry out this process we need to know the number
of points on E(F`2). If E is defined over a finite field K, then the number of points on E over any
extension of K is determined by #E(K) ([Sil86, p. 136]). Specifically, #E(F`2) = `2 +1−α2−α2,
where α, α are the two roots (in C) of the equation

φ2 − 2pφ + ` = 0.

5.3. An Example. The example provided here was produced using the computer algebra package
MAGMA [BC03]. For this example we take D = −4. For any prime p, a suitable prime ` is one that
satisfies 4` = 4p2 + 4y2 such that ` ≡ −1 mod p. The congruence implies that y2 = −1 mod p, in
other words −1 should be a quadratic residue modulo p. This in turn implies that p ≡ 1 mod 4, and
that values of y that we need to search should be congruent to one of the square roots of −1 mod p.

Let p = 26330018368571742206574632566065508402231508999153. We search for prime values of
p2 + y2 with

y ≡

{
20611019915125603610370027322246404729378417721286 mod p

5718998453446138596204605243819103672853091277867 mod p
or

corresponding to the two square roots of −1 mod p. We find that

y = 1875150302622039835263003517434470200231290230217730

yields a prime, so we take

` = p2 + (1875150302622039835263003517434470200231290230217730)2

= 3516881927290816899634862215683448167044556755196219915726547928
600461026413407979747354244426961070309.

The complex multiplication method tells us that the elliptic curve

E : y2 = x3 + x (in affine form)
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is a suitable elliptic curve. MAGMA tells us that #E(F`) is

3516881927290816899634862215683448167044556755196219863066511191456976613264142
847616337439963943072004,

which is indeed ≡ 0 mod p. This computation took 0.063 seconds on an AMD Opteron 252
(2.6Ghz) processor. The number of points on E(F`2) according to MAGMA is

1236845849050477072586861412005782314655826646818745936122594860084650180144846
0142653837393007842909634176991355780216434931187550854726269234703885776384142
268869493894468081319453336772812036965744626464

and this is ≡ 0 mod p2, which is a necessary condition for E[p] being a subgroup of E(F`2). We
show that E[p] is indeed contained in E(F`2) by finding two points that generate the p-torsion
subgroup. Following the method outlined in §5.2 we find two p-torsion points, P and Q, that
generate the whole p-torsion of E(F`2)

P = (276701049983509532234106338452082440292711762773463732533683876759414814860205
8330843763239769722154862, 736895619074862870441993260428363309212341952700619

999020137331297834986221601940750818713297548511336)

Q = (170343693342782875614389009934880452275069084044323551866473740367532495756430
3078396992524604785250333u + 15712887469866185499501681171672209515250776009
77567312986377817436996986291386148589353156799909434396,

293262979414624776596432402939618431893907517428095829765520553326321029472
565240814005665686795414190u + 28272291365284541630011849371574061637952

191623737718932812446648142173368705416653836715431228856385081).

Here u is a variable that gives the isomorphism F`2
∼= F`[u]/(f(u)) for a quadratic irreducible

f ∈ F`[u]. The Weil pairing of P and Q is

ep(P,Q) = 18803618029983537254653390382035462993205409477769908010460
37660415779359581593172656075406185808275672u+
31284655683961117025378938265048897550540714
78912095275807108199402549356171889616725860797979581965315.
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