
Constructing Secure Hash Functions by Enhancing

Merkle-Damg̊ard Construction

Praveen Gauravaram1, William Millan1 and Ed Dawson1 and Kapali Viswanathan2

1 Information Security Institute (ISI), QUT
2 George Street, Brisbane, QLD, Australia.

p.gauravaram@isi.qut.edu.au,{b.millan,e.dawson}@qut.edu.au
2 Technology Development Department, ABB Corporate Research Centre

ABB Global Services Limited, 49, Race Course Road, Bangalore - 560 001, India.
kapaleeswaran.v@in.abb.com

Abstract. The classic Merkle-Damg̊ard (MD) structure provides a popular way of turning a fixed-
length compression function into a variable-length input cryptographic hash function. However, the
multi-block collision attacks (MBCA) on the MD-style hash functions MD5, SHA-0 and SHA-1 demon-
strate the weakness of the MD construction in extending the collision resistance property of a single
compression function to its iterations. In this paper, we investigate a recently proposed cryptographic
construction (called 3C) devised by enhancing the MD construction, and prove it provides quantita-
tively more resistance against MBCA than does the MD-style. Specifically, we prove that it requires
at least 2t/2 computational effort to perform any MBCA on the t-bit 3C hash function when the same
attack on a t-bit MD hash function (using the same compression function) requires an effort not less
than 2t/4. This is the first result showing a generic construction with resistance to MBCA. We fur-
ther improve the resistance of the 3C design against MBCA and propose the new 3C+ hash function
construction. We prove that 3C+ is completely immune to MBCA since it costs at least 2t/2 effort
to perform any MBCA on the 3C+ construction. This reduces the collision security of 3C+ to the
collision security of the underlying compression function, hence restoring the paradigm that one only
needs to design a secure compression function to obtain a secure iterated hash function. Both the 3C

and 3C+ constructions are very simple adjustments to the MD construction and they are immune to
the straight forward extension attacks which apply to the MD hash functions. The second preimage
attacks on t-bit hash functions also do not work on the constructions presented in this paper.

Key words: Merkle-Damg̊ard construction, multi-block collision attacks (MBCA), hash function,
3C, 3C+.

1 Introduction

In 1989, Damg̊ard [4] and Merkle [17] independently proposed a similar iterative structure to
construct a collision resistant cryptographic hash function H : {0, 1}∗ → {0, 1}t using a fixed input
collision resistant compression function f : {0, 1}b × {0, 1}t → {0, 1}t. Since then, this iterated
design has been called Merkle-Damg̊ard (MD) construction which influenced the designs of current
dedicated hash functions such as MD4, MD5, SHA-1, SHA-256 and SHA-512. The motivation of
the MD construction is:

“If there exists a computationally collision free function f from b bits to t bits where b > t,
then there exists a computationally collision free function H mapping messages of arbitrary
polynomial lengths to t-bit strings.” [4]

Until recently1, it had been believed that the problem of designing a collision resistant H reduces
to the problem of designing a collision resistant fixed-input compression function, f . It is known
that, a compression function f secure against the fixed initial value (IV) collisions is necessary
but not sufficient to generate a secure hash function H [16, p.373]. The existence of multi-block
collision attacks (MBCA) on the hash functions MD5, SHA-0 and SHA-1 [2, 25, 26] prove this
insufficiency. These attacks show that these iterated hash functions do not properly preserve the
collision resistance property of their respective compression functions with fixed IV.

The multi-block collision attacks on hash functions leave open the following questions:

1. Is it possible to design a collision resistant hash function relying on the collision resistance of
the compression function with its fixed IV?

2. Is it possible to design an efficient structure resistant to multi-block collision attacks?

In this paper, we attempt to answer both these questions. Our motivation is to show that while
the consecutive iterations of the compression function is necessary for the implementation efficiency
of a hash function, the way the compression function is iterated is important for the security of
the hash function. In this paper, we propose a new variant to the MD construction called 3C. The
3C hash function processes the intermediate chaining values of the MD construction maintaining
a second internal chaining variable. The 3C construction is the simplest secure variation of the
MD construction that one can obtain.

The first result of this paper is that a multi-block collision attack on the t-bit 3C hash function
iterated over a compression function f requires an effort of at least 2t/2 when the same attack on
an MD hash using the same compression function f requires at least 2t/4 computational effort.
That is, a multi-block collision attack on 3C based on f succeeds with a complexity less than 2t/2

only if the multi-block collision attack works on an MD hash function with the same f with a
complexity less than 2t/4. This provides an exponential increase of security for an iterated hash
function against multi-block collision attacks, and is the first result of its kind.

Next, we add extra memory to the 3C construction to achieve a higher level of security against
multi-block collision attacks and call this variant 3C+. We show that 3C+ is immune to any
MBCA conducted against the internal MD-style structure. Specifically, we show that performing
any MBCA on 3C+ requires effort not less than 2t/2, even if the MBCA can be conducted for
free on the MD-style! Hence the collision security of the 3C+ construction reduces to the collision
security of the underlying compression function.

Our results suggest the existence of a fundamental trade-off between internal memory of a hash
function and its resistance to MBCA. Our result for 3C+ is optimal since complete immunity to
MBCA is achieved; further increase in internal memory can give no further resistance to MBCA
and using less internal memory (as does 3C) gives only partial MBCA resistance.
Related work: Lucks [15] has proposed wide-pipe and double-pipe hash constructions as failure-
friendly variants to the MD hash functions improving the resistance of MD structure against
generic attacks such as multicollisions in iterated hash functions [10]. The 3C and 3C+ hashes
also work as failure-friendly variants to the MD hash functions which improve the resistance against
MBCA. One could see our proposed multiple-chain structure as a special case of the wide-pipe hash,
however our proposal is optimally efficient as no new compression function needs to be designed.
Our proposal is the minimum adjustment to MD-style that could be imagined, and we offer a new
proof of security.

1 New kinds of collision attacks have been proposed in which the differences between the two messages extend over
more than one message block.

2

Coron et al. [3] have provided four hash functions (all are modifications to the plain MD con-
struction) that work as random oracles when the underlying compression functions work as random
oracles. We note that following the assumptions of [3], one can show that when the underlying com-
pression function works as a random oracle, the 3C also works as a random oracle. Ferguson and
Schneier [8] proposed double hashing to prevent straight forward extension attacks and 3C prevents
straight forward extension attacks using single hashing. While there has been work [11, 12, 20] on
improving compression functions against known techniques of differential cryptanalysis, our work
shows that a minimal variation of the MD structure provides more resistance against multi-block
collision attacks.

The 3C construction was initially proposed in [9], where it was proven than 3C works as a
Pseudo-Random Function (PRF) (and hence is suitable as a Message Authentication Code (MAC)),
so long as the compression function is a PRF with no additinal assumptions required. Due to the
similarity of design, clearly 3C+ is also a PRF and a MAC. In this paper we focus on the security
of 3C and 3C+ as a cryptographic hash function, and prove their resistance to multi-block collision
attacks.
Outline: In Section 2, we describe MD hashing and collision attacks on it. In Section 3, new
observations on multi-block collision attacks are discussed. In section 4, the 3C hash function is
introduced and its security analysis against multi-block collision attacks is covered in Section 5. In
Section 6, analysis of 3C against generic attacks is given and it is compared with some other hash
function proposals. In Section 7 we introduce the 3C+ structure and prove its security. The paper
is concluded in Section 8.

2 MD hashing and collision attacks

A collision resistant cryptographic hash function H following MD structure is a function that
hashes a message M ∈ {0, 1}∗ to outputs of fixed length {0, 1}t. The specification of H includes the
description of the compression function f , initial state value (IV) and a padding procedure [16,18].
Every hash function fixes the IV (fixed IV) with an upper bound on the size |M | of the input M .
The message M is split into blocks M1, . . . ,ML−1 of equal length b where a block ML containing
the length |M | (MD strengthening) is added. Each block Mi is iterated using a fixed length input
compression function f computing Hi = f(Hi−1,Mi) where i = 1 to L and finally outputting
HIV (M) = HL as shown in Fig 1.

M1 M2 ML−1 ML

IV HIV (M) = HL
ff ff

Fig. 1. The Merkle-Damg̊ard (MD) construction

Collision attacks on hash functions:

A hash function H is said to be collision resistant if it is hard to find any two distinct inputs
M and N such that H(M) = H(N). For the formal definition see [19]. A hash function is said
to be near-collision resistant if it is hard to find any two distinct inputs M and N such that
H(M) ⊕ H(N) = ∆ has some small weight. Based on the IV used in finding collisions, collision
attacks on the compression functions are classified as follows [16, p.372]:

3

1. Collision attack: collisions using a fixed IV for two distinct messages (e.g. [23]). We call them
Type 1 collisions.

2. Semi-free-start collision attack: collisions using the same random (or arbitrary) IV for two
distinct message inputs(e.g. [7]). We call them Type 2 collisions.

3. Pseudo-collision attack: free-start collision attack using two different IVs for two distinct mes-
sage inputs(e.g. [6]). We call them Type 3 collisions.

Multi-block collision attacks on hash functions:

A multi-block collision attack (MBCA) finds two colliding messages which differ in more than
a single message block. Since, by far, most of the possible messages are more than a single block
and collisions are distributed randomly, it is fair to say that most collisions that could exist are in
fact multi-block collisions. Hence any result protecting against MBCA is very significant. Although
all the MBCA attacks reported so far use some special structure, in this paper we use the term
MBCA to refer to any collision attack where the message differences extend over more than one
message block. In our later security analysis, we make no further assumptions about the nature of
the MBCA we consider and hence the security analysis is completely generic and applies equally
well to (as yet) undiscovered MBCA styles.

The recent collision attacks on MD5 [26], SHA-0 [2] and SHA-1 [25] are multi-block collision
attacks where near-collisions found after processing a few message blocks were converted to full
collisions. The Type 1 collisions were (reportedly) hard to find for the single compression functions
of these hash algorithms. For example, the attacks on MD5 and SHA-1 use near-collisions obtained
after processing the first distinct message blocks (M1, N1) as a tool to find collisions for the second
distinct message blocks (M2, N2) as shown in Fig 2 where h1⊕h′

1 = ∆ and h2 = h′

2. This technique
can be generalized to more than two blocks as the 4-block collision attack on SHA-0 [2]. (This attack
was later improved [24] to the collision format H(M1, N1) = H(M1, N2) which is not a multi-block
collision attack).

M1 M2

N1 N2

M3

N3 NL

ML

IV

IV

f f f f

ffff h1

h′

1

h2

h′

2

H(M)

H(N)

Fig. 2. 2-Block collision in a hash function H (H , is for example, MD5)

These cryptanalytical results show that the establishing full collisions in hash functions using
near collisions is easier than attacking compression functions themselves by exploiting the MD

iterative structure on which these hash functions are based on. Generating collisions in hash func-
tions using this tool is particularly useful when no characteristic exists that predicts a full collision
in the first block and this technique reduces the complexity of the attack when the complexity
required to find a collision for the first block is really large [2]. For example, it was demonstrated on
SHA-1 [25] that due to the freedom available to the attacker in generating first block near-collisions,

4

one can maintain essentially twice the search complexity while converting those near-collisions to
full collisions on the second block.

3 New Observations on multi-block collision attacks

We note that while establishing full collisions in hash functions using near-collisions is easy using
differential cryptanalysis, in principle, there are other ways of generating multi-block collisions on
MD hash functions instead of using near-collisions (see Appendix A for the other way of generating
multi-block collisions). In addition, we note that collisions on the second block are basically a special
case of Type-3 collisions where a near-collision is required as input. So a multi-block collision on the
MD hash function is a combination of a near-collision and a special Type-3 collision. In addition,
near-collisions do not need to begin from the fixed IV of the hash function. They can also be due to
arbitrary IV when the attacker chooses the same blocks initially and starts the multi-block collision
attack after processing those initial blocks. The multi-block collision attacks on MD5, SHA-0 and
SHA-1 belong to the former case.

From these observations it is clear that the designers of MD5, SHA-0 and SHA-1 have not
considered security of the compression functions of these hash functions against Type-3 collisions
in their design criteria. Preneel pointed out a decade back [18] that most hash functions are not
designed to meet this criteria. Note that SHA-1 did not exist then. Even Damg̊ard’s [4] proof
implicitly notes that the necessity of Type 3 collision resistance for the compression functions.
In addition, to attain Type 3 collisions, the two IVs do not have to be significantly different as
suggested in [16, p.372]. For example, the two IVs in the Type 3 collision attack on the compression
function of MD5 [6] differ in only 6 bits. Hence multi-block collisions, whether they start from fixed
IV or arbitrary IV are clearly a chain of special Type 3 collisions.

Finally, consider the following statement from [16, p.373]:

“A compression function secure against fixed IV collision attacks is necessary and sometimes,
but not always, sufficient for a secure iterated hash; and security against pseudo collision
attacks is desirable, but not always necessary for a secure hash function in practice”.

These attacks prove the insufficiency of Type 1 collision resistance of the compression functions
of MD5, SHA-0 and SHA-1 for a secure hash supporting the first part of the above statement. They
also show that Type 3 collision resistance of the compression function is a necessary property for a
secure hash contradicting the second part of the above statement. From the known attacks on hash
functions, we derived the Table 1 assuming that if the compression function is not Type-1 collision
resistant then it is neither Type-2 nor Type-3 collision resistant. The sign “-” in the Table 1 shows
does not apply.

4 The 3C construction: An Enhanced MD construction

The 3C construction is shown in Figure 3 and Figure 4. This structure has an accumulator XOR
function iterated in the accumulation chain (denoted by ui in Figure 4) and a compression function
f (f , for example, is the compression function of MD5 or SHA-1) iterated in the cascade chain
(denoted Hi in Figure 4) exactly as in the MD construction. Clearly, 3C is a very simple and
efficient modification to the MD construction. One economic benefit of our proposal is that any

5

Table 1. Resistances of some compression functions

Compression function Type-1 Type-2 Type-3 Special Type-3

MD4 NO [23] NO NO -
MD5 YES NO [7] NO [6] NO [26]
SHA-0 YES NO [26] YES NO [2]
SHA-1 YES YES YES NO [25]
RIPEMD NO [23] NO NO -
HAVAL-128 NO [22] NO NO -

software currently implementing an MD-style hash function can be very simply altered to adopt
the 3C structure, without altering the underlying compression function.

3C hashing process: For i = 1 to L, let wi and ui be the chaining values in the cascade chain
and accumulation chain respectively. Then, as in the MD hash, for i = 1 to L, wi = f(wi−1,Mi)
where w0 = IV and u1 = w1. In the accumulation chain, for i = 2 to L, ui = ui−1 ⊕wi. The result
uL in the accumulation chain is denoted with Z. An extra compression function f , denoted by g, is
added at the end and the hash result of 3C is g(Z,wL). To process one block data, the compression
function is executed three times; first to process the data block, next to process the padded block
(MD strengthening) and finally the block Z formed in the accumulation chain by padding Z with
0 bits as shown in Fig 3. If the size of the data is less than block size b of f then zeros are appended
to the data to fill the b bit data block.

f f f

P
A
D

f g

M1 M2 ML−1 ML

IV

Z

Z

Fig. 3. The 3C-hash function

5 Security analysis of the 3C hash function

Security analysis of the 3C hash construction can be given in several ways based on the assumptions
on the compression function f . By assuming f as a random oracle, one can show that 3C works
as a random oracle following the assumptions and proof techniques of [3]. Then any application
proven secure assuming the hash function as a random oracle would remain secure if one plugs in
3C assuming that f works as a random oracle.

In this Section, we will provide security analysis of 3C against generic multi-block collision
attacks. We will use Fig 4, to explain the analysis.

Consider a 3C hash function H. Consider two distinct messages M 6= N of same length L (including
padding) such that H(M) = H(N) is the result of a collision on 3C. The messages M and N are
expanded to sequences (M1, . . . ,ML) 6= (N1, . . . , NL) where the last data blocks are the padded
blocks containing the length L of the messages. We denote by (HM

i ,HN
i) and (ui,vi) (for i = 1 to L),

the internal hash values obtained on the cascade chain and accumulation chain while computing

6

f f

ui−2

Hi−2 Hi−1

Mi−1 Mi

ui−1

ui

Hi

∆ = 0
∆ = 0

∆ = 0

Fig. 4. Creating an internal collision for 3C

H(M) and H(N) respectively. We denote (uL,vL) by (ZLM ,ZLN) and ZLM = PAD(ZLM), ZLN =
PAD(ZLN).
Collisions on H can be obtained internally or finally as given in Definition 1

Definition 1. Collisions on H can be obtained internally or finally as below:

1. Terminal/Final collisions: They involve one of the following cases:

– HM
L 6= HN

L and ZLM 6= ZLN with g(HM
L , ZLM) = g(HN

L , ZLN)
– HM

L = HN
L and ZLM 6= ZLN with g(HM

L , ZLM) = g(HN
L , ZLN)

– HM
L 6= HN

L and ZLM = ZLN with g(HM
L , ZLM) = g(HN

L , ZLN)

2. Internal collisions: HM
L = HN

L and ZLM = ZLN implies g(HM
L , ZLM) = g(HN

L , ZLN). �

Definition 2. A compression function f : {0, 1}b → {0, 1}t is Type-1 (resp.Type-2, Type-3) colli-
sion resistant if the best possible collision attack on it using fixed IV (resp. arbitrary IV, different
IVs) is the birthday attack which takes about 2t/2 operations of f . For sufficiently large t, it is
computationally infeasible to perform this attack.

Definition 3. A fixed-difference collision attack on a function finds two inputs which generate
outputs that have a pre-specified XOR difference.

When the fixed difference is zero, then the fixed-difference attack is identical to a traditional collision
attack.

Lemma 1. The expected complexity of performing a fixed-difference collision attack on t-bit vectors
is 2

t
2 .

Proof : The well-known birthday paradox based collision search can be modified slightly to find
fixed-difference collisions. In the general case of finding a match between elements of two tables,
each of size 2

t
2 , simply XOR the required fixed difference with each element in one of the tables,

then sort and find the match normally. ⊓⊔

Definition 4. A difference-set collision attack is a variation of the fixed-difference collision attack,
where the two values must have an XOR difference of any value which is an element of a pre-specified
set.

It is easier to perform a difference-set collision attack when the size of the targeted difference-set
is large. This is quantified in Lemma 2.

Lemma 2. The expected complexity of performing a difference-set collision attack on t-bit values

when the target difference set has 2Q values is given by 2
t−Q

2 .

7

Proof : Consider a two-table collision search, where the tables are of size 2x ≤ 2
t
2 . There exist about

22x differences between elements of these tables. With high probability, one of these differences is
contained in the required difference-set (of size 2Q) when 2x+ Q = t, which implies the complexity

of the difference-set attack is given by 2x = 2
t−Q

2 . ⊓⊔
Remark: When the size of the set is 1, so that Q = 0, the set-difference attack collapses to the
fixed-difference collision attack.

The above results are used in the proof of our main result regarding the security of 3C against
multi-block collision attacks.

Main Results

Lemma 3. To get a 2-chain internal collision in 3C at iteration i, it is required that a collision
in the accumulation chain exists at iteration i − 1.

Proof : By inspection of 3C structure in Fig 4 and properties of XOR in iteration i. ⊓⊔

Lemma 4. Assuming the existence of a collision in the accumulation chain at iteration i − 1, it
requires effort equal to a single-block Type-3 collision attack on f to create an internal collision in
3C at iteration i.

Proof : By inspection of 3C structure in Fig 4, a fixed-difference Type-3 collision attack must
be performed on the f -function at iteration i − 1. By Lemma 1, this is equivalent to the effort of
performing a single-block Type-3 collision attack on f. ⊓⊔

Lemma 5. Creating a collision in the accumulation chain of 3C requires a fixed-difference Type-3
collision attack on f , with complexity 2

t
2 when f is Type-3 collision resistant.

Proof : By structure of 3C in Fig 4 and XOR properties, the difference at the cascade chain in
iteration i− 1 must be equal to the difference in the accumulation chain at iteration i− 2, so that
these differences cancel to produce the desired collision in the accumulation chain at iteration i−1.
From Lemma 1, the complexity of this process is 2

t
2 for Type-3 collision resistant f. ⊓⊔

Lemma 6. To create a collision for 3C requires one of the following:
(i) a terminal collision, or
(ii) a single-block Type-1 collision attack on the first f -function, or
(iii) Type-2 collision attack on f or
(iv) a pair of independent single block Type-3 collision attacks on consecutive internal f -functions,
or
(v) a multi-block attack on the cascade chain that is compatible with the differences in the accumu-
lation chain.

Proof : By Definition 1, a collision for 3C results from either a terminal collision (case (i)) or
an internal collision. The four ways of generating an internal collision for 3C are summarized as
cases (ii), (iii) and (iv).

The possibility for case (ii) is obvious. Case (iii) results from the observation of the collision
format of two streams (M1, N1) and (M1, N2) where N1 6= N2. There can be more than one similar
blocks in the two streams initially before the different message blocks. The combination of Lemma 3,
Lemma 4 and Lemma 5 shows that two consecutive single-block Type-3 collision attacks (one of

8

which is a fixed-difference Type-3 collision attack) are required to obtain a simultaneous internal
collision for both the chains of 3C in case (iv). This leaves the possibility of using multi-block
attacks as case (v), where the non-trivial compatibility requirement is seen from Lemma 5. ⊓⊔

Theorem 1. Using any multi-block collision attack on 3C (which is based on a compression func-

tion f) requires effort at least 2
t
2 , whenever the same multi-block collision attack on a MD hash

function (based in the same f) requires effort of 2
t
4 or more.

Proof : Consider an generic MBCA on the MD-structure within 3C, and consider the conditions
under which it also creates a full (2-chain) internal collision at iteration i. By 3C structure in Fig 4
and properties of the XOR at iteration i− 1, it is clear that, in order to generate the accumulation
chain collision at iteration i − 1 (as required by Lemma 3), the multi-block collision attack must
generate a difference in the cascade chain at iteration i − 1 which is exactly the same as the
accumulation chain difference already present in iteration i− 2. Hence, performing the multi-block
attack on the cascade chain is greatly hampered by this additional requirement. The attacker is not
free to use the result of an individual multi-block collision attack, as the last non-zero difference
it generates (in iteration i − 1) must be equal to the accumulation chain difference obtained at
iteration i − 2. The probability that these independently generated differences being the same is
only 2−t. Assume an attacker generates data providing a set of 2Q differences in the accumulation
chain at iteration i−2. Then the subsequent multi-block collision attack on the cascade chain must
be repeated a sufficient number of times to obtain a match between the cascade chain difference at
iteration i − 1, and an element of this set.

Thus a difference-set collision attack must be performed as part of any attack using an MBCA
on MD to create an MBCA on 3C. By Lemma 2, the attacker must repeat the multi-block collision

attack at least 2
t−Q

2 times. The total effort by the attacker is 2Q + 2C+
t−Q

2 , where the complexity
of a multi-block collision attack is 2C . In the case where Q ≥ t

2
, clearly 3C has security versus the

attack of at least 2
t
2 , for any positive value of C. Now consider the requirements in the case when

Q ≤ t
2
. Ignoring the first term (which is small when Q is small) and taking logs to base 2, we need

C + t−Q
2

≥ t
2

to hold for the effort to break 3C to be at least 2t/2. Now, the assumption that Q ≤ t
2

is equivalent to saying that C + t−Q
2

≥ C + t
4
. Combining these two expressions we conclude that

3C has at least 2
t
2 security versus the multi-block collision attack whenever C ≥ t

4
. ⊓⊔

The above theorem is completely generic and it applies to any attack which seeks to generate a
collision using messages that differ in more than one message block. The next theorem shows that
the collision security of 3C reduces to the collision security of the underlying compression function
f (assuming that the best MBCA on MD (using f) has complexity not less than 2

t
4).

Theorem 2. Given a t-bit underlying f function which is Type-3 and Type-2 collision resistant
and has security against multi-block collision attacks of at least 2t/4, the best collision attack on 3C

is either (i) a traditional birthday paradox based Type-1 collision attack on the entire 3C, or (ii)
a traditional single-block Type-1 collision attack on the first f -function or (iii) a Type-2 collision

attack with the same few initial blocks. Overall, the collision security of 3C with t-bit output is 2
t
2 .

Proof : The complexity of finding a collision for 3C is the minimum complexity among the
four cases from Lemma 6. Clearly cases (i),(ii),(iii) of Lemma 6 have complexity 2

t
2 . Case (iv) of

Lemma 6 requires effort of 2
t
2
+1. By Theorem 1 the complexity of case (v) of Lemma 6 is not less

than 2
t
2 . The minimum of these efforts is 2

t
2 . ⊓⊔

9

These results show that the security of 3C against MBCA is greatly improved over the classic
MD-style hash functions. The underlying compression function can possess a mild weakness versus
MBCA in MD-style and yet still offer ideal protection versus MBCA for the 3C structure. Thus
currently available compression functions can be utilized in 3C to obtain a hash function with ideal
security, despite the corresponding MD-style hashes being vulnerable to known kinds of MBCA.
Further security improvements are obtained by the 3C+ structure, at the cost of some additional
internal memory, see Section 7.

6 Security analysis of 3C against generic attacks:

Analysis against Joux attacks:

Joux [10] described a generic multicollision attack on the MD hash where constructing 2d collisions
costs d times as much as building ordinary 2-collisions. The multicollision attack can also be used
as a tool to find multiple (2nd) preimages very effectively on the MD hash. We note that these
attacks work on 3C as effectively as they are on the MD hash. Following [15], our adversaries are
probabilistic algorithms and we focus on the expected running time. Running time is described
asymptotically. We use the symbol O for the “expected running time is asymptotically at most”.

In a multicollision attack on 3C, the attacker finds collisions on every function f in the cascade
chain (for example using the birthday attack) that would result in a collision at the subsequent
point of the XOR operation in the accumulation chain. If the function f in the cascade chain of
3C is modeled as a random oracle, as an upper bound, the total complexity to find 2d collisions on
3C is O(d ∗ 2t/2).

We note that the attack technique used to find D-way (2nd) preimages on the MD hash for a
given hash value works on 3C as well. For example on 3C, the attacker first finds D collisions on
d-block messages M1, . . . ,M2d

with Hd = H(M1) = . . . = H(M2d
) with a complexity of O(d∗2t/2).

Then she finds the block Md+1 such that the execution of the last two compression functions would
result in the given digest Y . The later task takes time O(2t) as the last two compression functions are
treated as a single component. Hence the total cost of finding D preimages for 3C is O(d∗2t/2 +2t).
For the 2nd preimage attack with the given target message M , assign Y = H(M).

Analysis against second-preimage attacks:

Dean [5] has demonstrated that for hash functions with fixed point compression functions, it would
cost less than 2t effort to find second preimages. At EuroCrypt’2005 [13], Kelsey and Schneier have
expanded this result using Joux multi collision finding technique to find second preimages for hash
functions based on any compression function for an effort less than 2t. Both of these attacks use the
notion of expandable messages- patterns of messages of different lengths that all process to internal
hash values without considering the length padding (Merkle-Damg̊ard strengthening) at the end.
Following [13], an (a, b)- expandable message will take on any length between a and b message
blocks.

For a compression function h[i] = f(h[i − 1],M [i]), a fixed point is a pair (h[i − 1],M [i]) such
that h[i − 1] = f(h[i − 1],M [i]). The compression functions of many hash functions such as MD5
and SHA-1 are Davies-Meyer designs with a block cipher operating in a feed-forward mode. For
these compression functions, there does exist a fixed point for every message block. For a t-bit
hash function with a maximum of 2d blocks in its messages, using fixed points it costs about 2t/2+1

compression function computations to find (1, 2d)-expandable messages [13]. In the 3C design, since
the chaining state is twice as large as the hash value, a fixed point is defined for both the chains

10

and this is obtained for any message block M [i], only when f(0,M [i]) = 0 and this occurs with a
probability of 2−t. Hence having fixed points for the compression functions won’t help in finding
second preimages for less than 2t work on the 3C design.

It was demonstrated in [13] that finding a (d, d+2d−1) expandable message for any compression
function with t-bit state takes only d × 2t/2+1 effort. The procedure involves first finding colliding
pair of messages, where is one of one block and the other of 2d−1 +1 blocks starting from the initial
state of the hash function. Then using the collided state as the starting state, collision pair of length
either 1 or 2d−2 + 1 is found and this process is continued until a collision pair of length 1 or 2 is
reached. It was shown in [13] that applying this generic expandable message finding algorithm to
find the second preimage for a message of 2d +d+1 -block length message costs d×2t/2+1 +2n−d+1

compression function computations. When this attack technique is applied on 3C, a collision at
both the chains is required and this costs an effort of 2t at every stage as the size of the internal
state is twice that of the hash size.

6.1 Comparison of 3C with other hash function proposals

Ferguson and Schneier [8] proposed double-hashing scheme HIV (HIV (x)) which is basically the
NMAC construction [1] with secret keys replaced by the initial states of the hash functions to
prevent straight-forward length extension attacks. It is obvious that multi block collision attacks
work on this nested construction as effectively as they are on MD based hash functions. As on the
MD hash, D = 2d collisions can be found on their scheme with a complexity of O(d.2t/2). As on
the MD hash, finding 2d (2nd) preimages would take time O(d.2t/2 + 2t).

Lucks [15] has proposed wide-pipe and double-pipe hash designs as failure-tolerant functions
showing that these designs provide more resistance against these generic attacks than the MD

hash. The double-pipe hash is a special case of wide-pipe hash function. The wide-pipe, 3C and
the double-hashing proposals resist the straight-forward length extension attacks which is a well-
known weakness of the MD hash function. Informally, given the digest H of the message M , it
is straightforward to compute N and H ′ such that H ′ = H(M ||N) even for unknown M but for
known |M |. The attack uses H(M) as the internal hash value to compute H(M ||N). All these
hash functions provide t/2-bit level of security against straight forward extension attacks as long as
their design criteria is satisfied; for example, wide-pipe hash requires processing of the compression
function with an internal state at least twice the size of the hash value and 3C requires processing
of at least three compression functions. While the wide-pipe and double-pipe hash functions are
designed to provide more resistance against generic attacks, the 3C is an enhancement to the MD

hash function resisting the recent multi-block collision attacks on the MD based hash functions.
In addition, one can combine the wide-pipe hash and the 3C construction to attain a hybrid
construction (see Fig 5) attaining additional protection against both Joux generic attacks and the
multi-block collision attacks.

From the performance point of view, 3C is slightly more expensive than MD hash functions
especially when it is used to process short messages as the former requires at least three iterations
of the compression function to process an arbitrary length message. On an Intel Pentium 4 3.2GHz
processor, 3C based on the compression of MD5, incurs about 0.36% overhead and 3C with the
compression function of SHA-1 incurs about 0.27% overhead when these functions are used to
process large messages. 3C requires an extra iteration of the compression function similar to the
double hashing proposal [8] of Ferguson and Schneier and is as efficient as their scheme for processing
messages of at least one block assuming that the computational effort involved in accumulating the

11

A
D

P g
x1 x2 xn xn+1

IV
f ′

f ′f ′f ′f ′

f ′′

Z

Z

Fig. 5. The 3C wide-pipe hash hybrid construction

result of XOR function in the accumulation chain is negligible. Unlike the double hashing scheme,
3C is a single hashing scheme.

7 The 3C+ construction: An improved 3C construction

C

IV

P

A

D

x1 x2 x3 x4 x5
xn+1

ffffff g

Fig. 6. The 3C+ hash construction

Figure 6 shows the 3C+ construction. Clearly it contains within it both the MD and the 3C

structures. A third internal chain has been added after the processing of the second message block.
This extra chain is the XOR sum of the accumulation chain from the internal 3C structure. The
final compression function takes as ”message” the concatenation of the data in the accumulation
and the extra chains, padded with 0 bits to make a block.

Much of the security analysis we have given for 3C also applies directly to 3C+. However there
is an increased resistance to multi-block collision attacks.

Theorem 3. The 3C+ construction has ideal security against any MBCA that operates on the
underlying MD-style structure. Every MBCA on t-bit 3C+ requires effort at least 2

t
2 , even if the

MBCA on MD-style is free.

Proof : Similar to the proof of Theorem 1. However, the required difference-set collision attack
is now conducted upon two chains of t-bits each and thus the attacker must repeat the MBCA at

least 2
2t−Q

2 times. Let the MBCA attack on the MD-style structure have complexity 2C , then the

attacker’s total effort is 2Q + 2C+
2t−Q

2 . This is already more than 2
t
2 whenever Q ≥ t

2
. In the case

where Q < t
2

the attacker’s effort is greater than 2C+
t
2 which is greater than 2

t
2 whenever C ≥ 0.

Thus the 3C+ structure has ideal security versus MBCA. ⊓⊔

It is clear from the proof that no further improvement can be made. 3C+ is the simplest
structure based on MD-style that offers total immunity to MBCA.

12

8 Conclusion

The recent cryptanalysis of hash functions such as MD5 and SHA-1 exploited the MD iterative
structure of these hash functions using multi-block collision search techniques. In this paper, we
proposed a variant to the MD hash construction called 3C construction which offers more resistance
to multi-block collision attacks. We have proved that a multi-block collision attack on 3C based on
f succeeds with a complexity less than 2t/2 only if the multi-block collision attack works on an MD

hash function with the same f with a complexity less than 2t/4. Moreover, the 3C+ construction
provides provable immunity to all MBCA. While the wide-pipe and double-pipe hash functions
proposed by Lucks [15] work as failure tolerant hash functions offering resistance against generic
attacks on hash functions, 3C (resp. 3C+) is another failure tolerant hash function, this time
offering resistance (resp. immunity) against multi-block collision attacks.

The proposed constructions can be implemented by simple adjustments to the existing MD-
style implementations.

References

1. Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying hash functions for message authentication. In Neal
Koblitz, editor, Advances in Cryptology—CRYPTO ’96, volume 1109 of Lecture Notes in Computer Science,
pages 1–15. Springer-Verlag, 18–22 August 1996. Full version of the paper is available at "http://www-cse.

ucsd.edu/users/mihir/papers/hmac.html".
2. Eli Biham, Rafi Chen, Antoine Joux, Patrick Carribault, Christophe Lemuet, and William Jalby. Collisions of

SHA-0 and Reduced SHA-1. In Ronald Cramer, editor, Advances in Cryptology - EUROCRYPT 2005, volume
3494 of Lecture Notes in Computer Science, pages 36–57. Springer, 2005.

3. Jean-Sebastien Coron, Yevgeniy Dodis, Cecile Malinaud, and Prashant Puniya. Merkle-damgard revisited: How
to construct a Hash Function. In Victor Shoup, editor, Advances in Cryptology—CRYPTO ’05, volume 3621 of
Lecture Notes in Computer Science, pages 430–448. Springer, 2005, 14–18 August 2005.

4. Ivan Damgard. A design principle for hash functions. In Gilles Brassard, editor, Advances in Cryptology:
CRYPTO 89, volume 435 of Lecture Notes in Computer Science, pages 416–427. Springer-Verlag, 1989.

5. Richard Drews Dean. Formal Aspects of Mobile Code Security. PhD thesis, Princeton University, 1999.
6. Bert denBoer and Antoon Bosselaers. Collisions for the compression function of MD5. In T. Helleseth, editor,

Advances in Cryptology — Eurocrypt ’93, volume 765 of Lecture Notes in Computer Science, pages 293–304,
Berlin, 1994. Springer-Verlag.

7. Hans Dobbertin. Cryptanalysis of MD5 compress. Presented at the rump session of Euro Crypto’96 Rump
Session, 1996.

8. Niels Ferguson and Bruce Schneier. Practical Cryptography, chapter Hash Functions, pages 83–96. John Wiley
& Sons, 2003.

9. Praveen Gauravaram, William Millan, Juanma Gonzalez Nieto, and Edward Dawson. 3c- a provably secure pseu-
dorandom function and message authentication code.a new mode of operation for cryptographic hash function.
Cryptology ePrint Archive, Report 2005/390, 2005. http://eprint.iacr.org/.

10. Antoine Joux. Multicollisions in Iterated Hash Functions. Application to Cascaded Constructions. In Matt
Franklin, editor, Advances in Cryptology-CRYPTO 2004, volume 3152 of Lecture Notes in Computer Science,
pages 306–316, Santa Barbara, California, USA, August 15–19 2004. Springer.

11. Charanjit S. Jutla and Anindya C. Patthak. Is SHA-1 conceptually sound? Cryptology ePrint Archive, Report
2005/350, 2005. http://eprint.iacr.org/.

12. Charanjit S. Jutla and Anindya C. Patthak. A simple and provably good code for SHA message expansion.
Cryptology ePrint Archive, Report 2005/247, 2005. http://eprint.iacr.org/.

13. John Kelsey and Bruce Schneier. Second Preimages on n-bit Hash Functions for Much Less than 2n̂ Work. In
Ronald Cramer, editor, Advances in Cryptology - EUROCRYPT 2005, volume 3494 of Lecture Notes in Computer
Science, pages 474–490. Springer, 2005.

14. Donald E. Knuth. The Art of Computer Programming. Addison-Wesley in Computer Science and Information
Processing. Addison-Wesley, 1973.

13

15. Stefan Lucks. A Failure-Friendly Design Principle for Hash Functions. In Bimal Roy, editor, Advances in
Cryptology - ASIACRYPT 2005, volume 3788 of Lecture Notes in Computer Science, pages 474–494. Springer-
Verlag, 2005.

16. Alfred J. Menezes, Paul C. Van Oorschot, and Scott A. Vanstone. Handbook of Applied Cryptography, chapter
Hash Functions and Data Integrity, pages 321–383. The CRC Press series on discrete mathematics and its
applications. CRC Press, 1997.

17. Ralph Merkle. One way hash functions and DES. In Gilles Brassard, editor, Advances in Cryptology: CRYPTO 89,
volume 435 of Lecture Notes in Computer Science, pages 428–446. Springer-Verlag, 1989.

18. Bart Preneel. Analysis and design of Cryptographic Hash Functions. PhD thesis, Katholieke Universiteit Leuven,
1993.

19. Phillip Rogaway and Thomas Shrimpton. Cryptographic hash-function basics: Definitions, implications, and
separations for preimage resistance, second-preimage resistance, and collision resistance. In Bimal K. Roy and
Willi Meier, editors, Fast Software Encryption (FSE), volume 3017 of Lecture Notes in Computer Science, pages
371–388. Springer-Verlag, 2004.

20. Michael Szydlo and Yiqun Lisa Yin. Collision-Resistant usage of MD5 and SHA-1 via Message Preprocessing.
Cryptology ePrint Archive, Report 2005/248, 2005. http://eprint.iacr.org/.

21. Paul C. van Oorschot and Michael J. Wiener. Parallel collision search with cryptanalytic applications. J.
Cryptology, 12(1):1–28, 1999.

22. Xiaoyun Wang, Dengguo Feng, Xuejia Lai, and Hongbo Yu. Collisions for Hash Functions MD4, MD5, HAVAL-
128 and RIPEMD. Cryptology ePrint Archive, Report 2004/199, 2004. http://eprint.iacr.org/.

23. Xiaoyun Wang, Xuejia Lai, Dengguo Feng, Hui Chen, and Xiuyuan Yu. Cryptanalysis of the Hash Functions
MD4 and RIPEMD. In Ronald Cramer, editor, Advances in Cryptology - EUROCRYPT 2005, volume 3494 of
Lecture Notes in Computer Science, pages 1–18. Springer, 2005.

24. Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Efficient collision search attacks on SHA-0. In Victor Shoup,
editor, Advances in Cryptology—CRYPTO ’05, volume 3621 of Lecture Notes in Computer Science, pages 1–16.
Springer, 2005, 14–18 August 2005.

25. Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding collisions in the full SHA-1. In Victor Shoup, edi-
tor, Advances in Cryptology—CRYPTO ’05, volume 3621 of Lecture Notes in Computer Science, pages 17–36.
Springer, 2005, 14–18 August 2005.

26. Xiaoyun Wang and Hongbo Yu. How to Break MD5 and Other Hash Functions. In Ronald Cramer, editor,
Advances in Cryptology - EUROCRYPT 2005, volume 3494 of Lecture Notes in Computer Science, pages 19–35.
Springer, 2005.

A Another way of generating multi-block collisions (instead of using
near-collisions)

A special case is the near-collision after first block, but in principle any two different chaining
variables could be used to assist in creating a full hash collision after some subsequent message
blocks are processed.

So one attack is: Begin with an off-line computation and do steps (1) and (2). They could
be done in parallel or in any order, or partly interleaved, etc.... 1) with the known fixed IV as
chaining input, collect many pairs of message block input and chaining value output. Sort this list
by chaining output and call it “A”. 2) collect many triples (input chaining value, message block,
output chaining value), sort this list by chaining input and call it “B”. Then search for a match in
these lists: find “a” from A and “b” from B such that output of element “a” is exactly the input in
element “b”. Sort the lists by these important data, so the list searching can be done in logarithmic
time using well-known list search algorithms (see [14]). If a match is found then (by taking note
of the message blocks used in the matching elements) we can instantly construct a 2-(message)-
block collision for the two iterated compression functions and by extension attack many other real
hash collisions. Given that the compression functions have n-bit chaining variables, then if both
list A and list B have size 2n/2, by Birthday Paradox we should expect to find a match. By using

14

clever algorithms for generating list B (for example distinguished points method [21]) we can have
a virtual list size much larger than we can store, at the expense of extra operations to search the
list.

15

