
Fully Collusion Resistant Traitor Tracing

With Short Ciphertexts and Private Keys

Dan Boneh ∗

dabo@cs.stanford.edu

Amit Sahai †

sahai@cs.ucla.edu

Brent Waters
bwaters@csl.sri.com

April 3, 2006

Abstract

We construct a fully collusion resistant tracing traitors system with sublinear size ciphertexts
and constant size private keys. More precisely, let N be the total number of users. Our system
generates ciphertexts of size O(

√
N) and private keys of size O(1). We first introduce a simpler

primitive we call private linear broadcast encryption (PLBE) and show that any PLBE gives a
tracing traitors system with the same parameters. We then show how to build a PLBE system
with O(

√
N) size ciphertexts. Our system uses bilinear maps in groups of composite order.

1 Introduction

Traitor tracing systems, introduced by Chor, Fiat, and Naor [10], help content distributors identify
pirates. Consider a content distributor who broadcasts encrypted content to N legitimate recipients.
Recipient i has secret key Ki that it uses to decrypt the broadcast. As a concrete example, imagine
an encrypted satellite radio broadcast that should only be played on certified radio receivers. The
broadcast is encrypted using a public broadcasting key BK. Any certified player can decrypt using
its embedded secret key Ki. Certified players, of course, could enforce digital rights restrictions
such as “do not copy” or “play once”.

The risk for the distributor is that a pirate will hack a certified player and extract its secret
key. The pirate could then build a pirate decoder that will extract the cleartext content and ignore
any relevant digital rights restrictions. Even worse, the pirate could make its pirate decoder widely
available so that anyone can extract the cleartext content for themselves. DeCSS, for example, is
a widely distributed program for decrypting encrypted DVD content.

This is where traitor tracing systems come in — when the pirate decoder is found, the distributor
can run a tracing algorithm that interacts with the pirate decoder and outputs the index i of at
least one of the keys Ki that the pirate used to create the pirate decoder. The distributor can then
try to take legal action against the owner of this Ki.

We give a precise description of traitor tracing systems in Appendix A. For now we give some
intuition that will help explain our results. A traitor tracing system consists of four algorithms
Setup,Encrypt,Decrypt, and Trace. The setup algorithm generates the broadcaster’s key BK, a

∗Supported by NSF and the Packard Foundation.
†This research was supported by the NSF Cybertrust and ITR Programs, an Alfred P. Sloan Research Fellowship,

and a generous equipment grant from Intel.

1

tracing key TK, and N recipient keys K1, . . . ,KN . The encrypt algorithm encrypts the content
using BK and the decrypt algorithm decrypts using one of the Ki. The tracing algorithm is the
most interesting — it is an algorithm that takes TK as input and interacts with a pirate decoder,
treating it as a black-box oracle. It outputs the index i ∈ {1, . . . , N} of a key Ki that was used to
create the pirate decoder.
Traitor tracing systems can have a number of properties informally defined below:

• Public vs. Secret BK: Some traitor tracing systems require that the broadcaster’s key BK
remain secret; Other systems [21, 4, 25, 20, 12, 22, 34, 9] support a public BK so that anyone
can create broadcast data. Combinatorial systems such as [10, 24, 31, 32, 14, 15, 11, 28, 2,
30, 29, 23] are typically designed for the secret BK settings, but can be made public-key by
replacing the underlying ciphers by public key systems.

• Public vs. Secret TK: Many traitor tracing systems (including ours) assume that the
tracer is a trusted party and require that the tracer’s key TK be kept secret. Some exceptions
are [26, 27, 35, 19, 9].

• Collusion resistance: a traitor tracing system is said to be t-collusion resistant if tracing
will work as long as the pirate has fewer than t user keys at his disposal. If t = N the system
is said to be fully collusion resistant.

• Black box tracing: the tracing algorithm must do its job by treating the pirate decoder
as a black-box oracle. Clearly, the pirate is free to build the decoder however it wants —
the pirate could obfuscate the code, use tamper resistant hardware, and try to randomize the
secret keys at its disposal. Hence, it is safest to treat the pirate decoder as a black box and
the tracing algorithm cannot look into the inner-workings of the decoder. More precisely, the
tracer gives the decoder encrypted content and the decoder responds with valid or invalid.
In real world settings, valid means the decoder plays the given encrypted content and invalid
means it does not. The tracer learns nothing else.

• Stateful vs. Stateless decoders: a stateless decoder is one that does not keep state
between decryptions. For instance, software decoders, such as DeCSS, cannot keep any state.
Pirate decoders embedded in tamper resistant hardware, such as a pirate cable box, can keep
state between successive decryptions. When the decoder detects that it is being traced it
could shutdown and refuse to decrypt further inputs. Kiayias and Yung [18] show how to
convert any tracing system for stateless decoders into a tracing system for stateful decoders
by embedding robust watermarks in the content. Consequently, most tracing systems in the
literature, as do we, focus on the stateless settings and ignore the stateful case.

In this paper we focus on fully collusion resistant traitor tracing systems. That is, systems that
remain secure no matter how many keys are at the disposal of the pirate. Existing traitor tracing
systems are not designed to handle arbitrary collusions. When the collusion bound t comes close to
N , most existing systems require ciphertext size linear in the number of users, which is no better
than the trivial traitor tracing system.

Our results. We construct a practical fully collusion resistant traitor tracing system that has
sub-linear size ciphertexts. Our system has the following characteristics:

ciphertext-length = O(
√

N) and private-key-length = O(1)

2

Furthermore, decryption time is constant (i.e. depends on the security parameter, but not on N).
Other properties of this system include: (1) the broadcaster’s key BK is public, but the tracer’s
key TK must be kept secret, (2) the system is black-box traceable, and (3) is designed for stateless
pirate decoders [18]. We give a precise definition of these properties in Appendix A. The system
uses bilinear groups of composite order introduced in [5].

We prove security of our tracing algorithm using a tracing technique previously used in [4, 23,
18]. To formalize this technique, we introduce a new primitive called Private Linear Broadcast
Encryption, or PLBE for short, which is conceptually a simpler primitive than traitor tracing. We
show that any secure PLBE gives a (black-box) traitor tracing system. Roughly speaking, a PLBE
is a broadcast encryption system [13] that can only broadcast to “linear” sets, that is sets of the
form {i, i + 1, . . . , N} for some i = 1, . . . , N + 1. Thus, a PLBE enables the broadcaster to create
ciphertexts that can only be decrypted properly under keys Ki,Ki+1, . . . ,KN . A broadcast to
everyone, for example, is encrypted using i = 1. The main security requirement is that the system
should be private [1]: a ciphertext should reveal no non-trivial information about the recipient set.
That is, a broadcast to users {i, . . . , N} should reveal no non-trivial information about i. We give
a precise definition in the next section and show that any secure PLBE gives a secure (black-box)
traitor tracing system. In the remainder of the paper we focus on constructing a secure PLBE.

Related work. Traitor tracing systems generally fall into two categories: combinatorial, as in [10,
24, 31, 32, 14, 15, 11, 28, 2, 30, 29, 23], and algebraic, as in [21, 4, 25, 20, 12, 22, 34, 9]. The
broadcaster’s key BK in combinatorial systems can be either secret or public. Algebraic traitor
tracing use public-key techniques and are often more efficient than the public-key instantiations
of combinatorial schemes. Some systems, including ours, only provide tracing capabilities. Other
systems [25, 23, 17, 16, 12] combine tracing with broadcast encryption to obtain trace-and-revoke
features — after tracing, the distributor can revoke the pirate’s keys without affecting any other
legitimate decoder.

Kiayias and Yung [20] describe a black-box tracing system that achieves constant rate for
long messages, where rate is measured as the ratio of ciphertext length to plaintext length. For full
collusion resistance, however, the ciphertext size is linear in the number of users N . For comparison,
our new system generates ciphertexts of size O(

√
N) and achieves constant rate (rate = 1) for long

messages by using hybrid encryption (i.e. encrypting a short message-key using the traitor tracing
system and encrypting the long data by using a symmetric cipher with the message-key).

Many traitor tracing systems, including ours, assume that the tracer is a trusted party and
require that the tracer’s key TK be kept secret. Some exceptions are [26, 27, 35, 19, 9]. Similarly,
many traitor tracing systems, including ours, assume that the pirate decoder is stateless. Kiayias
and Yung [18] show how to strengthen traitor tracing systems to handle stateful decoders.

Finally, we note that binary fingerprinting codes [8, 33] are closely related to traitor tracing
(binary refers to the fact that the code is defined over a binary alphabet). In fact, it is known [6]
that any binary fingerprinting code gives rise to a fully collusion-resistant traitor tracing system
with constant size ciphertexts. The private key size, unfortunately, is quite large. Using [8] the
private key size is Õ(N3) and using [33] it is Õ(N2).

3

2 Traitor Tracing and Private Linear Broadcast Encryption

In Appendix A we review the precise definition of a traitor tracing system. However, instead
of directly building a traitor tracing system we build a simpler primitive called Private Linear
Broadcast Encryption (PLBE). We first define secure PLBEs below and then briefly explain how a
PLBE is used for traitor tracing. The resulting tracing algorithm makes explicit a tracing technique
used in [4, 23, 18]. Then in the remainder of the paper we build a secure PLBE.

2.1 Description of Private Linear Broadcast Encryption

A PLBE is comprised of the following four algorithms:

SetupLBE(N,λ) The setup algorithm takes as input N , the number of users in the system, and the
security parameter λ. The algorithm runs in polynomial time in λ and outputs a public key
PK, a secret key TK, and private keys K1, . . . ,KN , where Ku is given to user u.

EncryptLBE(PK,M) Takes as input a public key PK, and a message M and outputs a ciphertext
C. This algorithm is used to encrypt a message to all N users.

TrEncryptLBE(TK, i,M) Takes as input a secret key TK, an integer i satisfying 1 ≤ i ≤ N +1, and
a message M . It outputs a ciphertext C. This algorithm encrypts a message to a set {i, . . . , N}
and is primarily used for traitor tracing. We will require below that TrEncryptLBE(TK, 1,M)
outputs a distribution on ciphertexts that is indistinguishable from the distribution generated
by EncryptLBE(PK,M).

DecryptLBE(j,Kj , C, PK) Takes as input a private key Kj for user j, a ciphertext C, and the public
key PK. The algorithm outputs a message M or ⊥.

The system must satisfy the following correctness property:
for all i, j ∈ {1, . . . , N + 1}, where j ≤ N , and all messages M :

Let
(
PK,TK, (K1, . . . ,KN)

) R← SetupLBE(N,λ)

and let C
R← TrEncryptLBE(TK, i,M).

If j ≥ i then DecryptLBE(j, Kj , C, PK) = M .

Security. We define security of a PLBE system using three games. The first game just captures a
consistency property which says that TrEncryptLBE(TK, 1,M) outputs a distribution on ciphertexts
that is indistinguishable from the distribution generated by EncryptLBE(PK,M). The second game
is a message hiding game and says that a ciphertext created using index i = N +1 is unreadable
by anyone. The third game is an index hiding game and captures the intuition that a broadcast
ciphertext created using index i reveals no non-trivial information about i. We will consider all
these games for a fixed number of users N .

Game 1 – Indistinguishability. The first game says that the output of TrEncryptLBE(TK, 1,M)
is indistinguishable from EncryptLBE(PK,M). The game proceeds as follows:

4

• Setup The challenger runs the SetupLBE algorithm and gives the adversary PK and the set
of all private keys

{
K1, . . . ,KN

}
.

• Challenge The adversary gives the challenger a message M . The challenger flips a coin
β ∈ {0, 1} and computes

c
R←

{
TrEncryptLBE(TK, 1,M) if β = 0,
EncryptLBE(PK,M) if β = 1.

It gives C to the adversary.

• Guess The adversary returns a guess β′ ∈ {0, 1} of β.

We define the advantage of adversary A as AdvCG = |Pr[β′ = β]− 1/2|.

Game 2 – Message Hiding. The second game says that an adversary cannot break semantic
security when encrypting using index i = N + 1. The game proceeds as follows:

• Setup The challenger runs the SetupLBE algorithm and gives the adversary PK and all secret
keys {K1, . . . ,KN}.

• Challenge The adversary outputs two equal length messages M0,M1. The challenger flips
a coin β ∈ {0, 1} and sets C

R← TrEncryptLBE(TK, N + 1,Mβ). The challenger gives C to the
adversary.

• Guess The adversary returns a guess β′ ∈ {0, 1} of β.

We define the advantage of adversary A as AdvMH = |Pr[β′ = β]− 1/2|.

Game 3 – Index Hiding. The third game says that an adversary cannot distinguish between
an encryption to index i and one to index i + 1 without the key Ki. The game takes as input
a parameter i ∈ {1, . . . , N} which is given to both the challenger and the adversary. The game
proceeds as follows:

• Setup The challenger runs the SetupLBE algorithm and gives the adversary PK and the set
of private keys

{
Kj s.t. j 6= i

}
.

• Challenge The adversary outputs a message M . The challenger flips a coin β ∈ {0, 1} and
computes C

R← TrEncryptLBE(TK, i + β, M). The challenger returns C to the adversary.

• Guess The adversary returns a guess β′ ∈ {0, 1} of β.

We define the advantage of adversary A as AdvIH[i] = |Pr[β′ = β]− 1/2|.

Now that the three games are established we are ready to define secure PLBE.

Definition 2.1. We say that an N -user Private Linear Broadcast System (PLBE) is secure if for
all polynomial time adversaries A we have that AdvCG, and AdvMH, and AdvIH[i] for i = 1, . . . , N ,
are negligible functions of λ.

5

2.2 Reducing Traitor Tracing to PLBE

We briefly show that a secure PLBE gives a secure traitor tracing system. Let

E = (SetupLBE, EncryptLBE, TrEncryptLBE, DecryptLBE)

be a secure PLBE system. The derived traitor tracing system is defined as follows (we use the
notation of Appendix A):

• Setup simply runs SetupLBE with the same parameters, and outputs PK as the public encryp-
tion key, TK as the secret tracing key, and the user keys identically to the PLBE scheme.

• Encrypt and Decrypt run algorithms EncryptLBE and DecryptLBE respectively with the same
parameters.

• TraceD(TK, ε), when called with oracle D, and inputs TK and ε > 0, does the following:

1. For i = 1 to N + 1, do the following:

(a) Let cnt← 0
(b) Repeat the following steps W ← 8λ(N/ε)2 times:

i. Sample M from the finite message space at random

ii. Let C
R← TrEncryptLBE(TK, i,M)

iii. Call oracle D on input C and if D(C) = M then cnt← cnt + 1
(c) Let p̂i ∈ [0, 1] be the fraction of times that D decrypted the ciphertexts correctly.

That is, p̂i = (cnt/W).

2. Let S be the set of all i ∈ {1, . . . , N} for which p̂i − p̂i+1 ≥ ε/(4N).

3. Output the set S as the set of guilty colluders.

Note that the running time of Trace is cubic in N . It can be made quadratic in N using binary
search instead of a linear scan. A tighter analysis shows that the running time need only be
quadratic in the number of colluders t.

Security. The following two lemmas prove that this traitor tracing scheme is secure. The first
lemma proves semantic security, namely that AdvSS is negligible. Note that we did not explicitly
require that a PLBE be semantically secure against a chosen plaintext attack to an outsider who
possess no secret keys. Nevertheless, semantic security does follow straightforwardly from the three
games used to define PLBE using a hybrid argument by means of the Index Hiding game. We give
the proof in Appendix B.

Lemma 2.2. If the given PLBE is secure then for the traitor tracing system above, AdvSS defined
in Appendix A is negligible.

Next, we argue that traceability against arbitrary collusion follows from the security of the
PLBE scheme. Here we sketch the proof and then give the details in Appendix ??.

Lemma 2.3. If the given PLBE is secure then for the traitor tracing system above, AdvTR defined
in Appendix A is negligible.

6

Proof Sketch. We show that the probability of winning the traceability game defined in Appendix A
is negligible. Let pi = Pr[D(TrEncryptLBE(TK, i,M)) = M] where the probability is over the
random choice of M in a finite message space. We know that that p1 ≥ ε and pN+1 is negligible. The
former follows from the fact that D is an ε-useful decoder. The later follows directly from the PLBE
message hiding game. Then there must exist some j ∈ {1, . . . , N} such that pj − pj+1 ≥ ε/(2N).
By the Chernoff bound it follows that with overwhelming probability, p̂j − p̂j+1 ≥ ε/(4N). Hence,
the set S output by TraceD(TK, ε) is non-empty.

Using the notation of Game 2 from Appendix A, it remains to show that whenever p̂j −
p̂j+1 > ε/(4N) we have that j ∈ T . For such j we know, by Chernoff, that with overwhelm-
ing probability pj − pj+1 ≥ ε/(8N). Hence, D is able to distinguish TrEncryptLBE(TK, j,M) from
TrEncryptLBE(TK, j + 1,M) for random M . But since the PLBE is secure, the index hiding game
implies that these two distributions are indistinguishable, unless one has Kj . It follows that the
pirate who built D must have had Kj and therefore j ∈ T , as required.

3 Background and complexity assumptions

3.1 Bilinear maps

We review some general notions about bilinear maps and groups, with an emphasis on groups of
composite order which will be used in our construction. We follow [5] in which composite order
bilinear groups were first introduced.

Consider two finite cyclic groups G and GT of same order n = pq, where p and q are distinct
primes, and in which the respective group operation is efficiently computable and denoted multi-
plicatively. Assume the existence of an efficiently computable function e : G × G → GT , with the
following properties:

• (Bilinear) ∀u, v ∈ G, ∀a, b ∈ Z, e(ua, vb) = e(u, v)ab, where the product in the exponent is
defined modulo n;

• (Non-degenerate) ∃g ∈ G such that e(g, g) has order n in GT . In other words, e(g, g) is a
generator of GT , whereas g generates G.

We will use the notation Gp, Gq to denote the respective subgroups of order p and order q of G.
We now review three assumptions we will use for proving our security. The first two assumptions

are in prime order subgroups and the last two are over a composite group G.

3.2 Decision 3-party Diffie-Hellman Assumption

The decision 3-party Diffie-Hellman problem is stated as follows. Given a group Gp of prime order
p and random elements gp, A = ga

p , B = gb
p, C = gc

p of G distinguish between T = gabc
p and T = gz

p,
where z is random in Zp.

We say that an algorithm A has advantage ε in solving the problem if∣∣∣∣ Pr[A(gp, g
a
p , gb

p, g
c
p, g

abc
p) = 1]− Pr[A(gp, g

a
p , gb

p, g
c
p, g

z
p) = 1]

∣∣∣∣ ≥ ε

The (t, ε)-decision 3-party Diffie-Hellman assumption (D3DH) is that no t-time adversary has
advantage more than ε. Note that the decision 3-party Diffie-Hellman assumption implies the

7

decision Bilinear Diffie-Hellman assumption. It also implies the standard linear assumption defined
in [3].

3.3 Subgroup Decision Problem

We state the Subgroup Decision (SD) problem as follows. Given a group G of composite order
n = pq, where p, q are distinct (unknown) primes, and generators g′q ∈ Gq and g ∈ G, distinguish
between whether an element T is a random member of the subgroup Gq or a random element of
the full group G. That is distinguish whether T is a random element of Gq or G.

We say that an algorithm A has advantage ε in solving the Subgroup Decision Problem if∣∣∣∣ Pr[A(n, g′q, g, T) = 1 : T
R← Gq]− Pr[A(n, g′q, g, T) = 1 : T

R← G]
∣∣∣∣ ≥ ε.

The (t, ε)-subgroup decision assumption is that no t-time adversary has advantage more than ε.
We note that our way of stating the problem, which we’ll denote subgroup decision* problem,

slightly deviates from the previous definition [5] in the adversary receives an element known to be
in Gq. However, with a simple hybrid argument it is easy to see that the two ways of stating the
assumption are equivalent (within a factor of 2). Suppose that a t-time adversary A has advantage
2ε in the subgroup decision* problem. Then either∣∣∣∣ Pr[A(n, R, g, T) = 1 : R, T

R← Gq]− Pr[A(n, R, g, T) = 1 : R, T
R← G]

∣∣∣∣ ≥ ε.

or

∣∣∣∣ Pr[A(n, R, g, T) = 1 : R, T
R← G]− Pr[A(n, R, g, T) = 1 : R

R← Gq, T
R← G]

∣∣∣∣ ≥ ε.

However, if either of these statements holds then A clearly has an advantage ε in the original
subgroup decision problem. For ease of exposition, in our proofs we will use our new way of stating
the subgroup decision assumption.

3.4 Bilinear Subgroup Decision Problem

The Bilinear Subgroup Decision (BSD) problem is stated as follows. Given a group G of composite
order n = pq, where p, q are distinct (unknown) primes, and generators gp ∈ Gp and gq ∈ Gq,
distinguish a random order p element in the group GT from a uniform element in the group GT .
More precisely, we say that an algorithm A has advantage ε in solving the problem if∣∣∣∣ Pr[A(n, g, gp, gq, e(T, g)) = 1 : T

R← Gp]−

Pr[A(n, g, gp, gq, e(T, g)) = 1 : T
R← G]

∣∣∣∣ ≥ ε.

The (t, ε)-bilinear subgroup decision assumption is that no t-time adversary has advantage more
than ε.

8

4 A
√

N size Private Linear Broadcast Encryption System

In this section we show how to construct a Private Linear Broadcast Encryption (PLBE) system
with O(

√
N) size ciphertext. We can then apply the results of Section 2 and use this to build a

traitor tracing scheme with O(
√

N) size ciphertexts.
Before we describe our construction we give some intuition as to why constructing PLBE systems

with sublinear ciphertext size is difficult and describe the framework for which we will construct
our PLBE system.

PLBE with Sublinear Ciphertext Size The primary difficulty in constructing a PLBE system
is to provide the Index Hiding property. Using linear size ciphertexts this is easy: each user has a
unique portion of the ciphertext assigned to them, which is used to encrypt the message (or session
key) to just that user. If an encryptor replaces the ciphertext component of user u with a random
encryption, only user u can tell the difference. All other users will be associated with a completely
different portions of the ciphertext and changing u’s component has no effect on their ability to
decrypt.

To construct a PLBE system with sublinear size ciphertexts we must use a fundamentally
different approach than the one above. Since the ciphertexts are sublinear in size, we cannot
let every user have a component of the ciphertext that is dedicated for them alone. Intuitively,
ciphertext components must be “shared” amongst users. Therefore, we cannot use the simple
strategy of completely randomizing a portion of the ciphertext to prevent a particular user u from
decrypting, since this will inherently effect the ability of other users to decrypt.

Our Framework We now give a framework for our PLBE system. We assume that the number
of users, N in the system equals m2 for some m. If the number of real users is not a square we
can add “dummy” users to pad out to the next square. We arrange the users in an m×m matrix.
Each user is assigned and identified by an unique tuple (x, y) where 1 ≤ x, y ≤ m.

Since we will be constructing a Private Linear Broadcast Encryption system, we must have a
linear ordering of the users that we can traverse. The first user in the system will be the user at
matrix position (1, 1) and from there we will order the users by traversing one row at a time. More
precisely, the user at matrix position (x, y) will have the index u = (x − 1)m + y in our ordering.
We can think of this as a “row-major” ordering.

We can now refer to our Private Linear Broadcast Encryption scheme in terms of positions on
the matrix. An encryption to position (i, j) means that a user at position (x, y) will be able to
decrypt the message if either x > i or both x = i and y ≥ j. With this notation, the Index Hiding
game property states that:

• For j < m it is difficult to distinguish between an encryption of a message to (i, j) from
(i, j + 1) without the key of user (x = i, y = j).

• For j = m it is difficult to distinguish an encryption of a message to position (i, j = m) to
that of one to (i + 1, j = 1) without the key of user (i, j = m).

The use of pairwise notation for referring to users and encryptions will be a purely notational
convenience for describing our system.

9

4.1 Our Construction

Our construction makes use of bilinear maps of composite order n, where n = pq and p and q are
primes. In describing our scheme we will often use p or q in a subscript to denote if a group element
is in the subgroup of order p or order q. The key algebraic fact that underlies our scheme is that
if gp is any element from the order p subgroup (which we call Gp) and gq is any element from the
order q subgroup (which we call Gq), then we have: e(gp, gq) = 1.

When the TrEncryptLBE algorithm encrypts to an index (i, j) it creates ciphertext components
for every column and every row. The keys of user (x, y) are structured in such a way that in order
to decrypt he must pair the ciphertext components from row x, with the ciphertext components
from column y. The encryption algorithm works by creating ciphertexts in the following way.
Column Ciphertext Components. (1) Ciphertexts for columns greater than or equal to j are
“well formed” in both subgroups. (2) However, for a column that is less than j, the encryption
algorithm will create a ciphertext that is well formed in the Gq subgroup, but random in the Gp

subgroup.
Row Ciphertext Components. (1) Ciphertexts for rows less than i are completely random.
Therefore, any user whose row index is less than x will not be able to decrypt. (2) The ciphertext
components for row i are well formed in both subgroups. A user with row index i will be able to
decrypt if his column index is greater than or equal to j. If it is less than j, the randomized (Gp)
part of the column ciphertext will scramble the result of pairing the row and column ciphertexts
together. (3) Finally, for rows greater than i the ciphertext components will be well formed elements
in the Gq subgroup only. A user with row index greater than i will be able to decrypt no matter
what his column is, because the pairing will “cancel out” the randomized (Gp) part of any column
ciphertext component with the row ciphertext component that lives in Gq.

The decryption algorithm for a user (x, y) will attempt to decrypt a ciphertext in the same
manner no matter what the target index (i, j) is. The structure of the ciphertext will restrict
decryption to only be successful for a user (x, y) if x > i or x = i and y ≥ j. Additionally,
since the attempted decryption procedure is independent of (i, j) a user can only learn whether his
decryption was successful or not and the system will be private.

We describe the four algorithms that compose our PLBE system:

SetupLBE(N = m2, 1κ) The setup algorithm takes as input the number of users N and a security
parameter κ. It first generates an integer n = pq where p, q are random primes (whose size is
determined by the security parameter). The algorithm creates a bilinear group G of composite
order n. It next creates random generators gp, hp ∈ Gp and gq, hq ∈ Gq and sets g = gpgq, h =
hphq ∈ G. Next it chooses random exponents r1, . . . , rm, c1, . . . , cm, α1, . . . , αm ∈ Zn and β ∈ Zq.

The public key PK includes the description of the group and the following elements:[
g, h, E = gβ

q , E1 = gβr1
q , . . . , Em = gβrm

q , F1 = hβr1
q , . . . , Fm = hβrm

q ,

G1 = e(gq, gq)βα1 , . . . , Gm = e(gq, gq)βαm ,H1 = gc1 , . . . ,Hm = gcm

]
The private key for user (x, y) is generated as Kx,y = gαxgrxcy . Finally, the authority’s secret

key K includes factors p, q along with exponents used to generate the public key.

TrEncryptLBE(K,M, (i, j)) The TrEncryptLBE algorithm is a secret key algorithm used by the
tracing authority. The algorithm encrypts a message M to the subset of receivers that have row
values greater than i or both row value equal to i and column values greater than or equal to j.

10

The encryption algorithm will take as input the secret key, a message M ∈ GT and an in-
dex i, j. The encryption algorithm first chooses random t ∈ Zn, w1, . . . , wm, s1, . . . , sm ∈ Zn,
zp,1, . . . , zp,j−1 ∈ Zp, and (v1,1, v1,2, v1,3) , . . . , (vi−1,1, vi−1,2, vi−1,3) ∈ Z(3)

n .

For each row x we create four ciphertext components (Rx, R̃x, Ax, Bx) as follows:

if x > i : Rx = gsxrx
q R̃x = hsxrx

q Ax = gsxt
q Bx = Me(gq, g)αxsxt

if x = i : Rx = gsxrx R̃x = hsxrx Ax = gsxt Bx = Me(g, g)αxsxt

if x < i : Rx = gvx,1 R̃x = hvx,1 Ax = gvx,2 Bx = e(g, g)vx,3

For each column y the algorithm creates values Cy, C̃y as:

if y ≥ j : Cy = gcythwy C̃y = gwy

if y < j : Cy = gcytg
zp,y
p hwy C̃y = gwy

Note that the ciphertext contains 5
√

N elements in G and
√

N elements of GT .
In the above description there are three classes of rows. A row x > i will have all its elements

in the Gq subgroup, while the “target” row i will have its components in the full group G. A row
x < i will essentially have its group elements randomly chosen. A column y ≥ j will be well formed,
while a column y < j will be well formed in the Gq subgroup, but not in the Gp subgroup.

EncryptLBE(PK,M) The EncryptLBE algorithm is used by an encryptor to encrypt a message such
that all the recipients can receive it. This algorithm is used during normal (non-tracing) operation
to distribute content to all the receivers. The EncryptLBE algorithm should produce ciphertexts
that are indistinguishable from TrEncryptLBE algorithm to the index (1, 1) for the same message.

The encryption algorithm first chooses random t ∈ Zn, w1, . . . , wm, s1, . . . , sm ∈ Zn, For each
row x the algorithm creates the four ciphertext components (Rx, R̃x, Ax, Bx) as follows:

Rx = Esx
x R̃x = F sx

x Ax = Esxt Bx = MGsxt
x

For each column y the algorithm creates Cy, C̃y as:

Cy = Ht
yh

wy C̃y = gwy

DecryptLBE((x, y),Kx,y, C) User (x, y) uses key Kx,y to decrypt by computing:

Bx ·
(
e(Kx,y, Ax)e(R̃x, C̃y)/e(Rx, Cy)

)−1
.

We observe that if the ciphertext was created from the tracing algorithm TrEncryptLBEwith
parameters (i, j) then the result is M if x > i or x = i and y ≥ j. Additionally, it is easy to observe
that if the ciphertext was created as EncryptLBE(PK,M) then all parties can decrypt and receive
M .

11

4.2 Discussion

Roughly, the size of the ciphertext is 5
√

N elements in G and
√

N elements of GT . In practice,
a message will be encrypted with a symmetric key cipher under a key K and our system will
be used to transmit the key K to each user. We note that we can actually save in ciphertext
size by converting our encryption system into a Key Encapsulation Mechanism (KEM). To do
this we do not include the Bx values in the ciphertext, but instead user (x, y) can extract a key
Kx = e(Kx,y, Ax)e(R̃x, C̃y)/e(Rx, Cy). The extraction mechanism will actually derive

√
N different

keys K1, . . . Km, so key Kx is used to encrypt K to for all users in row x. In practice this would
be more space efficient than including

√
N group elements of GT .

The EncryptLBE algorithm requires 6
√

N exponentiations. The decryption algorithm is surpris-
ingly efficient and simple, requiring only three pairing computations. Thus, decryption time is
independent of the number of users in the system.

We constructed a (limited)1 broadcast encryption system in which decryptors are oblivious as
to which set of users the broadcast is targeted for. A set of colluding users will of course be able
to learn some information about the target just by testing which one of them was able to decrypt.
However, they should not learn anything more than what can naturally be inferred. The key to
keeping the broadcast set private is that the decryption algorithm performs the same steps to
attempt decryption no matter what the broadcast set is. In the next section we prove this intuition
to be correct by showing that our scheme is secure in the Index Hiding game.

5 Security Proof

In this section we prove our Private Linear Broadcast Encryption system secure in the Index Hiding
and the Message Hiding games. The Index Hiding proof is the most interesting and requires us to
consider two cases. The first is when an adversary tries to distinguish between an encryption to
(i, j) and an encryption to (i, j +1) for j < m and second for when an adversary tries to distinguish
between an encryption (i,m) and one to (i + 1, 1).

In the first case we show that the difficulty of this game can be reduced to the 3-party Diffie-
Hellman assumption, while the second case is more complicated since the structure of the row
ciphertexts are changed. We handle the second case by constructing a sequence of hybrid experi-
ments. Due to space requirements we will defer several of the proofs of various lemmas and claims
to the appendix.

Theorem 5.1. Suppose that the (t, εD3DH)-decision 3-party Diffie-Hellman, (t, εBSD)-Bilinear Sub-
group Decision, and (t, εSD)-Subgroup Decision assumptions hold. Then no t̃-time adversary A can
succeed in the Index-Hiding game with advantage greater than (2 + m)εD3DH + εBSD + εSD, where
t̃ u t.

We first consider the case where an adversary A attempts to distinguish between an encryption
to (i + j) and (i, j + 1) where j < m. This is the case when the distinguishing game does not cross
rows. We prove the following lemma.

1A Private Linear Broadcast Encryption system is restricted in the sets of users it can encrypt to — it can only
encrypt to sets {i, . . . , N} for any i.

12

Lemma 5.2. Suppose that the (t, εD3DH)-decision 3-party Diffie-Hellman, assumption holds. Then
no t-time adversary can distinguish between an encryption to (i, j) and (i, j+1) in the Index Hiding
game for j < m with advantage > εD3DH .

We prove this lemma in Appendix C.1.
We now turn to the more difficult case of when the adversary A chooses to distinguish between

an encryption to (i,m) and one to (i + 1, 1) for some 1 ≤ i < m. This case becomes more
complicated because the form of ciphertext rows will change. In our proofs we will refer to the
rows with ciphertexts in the Gq subgroup as “greater than” rows and the the row with well formed
ciphertexts in G as a “target” row. Additionally, when we say we “encrypt to column j” this means
that we create ciphertexts for which Cy is well formed in the Gp subgroup for all y ≥ j. We state
our lemma and then prove it.

Lemma 5.3. Suppose that the (t, εD3DH)-decision 3-party Diffie-Hellman, (t, εBSD)-Bilinear Sub-
group Decision, and (t, εSD)-Subgroup Decision assumptions hold. Then no t̃-time adversary A can
succeed in the Index-Hiding game with advantage greater than (2 + m)εD3DH + εBSD + εSD, where
t̃ u t.

We first define a sequence of hybrid experiments as follows:

• H1: Encrypt to column m, row i is target row, i+1 is a “greater than” row.

• H2: Encrypt to column m + 1, row i is target row, i+1 is a “greater than” row.

• H3: Encrypt to column m + 1, row i is less than row, i+1 is a “greater than” row (no target
row exists).

• H4: Encrypt to column 1, row i is less than row, i+1 is “greater than” row (no target row
exists).

• H5: Encrypt to column 1, row i is less than row, i+1 is target row.

We prove our lemma by giving reductions for each consecutive pair of hybrid experiments.

Claim 5.4. Suppose that the (t, εD3DH)-decision 3-party Diffie-Hellman assumption holds. Then
no t-time adversary can distinguish between experiments H1 and H2 with advantage greater than
εD3DH .

In both experiments we encrypt with row i as the target row and all Cy for y < m random in
the Gp subgroup. The experiment is whether an adversary can tell if the Gp component of Cm is
well-formed without key Ki,m. This game is exactly the same as the one we proved above and thus
we apply the result of Lemma 5.2.

Claim 5.5. Suppose that the (t, εD3DH)-decision 3-party Diffie-Hellman and the (t, εBSD)-Bilinear
Subgroup Decision assumptions hold. Then no t-time adversary can distinguish between experiments
H2 and H3 with advantage greater than 2εD3DH + εBSD .

We prove this claim in Appendix C.2.

Claim 5.6. Suppose that the (t, εD3DH)-decision 3-party Diffie-Hellman assumption holds. Then
no t-time adversary can distinguish between experiments H3 and H4 with advantage greater than
m · εD3DH .

13

We prove this claim in Appendix C.3.

Claim 5.7. Suppose that the (t, εSD)-Subgroup Decision assumption holds. Then no t-time adver-
sary can distinguish between experiments H4 and H5 with advantage greater than εSD .

We prove this claim in Appendix C.4.
Lemma 5.3 follows by summing the maximum adversarial advantages across the hybrid ex-

periments and Theorem 5.1 follows by observing that the bound of Lemma 5.2 is included in
Lemma 5.3.

We now state our theorem about distingishing between EncryptLBE(PK,M) and TrEncryptLBE(K
,M, (1, 1)).

Theorem 5.8. Suppose the (t, εSD) Subgroup Decision assumption holds. Then for all messages
M no t-time adversary can distinguish between a ciphertext created as EncryptLBE(PK,M) and one
created as TrEncryptLBE(K,M, (1, 1)) with advantage greater than εSD.

This theorem follows by simplying applying the same techniques as in our proof of Claim 5.7,
so we omit the details.

Finally, we state the theorem from our Message Hiding game.

Theorem 5.9. All adversaries have advantage 0 in playing the Message Hiding game.

The message hiding theorem is concerned with the adversaries advantage in winning the game
when we encrypt to (m + 1, 1). However, this means that all rows will be completely random and
independent of the messge, thus an adversary has 0 advantage. Essentially, the inability of the
adversary to learn the message when he does not have any of the right keys is actually captured in
our Index Hiding experiments. This final theorem shows that at the end the adversary learns now
information about the ciphertext.

6 Discussion

Our traitor tracing system has a number of possible interesting extensions for future work. In this
section we discuss a few of these.

Public Traceability In our current system the tracing key, TK, is kept secret and only the
authority is able to trace pirate boxes. In practice, it might be useful to have a system where the
tracing key is public. For example, in a large content distribution system the capturing and tracing
of pirate boxes or software will likely be done by different several agents each of which will need the
tracing key. We would like our system to remain secure even if one of these agents and his tracing
key is compromised.

In our
√

N PLBE system the tracing algorithm would be public if a user was able to encrypt a
message to an arbitrary set of indices (i, j). Then the user could simply run the tracing algorithm
in the same way as the authority. In order to this we would need to give the user the capability
to form Cy column ciphertext components that were well formed in its Gq subgroup, but not in
the Gp subgroup. If we simply include an element of Gp in the public key our scheme will become
insecure as an attacker could use this to determine which row index i a broadcast was intended for.
Achieving public traceability would seem to require a more complex technique and possibly the use
of a stronger assumption.

14

Stateful Receivers Like most other tracing traitor solutions our solution solves the tracing
traitors problem in the stateless model, where the tracer is allowed to reset the pirate algorithm
after each tracing query. However, there are some applications where we would like to consider a
stronger model where a pirate box can retain state between each broadcast. In practice, a hardware
pirate box might keep state and shut down if it detects that it is being traced.

Kiayias and Yung [18] showed a method which can handle stateful receivers if it were possible to
embed watermarks in the distributed content and for a tracer to be able to observe these watermarks
when interacting with a pirate algorithm. During non-tracing operation the broadcaster encrypts
two copies of digital content, each of which has a different watermark embedded in, to a random
(and hidden) index u. The encryption is such that all users with index less than u can decrypt
the first ciphertext and all users with index greater than u can decrypt the second ciphertext. The
decryption algorithm simply tries to decrypt both ciphertexts and uses whichever one results in
a well-formed plaintext. The tracing algorithm will create ciphertexts in an identical manner to
the regular encryption algorithm. The tracer will simply observe which watermarks are embedded
in every probing ciphertext and use this information to identify the traitor. Since, the regular
broadcast and tracing algorithms are identical a pirate box is unable to leverage its ability to
maintain state.

In our current construction, our PLBE scheme is only secure if the pirate constructing the
pirate decoder has not seen encryptions to arbitrary indices. However, if we were able to find a
new PBLE algorithm that was secure under chosen-plaintext queries to arbitrary indicies then we
could implement the techniques of Kiayias and Yung. We would simply set up two PLBE systems
in which the users were given the opposite indices in each system. The user with index u in the
first system has index N + 1− u in the second system.

7 Conclusions and Open Problems

We constructed the first fully collusion resistant traitor tracing system with sublinear size cipher-
texts and constant size private keys. In particular, our system has ciphertexts of size O(

√
N) where

N is the number of users in the system and the time for decryption is independent of N . We achieve
our traitor tracing system by first introducing a simpler primitive we call private linear broadcast
encryption (PLBE) that we show can give a traitor tracing system. Then, we built an efficient
PLBE system by making novel use of bilinear groups of composite order.

One interesting open problem is to create a version of our traitor system that allows for public
traceability. This would allow both for the tracer to be untrusted and could be used to give a
solution that is secure against stateful receivers. Additionally, it is an open problem to see if one
can get smaller than

√
N size ciphertexts with small private keys.

Acknowledgments

We would like to thank Steven Galbraith for helpful comments and suggestions.

References

[1] Adam Barth, Dan Boneh, and Brent Waters. Privacy in encrypted content distribution using
private broadcast encryption. In Financial Cryptography ’06, 2006.

15

[2] O. Berkman, M. Parnas, and J. Sgall. Efficient dynamic traitor tracing. In Proceedings of
SODA ’00, 2000.

[3] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In Matt Franklin,
editor, Proceedings of Crypto 2004, LNCS. Springer-Verlag, August 2004.

[4] Dan Boneh and Matthew K. Franklin. An efficient public key traitor tracing scheme. In
CRYPTO ’99: Proceedings of the 19th Annual International Cryptology Conference on Ad-
vances in Cryptology, pages 338–353, London, UK, 1999. Springer-Verlag.

[5] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-dnf formulas on ciphertexts. In Joe
Kilian, editor, Proceedings of Theory of Cryptography Conference 2005, volume 3378 of LNCS,
pages 325–342. Springer, 2005.

[6] Dan Boneh and Moni Naor. Tracing traitors with constant size ciphertext using binary finger-
printing codes. Unpublished, 2002.

[7] Dan Boneh, Amit Sahai, and Brent Waters. Fully collusion resistant traitor tracing with
short ciphertexts and private keys. In Eurocrypt ’06, 2006. Full version available at http:
//eprint.iacr.org/2006/045.

[8] Dan Boneh and James Shaw. Collusion secure fingerprinting for digital data. IEEE Transac-
tions on Information Theory, 44(5):1897–1905, 1998. Extended abstract in Crypto ’95.

[9] Hervé Chabanne, Duong Hieu Phan, and David Pointcheval. Public traceability in traitor
tracing schemes. In EUROCRYPT, pages 542–558, 2005.

[10] Benny Chor, Amos Fiat, and Moni Naor. Tracing traitors. In CRYPTO ’94: Proceedings of the
14th Annual International Cryptology Conference on Advances in Cryptology, pages 257–270,
London, UK, 1994. Springer-Verlag.

[11] Benny Chor, Amos Fiat, Moni Naor, and Benny Pinkas. Tracing traitors. IEEE Transactions
on Information Theory, 46(3):893–910, 2000.

[12] Yevgeniy Dodis and Nelly Fazio. Public key trace and revoke scheme secure against adaptive
chosen ciphertext attack. In Public Key Cryptography - PKC 2003, volume 2567 of LNCS,
pages 100–115, 2003.

[13] A. Fiat and M. Naor. Broadcast encryption. In Proceedings of Crypto ’93, volume 773 of
LNCS, pages 480–491. Springer-Verlag, 1993.

[14] Amos Fiat and T. Tassa. Dynamic traitor tracing. In Proceedings of Crypto ’99, volume 1666
of LNCS, pages 354–371, 1999.

[15] Eli Gafni, Jessica Staddon, and Yiqun Lisa Yin. Efficient methods for integrating traceability
and broadcast encryption. In CRYPTO ’99: Proceedings of the 19th Annual International
Cryptology Conference on Advances in Cryptology, pages 372–387, London, UK, 1999. Springer-
Verlag.

[16] M. T. Goodrich, J. Z. Sun, , and R. Tamassia. Efficient tree-based revocation in groups of
low-state devices. In Proceedings of Crypto ’04, volume 2204 of LNCS, 2004.

16

[17] D. Halevy and A. Shamir. The lsd broadcast encryption scheme. In Proceedings of Crypto ’02,
volume 2442 of LNCS, pages 47–60, 2002.

[18] Aggelos Kiayias and Moti Yung. On crafty pirates and foxy tracers. In ACM Workshop in
Digital Rights Management – DRM 2001, pages 22–39, London, UK, 2001. Springer-Verlag.

[19] Aggelos Kiayias and Moti Yung. Breaking and repairing asymmetric public-key traitor tracing.
In Joan Feigenbaum, editor, ACM Workshop in Digital Rights Management – DRM 2002,
volume 2696 of Lecture Notes in Computer Science, pages pp. 32–50. Springer, 2002.

[20] Aggelos Kiayias and Moti Yung. Traitor tracing with constant transmission rate. In EURO-
CRYPT ’02: Proceedings of the International Conference on the Theory and Applications of
Cryptographic Techniques, pages 450–465, London, UK, 2002. Springer-Verlag.

[21] K. Kurosawa and Y. Desmedt. Optimum traitor tracing and asymmetric schemes. In Proceed-
ings of Eurocrypt ’98, pages 145–157, 1998.

[22] Shigeo Mitsunari, Ryuichi Sakai, and Masao Kasahara. A new traitor tracing. IEICE Trans.
Fundamentals, E85-A(2):481–484, 2002.

[23] Dalit Naor, Moni Naor, and Jeffrey B. Lotspiech. Revocation and tracing schemes for stateless
receivers. In CRYPTO ’01: Proceedings of the 21st Annual International Cryptology Confer-
ence on Advances in Cryptology, pages 41–62, London, UK, 2001. Springer-Verlag.

[24] Moni Naor and Benny Pinkas. Threshold traitor tracing. In CRYPTO ’98: Proceedings of the
18th Annual International Cryptology Conference on Advances in Cryptology, pages 502–517,
London, UK, 1998. Springer-Verlag.

[25] Moni Naor and Benny Pinkas. Efficient trace and revoke schemes. In FC ’00: Proceedings of
the 4th International Conference on Financial Cryptography, pages 1–20, London, UK, 2001.
Springer-Verlag.

[26] B. Pfitzmann. Trials of traced traitors. In Proceedings of Information Hiding Workshop, pages
49–64, 1996.

[27] B. Pfitzmann and M. Waidner. Asymmetric fingerprinting for larger collusions. In Proceedings
of the ACM Conference on Computer and Communication Security, pages 151–160, 1997.

[28] Reihaneh Safavi-Naini and Yejing Wang. Sequential traitor tracing. In Proceedings of Crypto
’00, volume 1880 of LNCS, pages 316–332, 2000.

[29] Alice Silverberg, Jessica Staddon, and Judy L. Walker. Efficient traitor tracing algorithms
using list decoding. In Proceedings of ASIACRYPT ’01, volume 2248 of LNCS, pages 175–192,
2001.

[30] Jessica N. Staddon, Douglas R. Stinson, and Ruizhong Wei. Combinatorial properties of
frameproof and traceability codes. Cryptology ePrint 2000/004, 2000.

[31] D. Stinson and R. Wei. Combinatorial properties and constructions of traceability schemes
and frameproof codes. SIAM Journal on Discrete Math, 11(1):41–53, 1998.

17

[32] D. Stinson and R. Wei. Key preassigned traceability schemes for broadcast encryption. In
Proceedings of SAC ’98, volume 1556 of LNCS, 1998.

[33] Gabor Tardos. Optimal probabilistic fingerprint codes. In Proceedings of STOC ’03, pages
116–125, 2003.

[34] V. To, R. Safavi-Naini, and F. Zhang. New traitor tracing schemes using bilinear map. In
Proceedings of 2003 DRM Workshop, 2003.

[35] Yuji Watanabe, Goichiro Hanaoka, and Hideki Imai. Efficient asymmetric public-key traitor
tracing without trusted agents. In Proceedings CT-RSA ’01, volume 2020 of LNCS, pages
392–407, 2001.

A Definition of Tracing Traitors

Initially, we view a pirate decoder D as a probabilistic circuit that takes as input a ciphertext C
and outputs some message M or ⊥. A Traitor-Tracing system, then, consists of the following four
algorithms:

Setup(N,λ) The setup algorithm takes as input N , the number of users in the system, and the
security parameter λ. The algorithm runs in polynomial time in λ and outputs a public key
BK, a secret tracing key TK, and private keys K1, . . . ,KN , where Ku is given to user u.

Encrypt(BK,M) Encrypts M using the public broadcasting key BK and outputs ciphertext C.

Decrypt(j, Kj , C, BK) Decrypt C using the private key Kj of user j. The algorithm outputs a
message M or ⊥.

TraceD(TK, ε) The tracing algorithm is an oracle algorithm that is given as input the tracing key
TK and a parameter ε, and runs in time polynomial in the security parameter λ and 1/ε.
Only values of ε that are polynomially related to λ are considered valid inputs to Trace. The
tracing algorithm queries the pirate decoder D as a black-box oracle, as defined above. It
outputs a set S which is a subset of {1, 2, . . . , N}.

The system must satisfy the following correctness property:
for all j ∈ {1, . . . , N} and all messages M :

Let
(
BK,TK, (K1, . . . ,KN)

) R← Setup(N,λ) and C
R← Encrypt(BK,M).

Then Decrypt(j,Kj , C, BK) = M .

Security. We define security of the traitor tracing scheme in terms of the following two natural
game.

Game 1. The first game is the standard Semantic Security Game. It says that the system is
semantically secure to an outsider who does not possess any of the private keys.

• Setup The challenger runs the Setup algorithm and gives the adversary BK.

18

• Challenge The adversary outputs two equal length messages M0,M1. The challenger flips a
coin β ∈ {0, 1} and sets C

R← Encrypt(BK,Mβ). The challenger gives C to the adversary.

• Guess The adversary returns a guess β′ ∈ {0, 1} of β.

We define the advantage of adversary A in winning this game as AdvSS = |Pr[β′ = β]− 1/2|.

Game 2. The second game captures the notion of Traceability against arbitrary collusion.
For a given N,λ and ε (where ε = 1/f(λ) for some polynomial f), the game proceeds as follows
(both challenger and adversary are given N,λ, and ε as input):

1. The adversary A outputs a set T = {u1, u2, . . . , ut} ⊆ {1, . . . , N} of colluding users.

2. The challenger runs Setup(N,λ) and provides BK and Ku1 , . . . ,Kut to A. It keeps TK to
itself.

3. The adversary A outputs a pirate decoder D.

4. The challenger now runs TraceD(TK, ε) to obtain a set S ⊆ {1, . . . , N}. Note that Trace is
only given black-box oracle access to D.

We say that the adversary A wins the game if the following two conditions hold:
• The decoder D is ε-useful. That is, for a randomly chosen M in the finite message space, we

have that
Pr[D(Encrypt(BK,M)) = M] ≥ ε

• The set S is either empty, or is not a subset of T .

We denote by AdvTR the probability that adversary A wins this game.

Definition A.1. We say that an N -user Traitor Tracing system is secure if for all polynomial time
adversaries A and any constant ε > 0 we have that AdvSS and AdvTR are negligible functions of λ.

We emphasize that Game 2 places no limit on the size of the coalition under the control of the
adversary. Furthermore, the pirate decoder need not be perfect. It only needs to play valid content
with probability ε. Finally, note that we are modeling a stateless (resettable) pirate decoder — the
decoder is just an oracle and maintains no state between activations. Non stateless decoders were
studied in [18].

In Game 2 above the adversary requests secret keys non-adaptively. The game can be enhanced
to allow the adversary to request secret keys adaptively. Our system is remains secure in this
stronger model. More precisely, the reduction from traitor tracing to PLBE holds even when the
adversary asks for secret keys adaptively before outputting the pirate decoder.

Minimal access decoders. The black-box tracing model described above is often called the full
access model — the tracer is given the decryptions output by D. When the decoder D is a tamper
resistant box, such as a music player, the tracer does not get direct access to decryptions; it only
sees whether a given ciphertext results in music being played or not. To address this issue we define
a more restricted black-box tracing model called minimal access tracing. This model is similar to

19

the game above with the exception that the challenger presents the tracing algorithm with a more
restricted oracle P(·, ·) which takes a message-ciphertext pair as input and outputs:

P(m, c) =
{

1 if D(c) = m
0 otherwise

We then modify Step 4 of Game 2 above so that challenger runs TraceP(TK, ε) to obtain a set
S ⊆ {1, . . . , N}. Consequently, in the minimal access game the tracing algorithm is given far more
restricted access to D. One can argue [4] that this model accurately captures the problem of tracing
a stateless tamper resistant decoder. It is not difficult to see that the tracing algorithm derived
from a secure PLBE enables black-box tracing in both the full access model and the minimal access
model.

B Reducing Traitor Tracing to PLBE

We prove Lemma 2.2. We first give some intuition. Our goal is to show that EncryptLBE(PK,M)
is semantically secure against an adversary who has PK but does not have any of the private keys
K1, . . . ,KN . In other words, we want to show that EncryptLBE(PK,M0) is indistinguishable from
EncryptLBE(PK,M1) where M0,M1 are chosen by the adversary. Informally, we do so using a hybrid
argument in several steps:

1. EncryptLBE(PK,M0) is indistinguishable from TrEncryptLBE(TK, 1,M0) by Game 1 of PLBE
security.

2. We know that TrEncryptLBE(TK, i,M0) is indistinguishable from TrEncryptLBE(TK, i+1,M0)
for i = 1, . . . , N by Game 3 of PLBE security.

3. TrEncryptLBE(TK, N + 1,M0) is indistinguishable from TrEncryptLBE(TK, N + 1,M1) by
Game 2 of PLBE security.

4. Again, for i = N + 1, . . . , 2 we know that TrEncryptLBE(TK, i,M1) is indistinguishable from
TrEncryptLBE(TK, i− 1,M1) by Game 3 of PLBE security.

5. Finally, TrEncryptLBE(TK, 1,M1) is indistinguishable from EncryptLBE(PK,M1) by Game 1
of PLBE security.

Overall, this shows that EncryptLBE(PK,M0) is indistinguishable from EncryptLBE(PK,M1) as re-
quired. We now give the full proof.

Proof. To make the argument precise we recast the PLBE security games of Section 2 in terms of
the following experiments:

• Indistinguishability experiment (PLBE Game 1), denoted EXP
(b)
IND for b ∈ {0, 1}. The chal-

lenger runs the SetupLBE algorithm and gives the adversary PK and {K1, . . . ,KN}. The
adversary A outputs a message M . If b = 1 the challenger returns C

R← EncryptLBE(PK,M);
otherwise the challenger returns C

R← TrEncryptLBE(TK, 1,M). The adversary outputs a
guess b′ ∈ {0, 1}. We let EXP

(b)
IND[A] denote the probability that b′ = 1.

20

• Index hiding experiment (PLBE Game 3), denoted EXP
(b)
IH [i] for b ∈ {0, 1} and 0 ≤ i ≤ N +1.

The challenger runs the SetupLBE algorithm and gives the adversary i,PK and {Kj , j 6= i}.
The adversary A outputs a message M . The challenger returns C

R← TrEncryptLBE(TK, i +
b, M). The adversary outputs a guess b′ ∈ {0, 1}. We let EXP

(b)
IH [A, i] denote the probability

that b′ = 1.

• Message hiding experiment (PLBE Game 2), denoted EXP
(b)
MH for b ∈ {0, 1}. The chal-

lenger runs the SetupLBE algorithm and gives the adversary PK and {K1, . . . ,KN}. The
adversary A outputs two equal length messages M0,M1. The challenger returns C

R←
TrEncryptLBE(TK, N + 1,M). The adversary outputs a guess b′ ∈ {0, 1}. We let EXP

(b)
MH[A]

denote the probability that b′ = 1.

• Semantic security experiment, denoted EXP
(b)
SS for b ∈ {0, 1}. The challenger runs the SetupLBE

algorithm and gives the adversary PK. The adversary A outputs two equal length messages
M0,M1. The challenger returns C

R← EncryptLBE(PK,Mb). The adversary outputs a guess
b′ ∈ {0, 1}. We let EXP

(b)
SS [A] denote the probability that b′ = 1.

Since the PLBE is secure we know that for all polynomial time adversaries A and all i = 1, . . . , N
the quantities

2 · AdvIND =
∣∣∣EXP

(0)
IND[A]− EXP

(1)
IND[A]

∣∣∣ ,

2 · AdvIH[i] =
∣∣∣EXP

(0)
IH [A, i]− EXP

(1)
IH [A, i]

∣∣∣ ,

2 · AdvMH =
∣∣∣EXP

(0)
MH[A]− EXP

(1)
MH[A]

∣∣∣
are negligible. Our goal is to show that |EXP

(0)
SS [A] − EXP

(1)
SS [A]| is negligible for any polynomial

time adversary A. Given a semantic security adversary A we define three additional adversaries
B,B0,B1 as follows:

• Adversary B receives PK and {K1, . . . ,KN} from its challenger. It then runs A giving it PK
and obtaining M0,M1 in return. It passes these to the challenger and obtains a challenge
ciphertext. It gives the challenge to A and outputs whatever A outputs.

• For β = 0, 1 adversary Bβ works as follows. It receives PK and some subset of private keys.
It runs A giving it PK and obtaining M0,M1 in return. It passes Mβ to the challenger and
obtains a challenge ciphertext. It gives the challenge to A and outputs whatever A outputs.

Note that B is a valid adversary for the message hiding experiment. Similarly, B0 and B1 are
adversaries for the index hiding experiment and indistinguishability experiment. Now, by the

21

triangle inequality we have:∣∣EXP
(0)
SS [A]− EXP

(1)
SS [A]

∣∣ ≤∣∣∣EXP
(0)
SS [A]− EXP

(0)
IND[B0]

∣∣∣ (1)

+
∣∣∣EXP

(0)
IND[B0]− EXP

(0)
IH [B0, 1]

∣∣∣ (2)

+
N∑

i=1

∣∣∣EXP
(0)
IH [B0, i]− EXP

(0)
IH [B0, i + 1]

∣∣∣ (3)

+
∣∣∣EXP

(0)
IH [B0, N + 1]− EXP

(0)
MH[B]

∣∣∣ (4)

+
∣∣∣EXP

(0)
MH[B]− EXP

(1)
MH[B]

∣∣∣ (5)

+
∣∣∣EXP

(1)
MH[B]− EXP

(0)
IH [B1, N + 1]

∣∣∣ (6)

+
N∑

i=1

∣∣∣EXP
(0)
IH [B1, i + 1]− EXP

(0)
IH [B1, i]

∣∣∣ (7)

+
∣∣∣EXP

(0)
IH [B1, 1]− EXP

(0)
IND[B1]

∣∣∣ (8)

+
∣∣∣EXP

(0)
IND[B1]− EXP

(1)
SS [A]

∣∣∣ (9)

We argue that all the terms (1)-(9) are negligible, which will prove the lemma. We first state a few
simple equalities. For γ = 0, 1 we have:

EXP
(γ)
SS [A] = EXP

(1)
IND[Bγ] (10)

EXP
(0)
IND[Bγ] = EXP

(0)
IH [Bγ , 1] (11)

EXP
(0)
IH [Bγ , i + 1] = EXP

(1)
IH [Bγ , i] for i = 0, . . . , N (12)

EXP
(0)
IH [Bγ , N + 1] = EXP

(0)
MH[B] (13)

We now obtain the following:

• The terms (1) and (9) are negligible by equality 10 and the fact that AdvIND is negligible.

• The terms (2) and (8) are zero by equality 11.

• Each of the terms in (3) and (7) are negligible by equality 12 and the fact that AdvIH[i] is
negligible.

• The terms (4) and (6) are zero by equality 13.

• The term (5) is negligible since AdvMH is negligible.

This completes the proof of the lemma.

22

B.1 Security of Tracing

We prove Lemma 2.3. We sketched the proof in Section 2.2. Here we give more details.

Proof. We show that the probability of winning the traceability game defined in Appendix A is
negligible. For a pirate decoder D and i = 1, . . . , N + 1 define:

pi = Pr[D(TrEncryptLBE(TK, i,M)) = M]
p = Pr[D(EncryptLBE(PK,M)) = M]

where M is sampled at random from the finite message space. Let ε be some fixed constant. We
distinguish between three types of pirates:

• Type 1: A pirate that produces an ε-useful pirate decoder D for which |p−p1| is non-neligible.

• Type 2: A pirate that produces an ε-useful pirate decoder D for which |p − p1| is neligible,
but the tracing algorithm TraceD(TK, ε) outputs an empty set.

• Type 3: A pirate that produces an ε-useful pirate decoder D for which |p − p1| is neligible,
but the tracing algorithm TraceD(TK, ε) outputs a set that is not contained in the set of
colluders T .

It is straight forward to show that any pirate that produces a Type 1 decoder with non-negligible
probability can be used to win the PLBE indistiguishability game. Similarly, any pirate that
produces a Type 2 decoder with non-negligible probability can be used to win the PLBE message
hiding game.

We briefly show that a pirate that produces a Type 3 decoder with non-negligible probability
can be used to win the PLBE index hiding game. Recall that the tracing algorithm defined in
Section 2.2 computes an approximataion p̂i of pi using W = 8λ(N/ε)2 samples. The Chernoff
bound then implies that for all i = 1, . . . , N we have:

Pr[|pi − p̂i| > ε/(16N)] < 2e−λ/64

which is negligible in the security parameter λ. Therefore, we may assume from here on that
|pi − p̂i| ≤ ε/(16N) for all i = 1, . . . , N .

Now, suppose a pirate P produces a Type 3 decoder with probability δ. Then there must
be some user u ∈ {1, . . . , N} that is falsely accused with probability at least δ/N . We build an
adversary A for which AdvIH[u] is non-negligible. This adversary works as follows:

1. A obtains from its challenger PK and keys {Ki , i 6= u}.

2. A runs P and obtains a set T = {u1, u2, . . . , ut} ⊆ {1, . . . , N} of colluding users. If u ∈ T
then A outputs fail and aborts.

3. Otherwise, A gives P all the keys corresponding to users in T . The pirate P outputs a useful
pirate decoder D.

4. A picks a random message M in the finite message space and gives it to its challenger. The
challenger responds with C ← TrEncryptLBE(TK, i + β, M) for β

R← {0, 1}.

23

5. If D(C) = M then A outputs β′ = 0; otherwise it outputs β′ = 1.

Let E be the event that P outputs a Type 3 decoder that falsely accuses user u. We know E ≥
δ/N . When event E happens then p̂u − p̂u+1 > ε/(4N) and therefore pu − pu+1 > ε/(8N) with
overwhelming probability. We also know that for b = 0, 1 we have pu+b = Pr[β′ = 0|β = b]. Hence,
when event E happens

|Pr[β = β′]− 1/2| > ε/(4N)

Since E happens with non-negligible probabilty we see that β = β′ happens with non-negligible
advantage. This contradicts the fact that AdvIH[u] is negligible.

C Proofs

C.1 Proof of Lemma 5.2

For this distinguishing experiment we will show that distinguishing between whether an encryption
is to position (i, j) or (i, j + 1) is as hard as the 3-party Diffie-Hellman assumption. Since, the
assumption is in a prime order group the simulator can know the factorization of n, the order of
the group. For this game simulator will run the core part of the simulation in the Gp subgroup and
choose all values in the Gq subgroup for itself. Our formal proof follows.

Suppose there exists a t-time adversary A that breaks the Index Hiding game with advantage ε.
Then we build a simulator as follows. The simulator receives the 3-party Diffie-Hellman challenge
from the simulator as:

gp, A = ga
p , B = gb

p, C = gc
p, T.

The challenge will be given in the subgroup of prime order p of a composite order group n = pq.
The simulator is given the factors p, q.

Next, the simulator runs the Init phase and receives the index (i, j) from A. Since the game will
be played in the subgroup Gp, the simulator can choose for itself everything in the Gq subgroup. It
chooses random generators gq, hq ∈ Gq and random exponents β, rq,1, . . . , rq,m, cq,1, . . . , cq,m ∈ Zq.
Additionally, it chooses the exponents α1, . . . , αm ∈ Zn. It then sets hp = B and picks blinding
factors r′p,1, . . . , r

′
p,m, c′p,1, . . . , c

′
p,m ∈ Zp.

The simulator is now able to create the public and secret keys as follows. It first publishes
g = gqgp and h = hqB. It creates the public keys:

E = gβ
q Ex = g

βrq,x
q Fx = h

βrq,x
q Gx = e(gq, gq)βαx Hy =

{
g

cq,y
q g

c′p,y
p : y 6= j

g
cq,y
q Cc′p,y : y = j

Next, it creates the private keys for all users except (i, j) as:

Kx,y =

gαxg

rq,xcq,y
q g

r′p,xc′p,y
p : x 6= i, y 6= j

gαxg
rq,xcq,y
q Br′p,xc′p,y : x = i, y 6= j

gαxg
rq,xcq,y
q Cr′p,xc′p,y : x 6= i, y = j

We note that all the simulator creates public and private with the same distribution as the real
scheme.

24

In the challenge phase the adversary first gives the simulator a message M ∈ GT . The
simulator then chooses exponents (v1,1, v1,2, v1,3), . . . , (vi−1,1, vi−1,2, vi−1,3) ∈ Z(3)

n , and exponents
sq,i, . . . , sq,m ∈ Zq and tq ∈ Zq. Additionally, it chooses random s′p ∈ Zp, zp,1, . . . , zp,j−1 ∈ Zp,
w′

1, . . . , w
′
m ∈ Zn.

It then creates the ciphertext as:

if x > i : Rx = g
sq,xrq,x
q R̃x = h

sq,xrq,x
q

Ax = g
sq,xtq
q Bx = Me(gq, gq)αxsq,xtq

if x = i : Rx = g
sq,xrq,x
q g

s′pr′p,x
p R̃x = h

sq,xrq,x
q Bs′pr′p,x

Ax = gsq,xtqAs′p Bx = Me(gq, gq)αxsq,xtq,xe(gp, A)αxs′p

if x < i : Rx = gvx,1 R̃x = hvx,1

Ax = gvx,2 Bx = e(g, g)vx,3

if y > j : Cy = g
cq,ytq
q hw′

y C̃y = A−c′p,ygw′
y

if y = j : Cy = g
cq,ytq
q Thw′

y C̃y = gw′
y

if y < j : Cy = g
cq,ytq
q g

zp,y
p hw′

y C̃y = gw′
y

If T forms a 3-party Diffie-Hellman tuple then the ciphertext is a well-formed encryption to
the indices (i, j), otherwise if T is randomly chosen it is a encryption to (i, j + 1). The simulator
will receive a guess γ from A and it will simply repeat this guess as its answer to the 3-party
Diffie-Hellman game. The simulator’s advantage in the Index Hiding game will be exactly equal to
A’s advantage.

C.2 Proof of Claim 5.5

In order to prove this claim we further refine our hybrid experiments by defining two more hybrid
experiments.

• H2a: Same as H2 except Bi is multiplied by a random element e(gp, g)z.

• H2b: Same as H2 except Bi is by a random element e(g, g)z.

Distinguishing between H2 and H2a We first show that if the (t, εD3DH)-decision 3-party
Diffie-Hellman assumption holds then no t-time adversary can distinguish between experiments H2

and H2a. We note that if no t-time adversary can break the decision 3-party Diffie-Hellman with
advantage greater than εD3DH then no t-time adversary has greater advantage than εD3DH in the
decisional Bilinear-Diffie Hellman (DBDH) assumption where the target, T is in GT .

Consider an adversary A that distinguishes between the two experiments with probability ε.
We construct a simulator that plays the decisional DBDH game with advantage ε.

The simulator first takes in a DBDH challenge gp, A = ga
p , B = gb

p, C = gc
p, T . Again, the

assumption is in a subgroup of order p and the simulator is given the factors p, q of n. The main
idea of the simulation is that it will let gri

p = B, gαx
p = gab

p , g
tp
p = C, and g

cp,i
p = A−1gc′p,i where

c′p,1, . . . , c
′
p,m are chosen by the simulation. The simulator will then be able to generate all keys,

but still uses T as a challenge since gc
p only appears in the term Ai.

The simulator chooses gq ∈ Gq, d ∈ Zn and sets hq = gd
q , hp = gd

p and lets g = gpgq, h = hphq.
Additionally, it chooses β, cq,1, . . . , cq,m, rq,i ∈ Zq,r1, . . . ri−1, , ri+1, . . . , rm ∈ Zn, αq,i ∈ Zq, and
α1, . . . αi−1, , αi+1, . . . , αm ∈ Zn.

25

The public parameters are published as:

g, h, E = gβ
q , E1 = gβr1

q , . . . , Ei = g
βrq,i
q , . . . , Em = gβrm

q ,

F1 = gdβr1
q , . . . , Fi = g

dβrq,i
q , . . . , Fm = gdβrm

q ,
G1 = e(gq, g)βα1 , . . . , Gi = e(gq, g)βαq,i , . . . , Gm = e(gq, g)βαm ,

H1 = gcqA−1gc′p,1 , . . . ,Hm = gcqA−1gc′p,m .

The keys are created as:

Kx,y =

{
gαx(gcq,y

q A−1g
c′p,y
p)rx : x 6= i

(gαq,ig
rq,icq,y
q)Bc′p,y : x = i

The simulator then receives a challenge message, M , from A. It chooses tq, si, . . . , sm, w1,. . .,
wm, (vx,1,vx,2, vx,3),. . ., (vx,1, vx,2, vx,3) for itself. The simulator can now create all Cy, C̃y val-
ues in a straightforward manner since the Gp subgroup components are random. Similarly, all
Rx, R̃x, Ax, BX values for x < i are just created randomly and all Rx, R̃x, Ax, Bx values for x > i
can be created by the simulators knowledge since they only draw from the Gq subgroup components
which it knows.

Finally, it creates the target row ciphertext as:

Rx = (grq,iB)si , R̃x = (grq,iB)dsi , Ax = (gtqC)si , BX = M
(
e(gq, g)α+q,itqT

)si

If T is a tuple e(g, g)abc then we are in experiment H2, otherwise if it is random we are in
experiment H2,a. The simulator can then repeat the adversary’s guess and play the DBDH game
with advantage ε.

Distinguishing between H2a and H2b We now show that if there is an adversary that can
distinguish between experiments H2a and H2b with advantage ε then we can build a simulator that
can play the Bilinear Subgroup Decision game with advantage ε.

The simulator will first receive a Bilinear Subgroup Decision challenge gp, gq, T from the chal-
lenger. Using gp, gq it is able to set up all the system parameters just as the real setup algorithm
does.

Next, it receives a challenge message, M . It first chooses all encryption variables and creates
an encryption as in the H2 experiment with one exception. For the Bi component it multiplies in
the value T . If T ∈ GT,p then the we are in hybrid experiment H2a. Otherwise if T ∈ GT then we
are in hybrid experiment H2b.

Therefore the simulator can use the adversary’s guess to play the Bilinear Subgroup Decision
game with advantage ε.

Distinguishing between H2b and H3 We now show that if there is an adversary that can
distinguish between experiments H2b and H3 with advantage ε then we can build a simulator that
can play the 3-Party Diffie-Hellman game with advantage ε.

The simulator first receives a 3-Party Diffie-Hellman challenge, kq, A = ka
q , B = kb

q, C = kc
q, T ∈

G4
q (we rename the generator in the challenge to k for ease of exposition).

The simulator first chooses d,∈ Zn,β ∈ Gq, and gp ∈ Gp. It then sets g = gpA,h = (gpA)d. Next,
it chooses the secrets for the Gp subgroup: rp,1, . . . , rp,m, cp,1, . . . , cp,m, αp,1, αp,m ∈ Zp. Then, it

26

chooses r′q,1, . . . , r
′
q,m, c′q,1, . . . , c

′
q,m, α′

q,1, α
′
q,m ∈ Zq. The simulator can now publish the parameters

as:

g, h, E = kβ
q , Ex =

{
k

βr′q,x
q : x = i

Aβr′q,x : x 6= i
Fx =

{
k

dβr′q,x
q : x = i

Adβr′q,x : x 6= i

G1 = e(A,A)βα1 , . . . , Gm = e(A,A)βαm ,H1 = k
c′q,1
q g

cp,1
p , . . . ,Hm = k

c′q,x
q g

cp,m
p .

Keys are generated as

Kx,y =

{
(Agp)αxg

rp,xcp,y
p kr′q,xc′p,y : x = i

(Agp)αxg
rp,xcp,y
p Ar′q,xc′p,y : x 6= i

The simulator next receives a challenge message M . It then chooses random tp ∈ Zp, (v1,1, v1,2, v1,3),
. . . , (vi−1,1, vi−1,2, vi−1,3) ∈ Zn, w1, . . . , wm ∈ Zn,z′1, . . . , z

′
m ∈ Zn, and s′q,i+1, . . . , s

′
q,m ∈ Zq.

It creates the challenge ciphertext as:

if x > i : Rx = k
s′q,xrq,x
q R̃x = k

ds′q,xrq,x
q Ax = Bs′q,x Bx = Me(A,B)αxs′q,x

if x = i : Rx = Cs′q,xg
sprq,x
p R̃x = Cds′q,xg

dsprq,x
p Ax = Tgδ

p Bx = e(g, g)γ

if x < i : Rx = gvx,1 R̃x = hvx,1 Ax = gvx,2 Bx = e(g, g)vx,3

∀y Cy = Bc′q,yg
z′y
p hw′

y C̃y = gw′
y

If T = kabc then we are in experiment H2b, otherwise if T is a random element of Gq then we are
in experiment H3. Therefore, our simulator can use the adversary’s response to get an ε advantage
in the 3-party Diffie-Hellman game.

Putting it together By the assumptions above we can now bound the Adversary’s advantage
in distinguishing between experiments H2 and H3 by 2εD3DH + εBSD, proving our claim.

C.3 Proof of Claim 5.6

To prove the claim we consider a sequence of hybrid experiments H3,m+1, . . . ,H3,1, where in exper-
iment H3,j all ciphertext Cy values are well formed in the Gp subgroup for y ≥ j and random in the
subgroup for y < j, and the rest of the experiment is built as the ciphertext from experiment H3.
We observe that experiments H3 and H3,m+1 are equivalent and that experiments H4 and H3,1 are
equivalent. Therefore we can bound an adversary’s advantage in distinguishing between H3 and
H4 as m times his advantage in distinguishing between any two sub-experiments.

Suppose there exits an adversary A that for some j distinguishes between H3,j and H3,j+1 that
succeeds with advantage ε. We can bound its advantage with a proof similar to that of Lemma 5.2,
however, this will be even simpler since there is no target row in the hybrid experiment.

We construct a simulator that play the 3-party Diffie-Hellman game. The simulator first receives
the 3-party Diffie-Hellman challenge from the simulator as:

gp, A = ga
p , B = gb

p, C = gc
p, T.

Since the game will be played in the subgroup Gp, the simulator can choose for itself ev-
erything in the Gq subgroup. It chooses random generators gq, hq ∈ Gq and random exponents

27

β, rq,1, . . . , rq,m, cq,1, . . . , cq,m ∈ Zq. Additionally, it chooses the exponents α1, . . . , αm ∈ Zn. It then
sets hp = B and picks blinding factors r′p,1, . . . , r

′
p,m, c′p,1, . . . , c

′
p,m ∈ Zp.

The simulator is now able to create the public and secret keys as follows. It first publishes
g = gqgp and h = hqB. It creates the public keys:

E = gβ
q Ex = g

β,rq,x
q Fx = h

β,rq,x
q Gx = e(gq, gq)βαx Hy =

{
g

cq,y
q g

c′p,y
p : y 6= j

g
cq,y
q Cc′p,y : y = j

Next, it creates the private keys as:

Kx,y =

{
gαxg

rq,xcq,y
q g

r′p,xc′q,y
q : y 6= j

gαxg
rq,xcq,y
q Cr′p,xc′q,y : y = j

In the challenge phase the adversary first gives the simulator a message M ∈ GT . The simulator
first chooses exponents (v1,1, v1,2, v1,3),. . . , (vi,1, vi,2, vi,3) ∈ Zn, and exponents sq,i+1, . . . , sq,m ∈ Zq

and tq ∈ Zq. Next, it chooses random zp,1, . . . , zp,j−1 ∈ Zp, w′
1, . . . , w

′
m ∈ Zn.

It then creates the ciphertext as:

if x > i + 1 : Rx = g
sq,xrq,x
q R̃x = h

sq,xrq,x
q Ax = g

sq,xtq
q Bx = Me(gq, gq)αxsq,xtq

if x ≤ i : Rx = gvx,1 R̃x = hvx,1 Ax = gvx,2 Bx = e(g, g)vx,3

if y > j : Cy = g
cq,ytq
q hw′

y C̃y = A−c′p,ygw′
y

if y = j : Cy = g
cq,ytq
q Thw′

y C̃y = gw′
y

if y < j : Cy = g
cq,ytq
q g

p,zy
p hw′

y C̃y = gw′
y

If T forms a 3-party Diffie-Hellman tuple then we simulated H3,j , otherwise if T is randomly
chosen we simulated H3,j+1. The simulator will receive a guess from A and it will simply repeat
this guess as its answer to the 3-party Diffie-Hellman game. The simulator’s advantage will be
exactly equal to A’s advantage.

Therefore, we can bound an adversary’s advantage of distinguishing between H3 and H4 as
m · εD3DH .

C.4 Proof of Claim 5.7

Suppose there exists an adversary A that distinguishes between H4 and H5 with advantage ε. Then
we build a simulator that plays the Subgroup Decision game. In this game the simulator does not
know the factors of n.

The simulator first takes in the challenge g, g′q, T . We note that g = gpgq for some gp ∈ Gp and
gq ∈ Gq and that g′q = gβ

q for some β ∈ Zq. Next, it chooses d ∈ Zn and lets h = gd. Then it
chooses random exponents r1, . . . , rm, c1, . . . , cm, α1, . . . , αm ∈ Zn.

The public key includes the description of the group and the following elements:

g, h, E = g′qE1 = g′r1
q , . . . , Em = g′rm

q , F1 = g′r1
q , . . . , Fm = g′drm

q ,

G1 = e(g′q, g)α1 , . . . , Gm = e(g′q, g)αm ,H1 = gc1 , . . . ,Hm = gcm .

The private key for user x, y is generated as Kx,y = gαxgrxcy . All public and private keys are
created with the same distribution as in the real simulation.

28

The simulator receives a message M in the challenge phase and chooses random t ∈ Zn,
w1, . . . , wm, s1, . . . , sm ∈ Zn, and (v1,1, v1,2, v1,3),. . . , (vi−1,1, vi−1,2, vi−1,3) ∈ Zn.

The challenge ciphertext for all Cy, C̃y and Rx, R̃x, Ax, Bx for x ≤ i are encrypted created as in
the real encryption. This is easy since j = 1 and all rows less than or equal to i are just randomly
created. For x > i + 1 Rx, R̃x, Ax, Bx are created in a straightforward manner using g′q.

Finally, the encryption values for row i + 1 are created as:

Ri+1 = T si+1ri+1 , R̃i+1 = T dsi+1ri+1 , Ai+1 = T si+1t, Bi+1 = Me(T, g)αi+1si+1t.

If T is a random element of Gq then we simulated experiment H4, otherwise we simulated
experiment H5.

29

