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Abstract

HMAC was proved in [3] to be a PRF assuming that (1) the underlying compression function
is a PRF, and (2) the iterated hash function is weakly collision-resistant. However, recent attacks
show that assumption (2) is false for MD5 and SHA-1, removing the proof-based support for
HMAC in these cases. This paper proves that HMAC is a PRF under the sole assumption
that the compression function is a PRF. This recovers a proof based guarantee since no known
attacks compromise the pseudorandomness of the compression function, and it also helps explain
the resistance-to-attack that HMAC has shown even when implemented with hash functions
whose (weak) collision resistance is compromised. We also show that an even weaker-than-PRF
condition on the compression function, namely that it is a privacy-preserving MAC, suffices to
establish HMAC is a secure MAC as long as the hash function meets the very weak requirement
of being computationally almost universal, where again the value lies in the fact that known
attacks do not invalidate the assumptions made.
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1 Introduction

HMAC [3] is a popular cryptographic-hash-function-based MAC. The basic construct is actually
NMAC, of which HMAC can be viewed as a derivative.

The constructions. Succinctly:

NMAC(Kout‖Kin, M) = H∗(Kout, H
∗(Kin, M))

HMAC(Kout‖Kin, M) = H(Kout‖H(Kin‖M)) .

Here H is a cryptographic hash function, eg. MD5 [28], SHA-1 [26], or RIPEMD-160 [17]. Let
h: {0, 1}c × {0, 1}b → {0, 1}c denote the underlying compression function. (Here b = 512 while
c is 128 or 160.) Let h∗ be the iterated compression function which on input K ∈ {0, 1}c and a
message x = x[1] . . . x[n] consisting of b-bit blocks, lets a[0] = K and a[i] = h(a[i − 1], x[i]) for
i = 1, . . . , n, and finally returns a[n]. Then H∗(K, M) = h∗(K, M∗) and H(M) = H∗(IV, M),
where M∗ denotes M padded appropriately to a length that is a positive multiple of b and IV is
a public c-bit initial vector that is fixed as part of the description of H. Both NMAC and HMAC
use two keys, which in the case of NMAC are of length c bits each, and in the case of HMAC of
length b bits each and derived from a single b-bit key. HMAC is a non-intrusive version of NMAC
in the sense that it uses the cryptographic hash function only as a black box, making it easier to
implement.

Usage. HMAC is standardized via an IETF RFC [22], a NIST FIPS [25] and ANSI X9.71 [1],
and implemented in SSL, SSH, IPsec and TLS amongst other places. It is often used as a PRF
(pseudorandom function [19]) rather than merely as a MAC. In particular this is the case when it
is used for key-derivation, as in TLS [16] and IKE (the Internet Key Exchange protocol of IPsec)
[20]. HMAC is also used as a PRF in a proposed standard for one-time passwords [24].

What’s known. The results are for NMAC but can be lifted to HMAC. It is shown in [3] that
NMAC is a secure PRF if (1) the underlying compression function h is a secure PRF, and also
(2) that the hash function H is weakly collision resistant (WCR). The latter, introduced in [3],
is a relaxation of collision resistance (CR) that asks that it be computationally infeasible for an
adversary, given an oracle for H∗(K, ·) under a hidden key K, to find a collision, meaning distinct
inputs M1, M2 such that H∗(K, M1) = H∗(K, M2).

The problem. HMAC is usually implemented with MD5 or SHA-1. But, due to recent attacks
[32, 31], these functions are not WCR. Thus the assumption on which the proof of [3] is based is not
true. This does not reflect any actual weaknesses in the NMAC or HMAC constructs, on which no
attacks are known. (Being iterated MACs, the generic birthday based forgery attacks of [27] always
break NMAC and HMAC in time 2c/2, but we mean no better-than-birthday attacks are known.)
But it means that we have lost the proof-based guarantees. We are interested in recovering them.

Loss of WCR. First we pause to expand on the claim above that our main hash functions are
not WCR. Although WCR appears to be a weaker requirement than CR due to the hidden key,
in fact, for iterated hash functions, it ends up not usually being so. The reason is that collision-
finding attacks such as those on MD5 [32] and SHA-1 [31] extend to find collisions in H∗(IV, ·)
for an arbitrary but given IV, and, any such attack, via a further extension attack, can be used
to compromise WCR, meaning to find a collision in H∗(K, ·), given an oracle for this function,
even with K hidden. This was pointed out in [3, 21], and, for the curious, we recall the attack
in Appendix A.

Main result. We show (Theorem 3.3) that NMAC is a PRF under the sole assumption that the
underlying compression function h is itself a PRF. In other words, the additional assumption that
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the hash function is WCR is dropped. (And, in particular, as long as h is a PRF, the conclusion is
true even if H is not WCR, let alone CR.)

The main advantage of our result is that it is based on an assumption that is not refuted by
any known attacks. (There are to date no attacks that compromise the pseudorandomness of the
compression functions of MD5 or SHA-1.) Another feature of our result is that it is the first proof
for NMAC that is based solely on an assumption about the compression function rather than also
assuming something about the entire iterated hash function.

Techniques. We show (Lemma 3.1) that if a compression function h is a PRF then the iterated
compression function h∗ is computationally almost universal (cAU), a computational relaxation
of the standard information-theoretic notion of almost-universality (AU) of [13, 33, 30]. We then
conclude with Lemma 3.2 which says that the composition of a PRF and a cAU function is a PRF.
(This can be viewed as a computational relaxation of the Carter-Wegman paradigm [13, 33].)

Related work. If h∗ were a PRF, it would imply it is cAU, but h∗ is not a PRF due to the
extension attack. It is however shown by [4] that if h is a PRF then h∗ (which they call the cascade)
is a “pf-PRF” (prefix-free PRF), meaning a PRF as long as no query of the adversary is a prefix
of another query. It was pointed out to us by Victor Shoup after seeing an early draft of our paper
that it is possible to apply this in a black-box way to show that h∗ is cAU. Lemma 3.1 however
obtains a better bound. Although this is by only a constant factor in the context of the lemma
itself, Theorem 3.4 shows that it can translate into an appreciably better security guarantee in
the context of NMAC itself. The proof of Lemma 3.1 exploits and extends the ideas of [4] while
also adding some new ones. For comparison, we do present the indirect proof in Appendix B and
contrast the bounds obtained with ours.

Dodis, Gennaro, H̊astad, Krawczyk and Rabin show [18, Lemma 4] that the cascade over a
family of random functions is AU as long as the two messages whose collision probability one
considers have the same length. (In this model, h(K, ·) is a random function for each K ∈ {0, 1}c.
That is, it is like Shannon’s ideal cipher model, except the component maps are functions not
permutations.) This does not imply Lemma 3.1 (showing the cascade h∗ is cAU if h is a PRF),
because we need to allow the two messages to have different lengths, and also because it is not
clear what implication their result has for the case when h is a PRF. (A PRF does not permit one
to securely instantiate a family of random functions.) A second result [18, Lemma 5] in the same
paper says that if h∗(K, M) is close to uniformly distributed then so is h∗(K, M‖X). (Here M is
chosen from some distribution, K is a random but known key, and X is a fixed block.) This result
only assumes h is a PRF, but again we are not able to discern any implications for the problems
we consider, because in our case the last block of the input is not fixed, we are interested in the
cAU property rather than randomness, and our inputs are not drawn from a distribution.

Another result. The fact that compression functions are underlain by block ciphers, together
with the fact that no known attacks compromise the pseudorandomness of the compression functions
of MD5, SHA-1, may give us some confidence that it is ok to assume these are PRFs, but it still
behooves us to be cautious. What can we prove about NMAC without assuming the compression
function is a PRF? We would not expect to be able to prove it is a PRF, but what about just a
secure MAC? (Any PRF is a secure MAC [6, 9], so our main result implies NMAC is a secure MAC,
but we are interested in seeing whether this can be proved under weaker assumptions.) We show
(Theorem 4.3) that NMAC is a secure MAC if h is a privacy-preserving MAC (PP-MAC) [8] and
h∗ (equivalently, H∗) is cAU. A PP-MAC (the definition is provided in Section 4) is stronger than
a MAC but weaker than a PRF. This result reverts to the paradigm of [3] of making assumptions
both about the compression function and its iteration, but the point is that cAU is a very weak
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assumption compared to WCR and PP-MAC is a weaker assumption than PRF.

From NMAC to HMAC. The formal results (both previous and new) we have discussed so far
pertain to NMAC. However, discussions (above and in the literature) tend to identify NMAC and
HMAC security-wise. This is explained by an observation of [3] which says that HMAC inherits
the security of NMAC as long as the compression function is a PRF when keyed via the data input.
(So far when we have talked of it being a PRF, it is keyed via the chaining variable.) In our case
this means that HMAC is a PRF if the compression function is a “dual-PRF,” meaning a PRF
when keyed by either of its two inputs.

However, the analysis above assumes that the two keys Kout, Kin of HMAC are chosen inde-
pendently at random, while in truth they are equal to K⊕opad and K⊕ipad respectively, where K
is a random b-bit key and opad, ipad are fixed, distinct constants. We apply the theory of PRFs
under related-key attacks [7] to extend the observation of [3] to this single-key version of HMAC,
showing it inherits the security of NMAC as long as the data-input-keyed compression function is
a PRF under an appropriate (and small) class of related key attacks. Assuming additionally that
the compression function is a PRF in the usual sense, we obtain a (in fact, the first) security proof
of the single-key version of HMAC. These results are in Section 5.

Versions. A preliminary version of this paper appears in the proceedings of CRYPTO’06 [2].
The full version you are now reading contains a different and simpler proof of Claim 3.8. It also
includes an additional result, namely Theorem 3.4. It contains numerous proofs omitted from
the preliminary version due to lack of space. The appendices here were also ommitted from the
preliminary version for lack of space.

2 Definitions

Notation. We denote by s1‖s2 the concatenation of strings s1, s2, and by |s| the length of string
s. Let b be a positive integer representing a block length, and let B = {0, 1}b. Let B+ denote the
set of all strings of length a positive multiple of b bits. Whenever we speak of blocks we mean b-bit
ones. If M ∈ B+ then ‖M‖b = |M |/b is the number of blocks in M , and M [i] denotes its i-th b-bit
block, meaning M = M [1] . . .M [n] where n = ‖M‖b. If M1, M2 ∈ B+, then M1 is a prefix of M2,

written M1 ⊆M2, if M2 = M1‖A for some A ∈ B∗. If S is a set then s
$← S denotes the operation

of selecting s uniformly at random from S. An adversary is a (possibly randomized) algorithm that
may have access to one or more oracles. We let

AO1,...(x1, . . .)⇒ 1 and y
$← AO1,...(x1, . . .)

denote, respectively, the event that A with the indicated oracles and inputs outputs 1, and the
experiment of running A with the indicated oracles and inputs and letting y be the value returned.
(This value is a random variable depending on the random choices made by A and its oracles.)
Either the oracles or the inputs (or both) may be absent, and often will be.

A family of functions is a two-argument map f : Keys × Dom → Rng whose first argument
is regarded as a key. We fix one such family h: {0, 1}c × B → {0, 1}c to model a compression
function that we regard as being keyed via its c-bit chaining variable. Typical values are b = 512
and c = 128 or 160. The iteration of family h: {0, 1}c × B → {0, 1}c is the family of functions
h∗: {0, 1}c ×B+ → {0, 1}c defined via:

Function h∗(K, M) // K ∈ {0, 1}c,M ∈ B+

n← ‖M‖b ; a[0]← K
For i = 1, . . . , n do a[i]← h(a[i− 1], M [i])
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Return a[n]

This represents the Merkle-Damg̊ard [23, 14] iteration method used in all the popular hash functions
but without the “strengthening,” meaning that there is no |M |-based message padding.

PRFs. A prf-adversary A against a family of functions f : Keys × Dom → Rng takes as oracle
a function g: Dom → Rng and returns a bit. The prf-advantage of A against f is the difference

between the probability that it outputs 1 when its oracle is g = f(K, ·) for a random key K
$←

Keys, and the probability that it outputs 1 when its oracle g is chosen at random from the set
Maps(Dom,Rng) of all functions mapping Dom to Rng , succinctly written as

Adv
prf
f (A) = Pr

[

Af(K,·) ⇒ 1
]

− Pr
[

A$ ⇒ 1
]

. (1)

In both cases the probability is over the choice of oracle and the coins of A.

cAU and collision-probability. Let F : {0, 1}k ×Dom → Rng be a family of functions. cAU
is measured by considering an almost-universal (au) adversary A against F . It (takes no inputs
and) returns a pair of messages in Dom. Its au-advantage is

Advau
F (A) = Pr

[

F (K, M1) = F (K, M2) ∧ M1 6= M2 : (M1, M2)
$← A ; K

$← Keys
]

.

This represents a very weak form of collision-resistance since A must produce M1, M2 without being
given any information about K. WCR [3] is a stronger notion because here A gets an oracle for
F (K, ·) and can query this in its search for M1, M2.

For M1, M2 ∈ Dom it is useful to let CollF (M1, M2) = Pr[F (K, M1) = F (K, M2)], the proba-

bility being over K
$← {0, 1}k.

Security and resources. As usual with the concrete security approach [6], there is no formal
notion of security of a primitive (eg. a PRF) but informally, when we talk of, say, f being a
PRF, we mean that the prf-advantage of any (no input) prf-adversary of “practical” resources is
“low.” Similarly H is computationally au (cAU) if the au-advantage of any adversary of “practical”
resources is “low”. Formal results state the concrete security of reductions, bounding the advantage
and resources of one adversary as a function of those of others.

The following conventions will be adopted in measuring resource usage. The time-complexity of
an adversary is defined as the total execution time of an overlying experiment (meaning, includes
not only the running time of the adversary but the time to compute replies to oracle queries and
the time to perform any initializations or to test whether the adversary was successful) plus the
size of the code of the adversary, in some fixed model of computation. (In cases like PRFs, where
equation (1) defining the advantage involves two experiments, we consider the maximum of the
two execution times, with the convention that the picking of a random function is done by building
an on-line table while responding to oracle queries. More details on these conventions will appear
when they are used.) When we say that a resource measure (such as the time-complexity, number
of oracle queries, or their lengths) is at most a certain value, we mean this holds for all coin tosses of
the adversary and regardless of how its oracle queries are answered. With regard to time-complexity
we will permit ourselves the use of big-oh notation, even though there are no asymptotics here,
with the intent that it hides some constant depending only on the model of computation.

MACs. Any PRF is a MAC. (This was established for the basic notion of MAC security in [6],
but holds even for the most stringent notions and with tight security reductions [9].) Accordingly,
we do not explicitly discuss MACs until Section 4.1 where we consider PP-MACs.
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3 Security of NMAC

Let h: {0, 1}c×{0, 1}b → {0, 1}c be a family of functions that represents the compression function,
here assumed to be a PRF. Let pad denote a padding function such that s∗ = s‖pad(|s|) ∈ B+ for
any string s. (Such padding functions are part of the description of current hash functions. Note
the pad depends only on the length of s.) Then the family NMAC: {0, 1}2c×D → {0, 1}c is defined
by NMAC(Kout‖Kin, M) = h(Kout, h

∗(Kin, M
∗)‖fpad) where fpad = pad(c) ∈ {0, 1}b−c and h∗ is

the iterated compression function as defined in Section 2. The domain D is the set of all strings
up to some maximum length, which is 264 for current hash functions.

It turns out that our security proof for NMAC does not rely on any properties of pad beyond
the fact that M∗ = M‖pad(|M |) ∈ B+. (In particular, the Merkle-Damg̊ard strengthening, namely
inclusion of the message length in the padding, that is used in current hash functions and is
crucial to collision resistance of the hash function, is not important to the security of NMAC.)
Accordingly, we will actually prove the security of a more general construct that we call generalized
NMAC. The family GNMAC: {0, 1}2c × B+ → {0, 1}c is defined by GNMAC(Kout‖Kin, M) =
h(Kout, h

∗(Kin, M)‖fpad) where fpad is any (fixed) b−c bit string. Note the domain is B+, meaning
inputs have to have a length that is a positive multiple of b bits. (But can be of any length.)
NMAC is nonetheless a special case of GNMAC via NMAC(Kout‖Kin, M) = GNMAC(Kout‖Kin, M

∗)
and thus the security of NMAC is implied by that of GNMAC. (Security as a PRF or a MAC,
respectively, for both.)

3.1 The results

Main Lemma. The following says that if h is a PRF then its iteration h∗ is cAU.

Lemma 3.1 Let B = {0, 1}b. Let h: {0, 1}c × B → {0, 1}c be a family of functions and let n ≥ 1
be an integer. Then there exists a prf-adversary A against h such that the following is true. Let A∗

be any au-adversary against h∗ such that the two messages output by A∗ are at most n1, n2 blocks
long, respectively, where 1 ≤ n1, n2 ≤ n. Then

Advau
h∗(A∗) ≤ (n1 + n2 − 1) ·Adv

prf
h (A) +

1

2c
. (2)

Furthermore, A has time-complexity at most O(nTh), where Th is the time for one evaluation of h,
and makes at most 2 oracle queries.

Note that A depends only on (h and) the integer n but not on A∗. (The inequality (2) is true for
all A∗ the block length of whose output messages satisfy the stated constraints.) In particular the
time-complexity of A is small and independent of the time-complexity of A∗. Furthermore A makes
only two oracle queries. The proof, which is in Section 3.3, shows how all this is possible.

One might ask whether stronger results hold. For example, assuming h is a PRF, (1) Is h∗

a PRF? (2) Is h∗ WCR? (Either would imply that h∗ is cAU.) But the answer is NO to both
questions. The function h∗ is never a PRF due to the extension attack. On the other hand it is
easy to give an example of a PRF h such that h∗ is not WCR. Also MD5 and SHA-1 are candidate
counter-examples, since their compression functions appear to be PRFs but their iterations are not
WCR.

The Prf(cAU)=Prf lemma. The composition of families h: {0, 1}c × {0, 1}b → {0, 1}c and
F : {0, 1}k×D → {0, 1}b is the family hF : {0, 1}c+k×D → {0, 1}c defined by hF (Kout‖Kin, M) =
h(Kout, F (Kin, M)). The following lemma says that if h is a PRF and F is cAU then hF is a PRF.
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Lemma 3.2 Let B = {0, 1}b. Let h: {0, 1}c×B → {0, 1}c and F : {0, 1}k ×D → B be families of
functions, and let hF : {0, 1}c+k ×D → {0, 1}c be defined by

hF (Kout‖Kin, M) = h(Kout, F (Kin, M))

for all Kout ∈ {0, 1}c, Kin ∈ {0, 1}k and M ∈ D. Let AhF be a prf-adversary against hF that makes
at most q ≥ 2 oracle queries, each of length at most n, and has time-complexity at most t. Then
there exists a prf-adversary Ah against h and an au-adversary AF against F such that

Adv
prf
hF

(AhF ) ≤ Adv
prf
h (Ah) +

(
q

2

)

·Advau
F (AF ) . (3)

Furthermore, Ah has time-complexity at most t and makes at most q oracle queries, while AF has
time-complexity O(TF (n)) and the two messages it outputs have length at most n, where TF (n) is
the time to compute F on an n-bit input.

This extends the analogous Prf(AU)=Prf lemma by relaxing the condition on F from AU to
cAU. (The Prf(AU)=Prf lemma is alluded to in [4, 11], and variants are in [11, 12].) A simple
proof of Lemma 3.2, using games [10, 29], is in Section 3.4.

The reduction of Lemma 3.2 may look loose due to the
(
q
2

)
factor. (And in some settings this

is indeed the case and has lead to the use of alternative constructs [11].) However in our case this
factor turns out only to reflect the existing birthday attack on GNMAC [27] and thus does not reflect
a loose reduction. Note that the time-complexity of AF is small and in particular independent of
the time-complexity of AhF .

GNMAC is a PRF. We now combine the two lemmas above to conclude that if h is a PRF then
so is GNMAC.

Theorem 3.3 Assume b ≥ c and let B = {0, 1}b. Let h: {0, 1}c × B → {0, 1}c be a family of
functions and let fpad ∈ {0, 1}b−c be a fixed padding string. Let GNMAC: {0, 1}2c × B+ → {0, 1}c
be defined by

GNMAC(Kout‖Kin, M) = h(Kout, h
∗(Kin, M)‖fpad)

for all Kout, Kin ∈ {0, 1}c and M ∈ B+. Let AGNMAC be a prf-adversary against GNMAC that
makes at most q ≥ 2 oracle queries, each of at most m blocks, and has time-complexity at most t.
Then there exist prf-adversaries A1, A2 against h such that

Adv
prf
GNMAC(AGNMAC) ≤ Adv

prf
h (A1) +

(
q

2

)[

2m ·Adv
prf
h (A2) +

1

2c

]

. (4)

Furthermore, A1 has time-complexity at most t and makes at most q oracle queries, while A2 has
time-complexity at most O(mTh) and makes at most 2 oracle queries, where Th is the time for one
computation of h.

Proof of Theorem 3.3: Define F : {0, 1}c × B+ → {0, 1}b by F (Kin, M) = h∗(Kin, M)‖
fpad. Then GNMAC = hF . Apply Lemma 3.2 (with k = c, D = B+ and AhF = AGNMAC) to
get prf-adversary A1 and au-adversary AF with the properties stated in the lemma. Note that
Advau

F (AF ) = Advau
h∗(AF ). (Because a pair of messages is a collision for h∗(Kin, ·)‖fpad iff it is a

collision for h∗(Kin, ·).) Let n = m and let A2 be the prf-adversary A of Lemma 3.1. Apply the
lemma to A∗ = AF .

The upper bound on the advantage of AGNMAC in (4) is a function of a single assumed bound m on
the block lengths of all messages queried by AGNMAC. The following more general result expresses
the bound in terms of assumed bounds on the block lengths of each query taken individually:
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Theorem 3.4 Assume b ≥ c and let B = {0, 1}b. Let h: {0, 1}c × B → {0, 1}c be a family of
functions and let fpad ∈ {0, 1}b−c be a fixed padding string. Let GNMAC: {0, 1}2c × B+ → {0, 1}c
be defined as in Theorem 3.3. Let AGNMAC be a prf-adversary against GNMAC that makes at most
q ≥ 2 oracle queries, where the i-th query is of at most mi ≥ 1 blocks for 1 ≤ i ≤ q. Let
n = m1 + · · · + mq and m = max(m1, . . . , mq). Assume AGNMAC has time-complexity at most t.
Then there exist prf-adversaries A1, A2 against h such that

Adv
prf
GNMAC(AGNMAC) ≤ Adv

prf
h (A1) + (q − 1) · (n− q/2) ·Adv

prf
h (A2) +

(
q

2

)
1

2c
. (5)

Furthermore, A1 has time-complexity at most t and makes at most q oracle queries, while A2 has
time-complexity at most O(mTh) and makes at most 2 oracle queries, where Th is the time for one
computation of h.

Theorem 3.4 is more general than Theorem 3.3 in the sense that the former implies the latter.
Indeed, if we set mi = m for all 1 ≤ i ≤ q then we get n = mq and (5) implies (4). On the
other hand, Theorem 3.4 can give significantly better security guarantees than Theorem 3.3 in
cases where the messages being authenticated are of varying lengths. For example suppose AGNMAC

makes a single query of block length m followed by q−1 queries, each a single block. Then the bound
from (4) multiplies Adv

prf
h (A2) by q(q − 1)m whereas the bound from (5) multiplies Adv

prf
h (A2)

by (q − 1)(m + q/2− 1). These are thus different by a Θ(q) factor if, say, m = Θ(q). The proof of
Theorem 3.4 can be found in Section 3.5.

3.2 Tightness of bound

The best known attack on GNMAC is the birthday one of [27]. They show that it is possible to break
GNMAC with about 2c/2/

√
m queries of at most m blocks each. We now want to assess how close to

this is the guarantee we can get from Theorem 3.3 gets. If t is a time-complexity then let t = t/Th.
Assume that the best attack against h as a PRF is exhaustive key search. (Birthday attacks do

not apply since h is not a family of permutations.) This means that Adv
prf
h (A) ≤ t · 2−c for any

prf-adversary A of time complexity t making q ≤ t queries. Plugging this into (4) and simplifying,
the upper bound on the prf-advantage of any adversary against GNMAC who has time-complexity t
and makes at most q queries is O(t+m2q2Th) · 2−c. If we ignore the Th term, then this hits 1 when
q ≈ 2c/2/m. This means that the bound justifies NMAC up to roughly 2c/2/m queries, off from
the number in the above-mentioned attack by a factor of

√
m. It is an interesting open problem to

improve our analysis and fill the gap.

3.3 Proof of Lemma 3.1

Some definitions. In this proof it will be convenient to consider prf-adversaries that take inputs.
The advantage of A against h on inputs x1, . . . is defined as

Adv
prf
h (A(x1, . . .)) = Pr

[

Ah(K,·)(x1, . . .)⇒ 1
]

− Pr
[

A$(x1, . . .)⇒ 1
]

,

where in the first case K
$← {0, 1}c and in the second case the notation means that A is given as

oracle a map chosen at random from Maps({0, 1}b, {0, 1}c).
Overview. To start with, we ignore AhF and upper bound CollF (M1, M2) as some appropriate
function of the prf-advantage of a prf-adversary against h that takes M1, M2 as input. We consider
first the case that M1 ⊆ M2 (M1 is a prefix of M2) and then the case that M1 6⊆ M2, building in
each case a different adversary.
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Game G1(M1, M2, l) // 0 ≤ l ≤ ‖M1‖b
m1 ← ‖M1‖b ; m2 ← ‖M2‖b
a[l]

$← {0, 1}c
For i = l + 1 to m2 do

a[i]← h(a[i− 1], M2[i])
If a[m1] = a[m2] then return 1

else return 0

Adversary Ag
3(M1, M2)

m1 ← ‖M1‖b ; m2 ← ‖M2‖b
l

$← {1, . . . , m1 + 1}
If l = m1 + 1 then return Ag

2(M1, M2)
Else return Ag

1(M1, M2, l)

Adversary Ag
1(M1, M2, l) // 1 ≤ l ≤ ‖M1‖b

m1 ← ‖M1‖b ; m2 ← ‖M2‖b
a[l]← g(M2[l])
For i = l + 1 to m2 do

a[i]← h(a[i− 1], M2[i])
If a[m1] = a[m2] then return 1

else return 0

Adversary Ag
2(M1, M2)

m1 ← ‖M1‖b ; m2 ← ‖M2‖b
a[m1 + 1]← g(M2[m1 + 1])
For i = m1 + 2 to m2 do

a[i]← h(a[i− 1], M2[i])

y
$← B \ {M2[m1 + 1]}

If h(a[m2], y) = g(y) then return 1
else return 0

Figure 1: Games and adversaries taking input distinct messages M1, M2 such that M1 ⊆M2. The
adversaries take an oracle g: {0, 1}b → {0, 1}c.

The case M1 ⊆ M2. We begin with some high-level intuition. Suppose M1 ⊆ M2 with m2 =
‖M2‖b ≥ 1 + m1, where m1 = ‖M1‖b. The argument to upper bound Collh∗(M1, M2) has two
parts. First, a hybrid argument is used to show that a[m1] = h∗(K, M1) is computationally close to
random when K is drawn at random. Next, we imagine a game in which a[m1] functions as a key to
h. Let a[m1 +1] = h(a[m1], M2[m1 +1]) and a[m2] = h∗(a[m1 +1], M2[m1 +2] . . .M2[m2]). Now, if
a[m2] = a[m1] then we effectively have a way to recover the “key” a[m1] given a[m1 +1], amounting
to a key-recovery attack on h(a[m1], ·) based on one input-output example of this function. But
being a PRF, h is also secure against key-recovery.

In the full proof that follows, we use the games and adversaries specified in Figure 1. Adversaries
A1, A2 represent, respectively, the first and second parts of the argument outlined above, while A3

integrates the two.

Claim 3.5 Let M1, M2 ∈ B+ with M1 ⊆ M2 and 1 + ‖M1‖b ≤ ‖M2‖b. Suppose 1 ≤ l ≤ ‖M1‖b.
Then

Pr
[

A$
1(M1, M2, l)⇒ 1

]

= Pr [G1(M1, M2, l)⇒ 1 ]

Pr
[

A
h(K,·)
1 (M1, M2, l)⇒ 1

]

= Pr [G1(M1, M2, l − 1)⇒ 1 ] .

Recall the notation means that in the first case A1 gets as oracle g
$← Maps({0, 1}b, {0, 1}c) and in

the second case K
$← {0, 1}c.

Proof of Claim 3.5: Ag
1(M1, M2, l) sets a[l] = g(M2[l]). If g is chosen at random then this is

equivalent to the a[l]
$← {0, 1}c assignment in G1(M1, M2, l). On the other hand if g = h(K, ·) for

a random K, then K plays the role of a[l − 1] in G1(M1, M2, l − 1).
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Claim 3.6 Let M1, M2 ∈ B+ with M1 ⊆M2 and 1 + ‖M1‖b ≤ ‖M2‖b. Then

Pr
[

A$
2(M1, M2)⇒ 1

]

= 2−c

Pr
[

A
h(K,·)
2 (M1, M2)⇒ 1

]

≥ Pr [G1(M1, M2, m1)⇒ 1 ] .

Proof of Claim 3.6: Suppose g is chosen at random. Since y 6= M2[m1 + 1], the quantity g(y)
is not defined until the last line of the code of A2, at which point h(a[m2], y) is fixed, and thus the
probability that the two are equal is 2−c due to the randomness of g(y). Now suppose g = h(K, ·)
for a random K. Think of K as playing the role of a[m1] in G1(M1, M2, m1). Then a[m2] = K
in Ag

2(M1, M2) exactly when a[m1] = a[m2] in G1(M1, M2, m1), meaning exactly when the latter
game returns 1. But if a[m2] = K then certainly h(a[m2], y) = h(K, y), and the latter is g(y), so
Ag

1(M1, M2) will return 1. (However, it could be that h(a[m2], y) = h(K, y) even if a[m2] 6= K,
which is why we have an inequality rather than an equality in the claim.)

Claim 3.7 Let M1, M2 ∈ B+ with M1 ⊆M2 and 1 + ‖M1‖b ≤ ‖M2‖b. Let m1 = ‖M1‖b. Then

Adv
prf
h (A3(M1, M2)) ≥

1

m1 + 1

(
Collh∗(M1, M2)− 2−c

)
.

Proof of Claim 3.7: From the description of A3, whether g = $ or g = h(K, ·),

Pr [Ag
3(M1, M2)⇒ 1 ] =

1

m1 + 1

(

Pr [Ag
2(M1, M2)⇒ 1 ] +

m1∑

l=1

Pr [Ag
1(M1, M2, l)⇒ 1 ]

)

.

Now Claims 3.6 and 3.5 imply that Pr
[

A
h(K,·)
3 (M1, M2)⇒ 1

]

is

≥ 1

m1 + 1

(

Pr [G1(M1, M2, m1)⇒ 1 ] +

m1∑

l=1

Pr [G1(M1, M2, l − 1)⇒ 1 ]

)

=
1

m1 + 1
·

m1∑

l=0

Pr [G1(M1, M2, l)⇒ 1 ] . (6)

On the other hand, Claims 3.6 and 3.5 also imply that Pr
[

A$
3(M1, M2)⇒ 1

]

is

=
1

m1 + 1

(

2−c +

m1∑

l=1

Pr [G1(M1, M2, l)⇒ 1 ]

)

. (7)

Subtracting (7) from (6) and exploiting the cancellation of terms, we get

Adv
prf
h (A3(M1, M2)) ≥

1

m1 + 1

(
Pr [G1(M1, M2, 0)⇒ 1 ]− 2−c

)
.

Now examination of Game G1(M1, M2, 0) shows that that in this game, a[m1] = h∗(a[0], M1),
a[m2] = h∗(a[0], M2), and a[0] is selected at random. Since the game returns 1 iff a[m1] = a[m2],
the probability that it returns 1 is exactly Collh∗(M1, M2).

The case M1 6⊆M2. For M1, M2 ∈ B+ with ‖M1‖b ≤ ‖M2‖b and M1 6⊆M2, we let LCP(M1, M2)
denote the length of the longest common blockwise prefix of M1, M2, meaning the largest integer p
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Game G2(M1, M2, l1, l2) // (l1, l2) ∈ I(M1,M2)

200 m1 ← ‖M1‖b ; m2 ← ‖M2‖b
210 a1[l1]

$← {0, 1}c
220 If (l1, l2) ∈ I1(M1, M2) then a2[l2]← a1[l1] else a2[l2]

$← {0, 1}c
230 For i = l1 + 1 to m1 do a1[i]← h(a1[i− 1], M1[i])
240 For i = l2 + 1 to m2 do a2[i]← h(a2[i− 1], M2[i])
250 If a1[m1] = a2[m2] then return 1 else return 0

Adversary Ag
4(M1, M2, l1, l2) // (l1, l2) ∈ I∗(M1,M2)

a00 m1 ← ‖M1‖b ; m2 ← ‖M2‖b ; p← LCP(M1, M2)
a10 If (l1, l2) ∈ I∗1 (M1, M2) ∪ {(p + 1, p + 1)} ∪ I2(M1, M2)

then a1[l1]← g(M1[l1]) else a1[l1]
$← {0, 1}c

a20 If (l1, l2) ∈ I∗1 (M1, M2) ∪ {(p + 1, p + 1)} ∪ I3(M1, M2)

then a2[l2]← g(M2[l2]) else a2[l2]
$← {0, 1}c

a30 For i = l1 + 1 to m1 do a1[i]← h(a1[i− 1], M1[i])
a40 For i = l2 + 1 to m2 do a2[i]← h(a2[i− 1], M2[i])
a50 If a1[m1] = a2[m2] then return 1 else return 0

Figure 2: Games and adversaries taking input distinct messages M1, M2 ∈ B+ such that M1 6⊆M2

and ‖M1‖b ≤ ‖M2‖b.

such that M1[1] . . .M1[p] = M2[1] . . .M2[p] but M1[p + 1] 6= M2[p + 1]. Letting p = LCP(M1, M2),
m1 = ‖M1‖b and m2 = ‖M2‖b we consider the following sequence of pairs:

(0, 0), . . . , (p, p)
︸ ︷︷ ︸

I1(M1,M2)

, (p + 1, p + 1), (p + 2, p + 1), . . . , (m1, p + 1)
︸ ︷︷ ︸

I2(M1,M2)

, (m1, p + 2), . . . , (m1, m2)
︸ ︷︷ ︸

I3(M1,M2)

. (8)

For j = 1, 2, 3 we let Ij(M1, M2) be the set of pairs indicated above. We then let

I(M1, M2) = I1(M1, M2) ∪ {(p + 1, p + 1)} ∪ I2(M1, M2) ∪ I3(M1, M2)

I∗(M1, M2) = I(M1, M2)− {(0, 0)}
I∗1 (M1, M2) = I1(M1, M2)− {(0, 0)} .

We consider the pairs to be ordered as per (8), and for (l1, l2) ∈ I∗(M1, M2) we let Pd(l1, l2) denote
the predecessor of (l1, l2), meaning the pair immediately preceding (l1, l2) in the sequence of (8).
Note that |I(M1, M2)| = m1 + m2 − p. We consider the games and adversary of Figure 2.

Claim 3.8 Let M1, M2 ∈ B+ with M1 6⊆M2, and ‖M1‖b ≤ ‖M2‖b. Suppose (l1, l2) ∈ I∗(M1, M2).
Let (l′1, l

′
2) = Pd(l1, l2). Then

Pr
[

A$
4(M1, M2, l1, l2)⇒ 1

]

= Pr [G2(M1, M2, l1, l2)⇒ 1 ]

Pr
[

A
h(K,·)
4 (M1, M2, l1, l2)⇒ 1

]

= Pr
[
G2(M1, M2, l

′
1, l

′
2)⇒ 1

]
.

Proof of Claim 3.8: We begin by justifying the first equality, namely the one where g
$←

Maps({0, 1}b, {0, 1}c). Let us compare the code of G2(M1, M2, l1, l2) and Ag
4(M1, M2, l1, l2). Line a10

is equivalent to line 210 because g is random. Now consider line a20. If (l1, l2) ∈ I∗1 (M1, M2)
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Game G3(M1, M2, l1, l2) // (l1, l2) ∈ I∗(M1,M2)

300 m1 ← ‖M1‖b ; m2 ← ‖M2‖b ; p← LCP(M1, M2) ; K
$← {0, 1}c

310 If (l1, l2) ∈ I∗1 (M1, M2) ∪ {(p + 1, p + 1)} ∪ I2(M1, M2)

then a1[l
′
1]← K ; a1[l1]← h(a1[l

′
1], M1[l1]) else a1[l1]

$← {0, 1}c
320 If (l1, l2) ∈ I∗1 (M1, M2) ∪ {(p + 1, p + 1)} ∪ I3(M1, M2)

then a2[l
′
2]← K ; a2[l2]← h(a2[l

′
2], M2[l2]) else a2[l2]

$← {0, 1}c
330 For i = l1 + 1 to m1 do a1[i]← h(a1[i− 1], M1[i])
340 For i = l2 + 1 to m2 do a2[i]← h(a2[i− 1], M2[i])
350 If a1[m1] = a2[m2] then return 1 else return 0

Game G4(M1, M2, l1, l2) // (l1, l2) ∈ I∗(M1,M2)

400 m1 ← ‖M1‖b ; m2 ← ‖M2‖b ; p← LCP(M1, M2) ; K
$← {0, 1}c

410 If (l1, l2) ∈ I∗1 (M1, M2) ∪ {(p + 1, p + 1)} ∪ I2(M1, M2)

then a1[l
′
1]← K else a1[l

′
1]

$← {0, 1}c
420 If (l1, l2) ∈ I∗1 (M1, M2) ∪ {(p + 1, p + 1)} ∪ I3(M1, M2)

then a2[l
′
2]← K else a2[l

′
2]

$← {0, 1}c
430 For i = l′1 + 1 to m1 do a1[i]← h(a1[i− 1], M1[i])
440 For i = l′2 + 1 to m2 do a2[i]← h(a2[i− 1], M2[i])
450 If a1[m1] = a2[m2] then return 1 else return 0

Game G5(M1, M2, l1, l2) // (l1, l2) ∈ I∗(M1,M2)

500 m1 ← ‖M1‖b ; m2 ← ‖M2‖b ; p← LCP(M1, M2)

510 a1[l
′
1]

$← {0, 1}c
520 If (l1, l2) ∈ I∗1 (M1, M2) ∪ {(p + 1, p + 1)} then a2[l

′
2]← a1[l

′
1] else a2[l

′
2]

$← {0, 1}c
530 For i = l′1 + 1 to m1 do a1[i]← h(a1[i− 1], M1[i])
540 For i = l′2 + 1 to m2 do a2[i]← h(a2[i− 1], M2[i])
550 If a1[m1] = a2[m2] then return 1 else return 0

Figure 3: Games equivalent to G2(M1, M2, l
′
1, l

′
2), where M1, M2 ∈ B+ are such that M1 6⊆M2 and

‖M1‖b ≤ ‖M2‖b, and (l1, l2) ∈ I∗(M1, M2).

then we have a2[l2] = a1[l1] just as per line 220. This is true because, in this case, we have
M1[l1] = M2[l2] and hence a2[l2] = g(M2[l2]) = g(M1[l1]) = a1[l1]. If (l1, l2) = (p + 1, p + 1) then
setting a2[l2] = g(M2[l2]) is equivalent to choosing a2[l2] at random because g is random and has
not previously been invoked on M2[l2]. (We use here in a crucial way that the point M1[p + 1]
on which g has previously been invoked is different from M2[p + 1].) If (l1, l2) ∈ I3(M1, M2) then
setting a2[l2] = g(M2[l2]) is equivalent to choosing a2[l2] at random because g is random and has
not previously been invoked anywhere. (In this case, a1[l1] is chosen at random and not via g.)
Otherwise, a2[l2] is chosen at random. We have shown that line a20 is equivalent to line 220. The
rest of the code is the same in both cases.

Now we justify the second equality, namely the one where K is selected at random from {0, 1}c
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and g = h(K, ·). We will consider some auxiliary games, shown in Figure 3. We claim that

Pr
[

A
h(K,·)
4 (M1, M2, l1, l2)⇒ 1

]

= Pr [G3(M1, M2, l1, l2)⇒ 1 ] (9)

= Pr [G4(M1, M2, l1, l2)⇒ 1 ] (10)

= Pr [G5(M1, M2, l1, l2)⇒ 1 ] (11)

= Pr
[
G2(M1, M2, l

′
1, l

′
2)⇒ 1

]
(12)

We now justify the above relations.

Since a1[l
′
1] and a2[l

′
2] in G3(M1, M2, l1, l2) both equal the key K, the output of this game is the

same as that of A
h(K,·)
4 (M1, M2, l1, l2), justifying (9).

Game G4(M1, M2, l1, l2) was obtained by dropping the application of h(K, ·) in 310, 320 and be-
ginning the loops of 330, 340 at l′1, l

′
2 rather than l1, l2, respectively. To justify (10) we consider

some cases. If (l1, l2) ∈ I∗1 (M1, M2) ∪ {(p + 1, p + 1)} ∪ I2(M1, M2) then l′1 = l1 − 1, so droping the
application of h(K, ·) in 310 is compensated for by beginning the loop at 430 one step earlier. On
the other hand if (l1, l2) ∈ I3(M1, M2) then l′1 = l1 = m1, so starting the loop of 430 at l′1 effectively
makes no change, and we can also replace l1 by l′1 in the “else” clause as shown in 410. Similarly if
(l1, l2) ∈ I∗1 (M1, M2) ∪ {(p + 1, p + 1)} ∪ I3(M1, M2) then l′2 = l2 − 1, so droping the application of
h(K, ·) in 320 is compensated for by beginning the loop at 440 one step earlier. On the other hand
if (l1, l2) ∈ I2(M1, M2) then l′2 = l2 = p + 1, so starting the loop of 440 at l′2 effectively makes no
change, and we can also replace l2 by l′2 in the “else” clause as shown in 420.

Rather than picking K upfront and assigning it to a1[l
′
1], Game G5(M1, M2, l1, l2) picks a1[l

′
1]

directly at random and then adjusts its choice of a2[l
′
2] to ensure that it equals a1[l

′
1] whenever they

were both set to K. This justifies (11). Finally the test at 520 is equivalent to testing whether
(l′1, l

′
2) ∈ I1(M1, M2), justifying (12).

We now define prf adversary Ag
5(M1, M2) against h as follows. It picks (l1, l2)

$← I∗(M1, M2) and
returns Ag

4(M1, M2, l1, l2).

Claim 3.9 Let M1, M2 ∈ B+ with M1 6⊆ M2 and ‖M1‖b ≤ ‖M2‖b. Let m = ‖M1‖b + ‖M2‖b −
LCP(M1, M2)− 1. Then

Adv
prf
h (A5) ≥

1

m
·
(
Collh∗(M1, M2)− 2−c

)
.

Proof of Claim 3.9: Note that m = I∗(M1, M2). By Claim 3.8 we have the following, where
the sums are over (l1, l2) ∈ I∗(M1, M2) and we are letting Pdj(l1, l2) be the j-th component of
Pd(l1, l2) for j = 1, 2:

Adv
prf
h (A5)

=
1

m
·
∑

Pr
[

A
h(K,·)
4 (M1, M2, l1, l2)⇒ 1

]

− 1

m
·
∑

Pr
[

A$
4(M1, M2, l1, l2)⇒ 1

]

=
1

m
·
∑

Pr
[
G2(M1, M2,Pd1(l1, l2),Pd2(l1, l2))⇒ 1

]
− 1

m
·
∑

Pr [G2(M1, M2, l1, l2)⇒ 1 ]

=
1

m
· (Pr [G2(M1, M2, 0, 0)⇒ 1 ]− Pr [G2(M1, M2, m1, m2)⇒ 1 ]) ,

where m1 = ‖M1‖b and m2 = ‖M2‖b. Examination of Game G2(M1, M2, 0, 0) shows that that,
in this game, a1[m1] = h∗(a1[0], M1), a2[m2] = h∗(a2[0], M2), and a1[0] = a2[0] is selected at

14



random. Since the game returns 1 iff a1[m1] = a2[m2], the probability that it returns 1 is exactly
Collh∗(M1, M2). On the other hand, the values a1[m1] and a2[m2] in G2(M1, M2, m1, m2) are chosen
independently at random, and so the probability that they are equal, which is the probability this
game returns 1, is 2−c.

Putting it together. We consider the following adversary A6 that takes input any distinct
M1, M2 ∈ B+ such that ‖M1‖b ≤ ‖M2‖b:

Adversary Ag
6(M1, M2)

If M1 ⊆M2 then return Ag
3(M1, M2)

Else return Ag
5(M1, M2)

Let M∗
1 , M∗

2 ∈ B+ be distinct messages such that ‖M∗
1 ‖b ≤ ‖M∗

2 ‖b ≤ n and

Adv
prf
h (A6(M1, M2)) ≤ Adv

prf
h (A6(M

∗
1 , M∗

2 ))

for all distinct M1, M2 ∈ B+ with ‖M1‖b ≤ ‖M2‖b ≤ n, where n is as in the Lemma statement.
Now let A be the adversary that has M∗

1 , M∗
2 hardwired in its code and, given oracle g, returns

Ag
6(M

∗
1 , M∗

2 ). The adversary A has time-complexity as claimed in the Lemma statement. Now let
A∗ be any au-adversary against h∗ such that the two messages output by A∗ are at most n1, n2

blocks long, respectively, where 1 ≤ n1, n2 ≤ n. We show that (2) holds. We assume wlog that the
two messages M1, M2 output by A∗ are always distinct, in B+, and satisfy ‖M1‖b ≤ ‖M2‖b. Then
we have

Advau
h∗(A∗) =

∑

M1⊆M2

Collh∗(M1, M2) · Pr [M1, M2 ] +
∑

M1 6⊆M2

Collh∗(M1, M2) · Pr [M1, M2 ]

where Pr[M1, M2] denotes the probability that A∗ outputs (M1, M2). Now use Claims 3.7 and 3.9,
and also the assumptions ‖M1‖b ≤ n1, ‖M2‖b ≤ n2 and n2 ≥ 1 from the lemma statement, to get

Advau
h∗(A∗) ≤

∑

M1⊆M2

[

(n1 + n2 − 1) ·Adv
prf
h (A3(M1, M2)) + 2−c

]

· Pr [M1, M2 ]

+
∑

M1 6⊆M2

[

(n1 + n2 − 1) ·Adv
prf
h (A5(M1, M2)) + 2−c

]

· Pr [M1, M2 ]

=
∑

M1,M2

[

(n1 + n2 − 1) ·Adv
prf
h (A6(M1, M2)) + 2−c

]

· Pr [M1, M2 ]

≤ 2−c + (n1 + n2 − 1) ·Adv
prf
h (A) ,

where in the last line we used the definition of prf-adversary A.

3.4 Proof of Lemma 3.2

Game G0 of Figure 4 implements an oracle for hF (Kout‖Kin, ·) with the keys chosen at random,
while Game G2 implements an oracle for a random function. So

Adv
prf
hF

(AhF )

= Pr
[
AG0

hF ⇒ 1
]
− Pr

[
AG2

hF ⇒ 1
]

=
(
Pr
[
AG0

hF ⇒ 1
]
− Pr

[
AG1

hF ⇒ 1
])

+
(
Pr
[
AG1

hF ⇒ 1
]
− Pr

[
AG2

hF ⇒ 1
])

(13)

where in the last step we simply subtracted and then added back in the value Pr
[
AG1

hF
⇒ 1

]
.
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Game G0

Kin
$← {0, 1}k

Kout
$← {0, 1}c

On query M :

Reply h(Kout, F (Kin, M))

Game G1

Kin
$← {0, 1}k

f
$← Maps({0, 1}b, {0, 1}c)

On query M :

Reply f(F (Kin, M))

Game G2

g
$← Maps(D, {0, 1}c)

On query M :

Reply g(M)

Figure 4: Games G0, G1, G2 for the proof of Lemma 3.2.

It is easy to construct a prf-adversary Ah against h such that

Adv
prf
h (Ah) = Pr

[
AG0

hF ⇒ 1
]
− Pr

[
AG1

hF ⇒ 1
]

. (14)

(Namely, Ah, given an oracle for a function f : B → {0, 1}c, picks Kin
$← {0, 1}k. It then runs AhF ,

replying to oracle query M by f(F (Kin, M)), and returns whatever output AhF returns. We omit
the simple analysis that establishes (14).) The main part of the proof is to construct au-adversary
A′

F against F such that

Pr
[
AG1

hF ⇒ 1
]
− Pr

[
AG2

hF ⇒ 1
]
≤
(

q

2

)

·Advau
F (A′

F ) . (15)

This adversary, however, will have time-complexity t (and output messages of at most n bits). A
standard “coin-fixing” argument will then be used to derive from A′

F an au-adversary AF that has
time-complexity O(TF (n)) (and also outputs messages of n bits) such that

Advau
F (A′

F ) ≤ Advau
F (AF ) . (16)

Combining (13), (14), (15) and (16) we get (3), completing the proof of the lemma.

Towards constructing A′
F , consider Games G3, G4, G5 of Figure 5. (Game G3 is defined by the

code on the left of the Figure. Game G4 is the same except that the boxed code-statement is
omitted.) We will assume now that a prf-adversary never repeats an oracle query. This is wlog,
and is used below without explicit mention.

Claim 3.10 Game G4 is equivalent to Game G2 while Game G3 is equivalent to Game G1.

Proof of Claim 3.10: In Game G4, the “If” statement does nothing beyond setting the bad flag,
and the reply to query Ms is always the random value Zs. Thus, Game G4 implements a random
function just like Game G2. Game G3 returns random values except that it also ensures that if
F (Kin, Mi) = F (Kin, Mj) then the answers to queries Mi, Mj are the same. Thus, it is equivalent
to Game G1.

Now we have:

Pr
[
AG1

hF ⇒ 1
]
− Pr

[
AG2

hF ⇒ 1
]

= Pr
[
AG3

hF ⇒ 1
]
− Pr

[
AG4

hF ⇒ 1
]

(17)

≤ Pr
[
AG4

hF sets bad
]

. (18)

Above, (17) is by Claim 3.10. Since G3, G4 differ only in statements that follow the setting of bad,
(18) follows from the Fundamental Lemma of Game Playing [10].

We define au-adversary A′
F against F , as follows: It runs AG5

hF
, then picks at random i, j subject to

1 ≤ i < j ≤ q, and finally outputs the messages Mi, Mj . In other words, it runs AhF , replying to
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Games G3, G4

Kin
$← {0, 1}k ; s← 0

Z1, . . . , Zq
$← {0, 1}c

On query M :

s← s + 1 ; Ms ←M
Ys ← F (Kin, Ms)
If (∃ r < s : Yr = Ys) then

bad← true ; Zs ← Zr

Reply Zs

Game G5

s← 0

Z1, . . . , Zq
$← {0, 1}c

On query M :

s← s + 1 ; Ms ←M
Reply Zs

Figure 5: Games G3, G4 are defined by the code on the left, where Game G3 includes the boxed
statement while Game G4 does not.

the oracle queries of the latter with random values, and then outputs a random pair of messages
that AhF queries to its oracle. (In order for Mi, Mj to always be defined, we assume AhF always
makes exactly q oracle queries rather than at most q where by “always” we mean no matter how
its oracle queries are replied to. This is wlog.) We claim that

Pr
[
AG4

hF sets bad
]
≤
(

q

2

)

·Advau
F (A′

F ) . (19)

Combining (18) and (19) yields (15). We now justify (19). Intuitively, it is true because i, j are
chosen at random after the execution of AhF is complete, so AhF has no information about them. A
rigorous proof however needs a bit more work. Consider the experiment defining the au-advantage
of A′

F . (Namely, we run AG5
hF

, pick i, j at random subject to 1 ≤ i < j ≤ q, and then pick

Kin
$← {0, 1}k.) In this experiment, consider the following events defined for 1 ≤ α < β ≤ q:

Cα,β : F (Kin, Mα) = F (Kin, Mβ)

C :
∨

1≤α<β≤qCα,β .

Notice that the events “Cα,β ∧ (i, j) = (α, β)” (1 ≤ α < β ≤ q) are disjoint. (Even though the
events Cα,β for 1 ≤ α < β ≤ q are not.) Thus:

Advau
F (A′

F ) = Pr
[
∨

1≤α<β≤q (Cα,β ∧ (i, j) = (α, β))
]

=
∑

1≤α<β≤q

Pr [Cα,β ∧ (i, j) = (α, β) ] .

Since i, j are chosen at random after the execution of AG5
hF

is complete, the events “(i, j) = (α, β)”
and Cα,β are independent. Thus the above equals

∑

1≤α<β≤q

Pr [Cα,β ] · Pr [ (i, j) = (α, β) ] =
∑

1≤α<β≤q

Pr [Cα,β ] · 1
(
q
2

)

=
1
(
q
2

) ·
∑

1≤α<β≤q

Pr [Cα,β ]

≥ 1
(
q
2

) · Pr [C ] .
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The proof of (19) is concluded by noting that Pr [C ] equals Pr [G4 sets bad ].

Finally, note that

Advau
F (A′

F ) = EM1,M2
[CollF (M1, M2)]

where the expectation is over (M1, M2)
$← A′

F . Thus there must exist M1, M2 ∈ B+ such that
CollF (M1, M2) ≥ Advau

F (A′
F ). (And these messages are distinct because AhF never repeats an

oracle query.) Let AF be the au-adversary that has M1, M2 hardwired as part of its code and,
when run, simply outputs these messages and halts. Then (16) follows. Furthermore the time
complexity of AF is O(mTh). (Remember that by our convention the time-complexity is that of
the overlying experiment, so includes the time to compute TF on the messages that AF outputs.)

3.5 Proof of Theorem 3.4

Define F : {0, 1}c×B+ → {0, 1}b by F (Kin, M) = h∗(Kin, M)‖fpad. Note GNMAC = hF . Consider
the proof of Lemma 3.2 with AGNMAC playing the role of AhF . We assume as usual that AhF does
not repeat an oracle query and makes exactly q oracle queries. Let A1 be the adversary Ah from
that proof. Referring also to the games in that proof, we have

Adv
prf
GNMAC(AhF ) ≤ Adv

prf
h (A1) + Pr

[
AG4

hF sets bad
]

. (20)

Lemma 3.1 tells us that there is an adversary A2, with resource bounds as in the theorem statement,
such that

CollF (M, M ′) ≤ (‖M‖b + ‖M ′‖b − 1) ·Adv
prf
h (A2) +

1

2c
(21)

for all distinct M, M ′ ∈ B+ such that ‖M‖b, ‖M ′‖b ≤ m. (We get this by applying the lemma to the
adversary A∗

M,M ′ that has M, M ′ hardwired in its code, outputs them, and halts.) Let M1, . . . , Mq

denote the queries made by AhF in its execution with G4. Regarding these as random variables
over the coins of this execution, and also taking the probability over the choice of Kin, we have

Pr
[
AG4

hF sets bad
]

= Pr [∃ i < j : F (Kin, Mi) = F (Kin, Mj) ] (22)

≤
∑

i<j

Pr [F (Kin, Mi) = F (Kin, Mj) ]

≤
∑

i<j

(ni + nj − 1) ·Adv
prf
h (A2) +

1

2c
(23)

= Adv
prf
h (A2) ·

∑

i<j

(ni + nj − 1) +

(
q

2

)
1

2c

= Adv
prf
h (A2) · (q − 1) · (n− q/2) +

(
q

2

)
1

2c
.

Above, (22) is by the definition of game G4. We obtained (23) by applying (21). To do this, one can
first write each term of the sum as itself a sum, over all distinct messages M, M ′, of CollF (M, M ′),
weighted by the probability that Mi = M and Mj = M ′, the latter taken only over the execution
of AhF with G4. Note we use our convention that resource bounds assumed on an adversary (in
this case, the block lengths of its queries) hold not only in the game defining security but across
all possible answers to queries, and hence in particular in its execution with G4.
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4 MAC-security of NMAC under weaker assumptions

Since any PRF is a secure MAC [6, 9], Theorem 3.3 implies that NMAC is a secure MAC if the
compression function is a PRF. Here we show that NMAC is a secure MAC under a weaker-than-
PRF assumption on the compression function —namely that it is a privacy-preserving MAC—
coupled with the assumption that the hash function is cAU. This is of interest given the still
numerous usages of HMAC as a MAC (rather than as a PRF). This result can be viewed as
attempting to formalize the intuition given in [3, Remark 4.4].

4.1 Privacy preserving MACs

MAC forgery. Recall that the mac-advantage of mac-adversary A against a family of functions
f : Keys ×Dom → Rng is

Advmac
f (A) = Pr

[

Af(K,·),VFf (K,·,·) forges : K
$← Keys

]

.

The verification oracle VFf (K, ·, ·) associated to f takes input M, T , returning 1 if f(K, M) = T
and 0 otherwise. Queries to the first oracle are called mac queries, and ones to the second are called
verification queries. A is said to forge if it makes a verification query M, T the response to which
is 1 but M was not previously a mac query. Note we allow multiple verification queries [9].

Privacy-preserving MACs. The privacy notion for MACs that we use adapts the notion of
left-or-right indistinguishability of encryption [5] to functions that are deterministic, and was first
introduced by [8] who called it indistinguishability under distinct chosen-plaintext attack. An oracle
query of an ind-adversary A against family f : {0, 1}k × {0, 1}l → {0, 1}L is a pair of l-bit strings.
The reply is provided by one or the other of the following games:

Game Left

K
$← {0, 1}c

On query (x0, x1):

Reply f(K, x0)

Game Right

K
$← {0, 1}c

On query (x0, x1):

Reply f(K, x1)

Each game has an initialization step in which it picks a key; it then uses this key in computing
replies to all the queries made by A. The ind-advantage of A is

Advind
f (A) = Pr

[

ARight ⇒ 1
]

− Pr
[

ALeft ⇒ 1
]

.

However, unlike for encryption, the oracles here are deterministic. So A can easily win (meaning,
obtain a high advantage), for example by making a pair of queries of the form (x, z), (y, z), where
x, y, z are distinct, and then returning 1 iff the replies returned are the same. (We expect that
h(K, x) 6= h(K, y) with high probability over K for functions h of interest, for example compression
functions.) We fix this by simply outlawing such behavior. To be precise, let us say that A is
legitimate if for any sequence (x1

0, x
1
1), . . . , (x

q
0, x

q
1) of oracle queries that it makes, x1

0, . . . , x
q
0 are all

distinct l-bit strings, and also x1
1, . . . , x

q
1 are all distinct l-bit strings. (As a test, notice that the

adversary who queried (x, z), (y, z) was not legitimate.) It is to be understood henceforth that an
ind-adversary means a legitimate one. When we say that f is privacy-preserving, we mean that
the ind-advantage of any (legitimate) practical ind-adversary is low.

Privacy-preservation is not, by itself, a demanding property. For example, it is achieved by a
constant family such as the one defined by f(K, x) = 0L for all K, x. We will however want the
property for families that are also secure MACs.
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PP-MAC < PRF. We claim that a privacy-preserving MAC (PP-MAC) is strictly weaker than
a PRF, in the sense that any PRF is (a secure MAC [6, 9] and) privacy-preserving, but not vice-
versa. This means that when (below) we assume that a compression function h is a PP-MAC, we
are indeed assuming less of it than that it is a PRF. Let us now provide some details about the
claims made above. First, the following is the formal statement corresponding to the claim that
any PRF is privacy-preserving:

Proposition 4.1 Let f : {0, 1}k × {0, 1}l → {0, 1}L be a family of functions, and Aind an ind-
adversary against it that makes at most q oracle queries and has time-complexity at most t. Then
there is a prf-adversary Aprf against f such that Advind

f (Aind) ≤ 2 ·Adv
prf
f (Aprf). Furthermore,

Aprf makes at most q oracle queries and has time-complexity at most t.

The proof is a simple exercise and is omitted. Next we explain why a PP-MAC need not be a PRF.
The reason (or one reason) is that if the output of a family of functions has some structure, for
example always ending in a 0 bit, it would disqualify the family as a PRF but need not preclude
its being a PP-MAC. To make this more precise, let f : {0, 1}k × {0, 1}l → {0, 1}L be a PP-MAC.
Define g: {0, 1}k × {0, 1}l → {0, 1}L+1 by g(K, x) = f(K, x)‖0 for all K ∈ {0, 1}k and x ∈ {0, 1}l.
Then g is also a PP-MAC, but is clearly not a PRF.

4.2 Results

The following implies that if h is a PP-MAC and F is cAU then their composition hF is a secure
MAC.

Lemma 4.2 Let B = {0, 1}b. Let h: {0, 1}c×B → {0, 1}c and F : {0, 1}k ×D → B be families of
functions, and let hF : {0, 1}c+k ×D → {0, 1}c be defined by

hF (Kout‖Kin, M) = h(Kout, F (Kin, M))

for all Kout ∈ {0, 1}c, Kin ∈ {0, 1}k and M ∈ D. Let AhF be a mac-adversary against hF that makes
at most qmac mac queries and at most qvf verification queries, with the messages in each of these
queries being of length at most n. Suppose AhF has time-complexity at most t. Let q = qmac + qvf

and assume 2 ≤ q < 2b. Then there exists a mac-adversary A1 against h, an ind-adversary A2

against h, and an au-adversary AF against F such that

Advmac
hF (AhF ) ≤ Advmac

h (A1) + Advind
h (A2) +

(
q

2

)

·Advau
F (AF ) . (24)

Furthermore, A1 makes at most qmac mac queries and at most qvf verification queries and has
time-complexity at most t; A2 makes at most q oracle queries and has time-complexity at most t;
and AF outputs messages of length at most n, makes 2 oracle queries, and has time-complexity
O(TF (n)), where TF (n) is the time to compute F on an n-bit input.

The proof is in Section 4.3. As a corollary we have the following, which says that if h is a PP-MAC
and h∗ is cAU then GNMAC is a secure MAC.

Theorem 4.3 Assume b ≥ c and let B = {0, 1}b. Let h: {0, 1}c × B → {0, 1}c be a family of
functions and let fpad ∈ {0, 1}b−c be a fixed padding string. Let GNMAC: {0, 1}2c × B+ → {0, 1}c
be defined by

GNMAC(Kout‖Kin, M) = h(Kout, h
∗(Kin, M)‖fpad)

for all Kout, Kin ∈ {0, 1}c and M ∈ B+. Let AGNMAC be a mac-adversary against GNMAC that
makes at most qmac mac queries and at most qvf verification queries, with the messages in each
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of these queries being of at most m blocks. Suppose AGNMAC has time-complexity at most t. Let
q = qmac + qvf and assume 2 ≤ q < 2b. Then there exists a mac-adversary A1 against h, an
ind-adversary A2 against h, and an au-adversary A∗ against h∗ such that

Advmac
GNMAC(AGNMAC) ≤ Advmac

h (A1) + Advind
h (A2) +

(
q

2

)

·Advau
h∗(A∗) . (25)

Furthermore, A1 makes at most qmac mac queries and at most qvf verification queries and has
time-complexity at most t; A2 makes at most q oracle queries and has time-complexity at most t;
and A∗ outputs messages of at most m blocks, makes 2 oracle queries, and has time-complexity
O(mTh), where Th is the time for one computation of h.

We remark that Lemma 4.2 can be extended to show that hF is not only a MAC but itself privacy-
preserving. (This assumes h is privacy-preserving and F is cAU. We do not prove this here.) This
implies that GNMAC is privacy-preserving as long as h is privacy-preserving and h∗ is cAU. This is
potentially useful because it may be possible to show that a PP-MAC is sufficient to ensure security
in some applications where HMAC is currently assumed to be a PRF.

4.3 Proof of Lemma 4.2

A mac-adversary against h gets a mac oracle h(Kout, ·) and corresponding verification oracle
VFh(Kout, ·, ·). By itself picking key Kin and invoking these oracles, it can easily simulate the mac
oracle h(Kout, F (Kin, ·)) and verification oracle VFh(Kout, F (Kin, ·), ·) required by a mac-adversary
against hF . This leads to the following natural construction of A1:

Adversary A
h(Kout,·),VFh(Kout,·,·)
1

Kin
$← {0, 1}k ; i← 0

Run AhF , replying to its oracle queries as follows:
On mac query M or verification query M, T :

i← i + 1 ; Mi ←M ; yi ← F (Kin, M)
If mac query M then reply h(Kout, yi) to AhF

If verification query M, T then reply VFh(Kout, yi, T ) to AhF

Consider the experiment defining the mac-advantage of A1. Namely, choose Kout
$← {0, 1}c and

run A1 with oracles h(Kout, ·) and VFh(Kout, ·, ·). Let Coll (for “collision”) be the event that there
exist j, l such that yj = yl but Mj 6= Ml. Then

Advmac
h (A1) = Pr [A1 forges ]

≥ Pr
[
AhF forges ∧ Coll

]

≥ Pr [AhF forges ]− Pr [ Coll ]

= Advmac
hF (AhF )− Pr [ Coll ] . (26)

The rest of the proof is devoted to upper bounding Pr [ Coll ]. Consider the games G1, G2 of
Figure 6, where we denote by 〈i〉b the representation of integer i as a b-bit string. (The assumption
q < 2b made in the lemma statement means that we can always represent i this way in G2.) These
games differ only in the manner in which tag Ti is computed. In G1, it is equal to hF (Kout‖Kin, Mi).
In G2, however, it is the result of applying h(Kout, ·) to the current value of the counter i, and as
such does not depend on Kin. Now note that

Pr [ Coll ] = Pr
[
AG1

hF sets bad
]

=
(
Pr
[
AG1

hF sets bad
]
− Pr

[
AG2

hF sets bad
])

+ Pr
[
AG2

hF sets bad
]

. (27)
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Game G1

Kout
$← {0, 1}c ; Kin

$← {0, 1}k ; i← 0

On mac query M or verification query M, T :

i← i + 1 ; Mi ←M ; yi ← F (Kin, M)
If ∃ j < i : yi = yj and Mi 6= Mj then bad← true

If ∃ j < i : Mi = Mj then Ti ← Tj

Else Ti ← h(Kout, yi)
If mac query M then reply Ti

If verification query M, T then
If Ti = T then reply 1 else reply 0

Game G2

Kout
$← {0, 1}c ; Kin

$← {0, 1}k ; i← 0

On mac query M or verification query M, T :

i← i + 1 ; Mi ←M ; yi ← F (Kin, M)
If ∃ j < i : yi = yj and Mi 6= Mj then bad← true

If ∃ j < i : Mi = Mj then Ti ← Tj

Else Ti ← h(Kout, 〈i〉b)
If mac query M then reply Ti

If verification query M, T then
If Ti = T then reply 1 else reply 0

Figure 6: Games for the proof of Lemma 4.2.

Now consider the adversaries A2, A
′
F described in Figure 7. We claim that

Pr
[
AG1

hF sets bad
]
− Pr

[
AG2

hF sets bad
]
≤ Advind

h (A2) (28)

Pr
[
AG2

hF sets bad
]
≤

(
q

2

)

·Advau
F (A′

F ) . (29)

Adversary A′
F , however, has time-complexity t (and outputs messages of at most n bits). A standard

“coin-fixing” argument will be used to derive from A′
F an au-adversary AF that has time-complexity

O(TF (n)) (and also outputs messages of n bits) such that

Advau
F (A′

F ) ≤ Advau
F (AF ) . (30)

Combining (30), (29), (28), (27) and (26) yields (24) and completes the proof of Lemma 4.2. It
remains to prove (28), (29) and (30). We begin with the first of these.

Recall that an ind-adversary against h is given an oracle that takes as input a pair of b-bit strings
x0, x1. We are denoting this oracle by g. Now it is easy to see that

Pr
[

ARight
2 ⇒ 1

]

= Pr
[
AG1

hF sets bad
]

Pr
[

ALeft
2 ⇒ 1

]

= Pr
[
AG2

hF sets bad
]

,

which implies (28). However, there is one important thing we still need to verify, namely that A2 is
legitimate. So consider the sequence (x1, y1), (x2, y2), . . . of oracle queries it makes. The left halves
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Adversary A
g(·,·)
2

Kin
$← {0, 1}k ; i← 0

Run AhF , replying to its oracle queries as follows:
On mac query M or verification query M, T :

i← i + 1 ; Mi ←M ; yi ← F (Kin, M)
If ∃ j < i : yi = yj and Mi 6= Mj then return 1
If ∃ j < i : Mi = Mj then Ti ← Tj

Else Ti ← g(〈i〉b, yi)
If mac query M then reply Ti to AhF

If verification query M, T then
If Ti = T then reply 1 to AhF else reply 0 to AhF

Return 0

Adversary A′
F

Kout
$← {0, 1}c ; i← 0

Run AhF , replying to its oracle queries as follows:
On mac query M or verification query M, T :

i← i + 1 ; Mi ←M
If ∃ j < i : Mi = Mj then Ti ← Tj

Else Ti ← h(Kout, 〈i〉b)
If mac query M then reply Ti to AhF

If verification query M, T then
If Ti = T then reply 1 to AhF else reply 0 to AhF

Pick i, j at random subject to 1 ≤ i < j ≤ q
Return Mi, Mj

Figure 7: Ind-adversary A2 against h, taking an oracle g that on input a pair of b-bit strings returns
a c-bit string, and au-adversary A′

F against F , that outputs a pair of strings in D.

x1, x2, . . . are values of the counter i in different loop iterations and are thus strictly increasing
(although not necessarily successive) and in particular different. On the other hand the right half
values y1, y2, . . . are distinct because as soon as yi = yj for some j < i, adversary A2 halts (and
returns 1), never making an oracle query whose right half is yi.

Next we turn to A′
F . In order for the messages Mi, Mj it returns to always be defined, we assume

wlog that AhF always makes exactly, rather than at most, qmac mac queries and exactly, rather than
at most, qvf verification queries. Intuitively, (29) is true because i, j are chosen at random after the
execution of AhF is complete, so AhF has no information about them. This can be made rigorous
just as in the proof of Lemma 3.2, and the details follow. Consider the experiment defining the
au-advantage of A′

F . In this experiment, consider the following events defined for 1 ≤ α < β ≤ q:

Cα,β : F (Kin, Mα) = F (Kin, Mβ) ∧ Mα 6= Mβ

C :
∨

1≤α<β≤qCα,β .
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Notice that the events “Cα,β ∧ (i, j) = (α, β)” (1 ≤ α < β ≤ q) are disjoint. (Even though the
events Cα,β for 1 ≤ α < β ≤ q are not.) Thus:

Advau
F (A′

F ) = Pr
[
∨

1≤α<β≤q (Cα,β ∧ (i, j) = (α, β))
]

=
∑

1≤α<β≤q

Pr [Cα,β ∧ (i, j) = (α, β) ] .

Since i, j are chosen at random after the execution of AhF is complete, the events “(i, j) = (α, β)”
and Cα,β are independent. Thus the above equals

∑

1≤α<β≤q

Pr [Cα,β ] · Pr [ (i, j) = (α, β) ] =
∑

1≤α<β≤q

Pr [Cα,β ] · 1
(
q
2

)

=
1
(
q
2

) ·
∑

1≤α<β≤q

Pr [Cα,β ]

≥ 1
(
q
2

) · Pr [C ] .

The proof of (29) is concluded by noting that Pr [C ] equals Pr [G2 sets bad ].

Finally, au-adversary AF of time-complexity O(TF (n)) satisfying (30) can be obtained from AF

just as in the proof of Lemma 3.2.

5 Security of HMAC

In this section we show how our security results about NMAC lift to corresponding ones about
HMAC. We begin by recalling the observation of [3] as to how this works for HMAC with two
independent keys, and then discuss how to extend this to the single-keyed version of HMAC.

The constructs. Let h: {0, 1}c×{0, 1}b → {0, 1}c as usual denote the compression function. Let
pad be the padding function as described in Section 3, so that s∗ = s‖pad(|s|) ∈ B+ for any string s.
Recall that the cryptographic hash function H associated to h is defined by H(M) = h∗(IV, M∗),
where IV is a c-bit initial vector that is fixed as part of the description of H and M is a string of any
length up to some maximum length that is related to pad. (This maximum length is 264 for current
hash functions.) Then HMAC(Kout‖Kin, M) = H(Kout‖H(Kin‖M)), where Kout, Kin ∈ {0, 1}b. If
we write this out in terms of h∗ alone we get

HMAC(Kout‖Kin, M) = h∗(IV, Kout ‖ h∗(IV, Kin‖M‖pad(b + |M |)) ‖ pad(b + c) ) .

As with NMAC, the details of the padding conventions are not important to the security of HMAC
as a PRF, and we will consider the more general construct GHMAC: {0, 1}2b×B+ → {0, 1}c defined
by

GHMAC(Kout‖Kin, M) = h∗(IV, Kout ‖ h∗(IV, Kin‖M) ‖ fpad ) (31)

for all Kout, Kin ∈ {0, 1}b and all M ∈ B+. Here IV ∈ {0, 1}c and fpad ∈ {0, 1}b−c are fixed
strings. HMAC is a special case, via HMAC(Kout‖Kin, M) = GHMAC(M‖pad(b + |M |)) with
fpad = pad(b + c), and thus security properties of GHMAC (as a PRF or MAC) are inherited by
HMAC, allowing us to focus on the former.

The dual family. To state the results, it is useful to define h: {0, 1}b × {0, 1}c → {0, 1}c, the
dual of family h, by h(x, y) = h(y, x). The assumption that h is a PRF when keyed by its data
input is formally captured by the assumption that h is a PRF.
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Game G0

On query M :

Z
$← {0, 1}c

Reply Z

Game G1

K ′
out, K

′
in

$← {0, 1}c

On query M :

Reply GNMAC(K ′
out‖K ′

in, M)

Game G2

Kin
$← {0, 1}b

K ′
out

$← {0, 1}c ; K ′
in ← h(IV, Kin)

On query M :

Reply GNMAC(K ′
out‖K ′

in, M)

Game G3

Kin, Kout
$← {0, 1}b

K ′
out ← h(IV, Kout) ; K ′

in ← h(IV, Kin)

On query M :

Reply GNMAC(K ′
out‖K ′

in, M)

Figure 8: Games G0, G1, G2, G3 for the proof of Lemma 5.1.

5.1 Security of GHMAC

Let K ′
out = h(IV, Kout) and K ′

in = h(IV, Kin). The observation of [3] is that

GHMAC(Kout‖Kin, M) = h(K ′
out, h

∗(K ′
in, M)‖fpad)

= GNMAC(K ′
out‖K ′

in, M) . (32)

This effectively reduces the security of GHMAC to GNMAC. Namely, if h is a PRF and Kout, Kin

are chosen at random, then K ′
out, K

′
in will be computationally close to random. Now (32) implies

that if GNMAC is a PRF then so is GHMAC. The formal statement follows.

Lemma 5.1 Assume b ≥ c and let B = {0, 1}b. Let h: {0, 1}c × B → {0, 1}c be a family of
functions. Let fpad ∈ {0, 1}b−c be a fixed padding string and IV ∈ {0, 1}c a fixed initial vector.
Let GHMAC: {0, 1}2b × B+ → {0, 1}c be defined by (31) above. Let A be a prf-adversary against
GHMAC that has time-complexity at most t. Then there exists a prf-adversary Ah against h such
that

Adv
prf
GHMAC(A) ≤ 2 ·Adv

prf

h
(Ah) + Adv

prf
GNMAC(A) .

Furthermore, Ah makes only 1 oracle query, this being IV, and has time-complexity at most t.

Proof of Lemma 5.1: Assume wlog that A never repeats an oracle query. Consider the games
in Figure 8, and let pi = Pr[AGi ⇒ 1] for 0 ≤ i ≤ 3. Then

Adv
prf
GHMAC(A) = p3 − p0 = (p3 − p1) + (p1 − p0) .

Clearly p1 − p0 = Adv
prf
GNMAC(A). To complete the proof we construct Ah so that

Adv
prf

h
(Ah) =

p3 + p2

2
− p2 + p1

2
=

p3 − p1

2
. (33)

Given an oracle g: {0, 1}c → {0, 1}c, adversary Ah picks a bit c at random. Then it picks keys via

If c = 1 then K ′
out ← g(IV) ; Kin

$← {0, 1}b ; K ′
in ← h(IV, Kin)

Else K ′
out ← {0, 1}c ; K ′

in ← g(IV).

Finally it runs A with oracle GNMAC(K ′
out‖K ′

in, ·), and returns whatever A returns.
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Combining this with Theorem 3.3 or Theorem 3.4 yields the result that GHMAC is a PRF assuming
h, h are both PRFs. Note that the PRF assumption on h is mild because Ah makes only one oracle
query.

5.2 Single-keyed HMAC

HMAC, GHMAC as described and analyzed above above use two keys that are assumed to be chosen
independently at random. However, HMAC is in fact usually implemented with these keys derived
from a single b-bit key. Here we provide the first security proofs for the actually-implemented
single-key version of HMAC.

Specifically, let opad, ipad ∈ {0, 1}b be distinct, fixed and known constants. (Their particular
values can be found in [3] and are not important here.) Then the single-key version of HMAC is
defined by

HMAC-1(K, M) = HMAC(K⊕opad‖K⊕ipad, M) .

As before, we look at this as a special case of a more general construct, namely GHMAC-1: {0, 1}b×
B+ → {0, 1}c, defined by

GHMAC-1(K, M) = GHMAC(K⊕opad‖K⊕ipad, M) (34)

for all K ∈ {0, 1}b and all M ∈ B+. We now focus on GHMAC-1. We will show that GHMAC-1
inherits the security of GNMAC as long as h is a PRF against an appropriate class of related key
attacks. In such an attack, the adversary can obtain input-output examples of h under keys related
to the target key. Let us recall the formal definitions following [7].

A related-key attack on a family of functions h: {0, 1}b×{0, 1}c → {0, 1}c is parameterized by a
set Φ ⊆ Maps({0, 1}b, {0, 1}b) of key-derivation functions. We define the function RK: Φ×{0, 1}b →
{0, 1}b by RK(φ, K) = φ(K) for all φ ∈ Φ and K ∈ {0, 1}b. A rka-adversary Ah may make an
oracle query of the form φ, x where φ ∈ Φ and x ∈ {0, 1}c. Its rka-advantage is defined by

Advrka
h,Φ

(Ah) = Pr
[

A
h(RK(·,K),·)

h
⇒ 1

]

− Pr
[

A
G(RK(·,K),·)

h
⇒ 1

]

.

In the first case, K is chosen at random from {0, 1}b and the reply to query φ, x of Ah is h(φ(K), x).

In the second case, G
$← Maps({0, 1}b × {0, 1}c, {0, 1}c) and K

$← {0, 1}b, and the reply to query
φ, x of Ah is G(φ(K), x). For any string s ∈ {0, 1}b let ∆s: {0, 1}b → {0, 1}b be defined by
∆s(K) = K⊕s.

Lemma 5.2 Assume b ≥ c and let B = {0, 1}b. Let h: {0, 1}c × B → {0, 1}c be a family of
functions. Let fpad ∈ {0, 1}b−c be a fixed padding string, IV ∈ {0, 1}c a fixed initial vector, and
opad, ipad ∈ {0, 1}b fixed, distinct strings. Let GHMAC-1: {0, 1}b×B+ → {0, 1}c be defined by (34)
above. Let Φ = {∆opad, ∆ipad}. Let A be a prf-adversary against GHMAC-1 that has time-complexity
at most t. Then there exists a rka-adversary Ah against h such that

Adv
prf
GHMAC-1(A) ≤ Advrka

h,Φ
(Ah) + Adv

prf
GNMAC(A) .

Furthermore, Ah makes 2 oracle queries, these being ∆opad, IV and ∆ipad, IV, and has time-complexity
at most t.

Proof of Lemma 5.2: Adversary Ah queries its oracle with ∆opad, IV and lets K ′
out denote the

value returned. It also queries its oracle with ∆ipad, IV and lets K ′
in denote the value returned. It

then runs A, answering the latter’s oracle queries via GNMAC(K ′
out‖K ′

in, ·), and returns whatever
A returns.
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Combining this with Theorem 3.3 or Theorem 3.4 yields the result that GHMAC-1 is a PRF assum-
ing h is a PRF and h is a PRF under Φ-restricted related-key attacks, where Φ is as in Lemma 5.2.
We remark that Φ is a small set of simple functions, which is important because it is shown in [7]
that if Φ is too rich then no family can be a PRF under Φ-restricted related-key attacks. Further-
more, the assumption on h is rendered milder by the fact that Ah makes only two oracle queries,
in both of which the message is the same, namely is the initial vector.

5.3 Lifting the results of Section 4

The procedure above to lift the NMAC results of Section 3 to HMAC applies also to lift the results
of Section 4 to HMAC. Specifically, if h is a PP-MAC, h∗ is AU and h is a PRF then GHMAC is
a (privacy-preserving) MAC. Also if h is a PP-MAC, h∗ is AU and h is a PRF under Φ-restricted
related-key attacks, with Φ as in Lemma 5.2, then GHMAC-1 is a (privacy-preserving) MAC. Note
that the assumption on h continues to be that it is a PRF or PRF against Φ-restricted related-key
attacks. (Namely, this has not been reduced to its being a PP-MAC.) This assumption is however
mild in this context since (as indicated by Lemmas 5.2 and 5.1) it need only hold with respect to
adversaries that make very few queries and these of a very specific type.

5.4 Remarks

Let h: {0, 1}128 × {0, 1}512 → {0, 1}128 denote the compression function of MD5 [28]. An attack
by den Boer and Bosselaers [15] finds values x0, x1, K such that h(x0, K) = h(x1, K) but x0 6= x1.
In a personal communication, Rijmen has said that it seems possible to extend this to an attack
that finds such x0, x1 even when K is unknown. If so, this might translate into the following attack
showing h is not a PRF when keyed by its data input. (That is, h is not a PRF.) Given an oracle
g: {0, 1}128 → {0, 1}128, the attacker would find x0, x1 and obtain y0 = g(x0) and y1 = g(x1) from
the oracle. It would return 1 if y0 = y1 and 0 otherwise. How does this impact the above, where
we are assuming h is a PRF? Interestingly, the actual PRF assumptions we need on h are so weak
that even such an attack does not break them. In Lemma 5.1, we need h to be a PRF only against
adversaries that make just one oracle query. (Because Ah makes only one query.) But the attack
above makes two queries. On the other hand, in Lemma 5.2, we need h to be a related-key PRF
only against adversaries that make two related-key queries in both of which the 128-bit message
for h is the same, this value being the initial vector used by the hash function. Furthermore,
the related key functions must be ∆opad, ∆ipad. The above-mentioned attack, however, uses two
different messages x0, x1 and calls the oracle under the original key rather than the related keys.
In summary, the attack does not violate the assumptions made in either of the lemmas.
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A Attacking weak collision-resistance

Recall that H represents the cryptographic hash function (eg. MD5, SHA-1) while H∗ is the ex-
tended hash function, which is the hash function with the initial vector made explicit as an (addi-
tional) first input. Let us use the term general collision-finding attack to refer to an attack that
finds collisions in H∗(IV, ·) for an arbitrary but given IV. As we discussed in Section 1, it was noted
in [3, 21] that any general collision-finding attack can be used to compromise the weak collision-
resistance (WCR) of H. (And since the known collision-finding attacks on MD5 and SHA-1 [32, 31]
do extend to general ones, the WCR of these functions is no more than their CR.) Here we recall
the argument that shows this. It is a simple extension attack, and works as follows.

To compromise WCR of H, an attacker given an oracle for H∗(K, ·) under a hidden key K
must output distinct M1, M2 such that H∗(K, M1) = H∗(K, M2). Our attacker picks some string
x and calls its oracle to obtain IV = H∗(K, x). Then it runs the given general collision-finding
attack on input IV to obtain a collision X1, X2 for H∗(IV, ·). (That is, X1, X2 are distinct strings
such that such that H∗(IV, X1) = H∗(IV, X2).) Now let M1 = x‖pad(|x|)‖X1‖pad(|X1|) and
M2 = x‖pad(|x|)‖X2‖pad(|X2|). (Here pad(n) is a padding string that when appended to a string
of length n results in a string whose length is a positive multiple of b bits where b is the block-
length of the underlying compression function. The function pad is part of the description of the
cryptographic hash function.) Then it follows that H∗(K, M1) = H∗(K, M2).

We clarify that these attacks on the WCR of the hash function do not break HMAC. What these
attacks show is that the WCR assumption made for the security proof of [3] is not true for MD5 and
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SHA-1. This means we lose the proof-based guarantee of [3], but it does not imply any weakness
in the construct. Our results show that WCR of the iterated hash function is not necessary for the
security of HMAC: pseudorandomness of the compression function suffices. This helps explain why
no attacks have emerged on HMAC even when it is implemented with hash functions that are not
WCR.

B The reduction-from-pf-PRF proof

We sketch how one can obtain the result that h a PRF implies h∗ is cAU by using the result of [4]
that says that h a PRF implies h∗ is a pf-PRF (a PRF as long as no query of the adversary is a
prefix of another query). We then compare this with the direct proof given in Section 3.3 .

The result of [4]. A prf-adversary is said to be prefix-free if no query it makes is a prefix of
another. The result of [4] is that if D is a prefix-free prf-adversary against h∗ that makes at most
q queries, each of at most m blocks, then there is a prf-adversary A against h such that

Adv
prf
h∗ (D) ≤ qm ·Adv

prf
h (A) (35)

and A has about the same time-complexity as D. (We remark that there is a typo in the statement
of Theorem 3.1 of the proceedings version of [4] in this regard: the factor q is missing from the
bound. This is however corrected in the on-line version of the paper.)

The reduction-from-pf-PRF. The result obtained via the reduction-from-pf-PRF proof will be
slightly worse than the one of Lemma 3.1. Namely we claim that, under the same conditions as in
that lemma, (2) is replaced by

Advau
h∗(A∗) ≤ 2 · [max(n1, n2) + 1] ·Adv

prf
h (A) +

1

2c
, (36)

and the time-complexity of A increases from (n1 + n2) computations of h to 2 max(n1, n2) com-
putations of h. For some intuition about the proof, imagine h∗ were a PRF. (It is not.) Then
Collh∗(M1, M2) would be about the same as the probability that f(M1) = f(M2) for a random
function f , because otherwise the prf-adversary who queried its oracle with M1, M2 and accepted
iff the replies were the same would be successful. With h∗ in fact only a pf-PRF, the difficulty is the
case that M1 ⊆ M2, which renders the adversary just described not prefix-free. There is a simple
(and well-known) observation —we will call it the extension trick— to get around this. Namely,
assuming wlog M1 6= M2 and ‖M1‖b ≤ ‖M2‖b, let x ∈ B be a block different from M2[‖M1‖b + 1],
and let M ′

1 = M1‖x and M ′
2 = M2‖x. Then Collh∗(M1, M2) ≤ Collh∗(M ′

1, M
′
2) but M1 is not a

prefix of M2. This leads to the prefix-free prf-adversary against h∗ below:

Adversary Df

(M1, M2)
$← A∗

If M1 ⊆M2 then x
$← B \ {M2[‖M1‖b + 1]} ; M ′

1 ←M1‖x ; M ′
2 ←M2‖x

Else M ′
1 ←M1 ; M ′

2 ←M2

If f(M ′
1) = f(M ′

2) then return 1 else return 0

Here f : B+ → {0, 1}c and we assume wlog that M1, M2 ∈ B+ are distinct messages with ‖M1‖b ≤
‖M2‖b. Now the result of [4] gives us a prf-adversary A against h such that (35) holds. Thus:

Advau
h∗(A∗)− 2−c ≤ Adv

prf
h∗ (D)

≤ 2 · [max(n1, n2) + 1] ·Adv
prf
h (A) + 2−c .
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Re-arranging terms yields (36).

The time-complexity of A as per [4] is (essentially) the time-complexity t of A∗, rather than being
a small quantity independent of t as in Lemma 3.1. It is not clear whether or not the coin-fixing
argument of our proof of Section 3.3 can be applied to A to reduce this time-complexity. (One would
have to enter into the details of the proof of [4] to check.) However, instead, we can first modify
A∗ to an adversary that has embedded in its code a pair M1, M2 ∈ B+ of distinct messages that
maximize Collh∗(M1, M2). It just outputs these messages and halts. We then apply the argument
above to this modified A∗, and now A will have time-complexity of 2 max(n1, n2) computations of
h plus minor overhead.

Comparisons. For the case that M1 ⊆ M2, our direct proof (meaning the one of Section 3.3 )
uses a different (and novel) idea as opposed to the extension trick, which leads to a factor of only
n1 + 1 in the bound (Claim 3.7) in this case, as opposed to the 2[max(n1, n2) + 1] factor obtained
via the reduction-from-pf-PRF proof. The difference can be significant in the case that M2 is
long and M1 is short. In the case M1 6⊆ M2 our direct proof relies heavily on ideas of [4], but
avoids the intermediate reduction to the multi-oracle model they use and exploits the non-adaptive
nature of the setting to improve the factor in the bound from 2max(n1, n2) to n1 + n2 − 1. These
improvements (overall, a constant factor) may not seem significant in this context. But they become
significant when translated to NMAC, as evidenced by Theorem 3.4. As we saw, the latter gives
appreciably better bounds than Theorem 3.3 in the case that authenticated messages have varying
lengths. However, our direct proof (meaning, Lemma 3.1) is crucial to obtaining Theorem 3.4. The
reduction-from-pf-PRF proof will only yield (a result that is slightly worse than) Theorem 3.3.

The reduction-from-pf-PRF proof is certainly simpler than our direct proof if one is willing to
take the result of [4] as given. However, especially for a construct that is as widely standardized
as HMAC, we think it is useful to have from-scratch proofs that are as easily verifiable as possible.
If the measure of complexity is that of a from-scratch (i.e. self-contained) proof, we contend that
our direct one (although not trivial) is simpler than that of [4]. (In particular because we do not
use the multi-oracle model.) We remark that if a reader’s primary interest is the simplest possible
self-contained proof regardless of the quality of the bound, the way to get it is to use our direct
proof for the case M1 6⊆ M2 and then the extension trick (as opposed to our direct proof) for the
case M1 ⊆M2.
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