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Abstract. This paper presents the first automatic technique for proving not only protocols but also
primitives in the exact security computational model. Automatic proofs of cryptographic protocols were
up to now reserved to the Dolev-Yao model, which however makes quite strong assumptions on the
primitives. On the other hand, with the proofs by reductions, in the complexity theoretic framework,
more subtle security assumptions can be considered, but security analyses are manual. A process calcu-
lus is thus defined in order to take into account the probabilistic semantics of the computational model.
It is already rich enough to describe all the usual security notions of both symmetric and asymmetric
cryptography, as well as the basic computational assumptions. As an example, we illustrate the use of
the new tool with the proof of a quite famous asymmetric primitive: UF-CMA of the FDH-signature
scheme under the (trapdoor)-one-wayness of some permutations.

1 Introduction

There exist two main frameworks for analyzing the security of cryptographic protocols. The most
famous one, among the cryptographic community, is the “provable security” in the reductionist
sense [7, 37]: adversaries are probabilistic polynomial-time Turing machines which try to win a
game, specific to the cryptographic primitive/protocol and to the security notion to be satisfied.
The “computational” security is achieved by contradiction: if an adversary can win such an attack
game with non-negligible probability, then a well-defined computational assumption is invalid (e.g.,
one-wayness, intractability of integer factoring, etc.) As a consequence, the actual security relies on
the sole validity of the computational assumption. On the other hand, people from formal methods
defined formal and abstract models, the so-called Dolev-Yao [19] framework, in order to be able
to prove the security of cryptographic protocols too. However, these “formal” security proofs use
the cryptographic primitives as ideal blackboxes. The main advantage of such a formalism is the
automatic verifiability, or even provability, of the security, but under strong (and unfortunately
unrealistic) assumptions. Our goal is to take the best of each framework, without the drawbacks,
that is, to achieve automatic provability under classical (and realistic) computational assumptions.

The Computational Model. Since the seminal Diffie-Hellman’s paper [18], complexity theory is
tightly related to cryptography. Cryptographers indeed tried to use NP-hard problems to build
secure cryptosystems. Therefore, adversaries have been modeled by probabilistic polynomial-time
Turing machines, and security notions have been defined by security games in which the adversary
can interact with several oracles (which possibly embed some private information) and has to
achieve a clear goal to win: for signature schemes, the adversary tries to forge a new valid message-
signature pair, while it is able to ask for the signature of any message of its choice. Such an attack
is called an existential forgery under chosen-message attacks [21, 22]. Similarly, for encryption, the
adversary chooses two messages, and one of them is encrypted. Then the goal of the adversary
is to guess which one has been encrypted [20], with a probability significantly better than one
half. Again, several oracles may be available to the adversary, according to the kind of attack
(chosen-plaintext and/or chosen-ciphertext attacks [34, 38, 25, 36]). One can see in these security
notions that computation time and probabilities are of major importance: an unlimited adversary
can always break them, with probability one; or in a shorter period of time, an adversary can guess
the secret values, by chance, and thus win the attack game with possibly negligible but non-zero
probability. Security proofs in this framework consist in showing that if such an adversary can win
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with significant probability, within reasonable time, then a well-defined problem can be broken
with significant probability and within reasonable time too. Such an intractable problem and the
reduction will quantify the security of the cryptographic protocol.

Indeed, in both symmetric and asymmetric scenarios, most security notions cannot be uncon-
ditionally guaranteed (whatever the computational power of the adversary). Therefore, security
generally relies on a computational assumption: for instance, the existence of one-way functions,
or permutations, possibly trapdoor. A one-way function is a function f which anyone can easily
compute, but given y = f(x) it is computationally intractable to recover x (or any pre-image of y).
A one-way permutation is a bijective one-way function. For encryption, one would like the inversion
to be possible for the recipient only: a trapdoor one-way permutation is a one-way permutation for
which a secret information (the trapdoor) helps to invert the function on any point.

Given such objects, and thus computational assumptions about the intractability of the inver-
sion (without trapdoors), we would like that security could be achieved without any additional
assumptions. The only way to “formally” prove such a fact is by showing that an attacker against
the cryptographic protocol can be used as a sub-part in an algorithm (the reduction) that can break
the basic computational assumption.

Observational Equivalence and Sequence of Games. Initially, reductionist proofs consisted in pre-
senting a reduction, and then proving that the view of the adversary provided by the reduction
was (almost) indistinguishable to the view of the adversary during a real attack. Such an indistin-
guishability was quite technical and error-prone. Victor Shoup [43, 42, 44] suggested to prove it by
small changes [10, 37], using a “sequence of games” (a.k.a. the game hopping technique) that the
adversary plays, starting from the real attack game. Two consecutive games look either identical,
or very close to each other in the view of the adversary, and thus involve a statistical distance, or
a computational one. In the final game, the adversary has clearly no chance to win at all. Actu-
ally, the modifications of games can be seen as “rewriting rules” of the probability distributions
of the variables involved in the games. They may consist of a simple renaming of some variables,
and thus to perfectly identical distributions. They may introduce unlikely differences, and then the
distributions are “statistically” indistinguishable. Finally, the rewriting rule may be true under a
computational assumption only: then appears the computational indistinguishability.

In formal methods, games are replaced with processes using perfect primitives modeled by
function symbols in an algebra of terms. “Observational equivalence” is a notion similar to indis-
tinguishability: it expresses that two processes are perfectly indistinguishable by any adversary.
The proof technique typically used for observational equivalence is however quite different from
the one used for computational proofs. Indeed, in formal models, one has to exploit the absence of
algebraic relations between function symbols in order to prove equivalence; in contrast to the com-
putational setting, one does not have observational equivalence hypotheses (i.e. indistinguishability
hypotheses), which specify security properties of primitives, and which can be combined in order
to obtain a proof of the protocol.

Related Work. Following the seminal paper by Abadi and Rogaway [1], recent results [32, 16,
24] show the soundness of the Dolev-Yao model with respect to the computational model, which
makes it possible to use Dolev-Yao provers in order to prove protocols in the computational model.
However, these results have limitations, in particular in terms of allowed cryptographic primitives
(they must satisfy strong security properties so that they correspond to Dolev-Yao style primitives),
and they require some restrictions on protocols (such as the absence of key cycles).

Several frameworks exist for formalizing proofs of protocols in the computational model. Backes,
Pfitzmann, and Waidner [4, 5, 2] have designed an abstract cryptographic library and shown its
soundness with respect to computational primitives, under arbitrary active attacks. Backes and
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Pfitzmann [3] relate the computational and formal notions of secrecy in the framework of this li-
brary. Recently, this framework has been used for a computationally-sound machine-checked proof
of the Needham-Schroeder-Lowe protocol [45]. Canetti [14] introduced the notion of universal com-
posability. With Herzog [15], they show how a Dolev-Yao-style symbolic analysis can be used to
prove security properties of protocols within the framework of universal composability, for a re-
stricted class of protocols using public-key encryption as only cryptographic primitive. Then, they
use the automatic Dolev-Yao verification tool Proverif [11] for verifying protocols in this framework.
Lincoln, Mateus, Mitchell, Mitchell, Ramanathan, Scedrov, and Teague [29–31, 39, 33] developed a
probabilistic polynomial-time calculus for the analysis of cryptographic protocols. Datta et al [17]
have designed a computationally sound logic that enables them to prove computational security
properties using a logical deduction system. These frameworks can be used to prove security proper-
ties of protocols in the computational sense, but except for [15] which relies on a Dolev-Yao prover,
they have not been automated up to now, as far as we know.

Laud [26] designed an automatic analysis for proving secrecy for protocols using shared-key
encryption, with passive adversaries. He extended it [27] to active adversaries, but with only one
session of the protocol. This work is the closest to ours. We extend it considerably by handling more
primitives, a variable number of sessions, and evaluating the probability of an attack. More recently,
he [28] designed a type system for proving security protocols in the computational model. This type
system handles shared- and public-key encryption, with an unbounded number of sessions. This
system relies on the Backes-Pfitzmann-Waidner library. Type inference has not been implemented
yet, and we believe that it would not be obvious to automate.

Barthe, Cerderquist, and Tarento [6, 46] have formalized the generic model and the random
oracle model in the interactive theorem prover Coq, and proved signature schemes in this framework.
In contrast to our specialized prover, proofs in generic interactive theorem provers require a lot of
human effort, in order to build a detailed enough proof for the theorem prover to check it.

Halevi [23] explains that implementing an automatic prover based on sequences of games would
be useful, and suggests ideas in this direction, but does not actually implement one.

Our prover, which we describe in this paper, was previously presented in [12, 13], but in a
more restricted way. It was indeed applied only to rather simple, Dolev-Yao-style protocols of
the literature, such as the Needham-Schroeder public-key protocol. In this paper, we show that
it can also be used for the proof of security of cryptographic primitives. [12, 13] considered only
asymptotic proofs. In this paper, we have extended the prover for providing exact security proofs.
We also extend it to the proof of authentication properties, while [12, 13] considered only secrecy
properties. Finally, we also show how to model a random oracle.

Achievements. As in [12, 13], our goal is to fill the gap between the two usual techniques (com-
putational and formal methods), but with a direct approach, in order to get the best of each: a
computationally sound technique, which an automatic prover can apply. More precisely, we adapt
the notion of observational equivalence so that it corresponds to the indistinguishability of games.
To this aim, we also adapt the notion of processes: our processes run in time t and work with
bit-strings. Furthermore, the process calculus has a probabilistic semantics, so that a measure can
be defined on the distinguishability notion, or the observational equivalence, which extends the
“perfect indistinguishability”: the distance between two views of an adversary. This distance is due
to the application of a transformation, which is purely syntactic. The transformations are rewriting
rules, which yield a game either equivalent or almost equivalent under a “computational assump-
tion”. For example, we define a rewriting rule, which is true under the one-wayness of a specific
function. The automatic prover tries to apply the rewriting rules until the winning event, which
is executed in the original attack game when the adversary breaks the cryptographic protocol,
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M, N ::= terms
i replication index
x[M1, . . . , Mm] variable access
f(M1, . . . , Mm) function application

Q ::= input process
0 nil
Q | Q′ parallel composition

!i≤nQ replication n times
newChannel c; Q restriction for channels
c[M1, . . . , Ml](x1[i1, . . . , im] : T1, . . . , xk[i1, . . . , im] : Tk); P input

P ::= output process

c[M1, . . . , Ml]〈N1, . . . , Nk〉; Q output
new x[i1, . . . , im] : T ; P random number generation (uniform)
let x[i1, . . . , im] : T = M in P assignment
if M then P else P ′ conditional

find (
Lm

j=1
uj1[ei] ≤ nj1, . . . , ujmj

[ei] ≤ njmj
suchthat defined(Mj1, . . . , Mjlj ) ∧ Mj then Pj) else P

array lookup
event e(M1, . . . , Mm); P event

Fig. 1. Syntax of the process calculus

has totally disappeared: the adversary has a success probability 0. We can then upper-bound the
success probability of the adversary in the initial game by the sum of all gaps.

Our prover also provides a manual mode in which the user can specify the main rewriting steps
that the prover has to perform. This allows the system to prove protocols in situations in which
the automatic proof strategy does not find the proof, and to direct the prover towards a specific
proof, for instance a proof that yields a better reduction, since exact security is now dealt with.

2 A Calculus for Games

2.1 Description of the Calculus

In this section, we review the process calculus defined in [12, 13] in order to model games as done
in computational security proofs [40, 41, 43]. The syntax is summarized in Figure 1. One should
note that the main addition from previous models [33, 28] is the introduction of arrays, which allow
us to formalize the random oracle model [8], but also the authenticity (unforgeability) in several
cryptographic primitives, such as signatures, message authentication codes, but also encryption
schemes. Arrays allow us to have full access to the whole memory state of the system, and replace
lists often used in cryptographic proofs. For example, in the case of a random oracle, one generally
stores the input and output of the random oracle in a list. In our calculus, they are stored in arrays.

Contrarily to [12, 13], we adopt the exact security framework [9, 35], instead of the asymptotic
one. The cost of the reductions, and the probability loss will thus be precisely determined.

In this calculus, we denote by T types, which are subsets of bitstring⊥ = bitstring ∪{⊥}, where
bitstring is the set of all bit-strings and ⊥ is a special symbol. A type is said to be fixed-length when
it is the set of all bit-strings of a certain length. A type T is said to be large when its cardinal is large
enough so that we can consider collisions between elements of T chosen randomly with uniform
probability quite unlikely, but still keeping track of the small probability. Such an information is
useful for the strategy of the prover. The boolean type is predefined: bool = {true, false}, where
true = 1 and false = 0.

The calculus also assumes a finite set of function symbols f . Each function symbol comes f with
a type declaration f : T1 × . . .× Tm → T . Then, the function symbol f corresponds to a function,
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also denoted f , from T1 × . . .× Tm to T , such that f(x1, . . . , xm) is computable in time tf , which
is bounded by a function of the length of the inputs x1, . . . , xm. Some predefined functions use the
infix notation: M = N for the equality test (taking two values of the same type T and returning a
value of type bool), M ∧N for the boolean and (taking and returning values of type bool).

In this calculus, terms represent computations on bit-strings. Their syntax is given in Figure 1.
The replication index i is an integer which serves in distinguishing different copies of a replicated
process !i≤n. Such a replication index is quite important, since it is typically used with arrays. (Each
copy of the process often uses one cell of an array.) The variable access x[M1, . . . , Mm] returns the
content of the cell of indexes M1, . . . , Mm of the array variable x. We use x, y, z, u as variable names.
The function application f(M1, . . . , Mm) returns the result of applying function f to M1, . . . , Mm.

In cryptographic environments, participants communicate to each other, and the adversary may
have partial or total control of the network. Communications are thus performed over channels,
which names are c. Channels may be either public or private. The maximum length of a message
sent on channel c is bounded by maxlen(c). Longer messages are truncated.

In our calculus, we represent games by processes. The calculus distinguishes two kinds of pro-
cesses: input processes Q are ready to receive a message on a channel; output processes P output
a message on a channel after executing some internal computations. The input process 0 does
nothing; newChannel c; Q creates a new private channel c and executes Q. We illustrate all other
constructs of processes on the following example:

Q0 = start();new r : seed ; let pk : pkey = pkgen(r) in let sk : skey = skgen(r) in c0〈pk〉;

(!!25≤qH c4[!25](x : bitstring); c5[!25]〈hash(x )〉

| !!26≤qS c1[!26](m : bitstring); c2[!26]〈mf(sk , hash(m))〉
| c3(m ′ : bitstring , s : D);

if (f(pk , s) = hash(m ′)) then
find u ≤ qS suchthat defined(m[u]) ∧ (m ′ = m[u]) then 0 else event bad)

As we shall see in the next sections, this process comes from the definition of security of the Full-
Domain Hash (FDH) signature scheme [8]. This process uses the function symbols hash, pkgen,
skgen, f, and mf (such that x 7→ mf(sk, x) is the inverse of the function x 7→ f(pk, x)), which will all
be explained later in detail. This process first waits for an empty message on channel start. After
receiving this message, it chooses a random number r in the type seed , with uniform probability, by
the construct new r : seed . (seed must be a fixed-length type, because probabilistic bounded-time
Turing machines can choose random numbers uniformly only in such types.) Then it computes
pkgen(r), and stores the result in variable pk ; pkgen(r) must be of type pkey . Similarly, it computes
skgen(r) and stores the result in sk . Then it outputs the public key pk on channel c0 by c0〈pk〉.

After this output, the process waits for inputs on channels c4, c1, or c3. More precisely, it
consists of the parallel composition of three processes, denoted Q1 | Q2 | Q3. The first two of these
processes are replicated: For instance, !!25≤qH Q represents qH copies of Q in parallel, each with a
different value of the replication index !25 ∈ [1, qH ].

The first replicated process inputs a message on channel c4[!25]. In our calculus, a channel
c[M1, . . . , Ml] consists of both a channel name c and optionally a tuple of terms M1, . . . , Ml. Channel
names c allow us to define private channels to which the adversary can never have access, by
newChannel c. (This is useful in proofs, although all channels of protocols are often public.)
Terms M1, . . . , Ml are intuitively analogous to IP addresses and ports which are numbers that
the adversary may guess. As a consequence, channels allow us to model the usual communication
model in computational security proofs: using different channels for each input and output allows
the adversary to control the network, in an active and adaptive way. For instance, for the input on
channel c4[!25], the adversary can choose which copy of the process receives the message by sending
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it on c4[i] for the appropriate value of i. When the process receives a message on c4[!25], it stores
the message in x[!25]. Indeed, all variables defined under replications are arrays with indexes the
indexes of replications above their definition, so that they use distinct array cells in different copies
of the process. To lighten the notation, when x is under !i1≤n1 . . .!im≤nm , we abbreviate x[i1, . . . , im]
by x and more generally x[i1, . . . , ik, u1, . . . , um′ ] by x[u1, . . . , um′ ]. Here, x stands for x[!25]. After
receiving this message, the process replies by sending hash(x) on channel c5[!25].

The second replicated process is similar: it receives on channel c1[!26] a bit-string m (or more
precisely m[!26]), and replies by sending on channel c2[!26] the message mf(sk, hash(m)). This process
represents the signing oracle of FDH.

The third process receives a message m ′, s on channel c3 (where m ′ is any bit-string and s is
of type D). After receiving this message, it tests whether f(pk , s) = hash(m ′), as the verification
algorithm of FDH would do. When the equality holds, it executes the then branch; otherwise, it
executes the else branch which is here omitted. In this case, it yields control to another process
by executing the output yield〈〉; 0, which sends an empty message on channel yield. This output is
abbreviated 0; a branch else 0 or a trailing 0 can be omitted. When the test f(pk , s) = hash(m ′)
succeeds, the process performs an array lookup: it looks for an index u in [1, qS ] such that m[u]
is defined and m ′ = m[u]. If such an u is found, that is, m ′ has already been received on c1 by
the second process (signing oracle), we simply yield control to another process by executing 0.
Otherwise, we execute the event bad and the omitted output 0. Since the test f(pk , s) = hash(m ′)
corresponds to the verification of the FDH signature s for message m′, the event bad is executed
when the adversary has forged a signature s for message m′.

As already said, arrays are crucial in this calculus, and will help to model many properties
which were hard to capture: the general syntax of an array lookup is as follows find (

⊕m
j=1 uj1 [̃i] ≤

nj1, . . . , ujmj
[̃i] ≤ njmj

suchthat defined(Mj1, . . . , Mjlj ) ∧Mj then Pj) else P , where ĩ denotes
a tuple i1, . . . , im′ . This process tries to find a branch j in [1, m] such that there are values of
uj1, . . . , ujmj

for which Mj1, . . . , Mjlj are defined and Mj is true. In case of success, it executes
Pj . In case of failure for all branches, it executes P . More formally, it evaluates the conditions

defined(Mj1, . . . , Mjlj )∧Mj for each j and each value of uj1 [̃i], . . . , ujmj
[̃i] in [1, nj1]×. . .×[1, njmj

].
If none of these conditions is 1, it executes P . Otherwise, it chooses randomly with (almost) uniform
probability one j and one value of uj1 [̃i], . . . , ujmj

[̃i] such that the corresponding condition is 1, and
executes Pj . (When the number of possibilities is not a power of 2, a probabilistic bounded-time
Turing machine cannot choose these values exactly with uniform probability, but it can choose
them with a probability distribution as close as we wish to uniform.)

As detailed in [12, 13], we require some well-formedness invariants to guarantee that bit-strings
are of their expected type and that arrays are used properly (that each cell of an array is assigned
at most once during execution, and that variables are accessed only after being initialized). The
formal semantics of the calculus can be found in [12].

2.2 Observational Equivalence

We denote by Pr[Q  c〈a〉] the probability that Q outputs the bit-string a on channel c after
some reductions. We denote by Pr[Q E ] the probability that the process Q executes exactly the
sequence of events E , in the order of E . (A sequence of events is a sequence of values of the form
e(a1, . . . , am) where e is an event symbol and a1, . . . , am are bit-strings.)

Definition 1 (Observational equivalence). Let Q and Q′ be two processes, and V a set of
variables. Assume that Q and Q′ satisfy the well-formedness invariants and that the variables of V
are defined in Q and Q′, with the same types, and these types are fixed-length types.
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A context is a process with a hole [ ]. An evaluation context is a context generated by the
grammar C ::= [ ] C | Q Q | C newChannel c; C.

An evaluation context is said to be acceptable for Q, Q′, V if and only if C does not contain
events, var(C) ∩ (var(Q) ∪ var(Q′)) ⊆ V , and C[Q] satisfies the well-formedness invariants. (Then
C[Q′] also satisfies these invariants.)

We say that Q and Q′ are observationally equivalent with public variables V and probability p,
written Q ≈V

p Q′, when for all t, for all evaluation contexts C acceptable for Q, Q′, V that run in
time at most t, for all channels c, for all bit-strings a, |Pr[C[Q] c〈a〉]−Pr[C[Q′] c〈a〉]| ≤ p(t)
and

∑
E |Pr[C[Q] E ]− Pr[C[Q′] E ]| ≤ p(t).

In this definition, we use an evaluation context to represent an algorithm that tries to distinguish
Q from Q′. This definition formalizes that the probability that an algorithm C running in time t
distinguishes the games Q and Q′ is at most p(t). The set of variables V represents variables that
the context C is allowed to access directly (using find). When V is empty, we write Q ≈p Q′ instead
of Q ≈V

p Q′. We say that a context C runs in time t, when for all processes Q, the time spent in C in
any trace of C[Q] is at most t, ignoring the time spent in Q. (The runtime of a context is bounded,
since the length of messages received by C on channels, the length of variables read by C using
find, and the length of random numbers created by C are all bounded; the number of instructions
executed by C is bounded; and the time of a function evaluation is bounded by function of the
length of its arguments.)

Definition 2. We say that Q executes e(a1, . . . , am) with probability at most p if and only if for all
t, for all evaluation contexts C acceptable for Q, Q, ∅ that run in time t,

∑
E,e(a1,...,am)∈E Pr[C[Q] 

E ] ≤ p(t).

The above definitions allow us to perform proofs using sequences of indistinguishable games.
The following lemma is straightforward:

Lemma 3. 1. ≈V
p is reflexive and symmetric.

2. If Q ≈V
p Q′ and Q′ ≈V

p′ Q′′, then Q ≈V
p+p′ Q′′.

3. If Q executes e(a1, . . . , am) with probability at most p and Q ≈p′ Q′, then Q′ executes e(a1, . . . ,
am) with probability at most p + p′.

4. If Q ≈V
p Q′, C is an evaluation context acceptable for Q, Q′, V that runs in time tC , and

V ′ ⊆ V ∪ (var(C) \ (var(Q) ∪ var(Q′)), then C[Q] ≈V ′

p′ C[Q′] where p′(t) = p(t + tC).

5. If Q executes e(a1, . . . , am) with probability at most p and C is an evaluation context acceptable
for Q, Q, ∅ that runs in time tC , then C[Q] executes e(a1, . . . , am) with probability at most p′

where p′(t) = p(t + tC).

Properties 2 and 3 are key to computing probabilities coming from a sequence of games. Indeed,
our prover will start from a game Q0 corresponding to the initial attack, and build a sequence of
observationally equivalent games Q0 ≈

V
p1

Q1 ≈
V
p2

. . . ≈V
pm

Qm. By Property 2, we conclude that

Q0 ≈
V
p1+...+pm

Qm. By Property 3, we can bound the probability that Q0 executes an event from
the probability that Qm executes this event.

The elementary transformations used to build each game from the previous one can in particular
come from the security of a cryptographic primitive. This security property is typically specified
as an observational equivalence L ≈p R. To use it to transform a game Q, the prover finds a
context C such that Q ≈V

0 C[L] by purely syntactic transformations, and builds a game Q′ such
that Q′ ≈V

0 C[R] by purely syntactic transformations. By Property 4, we have C[L] ≈V
p′ C[R], so

Q ≈V
p′ Q′.
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3 Characterization of One-wayness and Security of Signatures

Before introducing the assumption (one-wayness) and the security notion (unforgeability) to achieve,
let us present a few simple lemmas which will be used to show observational equivalences given as
hypothesis to our prover.

3.1 Preliminary Lemmas

In lemmas below, the notation Q{P ′/P} means that, in the process Q, we substitute any occurrence
of P by P ′. The first lemma is the so-called “Shoup’s lemma” [43], where we consider a process Q
which contains an event e without argument (e.g. a “bad” event).

Lemma 4. If Q executes e with probability at most p, then Q{P ′/event e.P} ≈p Q{P ′′/event e.P}.

Lemma 5. If Q executes e with probability at most p, then Q{event e.P ′/event e.P} executes e
with probability at most p.

We denote by n×Q the process obtained by adding !i≤n in front of Q and by adding the index i at
the beginning of each sequence of array indexes and each sequence of indexes of channels in Q, for
some fresh replication index i. The process n×Q encodes n independent copies of Q. The following
lemma can be proved by choosing randomly the copy of Q that executes e, and simulating all other
copies of Q.

Lemma 6. If Q executes e with probability at most p and Q runs in time tQ, then n×Q executes
e with probability at most p′ where p′(t) = n× p(t + (n− 1)tQ).

3.2 Trapdoor One-Way Permutations

Most cryptographic protocols rely on the existence of trapdoor one-way permutations. They are
families of permutations, which are easy to compute, but hard to invert, unless one has a trapdoor.

The Computational Model. A family of permutations P onto a set D is defined by the three
following algorithms:

– The key generation algorithm kgen (which can be split in two sub-algorithms pkgen and skgen).
On input a seed r, the algorithm kgen produces a pair (pk , sk) of matching public and secret
keys. The public key pk specifies the actual permutation fpk onto the domain D.

– The evaluation algorithm f. Given a public key pk and a value x ∈ D, it outputs y = fpk (x).

– The inversion algorithm mf. Given an element y, and the trapdoor sk , mf outputs the unique
pre-image x of y with respect to fpk .

The above properties simply require the algorithms to be efficient. The “one-wayness” property
is more intricate, since it claims the “non-existence” of some efficient algorithm: one wants that the
success probability of any adversary A with a reasonable time is small, where

Succow
P (A) = Pr

[
r

R
← seed , (pk , sk)← kgen(r), x

R
← D, y ← f(pk , x), x′ ← A(pk , y) : x = x′

]
.

Eventually, we denote by Succow
P (t) the maximal success probability an adversary can get within

time t.
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Syntactic Rules. Let seed be a large, fixed-length type, pkey , skey , and D the types of public
keys, secret keys, and the domain of the permutations respectively. A family of trapdoor one-way
permutations can then be defined as a set of four function symbols: skgen : seed → skey generates
secret keys; pkgen : seed → pkey generates public keys; f : pkey ×D → D and mf : skey ×D → D,
such that, for each pk, x 7→ f(pk, x) is a permutation of D, whose inverse permutation is x 7→
mf(sk, x) when pk = pkgen(r) and sk = skgen(r).

The one-wayness property can be formalized in our calculus by requiring that LR executes
event bad with probability at most Succow

P (t) in the presence of a context that runs in time t,
where

LR = c();new r0 : seed ;new x0 : D; c〈pkgen(r0), f(pkgen(r0), x0)〉;

c(x′ : D); if x′ = x0 then event bad; c〈〉 else c〈〉

Indeed, the event bad is executed when the adversary, given the public key pkgen(r0) and the image
of some x0 by f, manages to find x0 (without having the trapdoor).

In order to use the one-wayness property in proofs of protocols, our prover needs a more general
formulation of one-wayness, using “observationally equivalent” processes. We thus define two pro-
cesses which are actually equivalent unless LR executes event bad. Let pkgen′ : seed → pkey and
f ′ : pkey ×D → D such that the functions associated to the primed symbols pkgen′, f ′ are equal to
the functions associated to their corresponding unprimed symbol pkgen, f. We have the following
equivalence

!ik≤nknew r : seed ; (!i0≤n0()→ pkgen(r),

!if≤nfnew x : D; (!i1≤n1()→ f(pkgen(r), x),

!i2≤n2(x′ : D)→ x′ = x,

!i3≤n3()→ x))

≈pow !ik≤nknew r : seed ; (!i0≤n0()→ pkgen′(r),

!if≤nfnew x : D; (!i1≤n1()→ f ′(pkgen′(r), x),

!i2≤n2(x′ : D)→ find u ≤ n3 suchthat defined(k[u]) ∧ true

then x′ = x else false,

!i3≤n3()→ let k : bitstring = mark in x))

(1)

where pow(t) = nk × nf × Succow
P (t + (nknf − 1)tf + (nk − 1)tpkgen), tf is the time of one evaluation

of f, and tpkgen is the time of one evaluation of pkgen. This equivalence uses a different syntax from
processes, in order to represent functions: for example, (x′ : D)→ x′ = x represents a function that
takes as input x′ ∈ D and returns a boolean equal to true when x′ = x. As formalized in [12, 13],
these functions can be translated into processes that input their arguments on a channel and send
the reply back to this channel. Using this specialized syntax allows us to model many equivalences
that define cryptographic primitives, and it simplifies considerably the transformation of processes
compared to using the general syntax of processes. (In order to use an equivalence L ≈p R, we need
to recognize processes that can easily be transformed into C[L] for some context C, to transform
them into C[R]. This is rather easy to do with functions: we just need to recognize terms that occur
as a result of these functions. That would be much more difficult with general processes.)

In this equivalence, we consider nk keys pkgen(r[ik]) instead of a single one, and nf antecedents
of f for each key, x[ik, if ]. The first function publishes the public key pkgen(r[ik]). The second group
of functions first picks a new x[ik, if ], and then makes available three functions: the first one returns
the image of x[ik, if ] by f, the second one returns true when it receives x[ik, if ] as argument, and the
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third one returns x[ik, if ] itself. The one-wayness property guarantees that when the third function
has not been called, the adversary has little chance of finding x[ik, if ], so the second function returns
false. Therefore, we can replace the left-hand side of the equivalence with its right-hand side, in
which the third function records that it has been called by defining k, and the second function
always returns false when no k is defined, that is, when the third function has not been called. We
replace pkgen and f with pkgen′ and f ′ in the right-hand side just to prevent repeated applications
of the transformation with the same keys, which would lead to an infinite loop. This equivalence is
proved in Appendix A.

Since x 7→ f(pkgen(r), x) and x 7→ mf(skgen(r), x) are inverse permutations, we have:

∀r : seed , ∀x : D, mf(skgen(r), f(pkgen(r), x)) = x (2)

Since x 7→ f(pk, x) is injective, f(pk, x) = f(pk, x′) if and only if x = x′:

∀pk : pkey , ∀x : D, ∀x′ : D, (f(pk, x) = f(pk, x′)) = (x = x′) (3)

Since x 7→ f(pk, x) is a permutation, when x is a uniformly distributed random number, we
can replace x with f(pk, x) everywhere, without changing the probability distribution. In order to
enable automatic proof, we give a more restricted formulation of this result:

!ik≤nk new r : seed ; (!i0≤n0 ()→ pkgen(r),

!if≤nf new x : D; (!i1≤n1 ()→ mf(skgen(r), x ), !i2≤n2 ()→ x ))

≈0 !ik≤nk new r : seed ; (!i0≤n0 ()→ pkgen(r),

!if≤nf new x : D; (!i1≤n1 ()→ x , !i2≤n2 ()→ f(pkgen(r), x )))

(4)

which allows to perform the previous replacement only when x is used in calls to mf(skgen(r), x),
where r is a random number such that r occurs only in pkgen(r) and mf(skgen(r), x) for some
random numbers x.

3.3 Signatures

The Computational Model. A signature scheme S = (kgen, sign, verify) is defined by:

– The key generation algorithm kgen (which can be split in two sub-algorithms pkgen and skgen).
On input a random seed r, the algorithm kgen produces a pair (pk , sk) of matching keys.

– The signing algorithm sign. Given a message m and a secret key sk , sign produces a signature σ.
For sake of clarity, we restrict ourselves to the deterministic case.

– The verification algorithm verify. Given a signature σ, a message m, and a public key pk ,
verify tests whether σ is a valid signature of m with respect to pk .

As usual, security notions are defined by the goals the adversary wants to achieve, and its
means [21, 22]. The highest security level is defined by the simplest goal: providing a new message-
signature pair. This is called existential forgery. The corresponding security level is called (existen-
tial) unforgeability (UF).

On the other hand, various means can be made available to the adversary, helping it into its
forgery. The strongest is definitely the adaptive chosen-message attack (CMA), where the attacker
can ask the signer to sign any message of its choice, in an adaptive way: it can adapt its queries
according to previous answers. Of course, in its answer, there is the natural restriction that the
returned message has not been asked to the signing oracle.
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When one designs a signature scheme, one wants to computationally rule out existential forgeries
under adaptive chosen-message attacks. More formally, one wants that the success probability of
any adversary A with a reasonable time is small, where

Succuf−cma
S (A) = Pr

[
r

R
← seed , (pk , sk)← kgen(r), (m, σ)← Asign(·,sk)(pk) : verify(m, pk , σ) = 1

]
.

As above, we denote by Succuf−cma
S (ns, l, t) the maximal success probability an adversary can get

within time t, after at most ns queries to the signing oracle, where the maximum length of all
messages in queries is l.

Syntactic Rules. Let seed be a large, fixed-length type, pkey , skey , and signature the types
of public keys, secret keys, and signatures respectively. A signature scheme is defined as a set of
4 function symbols: skgen : seed → skey generates secret keys; pkgen : seed → pkey generates
public keys; sign : bitstring × skey → signature generates signatures; and verify : bitstring × pkey ×
signature → bool verifies signatures.

The signature verification succeeds for signatures generated by sign, that is,

∀m : bitstring , ∀r : seed , verify(m, pkgen(r), sign(m, skgen(r))) = true

According to the previous definition of UF − CMA, the following process LR executes event bad

with probability at most Succuf−cma
S (ns, l, t) in the presence of a context that runs in time t, where

LR = start();new r : seed ; let pk : pkey = pkgen(r) in let sk : skey = skgen(r) in c0〈pk〉;

(!is≤nsc1[i](m : bitstring); c2[i]〈sign(m, sk)〉

| c3(m
′ : bitstring , s : signature); if verify(m′, pk, s) then

find us ≤ ns suchthat defined(m[us]) ∧m′ = m[us] then 0 else event bad)

(5)

and l is the maximum length of m and m′. This is indeed clear since event bad is raised if a signature
is accepted (by the verification algorithm), while it has not been generated by the signing algorithm.
This definition is the one used when one wants to prove that a signature scheme is secure using our
prover. However, when one wants to prove the security of a protocol using a signature scheme, such
a formal definition is not enough for our prover, which needs “observationally equivalent” processes.
So, similarly to what we have done for one-wayness, we present in Appendix C a definition using
observationally equivalent processes, and show its soundness from (5).

4 Example: FDH Signature

The Full-Domain Hash (FDH) signature scheme [8] is defined as follows: Let pkgen, skgen, f, mf

define a family of trapdoor one-way permutations. Let hash be a hash function, in the random
oracle model. The FDH signature scheme uses the functions pkgen and skgen as key-generation
functions, the signing algorithm is sign(m, sk) = mf(sk, hash(m)), and the verification algorithm is
verify(m′, pk, s) = (f(pk, s) = hash(m′)). In this section, we explain how our automatic prover finds
the well-known bound for Succuf−cma

S for the FDH signature scheme.
The input given to the prover contains two parts. First, it contains the definition of security

of primitives used to build the FDH scheme, that is, the definition of one-way trapdoor permuta-
tions (1), (2), (3), and (4) as detailed in Section 3.2 and the formalization of a hash function in the
random oracle model, given as follows:

!ih≤nh (x : bitstring)→ hash(x ) [all ]

≈0 !ih≤nh (x : bitstring)→ find u ≤ nh suchthat defined(x [u], r [u]) ∧ (x = x [u]) then r [u]

else new r : D; r

(6)
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This equivalence expresses that we can replace a call to a hash function with a random oracle, that
is, a function that returns a fresh random number when it is called with a new argument, and the
previously returned result when it is called with the same argument as in a previous call. Such a
random oracle is implemented in our calculus by a lookup in the array x of the arguments of hash.
When a u such that x[u], r[u] are defined and x = x[u] is found, hash has already been called with
x, at call number u, so we return the result of that call, r[u]. Otherwise, we create a fresh random
number r. (The indication [all ] on the first line of (6) instructs the prover to replace all occurrences
of hash in the game.)

Second, the input file contains as initial game the process Q0 of Section 2.1. This game cor-
responds to the definition of security of the FDH signature scheme (5) as detailed in Section 3.3.
An important remark is that we need to add to the standard definition of security of a signa-
ture scheme the hash oracle. This is necessary so that, after transformation of hash into a ran-
dom oracle, the adversary can still call the hash oracle. (The adversary does not have access to
the arrays that encode the values of the random oracle.) Our goal is to bound the probability
p(t) that event bad is executed in this game in the presence of a context that runs in time t:
p(t) = Succuf−cma

S (qS , l, t + tH) ≥ Succuf−cma
S (qS , l, t) where tH is the total time spent in the hash

oracle and l is the maximum length of m and m ′.

Given this input, our prover automatically produces a proof that this game executes event bad

with probability p(t) ≤ (qH + qS + 1)Succow
P (t + t′ + (qH + qS )tf) where t′ is the runtime of the

context put around the equivalence (1) in the proof. (The prover displays the corresponding game.)
The time t′ can be evaluated by manual inspection. We obtain t′ = (qH + qS + 1)tfind(qH + qS +
1, l) + tfind(qS , l) where l is the maximum length of a bit-string in m, m′, or x and tfind(n, l)
is the time of a find that looks up a bit-string of length at most l in an array of at most n
cells, so Succuf−cma

S (qS , l, t) ≤ (qH + qS + 1)Succow
P (t + (qH + qS + 1)tfind(qH + qS + 1, l) +

tfind(qS , l) + (qH + qS )tf). If we ignore the time of find, we obtain the usual upper-bound [9]
(qH + qS +1)Succow

P (t+(qH + qS )tf). The prover also outputs the sequence of games that leads to
this proof, and a succinct explanation of the transformation performed between consecutive games
of the sequence. This proof is explained in Appendix B. The input and output of the prover, as
well as the prover itself, are available at http://www.di.ens.fr/~blanchet/cryptoc/FDH/; the
runtime of the prover on this example is 14 ms on a Pentium M 1.8 GHz.

In order to build this proof, the prover uses the following strategy. It tries to apply all ob-
servational equivalences it has as hypotheses, that is here, (1), (4), and (6). When one of these
equivalences can be applied, it transforms the game accordingly, by replacing the left-hand side
with the right-hand side of the equivalence. When they fail, these equivalences may suggest syntac-
tic transformations to apply in order to enable them. In this case, the prover applies the suggested
syntactic transformation and retries the initial transformation. For example, if the game contains
the term mf(sk , y) while (4) expects mf(skgen(r), y), the prover will first expand the assignment
that defines sk so that sk is substituted with its value, possibly yielding the desired term. After each
application of an observational equivalence, the obtained game is simplified as much as possible.

5 Conclusion

Besides proving the security of many protocols, we have also used our prover for proving other
cryptographic schemes. For example, using a few manual indications from the user (5 instructions),
our prover can also show that the basic Bellare-Rogaway construction [8] without redundancy (i.e.
E(m, r) = f(r)‖G(r) ⊕ m) is IND-CPA. With a few extensions concerning the simplification of
games, which we plan to implement in the near future, it could also show that the enhanced version
with redundancy (i.e. E(m, r) = f(r)‖G(r)⊕m‖H(m, r)) is IND-CCA2.
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A Proof of the Definition of One-wayness as an Equivalence

Proof (of (1)). We denote by L the left-hand side of (1) and by R its right-hand side. We denote
by [[L]] and [[R]] the translations of L and R into processes, respectively. We have:

[[L]] = !ik≤nkck[ik]();new r : seed ; ck[ik]〈〉; (!
i0≤n0c0[ik, i0](); c0[ik, i0]〈pkgen(r)〉

| !if≤nf cf [ik, if ]();new x : D; cf [ik, if ]〈〉; (!
i1≤n1c1[ik, if , i1](); c1[ik, if , i1]〈f(pkgen(r), x)〉

| !i2≤n2c2[ik, if , i2](x
′ : D); c2[ik, if , i2]〈x

′ = x〉

| !i3≤n3c3[ik, if , i3](); c3[ik, if , i3]〈x〉))

[[R]] = !ik≤nkck[ik]();new r : seed ; ck[ik]〈〉; (!
i0≤n0c0[ik, i0](); c0[ik, i0]〈pkgen′(r)〉

| !if≤nf cf [ik, if ]();new x : D; cf [ik, if ]〈〉; (!
i1≤n1c1[ik, if , i1](); c1[ik, if , i1]〈f

′(pkgen′(r), x)〉

| !i2≤n2c2[ik, if , i2](x
′ : D);

find u ≤ n3 suchthat defined(k[u]) ∧ true then c2[ik, if , i2]〈x
′ = x〉 else

c2[ik, if , i2]〈false〉

| !i3≤n3c3[ik, if , i3](); let k : bitstring = mark in c3[ik, if , i3]〈x〉))

We show that [[L]] ≈pow [[R]], which proves (1).
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Let

LR′ = ck();new r : seed ; let pk : pkey = pkgen(r) in ck〈〉; (!
i0≤n0c0[i0](); c0[i0]〈pk〉

| !if≤nf cf [if ]();new x : D; let y : D = f(pk, x) in cf [if ]〈〉; (!
i1≤n1c1[if , i1](); c1[if , i1]〈y〉

| !i2≤n2c2[if , i2](x
′ : D);

find u ≤ n3 suchthat defined(k[u]) ∧ true then c2[if , i2]〈x
′ = x〉 else

if x′ = x then event bad else c2[if , i2]〈false〉

| !i3≤n3c3[if , i3](); let k : bitstring = mark in c3[if , i3]〈x〉))

and for a ∈ [1, nf ],

Ca =newChannel c; ([ ] | ck(); c〈〉; c(pk, y); ck〈〉;

(!i0≤n0c0[i0](); c0[i0]〈pk〉

| !if≤nf cf [if ](); if if = a then

cf [if ]〈〉; (!
i1≤n1c1[if , i1](); c1[if , i1]〈y〉

| !i2≤n2c2[if , i2](x
′ : D); c〈x′〉.c(); c2[if , i2]〈false〉)

else new x : D; cf [if ]〈〉;

(!i1≤n1c1[if , i1](); c1[if , i1]〈f(pk, x)〉

| !i2≤n2c2[if , i2](x
′ : D); c2[if , i2]〈x

′ = x〉

| !i3≤n3c3[if , i3](); c3[if , i3]〈x〉)))

We show that LR′ executes event bad with probability at most nf×Succow
P (t+tCa

) in the presence of
a context that runs in time t, where Ca runs in time tCa

= (nf−1)tf .
1 By definition of one-wayness,

the process LR defined in Section 3.2 executes event bad with probability at most Succow
P (t). By

Lemma 3, Property 5, Ca[LR] executes event bad with probability at most Succow
P (t + tCa

). Let C
be an evaluation context acceptable for LR′, LR′, ∅ that runs in time t. Consider a trace of C[LR′]
that executes event bad. Let a ∈ [1, nf ] such that the first time event bad is executed in this trace,
if = a. Then the prefix of this trace up to the point at which it executes event bad for the first
time can be simulated exactly by a trace of the same probability of C[Ca[LR]]. More precisely, the
simulation proceeds as follows:

– When LR′ receives a message on ck, it picks a new seed r. Correspondingly Ca[LR] also picks
a seed r0 by calling LR. It also chooses a random value x0, so a single configuration of LR′ of
probability p corresponds to |D| configurations of Ca[LR] that differ only by the value of x0,
each of probability p/|D|. Both LR′ and Ca[LR] reply by sending an empty message on ck.

– When LR′ receives a message on c0[i0], it replies by sending pkgen(r) on c0[i0]. Correspondingly
Ca[LR] replies by sending the public key pk = pkgen(r0).

– When LR′ receives a message on cf [if ], it picks a random value x[if ]. Correspondingly, Ca[LR]
either picks a random value x[if ] if if 6= a, or reuses the value of x0 previously chosen by LR
when if = a. In the latter case, before executing this step, a single configuration of LR′ of
probability p corresponded to |D| configurations of Ca[LR] that differed only by the value of
x0, each of probability p/|D|; after executing this step, each configuration of LR′ of probability

1 As usual in exact security proofs, we consider only the runtime of function evaluations and array lookups, and
ignore the time for communications, random number generations, etc. We could obviously perform a more detailed
time evaluation if desired.
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p/|D| corresponds to a single configuration of Ca[LR], in which the chosen value of x0 is the
value of x[a] in LR′. Both configurations have the same probability p/|D|. Both LR′ and Ca[LR]
reply by sending an empty message on cf [if ].

– When LR′ receives a message on c1[if , i1], it replies by sending f(pkgen(r), x[if ]) on c1[if , i1].
Correspondingly, Ca[LR] replies either with f(pk, x[if ]) when if 6= a, or y = f(pk, x0) when
if = a.

– When LR′ receives a message x′ on c2[if , i2], it replies by sending x′ = x[if ] on c2[if , i2] when
if 6= a (since it never executes event bad with if 6= a in the considered trace prefix), by executing
event bad when x′ = x[if ] and if = a, and by sending false on c2[if , i2] when x′ 6= x[if ] and
if = a. (Since the considered trace prefix executes event bad with if = a at the end of this
prefix, no k[a, u] is defined at the end of this prefix, so no k[a, u] is defined at any point in this
trace prefix.) Correspondingly, Ca[LR] replies by sending x′ = x[if ] on c2[if , i2] when if 6= a
and by calling LR when if = a in order to execute event bad when x′ = x0; when x′ 6= x0, it
returns from LR and sends false on c2[if , i2].

– When LR′ receives a message on c3[if , i3], we have if 6= a since no k[a, u] is defined at any
point in the considered trace prefix, as mentioned above, and LR′ replies by sending x[if ] on
c3[if , i3]. Correspondingly, Ca[LR] replies by sending x[if ] on c3[if , i3] in this case.

Hence
∑

E,bad∈E Pr[C[LR′]  E ] ≤
∑

a∈[1,nf ]

∑
E,bad∈E Pr[C[Ca[LR]]  E ] ≤

∑
a∈[1,nf ]

Succow
P (t +

tCa
) = nf×Succow

P (t+tCa
). So LR′ executes event bad with probability at most nf×Succow

P (t+tCa
).

By Lemma 6, nk×LR′ executes event bad with probability at most nk×nf ×Succow
P (t+ tCa

+
(nk − 1)tLR′), where tLR′ = tpkgen + nftf . (Note that, in an implementation of LR′, one does not
need to explicitly perform a find to test whether some k[u] is defined. We can use one mutable
bit for each if which we set when the last process of LR′ is executed. We can then test this bit
to determine whether k[u] is defined for some u. The time of this test can then be neglected.) Let
t′ = tCa

+ (nk − 1)tLR′ = (nknf − 1)tf + (nk − 1)tpkgen and pow(t) = nk × nf × Succow
P (t + t′). By

Lemma 4,

(nk × LR′){c2[ik, if , i2]〈true〉/event bad} ≈pow (nk × LR′){c2[ik, if , i2]〈false〉/event bad}

The process if x′ = x then c2[ik, if , i2]〈true〉 else c2[ik, if , i2]〈false〉 can be replaced with the out-
put c2[ik, if , i2]〈x

′ = x〉, the process find . . . then c2[ik, if , i2]〈x
′ = x〉 else c2[ik, if , i2]〈x

′ = x〉 can be
replaced with c2[ik, if , i2]〈x

′ = x〉, and the assignments to pk and y can be expanded without chang-
ing the behavior of the process, so (nk × LR′){c2[ik, if , i2]〈true〉/event bad} ≈0 [[L]]. The process
if x′ = x then c2[ik, if , i2]〈false〉 else c2[ik, if , i2]〈false〉 can be replaced with c2[ik, if , i2]〈false〉, and
the assignments to pk and y can be expanded, so (nk×LR′){c2[ik, if , i2]〈false〉/event bad} ≈0 [[R]].
Hence [[L]] ≈pow [[R]]. �

B Proof of the FDH Signature Example

Starting from the initial game Q0 given in Section 2.1, the prover first tries to apply a cryptographic
transformation. It succeeds applying the security of the hash function (6). Then each argument of a
call to hash is first stored in an intermediate variable, x29 for m ′, x31 for m, and x33 for x, and each
occurrence of a call to hash is replaced with a lookup in the three arrays that contain arguments
of calls to hash, x29, x31, and x33. When the argument of hash is found in one of these arrays, the
returned result is the same as the result previously returned by hash. Otherwise, we pick a fresh
random number and return it. Therefore, we obtain the following game:

start();new r : seed ; let pk : pkey = pkgen(r) in let sk : skey = skgen(r) in c0〈pk〉;
(
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!!25≤qH

c4[!25](x : bitstring);
let x33 : bitstring = x in
find suchthat defined(x29, r28) ∧ (x33 = x29) then

c5[!25]〈r28〉
⊕ @i39 ≤ qS suchthat defined(x31[@i39], r30[@i39]) ∧ (x33 = x31[@i39]) then

c5[!25]〈r30[@i39]〉
⊕ @i38 ≤ qH suchthat defined(x33[@i38], r32[@i38]) ∧ (x33 = x33[@i38]) then

c5[!25]〈r32[@i38]〉
else

new r32 : D;

c5[!25]〈r32〉
|

!!26≤qS

c1[!26](m : bitstring);
let x31 : bitstring = m in
find suchthat defined(x29, r28) ∧ (x31 = x29) then

c2[!26]〈mf(sk , r28)〉
⊕ @i37 ≤ qS suchthat defined(x31[@i37], r30[@i37]) ∧ (x31 = x31[@i37]) then

c2[!26]〈mf(sk , r30[@i37])〉
⊕ @i36 ≤ qH suchthat defined(x33[@i36], r32[@i36]) ∧ (x31 = x33[@i36]) then

c2[!26]〈mf(sk , r32[@i36])〉
else

new r30 : D;

c2[!26]〈mf(sk , r30)〉
|

c3(m ′ : bitstring , s : D);
let x29 : bitstring = m ′ in
find suchthat defined(x29, r28) ∧ (x29 = x29) then 1

if (f(pk , s) = r28) then
find u ≤ qS suchthat defined(m[u]) ∧ (m ′ = m[u]) then 0 else event bad

⊕ @i35 ≤ qS suchthat defined(x31[@i35], r30[@i35]) ∧ (x29 = x31[@i35]) then 2
if (f(pk , s) = r30[@i35]) then 3
find u ≤ qS suchthat defined(m[u]) ∧ (m ′ = m[u]) then 0 else event bad 4

⊕ @i34 ≤ qH suchthat defined(x33[@i34], r32[@i34]) ∧ (x29 = x33[@i34]) then
if (f(pk , s) = r32[@i34]) then
find u ≤ qS suchthat defined(m[u]) ∧ (m ′ = m[u]) then 0 else event bad

else
new r28 : D;
if (f(pk , s) = r28) then
find u ≤ qS suchthat defined(m[u]) ∧ (m ′ = m[u]) then 0 else event bad

)

This game is automatically simplified as follows: The test x29 = x29 at line 1 is replaced with
true. The variables x29, x31, and x33 are substituted with their value, respectively m ′, m, and x.
After this substitution, the values assigned to x29, x31, and x33 are no longer important, so they
are replaced with constants cst bitstring. (The fact that these variables are defined is tested in
conditions of find, so the assignments cannot be removed completely.) Finally, the find at line 4
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always succeeds, with u = @i35, due to the find are line 2. So line 4 can be replaced with 0, and
therefore lines 3 and 4 can be replaced with 0.

Then, the prover tries to apply a cryptographic transformation. All transformations fail, but
when applying (4), the game contains mf(sk , y) while (4) expects mf(skgen(r), y), which suggests to
remove assignments to variable sk for it to succeed. So the prover performs this removal: it substi-
tutes skgen(r) for sk and removes the assignment let sk : skey = skgen(r). The transformation (4)
is then retried. It now succeeds, which leads to replacing rj with f(pkgen(r), rj) and mf(skgen(r), rj)
with rj . We obtain the following game:

start();new r : seed ; let pk : pkey = pkgen(r) in c0〈pk〉;
(

!!25≤qH

c4[!25](x : bitstring);
let x33 : bitstring = cst bitstring in
find suchthat defined(m ′, x29, r28) ∧ (x = m ′) then

c5[!25]〈f(pkgen(r), r28)〉
⊕ @i39 ≤ qS suchthat defined(m[@i39], x31[@i39], r30[@i39]) ∧ (x = m[@i39]) then

c5[!25]〈f(pkgen(r), r30[@i39])〉
⊕ @i38 ≤ qH suchthat defined(x [@i38], x33[@i38], r32[@i38]) ∧ (x = x [@i38]) then

c5[!25]〈f(pkgen(r), r32[@i38])〉
else

new r32 : D;

c5[!25]〈f(pkgen(r), r32)〉
|

!!26≤qS

c1[!26](m : bitstring);
let x31 : bitstring = cst bitstring in
find suchthat defined(m ′, x29, r28) ∧ (m = m ′) then

c2[!26]〈r28〉
⊕ @i37 ≤ qS suchthat defined(m[@i37], x31[@i37], r30[@i37]) ∧ (m = m[@i37]) then

c2[!26]〈r30[@i37]〉
⊕ @i36 ≤ qH suchthat defined(x [@i36], x33[@i36], r32[@i36]) ∧ (m = x [@i36]) then

c2[!26]〈r32[@i36]〉
else

new r30 : D;

c2[!26]〈r30〉
|

c3(m ′ : bitstring , s : D);
let x29 : bitstring = cst bitstring in
find suchthat defined(r28) ∧ true then

if (f(pk , s) = f(pkgen(r), r28)) then
find u ≤ qS suchthat defined(m[u]) ∧ (m ′ = m[u]) then 0 else event bad

⊕ @i35 ≤ qS suchthat defined(m[@i35], x31[@i35], r30[@i35]) ∧ (m ′ = m[@i35]) then
0

⊕ @i34 ≤ qH suchthat defined(x [@i34], x33[@i34], r32[@i34]) ∧ (m ′ = x [@i34]) then
if (f(pk , s) = f(pkgen(r), r32[@i34])) then
find u ≤ qS suchthat defined(m[u]) ∧ (m ′ = m[u]) then 0 else event bad

else
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new r28 : D;
if (f(pk , s) = f(pkgen(r), r28)) then
find u ≤ qS suchthat defined(m[u]) ∧ (m ′ = m[u]) then 0 else event bad

)

This game is automatically simplified as follows. In this game, it is useless to test whether x33[i]
is defined, since when we require that x33[i] is defined, we also require that r32[i] is defined, and
if r32[i] is defined, then x33[i] has been defined before. So the prover removes x33[i] from defined
tests, and removes the assignments to x33, which is no longer used. The situation is similar for x29

and x31.

By injectivity of f, the prover replaces three occurrences of terms of the form f(pk, s) =
f(pkgen(r), rj) with s = rj , knowing pk = pkgen(r).

The prover then tries to apply cryptographic transformations. It succeeds using the definition
of one-wayness (1). This transformation leads to replacing f(pkgen(r), rj) with f ′(pkgen′(r), rj), rj

with let kj : bitstring = mark in rj , and s = rj with find @i j ≤ N suchthat defined(kj [@i j ]) ∧
true then s = rj else false. The difference of probability is (qH +qS +1)Succow

P (t+ t′+(qH +qS )tf)
where t′ is the runtime of the context put around the equivalence (1). After this transformation,
we obtain the following game:

start();new r : seed ; let pk : pkey = pkgen′(r) in c0〈pk〉;
(

!!25≤qH

c4[!25](x : bitstring);
find suchthat defined(m ′, r28) ∧ (x = m ′) then

c5[!25]〈f
′(pkgen′(r), r28)〉

⊕ @i39 ≤ qS suchthat defined(m[@i39], r30[@i39]) ∧ (x = m[@i39]) then

c5[!25]〈f
′(pkgen′(r), r30[@i39])〉

⊕ @i38 ≤ qH suchthat defined(x [@i38], r32[@i38]) ∧ (x = x [@i38]) then

c5[!25]〈f
′(pkgen′(r), r32[@i38])〉

else
new r32 : D;

c5[!25]〈f
′(pkgen′(r), r32)〉

|
!!26≤qS

c1[!26](m : bitstring); 1
find suchthat defined(m ′, r28) ∧ (m = m ′) then 2

let k41 : bitstring = mark in 3

c2[!26]〈r28〉
⊕ @i37 ≤ qS suchthat defined(m[@i37], r30[@i37]) ∧ (m = m[@i37]) then

let k42 : bitstring = mark in

c2[!26]〈r30[@i37]〉
⊕ @i36 ≤ qH suchthat defined(x [@i36], r32[@i36]) ∧ (m = x [@i36]) then 4

let k43 : bitstring = mark in 5

c2[!26]〈r32[@i36]〉
else

new r30 : D;
let k40 : bitstring = mark in

c2[!26]〈r30〉
|
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c3(m ′ : bitstring , s : D);
find suchthat defined(r28) ∧ true then

find @i46 ≤ qS suchthat defined(k41[@i46]) ∧ true then 6
if (s = r28) then
find u ≤ qS suchthat defined(m[u]) ∧ (m ′ = m[u]) then 0 else event bad 7

else
if false then 8
find u ≤ qS suchthat defined(m[u]) ∧ (m ′ = m[u]) then 0 else event bad

⊕ @i35 ≤ qS suchthat defined(r30[@i35],m[@i35]) ∧ (m ′ = m[@i35]) then
0

⊕ @i34 ≤ qH suchthat defined(x [@i34], r32[@i34]) ∧ (m ′ = x [@i34]) then 9
find @i49 ≤ qS suchthat defined(k43[@i49]) ∧ (@i36[@i49] = @i34) then 10

if (s = r32[@i34]) then
find u ≤ qS suchthat defined(m[u]) ∧ (m ′ = m[u]) then 0 else event bad 11

else
if false then 12
find u ≤ qS suchthat defined(m[u]) ∧ (m ′ = m[u]) then 0 else event bad

else
new r28 : D;
find @i44 ≤ qS suchthat defined(k41[@i44]) ∧ true then

if (s = r28) then
find u ≤ qS suchthat defined(m[u]) ∧ (m ′ = m[u]) then 0 else event bad 13

else
if false then 14
find u ≤ qS suchthat defined(m[u]) ∧ (m ′ = m[u]) then 0 else event bad

)

The prover then simplifies the obtained game automatically. The tests if false then . . . at lines 8,
12, and 14 are obviously simplified out. The finds at lines 7, 11, and 13 always succeed. At line 7,
k41[@i46] is defined according to the condition of the find at line 6. Since k41 is defined only at
line 3, m[@i46] is then defined (line 1) and m[@i46] = m ′ by the condition of the find at line 2. So
the find at line 7 succeeds with u = @i 46. The reasoning is similar for line 13. At line 11, k43[@i49] is
defined by the condition of the find at line 10. Since k43 is defined only at line 5, m[@i49] is defined
(line 1), and m[@i49] = x [@i36[@i49]] by the condition of the find at line 4, @i 36[@i49] = @i34 by
the condition of the find at line 10, and m ′ = x [@i34] by the condition of the find at line 9, so
m[@i49] = x [@i36[@i49]] = x [@i34] = m ′. So the find at line 11 succeeds with u = @i 49.

After these simplifications, event bad has been removed, so the probability that event bad is
executed in the final game is 0. Therefore, exploiting Lemma 3, Properties 2 and 3, the system
concludes that the initial game executes event bad with probability p(t) ≤ (qH +qS +1)Succow

P (t+
t′ + (qH + qS )tf) where t′ is the runtime of context put around the equivalence (1). (The only
transformation that introduced a difference of probability is the application of one-wayness (1).)

C Definition of Security of Signatures

Lemma 7. Let skgen′ : seed → skey, pkgen′ : seed → pkey, sign′ : bitstring×skey → signature, and
verify′ : bitstring×pkey× signature → bool such that the functions associated to the primed symbols
skgen′, pkgen′, sign′, verify′ are equal to the functions associated to their corresponding unprimed
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symbol skgen, pkgen, sign, verify. We have the following equivalence:

1. !ik≤nknew r : seed ; (

2. !i1≤n1()→ pkgen(r),

3. !is≤ns(m : bitstring)→ sign(m, skgen(r))),

4. !iv≤nv(m′ : bitstring , y : pkey , s : signature)→ verify(m′, y, s) [all ]

5. ≈puf−cma

6. !ik≤nknew r : seed ; (

7. !i1≤n1()→ pkgen′(r),

8. !is≤ns(m : bitstring)→ sign′(m, skgen′(r))),

9. !iv≤nv(m′ : bitstring , y : pkey , s : signature)→

10. find uk ≤ nk, us ≤ ns suchthat defined(r[uk], m[uk, us])∧

11. y = pkgen′(r[uk]) ∧m′ = m[uk, us] ∧ verify′(m′, y, s) then true else

12. find uk ≤ nk suchthat defined(r[uk]) ∧ y = pkgen′(r[uk]) then false else

13. verify(m′, y, s)

where puf−cma(t) = nk × Succuf−cma
S (ns, max(ls, lv), t + (nk − 1)(tpkgen + tskgen + nstsign(ls)) + (nk +

nv − 1)(tverify(lv) + tfind(ns, lv)) + nvtfind(nk, lpkey)); tpkgen, tskgen, tsign(l), tverify(l) are the times
for one evaluation of pkgen, skgen, sign, verify respectively, with a message of length at most l;
tfind(n, l) is the time of a find that looks up a bit-string of length at most l in an array of at most
n cells; lpkey is the maximum length of a key in pkey; ls = maxik∈[1,nk],is∈[1,ns] length(m[ik, is]); and
lv = maxiv∈[1,nv] length(m′[iv]).

As for one-wayness, this equivalence considers nk keys instead of a single one. We denote by ns the
number of signature queries for each key and by nv the total number of verification queries. We use
primed function symbols to avoid the repeated application of the transformation of the left-hand
side into the right-hand side. Note that we use verify and not verify′ at line 13 in order to allow a
repeated application of the transformation with a different key. The first three lines of each side of
the equivalence express that the generation of public keys and the computation of the signature are
left unchanged in the transformation. The verification of a signature verify(m′, y, s) is replaced with
a lookup in the previously computed signatures: if the signature is verified using one of the keys
pkgen′(r[uk]) (that is, if y = pkgen′(r[uk])), then it can be valid only when it has been computed by
the signature oracle sign′(m, skgen′(r[uk])), that is, when m′ = m[uk, us] for some us. Lines 10-11
try to find such uk and us and return true when they succeed. Line 12 returns false when no such
us is found in lines 10-11, but y = pkgen′(r[uk]) for some uk. The last line handles the case when
the key y is not pkgen′(r[uk]). In this case, we verify the signature as before. The indication all
at line 4 instructs the prover to transform all occurrences of function verify into the corresponding
right-hand side.

Proof. We denote by L the left-hand side of the equivalence above and by R its right-hand side.
We denote by [[L]] and [[R]] the translations of L and R into processes, respectively, and show that
[[L]] ≈puf−cma [[R]].

By definition of UF − CMA, the process LR defined in Section 3.3 executes event bad with
probability at most Succuf−cma

S (ns, l, t) in the presence of a context that runs in time t where l is
the maximum length of m and m′. By Lemma 6, nk × LR executes event bad with probability
at most nk × Succuf−cma

S (ns, max(l′s, l
′
v), t + (nk − 1)tLR), where tLR = tpkgen + tskgen + nstsign(l

′
s) +
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tverify(l
′
v)+tfind(ns, l

′
v), l′s = maxik∈[1,nk],is∈[1,ns] length(m[ik, is]), and l′v = maxik∈[1,nk] length(m′[ik]).

nk × LR =

!ik≤nkstart[ik]();new r : seed ; let pk : pkey = pkgen(r) in let sk : skey = skgen(r) in c0[ik]〈pk〉;

(!is≤nsc1[ik, i](m : bitstring); c2[ik, i]〈sign(m, sk)〉

| c3[ik](m
′ : bitstring , s : signature); if verify(m′, pk, s) then

find us ≤ ns suchthat defined(m[ik, us]) ∧m′ = m[ik, us] then 0 else event bad)

Let LR′ be obtained from nk×LR by replacing event bad with event bad; yield〈〉; !iv≤nvc3[ik](m
′ :

bitstring , s : signature); event bad. (nk × LR executes event bad only when it receives the first
forged signature. The previous replacement allows LR′ to execute event bad several times, after
receiving a forged signature.) By Lemma 5, LR′ executes event bad with probability at most
nk × Succuf−cma

S (ns, max(l′s, l
′
v), t + (nk − 1)tLR). Let

C =newChannel start;newChannel c0;newChannel c1;newChannel c2;newChannel c3;

([ ] |!ik≤nkc′k[ik](); start[ik]〈〉; c0[ik](pk); c′k[ik]〈〉;

(!i1≤n1c′1[ik, i1](); c
′
1[ik, i1]〈pk〉

| !is≤nsc′s[ik, is](m : bitstring); c1[ik, is]〈m〉; c2[ik, is](s : signature); c′s[ik, is]〈s〉)

| !iv≤nvc′v[iv](m
′ : bitstring , y : pkey , s : signature);

find uk ≤ nk suchthat defined(pk[uk]) ∧ y = pk[uk] then

if verify(m′, y, s) then

find us ≤ ns suchthat defined(m[uk, us]) ∧m′ = m[uk, us] then

c′v[iv]〈true〉 else c3[uk]〈m
′, s〉

else c′v[iv]〈false〉

else c′v[iv]〈verify(m
′, y, s)〉)

By Lemma 3, Property 5, C[LR′] executes event bad with probability at most nk×Succuf−cma
S (ns,

max(ls, lv), t + (nk − 1)tLR + tC) where C runs in time tC = nv(tverify(lv) + tfind(nk, lpkey) +
tfind(ns, lv)). Let t′ = (nk−1)tLR+tC ≤ (nk−1)(tpkgen+tskgen+nstsign(ls))+(nk+nv−1)(tverify(lv)+
tfind(ns, lv)) + nvtfind(nk, lpkey), since l′s ≤ ls and l′v ≤ lv.

Let puf−cma(t) = nk × Succuf−cma
S (ns, max(ls, lv), t + t′). By eliminating communications on re-

stricted channels start, c0, c1, c2, c3, we can easily see that C[LR′] ≈0 LR′′ where

LR′′ = !ik≤nkc′k[ik]();new r : seed ; c′k[ik]〈〉;

(!i1≤n1c′1[ik, i1](); c
′
1[ik, i1]〈pkgen(r)〉

| !is≤nsc′s[ik, is](m : bitstring); c′s[ik, is]〈sign(m, skgen(r))〉)

| !iv≤nvc′v[iv](m
′ : bitstring , y : pkey , s : signature);

find uk ≤ nk suchthat defined(pk[uk]) ∧ y = pk[uk] then

if verify(m′, y, s) then

find us ≤ ns suchthat defined(m[uk, us]) ∧m′ = m[uk, us] then

c′v[iv]〈true〉 else event bad

else c′v[iv]〈false〉

else c′v[iv]〈verify(m
′, y, s)〉
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Indeed, when C sends a message m′, s on c3[uk], C has checked that m′, s is a forged signature under
the key pk[uk], so LR′ always executes event bad when receiving this message. So by Lemma 3,
Property 3, LR′′ executes event bad with probability at most puf−cma. By Lemma 4,

LR′′{c′v[iv]〈true〉/event bad} ≈puf−cma LR′′{c′v[iv]〈false〉/event bad}.

The process find . . . then c′v[iv]〈true〉 else c′v[iv]〈true〉 can be replaced with the output c′v[iv]〈true〉
and if verify(m′, y, s) then c′v[iv]〈true〉 else c′v[iv]〈false〉 can be replaced with c′v[iv]〈verify(m

′, y, s)〉
without changing the behavior of the process, so LR′′{c′v[iv]〈true〉/event bad} ≈0 [[L]]. By reorga-
nizing finds, we can prove the equivalence LR′′{c′v[iv]〈false〉/event bad} ≈0 [[R]]. Hence [[L]] ≈puf−cma

[[R]]. �


