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Department of Computer Science, ETH Zurich, CH-8092 Zurich, Switzerland
{maurer, sjoedin}@inf.ethz.ch

Abstract. Motivated by the quest for reducing assumptions in security proofs in cryptography, this
paper is concerned with designing efficient symmetric encryption and authentication schemes based
on weak pseudo-random functions (WPRF), which can be more efficiently implemented than PRFs.
Damg̊ard and Nielsen (Crypto ’02) showed how to construct an efficient symmetric encryption scheme
based on any WPRF that is provably secure under a chosen-plaintext attack. The main ingredient is
a construction of a variable-output-length WPRF from any WPRF.
The results of this paper are three-fold. First, we optimize the Damg̊ard-Nielsen encryption method
by constructing a more efficient variable-output-length WPRF from any WPRF. Our construction is
optimal for a large and natural class of reductions. Second, we propose an efficient construction of a
PRF from any WPRF. Third, these two results imply the first efficient symmetric encryption scheme
based on any WPRF that is provably secure under a chosen-ciphertext attack, and they also solve
open questions posed by Naor and Reingold (Crypto ’98) and by Damg̊ard and Nielsen.
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1 Introduction

1.1 Weakening of Cryptographic Assumptions

A general goal in cryptography is to prove the security of cryptographic systems under assumptions
that are as weak as possible. Provably secure encryption and authentication schemes based on
a pseudo-random function (PRF) [12] have been studied extensively [11]. Informally, a PRF is a
function with a secret key that cannot be efficiently distinguished from a uniform random function
even when it can be queried adaptively (this is often called a chosen-plaintext attack (CPA)).

The notion of a PRF is very strong and, indeed, it is unclear whether functions such as
block ciphers proposed in the literature have this very strong security property.1 When designing
cryptographic schemes, it is prudent to postulate weaker properties as this makes it more likely
that a certain function has such properties and there are potentially more efficient implementations
for the weaker requirement compared to the stronger.

A very promising weaker notion of security, a weak PRF (WPRF), was recently proposed
by Naor and Reingold [17] (see also [9]) and has already found several applications [18, 1, 9, 19].
Informally, a WPRF is a function with a secret key that cannot be efficiently distinguished from a
uniform random function when given a sequence of random inputs and the corresponding outputs
(this is often called a known-plaintext attack (KPA)). Highly efficient candidates for WPRFs
are described in [8] (cf. [18]), although these are not targeted at this particular security notion
explicitly.
? This work was partially supported by the Zurich Information Security Center. It represents the views of the

authors.
1 For example, the design criteria for AES did not include a requirement that a candidate proposal be a PRF, only

that it be secure as a block cipher in certain modes of operation, against certain types of attacks.



While the design of WPRFs has not been studied as extensively as PRFs, a concrete argument
showing that the WPRF notion is substantially weaker than the PRF notion is that WPRFs can
have rather strong structural properties which are known to be devastating for PRFs. For instance,
if G is a group of prime order p in which the Decisional Diffie-Hellman (DDH) [10] assumption
holds, then

F : Zp × G → G defined by Fk(x) := F (k, x) = xk (1)

is a WPRF [9] that commutes (i.e., Fk(Fk′(x)) = Fk′(Fk(x))). A WPRF can also be self inverse
(i.e., Fk(Fk(x)) = x), have a small fraction of bad points (e.g. Fk(x) = x or Fk(x) = k), and have
related outputs (e.g. Fk(x‖1) = Fk(x‖0) for all x). Such structural flaws make most encryption
and authentication schemes based on PRFs completely insecure (for examples, see [9]).

In this paper we propose provably secure encryption and authentication schemes, for the
strongest security notion, under the sole assumption of a WPRF. Of course, the security could
also be based on even weaker assumptions like the one-wayness of a certain function, since a PRF
can be obtained from any one-way function [13, 12]. However, such schemes are not of practical
interest due to their inefficiency.

1.2 Contributions and Related Work

The main motivation for this paper is Damg̊ard and Nielsen’s elegant work on WPRFs [9]. In
their paper, the Pseudorandom Tree (PRT) construction is proposed for transforming any WPRF
F :{0, 1}n×{0, 1}n→{0, 1}n into a variable-output-length2 (VOL) WPRF

PRTF : {0, 1}κ × {0, 1}n × N→ {0, 1}∗.
Furthermore, they show how to construct an efficient probabilistic symmetric encryption scheme
from F that is provably secure under a CPA3. This is achieved by encrypting a message m ∈ {0, 1}∗,
under a key k ∈ {0, 1}κ and some auxiliary uniform randomness r ∈ {0, 1}n, as

(k, r,m) 7→
(
r,PRTF

k (r, |m|) ⊕m
)
. (2)

To point out the efficiency of this encryption scheme (and also as a reference for the schemes
presented in this work), let us compare it with standard modes of operation such as CBC and
CTR. Whereas CBC and CTR invoke the underlying block cipher once per message block to
encrypt/decrypt, this scheme invokes the underlying function F once per message block to en-
crypt/decrypt and roughly 2·log2(b) times (where b is the number of message blocks) for generating
more key material from the initial key (see below). The key generation can be done offline, such
that the throughput is exactly the same as for CBC and CTR. However, whereas CBC and CTR
are CPA-secure if the underlying block cipher is a PRF, (2) is CPA-secure even when the underly-
ing function is a WPRF. And as WPRFs can be more efficiently implementable than PRFs, this
scheme can also be the overall most efficient one. Unfortunately, these modes of operations are
not secure under the stronger chosen-ciphertext attack (CCA)4 notion. A natural question posed
2 A variable output length function family V :{0, 1}κ×{0, 1}n×N→ {0, 1}∗ satisfies |Vk(x, l)| = l for all k, x, and l.
3 CPA security (for an encryption scheme) formalizes an adversary’s inability, given access to an encryption oracle,

to distinguish between two plaintexts given the encryption of one of them.
4 In a CCA attack the adversary also has access to a decryption oracle.
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by Naor and Reingold [17, p. 279] and by Damg̊ard and Nielsen [9, p. 464] (which also is the
main motivation for this paper) is whether such schemes can be constructed efficiently from any
WPRF.

Before we present our results, let us briefly describe the underlying idea of the PRT-construction
(illustrated in Fig. 1(c) on page 8). In a first step, some key material k0, . . . , kj is generated from
the initial key k by invoking F in an iterative manner, and then the output blocks are derived
by applying Fki

, for some i ∈ {0, . . . , j}, iteratively to the input or a previously derived output
block. For constructions of this type it is crucial for the security and the efficiency (in terms of the
number of applications of F relative to the output length) that this is scheduled in the right way.
Recently, two more efficient VOL-WPRF constructions of this type, the Expanded PRT (ERT)
(see Fig. 1(b)) and the Factorial Tree (FCT), were proposed in [16]. However, as shown in Sect. 3.2,
the latter and more efficient construction of the two turns out to be insecure. A natural question
that arises is whether a more efficient (or even the most efficient) construction can be found.

The contributions of this paper are the following:

1. The Increasing Chain Tree (ICT) construction – An optimal VOL-WPRF from any WPRF:
Our ICT- construction (see Fig. 1(a)) is more efficient and uses a shorter initial key than the
previous constructions PRT and ERT. Interestingly, the generated key sequence k0, . . . , kj is
not pseudorandom as opposed to the case for PRT and ERT. Indeed, we show that ICT is
optimal for the large and natural class of constructions described above. This result implies an
optimization of the CPA-secure encryption scheme described in (2) by replacing PRT by ICT.

2. The Increasing Chain (IC) construction – A construction of a PRF from any WPRF:
Our IC-construction is similar in nature to Goldreich, Goldwasser, and Micali’s (GGM) [12]
construction of a PRF from any PRG, but it is more than twice as efficient than first trans-
forming the WPRF into a PRG and then applying the GGM-construction. It is also more
efficient than Naor and Reingold’s construction of a PRF based on any WPRF [18]5. This
solves their open problem [17, p. 278] whether a more efficient construction exist positively.
In particular, if we instantiate the IC-construction with the DDH-based WPRF F defined
in (1), we get Naor and Reingold’s construction [19] of a PRF based on the DDH assumption
but with a non-trivial6 reduction of the key-material by a factor of roughly the input length
of the PRF.

3. A CCA-secure encryption scheme from any WPRF:
Results 1 and 2, combined with a Wegman-Carter [22] based message authentication code
(MAC) and the well-known encrypt-then-MAC method [15, 6], yield the first efficient encryp-
tion scheme from any WPRF that is secure under a CCA and hence settles the open question
mentioned above. We observe that for our purpose a much weaker primitive than the MAC,
namely a weak MAC (WMAC)7, is sufficient, i.e., encrypt-then-WMAC actually does the job.

4. A non-adaptive 8 CCA-secure encryption scheme from any WPRF and WMAC:
This type of security may (as CPA-security) be unsatisfactory in practice, but the exact re-
quirements for achieving standard security notions are interesting in their own right. It might
also motivate further research on basing strong primitives on weak assumptions. Non-adaptive
CCA-security has been studied under stronger assumptions in [17].

5 In this work the PRF is reduced to a pseudo-random synthesizer, which in turn is reduced to a WPRF.
6 By non-trivial we mean that the key is not replaced by a pseudorandom sequence based on F .
7 A WMAC is also referred to as a MAC which is secure (or unforgeable) under a known-plaintext attack (see [17]).
8 Here the adversary does not have access to the oracles after the challenge (ciphertext) is presented.
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2 Preliminaries

2.1 Notation and Definitions

Let s
$←S denote the operation of selecting s uniformly at random from the set S. If D is a

probability distributions over S then s ← D denotes the operation of selecting s at random
according to D. Let Un denote the uniform distribution over {0, 1}n. Furthermore, RL,` and R≤L,`

denote random functions with range {0, 1}`, and domain {0, 1}L and {0, 1}≤L := ∪L
i=1{0, 1}i,

respectively. For two functions f and g, let f◦g (x) := f(g(x)). If x and y are two bitstrings, x‖y
denotes their concatenation, x[i] the ith bit of x, and x[i, j] := x[i]‖x[i+1]‖ · · · ‖x[j] with i < j. AO

denotes an algorithm A with oracle access to O. Pr[Π : E ] is the probability that event E occurs
in random experiment Π.

2.2 Cryptographic Functions

We state our results in the concrete security framework introduced by Bellare, Kilian, and Rog-
away [5] and which has been used in many subsequent works [3, 4, 6]. Let Of denote an oracle
which, if invoked, returns (r, f(r)), where f is a function and r a uniformly at random chosen
input of f . Let F : {0, 1}κ × {0, 1}n → {0, 1}` be a function family and g : {0, 1}κ → {0, 1}n a
function (with κ<n). The w-advantage of adversary A, for w ∈ {prf ,wprf ,mac,wmac,prg},
is defined as

Advprf
F, A := Pr

[
k ← Uκ, b← AFk : b = 1

]− Pr
[
R←Rn,`, b← AR : b = 1

]
Advwprf

F, A := Pr
[
k ← Uκ, b← AOFk : b = 1

]
− Pr

[
R←Rn,`, b← AOR

: b = 1
]

Advmac
F, A := Pr

[
k ← Uκ, (m, τ)← AFk , b =

{
1 if τ = Fk(m), m “new”
0 otherwise

: b = 1

]

Advwmac
F, A := Pr

[
k ← Uκ, (m, τ)← AOFk , b =

{
1 if τ = Fk(m), m “new”
0 otherwise

: b = 1

]

Advprg
g, A := Pr[k ← Uκ, b← A(g(k)) : b = 1]− Pr[r← Un, b← A(r) : b = 1]

and the corresponding maximal advantages as

Advw
F (t, q) := max

A
{Advw

F, A} and Advprg
g (t) := max

A
{Advprg

g, A},

where the maximum is taken over all A restricted to q (respectively q − 1 in case of the mac or
wmac notion) invocations of its oracle and the standard time-complexity t.9

Next, we describe both the notion of a variable-input-length (VIL) function family and a
variable-output-length (VOL) function family.
9 I.e., we distinguish between the case when the advantage of an adversary A is a difference between the probability

that an event (i.e., b = 1 in the above cases) occurs in two different random experiments and the case when
the advantage is simply the probability that an event occurs in a single experiment. In the former case, t is
the maximum of the worst-case total running time of the different experiments, and in the latter case, t is the
worst-case total running time of the experiment (in some fixed RAM model of computation). We also adopt the
convention that t includes the length of the RAM program describing A.
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Definition 1. A function family F : {0, 1}κ×{0, 1}≤N → {0, 1}n is referred to as having variable-
input-length (VIL).

The vil-mac-advantage Advvil-mac
F, A is defined as Advmac

F, A except that the adversary may query
its oracle with inputs of any length (≤ N), and the vil-wmac-advantage Advvil-wmac

F, A is defined
as Advwmac

F, A except that the oracle OFk is replaced by an oracle OFk
vil that on input l ≤ N outputs

(r, Fk(r)) where r
$←{0, 1}l. The maximal vil-mac- and vil-wmac-advantage is defined as

Advvil-mac
F (t, q, µ) := max

A
{Advvil-mac

F, A } and

Advvil-wmac
F (t, q, µ) := max

A
{Advvil-wmac

F, A },

respectively, where the maximum is taken over all A restricted to time-complexity t and at most
q − 1 oracle invocations for which the total length of the inputs to F is at most µ bits including
the forgery message.

Definition 2. A function family F : {0, 1}κ × {0, 1}n × N → {0, 1}∗ is referred to as having
variable-output-length (VOL) if |Fk(x, l)| = l, for all k, x, and l.

The security notion of a VIL-WPRF is defined as follows [9]. Let Rn,∗ denote the following
probabilistic function. On input (x, l) check whether a string ox is defined; if not define it to be
the empty string. Then check whether ox has length at least l; if not append to ox a uniformly at
random chosen string from {0, 1}l−|ox|. Then output ox[1, l]. Let Of

vol be an oracle that on input
l outputs (x, f(x, l)) for uniformly at random chosen x. The vol-wprf -advantage of adversary A
in attacking F is

Advvol-wprf
F, A :=Pr

[
k← Uκ, b←AOFk

vol :b = 1
]
−Pr

[
k ← Uκ, b←AORn,∗

vol :b = 1
]

and the maximal vol-wprf -advantage as

Advvol-wprf
F (t, q, µ) := max

A
{Advvol-wprf

F, A },

where the maximum is taken over all A restricted to time-complexity t and at most q samples for
which the output lengths of F total at most µ bits.

3 The IC and ICT Constructions

In this section we introduce the IC-construction, for transforming a WPRF into a PRF, and
the ICT-construction, for transforming a WPRF into a VOL-WPRF. Throughout this section,
let F : {0, 1}n × {0, 1}n → {0, 1}n be a function family and tF the worst-case running time for
computing F .

3.1 A PRF from any WPRF

The IC-construction transforms F : {0, 1}n × {0, 1}n → {0, 1}n into

ICF : ({0, 1}n × {0, 1}n × {0, 1}n)× {0, 1}N → {0, 1}n,

for some fixed N , and is defined by the following algorithm for computing ICF
k0,r,τ0

(x):
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for i = 1 to |x|−1 do
ki = Fki−1

(r)
for i = 1 to |x| do

if x[i] = 1 then
τi = Fki−1

(τi−1)
else

τi = τi−1

return τ|x|

The following theorem states that ICF is a PRF if F is a WPRF. The proof is given in Ap-
pendix A.10 Note that F is invoked at most 2N − 1 times. However, the first N − 1 invocations
can be pre-processed and cached, and hence at most N invocations are necessary or, to be precise,
as many invocations as there are ones in the input.

Theorem 1. For any t, q, and input length N of ICF

Advprf

ICF (t, q) ≤ N ·
(
Advwprf

F (t, q) +
q(q + 1)

2n+1

)
.

Reducing the key material of Naor-Reingold’s PRF based on the DDH assumption. In [19], Naor
and Reingold presented an efficient construction of a PRF based on the DDH assumption. It is
easy to verify, that ICF with F as defined in (1) is the same construction but with a significantly
shorter key by a factor of roughly N (recall that N is the input length of ICF ). To be more precise,
the first for-loop (in the IC-algorithm) generates a sequence k0, . . . , kN−1 of keys from the initial
key (k0, r, τ0) and the second for-loop exactly corresponds to the Naor-Reingold construction with
k0, . . . , kN−1 as its key. The reduction is non-trivial in the sense that k0, . . . , kN−1 is not generated
from a PRG based on F . For instance F−1

k1
(k2) = F−1

k2
(k3) holds which can easily be verified given

k1, k2, k3.
Furthermore, it can be shown that the r-value (of the initial key) need not be kept secret.

Comparisons to the GGM-construction [12]. A PRF can also be constructed by first transforming
the WPRF F into a length doubling PRG and then applying the GGM-construction. To illustrate
that IC is the more efficient construction, let us briefly describe the GGM construction. It trans-
forms a length doubling PRG G (say from n to 2n bits) into a PRF (say from N to n bits) as
follows:

GGMk(x1‖ . . . ‖xN ) := Gx1 ◦ . . . ◦GxN
(k),

where the xi’s are bits, and G0(k) and G1(k) denote the left and right half of G(k), respectively.
To our knowledge, the best construction of a length doubling PRG G from F uses 6 invocations
of F per call to G (see Remark 5 in Appendix B), and for computing G0 and G1 separately one
needs 3 and 4 invocations to F , respectively. To get a PRF with N -bits input and n-bits output,
we hence need roughly 4N invocations of F per call in the worst case (cf. the efficiency of ICF ).

10 We refer to [9] for constructing an n-bit block WPRF F from any WPRF.
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3.2 A VOL-WPRF from any WPRF

The ICT-construction is illustrated in Fig. 1(a) and is defined as

ICTF : {0, 1}2n × {0, 1}n ×N→ {0, 1}∗
(k‖r, x, l) 7→ (

ICF
k,r,x(〈1〉)‖ · · · ‖ ICF

k,r,x(〈dl/ne〉)
)
[1, l],

where 〈i〉 denotes the standard bit encoding of the integer i. The next theorem states that ICTF

is a VOL-WPRF if F is a WPRF. It is easy to verify that for computing ICTF (k‖r, x, l), we
need d = blog2(dl/ne)c calls to F for computing (or pre-computing) the needed keys k0, . . . , kd

(cf. Fig. 1(a)) and further dl/ne calls for computing the output (i.e., one call per output block).

Theorem 2. For any t, q, and µ

Advvol-wprf

ICTF (t, q, µ) ≤ dmax ·Advwprf
F (t′, q2dmax−1 + 1) +

4dmax · q2 − q

2n+1
,

where t′ = t +O( q·lmax

n · tF ), dmax = blog2(dlmax/ne)c + 1, and lmax ≤ µ is the maximum allowed
output length of ICTF .

The proof is provided in Appendix B. It can further be shown that the second half of the key,
namely the r-value, need not be kept secret.

The FCT-construction is flawed. Let us point out that the security proof of the FCT-construction
(in [16]) is flawed. Moreover, since (for instance) the maximal sized output of FCTF for two
generated keys k0, k1 is defined as

x 7→ Fk0(x)‖Fk1(x)‖Fk0 ◦ Fk1(x)‖Fk1 ◦ Fk0(x),

the construction is insecure for WPRFs F that commute (i.e., for which Fk ◦Fk′(x) = Fk′ ◦Fk(x)
for all k, k′, x). Since such WPRFs exist under the DDH assumption (see (1)), a fix of the security
proof would contradict the assumption and thus be a major breakthrough in number theory.

Comparing ICT with other constructions. The idea behind PRT of [9], ERT of [16], and ICT is
to first generate keys k0, . . . , kd from the initial key (and F ) and then to derive the output blocks
sequentially by invoking Fki

(with i ∈ {0, . . . , d}) to the input or a previously computed output
block (see Fig. 1).

ICT is superior to PRT and ERT for three reasons. First, the initial key of ICT is n bits
(plus n bits that may be publicly known) versus 3n bits for PRT and ERT. Second, ICT needs
d invocations of F to generate the keys k0, . . . , kd whereas PRT and ERT needs 2d + 1. Third,
the maximal output size using k0, . . . , kd is (2d+1−1)n for ICT, roughly (3

d+1
2 −1)n for ERT, and

roughly (2
d+1
2

+1−2)n for PRT.11 Allowing pre-processing of the keys, all these constructions need
one call of F per output block, but whereas ICT needs to store say s keys, ERT and PRT needs
to store about d1.26 · se and 2 · s keys, respectively (for the same maximal output length). As we
show next ICT is actually optimal (for constructions of this nature).

11 The latter two values are exact if d is odd. Otherwise (2 · 3 d
2 −1)n and (3 · 2 d

2 −2)n are exact, respectively.
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Fig. 1. The following figure illustrates, (a) the ICT-construction of this paper, (b) the ERT-construction of [16], and
(c) the PRT-construction of [9]. Each figure corresponds to the computation of the output of maximal size using 4
(generated) keys. The key generation is illustrated to the right of the dashed line in each figure. Interestingly, the
generated key sequence, i.e., k0, . . . , k3, is not pseudo-random in (a) as opposed to in (b) and (c) (cf. Sect. 3.1).
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The ICT-construction is optimal. The value ICTF
k0,r(x, l), where l = 3n, is computed by first

computing k1 = Fk0(r) and then returning

y := Fk0(x)‖Fk1(x)‖Fk1 ◦ Fk0(x).

For l = 7n, an extra key k2 = Fk1(r) is derived and then the following is returned

y‖Fk2(x)‖Fk2 ◦ Fk0(x)‖Fk2 ◦ Fk1(x)‖Fk2 ◦ Fk1 ◦ Fk0(x).

Note that for each n-bit output block, the key indices in the evaluations of F occur in increasing
order. A natural question is whether more can be output before a new key needs to be generated,
i.e., can we using one extra call to F output more than ICTF maximally can for a fixed number
of generated keys. The answer turns out to be “no” unless the Inverse Decisional Diffie Hellman
(IDDH) assumption [2] is false, since (under this assumption) there is a WPRF F , described in (3)
below, which with high probability both commutes, i.e., Prk,k′,x[Fk ◦ Fk′(x) = Fk′ ◦ Fk(x)] ≈ 1

4 ,
and is self inverse, i.e., Prk,x[Fk ◦ Fk(x) = x] ≈ 1

2 . If F is used and more is output at least two
output blocks will have the same value with high probability (which is unlikely the case for Rn,∗).
As a consequence ICT is optimal for constructions of this type. The function F is defined as
follows:

F : Zp × G → G and Fk(x) :=
{

xk if x ∈ P1

xk−1
if x ∈ P2

, (3)

where G is a group of prime order p, k−1 satisfies k · k−1 = 1 (mod p), and P1, P2 is a partition
of G in roughly equal sized sets.12 The proof that F is a WPRF if the IDDH assumption holds in
G can easily be derived using results from [2].

4 Applications

By applying our results, we optimize Damg̊ard and Nielsen’s CPA-secure encryption scheme
(see (2)), and propose new methods for achieving non-adaptive and adaptive CCA-security ef-
ficiently.

4.1 Symmetric Encryption

A symmetric encryption scheme SE = (E,D) consists of two efficient algorithms. The (random-
ized) encryption algorithm E maps a key k and a message m to a ciphertext c = Ek(m), and the
deterministic decryption algorithm D maps a key k and a ciphertext c = Ek(m) to the message
m = Dk(c). There are several notions for privacy and integrity of SE (for an overview, we refer
to [6, 14, 3]).

We consider the privacy notion IND-PX-CY for X,Y ∈ {0, 1, 2} as introduced in [14]. The
following is a concrete version of their definition:

Definition 3 (IND-PX-CY). Let M and K denote the message- and key-space, respectively, of
SE = (E,D). The ind-px-cy-advantage of an adversary A for SE and x, y ∈ {0, 1, 2} is defined
as follows (where ⊥ denotes no oracle).
12 In addition it must be efficient to decide whether x ∈ P1 (or not).
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Advind-px-cy
SE, A :=2·Pr

[
k

$←K,(m0,m1)←AO1,O2, b
$←{0, 1}, c← Ek(mb), b̂←AO′

1,O′
2(c) : b̂=b

]
−1,

where (O1,O′
1) =




(⊥,⊥) if x = 0
(Ek,⊥) if x = 1
(Ek, Ek) if x = 2

, (O2,O′
2) =




(⊥,⊥) if y = 0
(Dk,⊥) if y = 1
(Dk,Dk) if y = 2

,

m0,m1 ∈M with |m0| = |m1|, and A does not query O′
2 with c. Furthermore, let

Advind-px-cy
SE (t, q, µ, q′, µ′) := max

A
{Advind-px-cy

SE,A },

where the maximum is taken over all A restricted to time-complexity t, at most q−1 encryption
queries of total length at most (µ−|m0|) bits, and q′ decryption queries of total length at most µ′

bits.13

The IND-P2-C0, IND-P1-C1, and IND-P2-C2 notions are often referred to as IND-CPA, non-
adaptive IND-CCA, and (adaptive) IND-CCA, respectively.14

The strongest integrity notion for encryption schemes is integrity of ciphertexts (INT-CTXT) [6]:

Definition 4 (INT-CTXT). [6] Let K denote the key space of SE = (E,D) and D∗
k an algorithm

that on input c outputs 1 iff c is a valid ciphertext under the key k. Furthermore, let x1, . . . , xq

and y1, . . . , yq′ denote adversary A’s oracle queries to Ek and D∗
k, respectively. Then

Advint-ctxt
SE, A :=Pr

[
k

$←K,AEk,D∗
k , b :=

{
1 If ∃i ∀j : D∗

k(yi) = 1 ∧ yi 6= Ek(xj)
0 otherwise

: b = 1
]

and Advint-ctxt
SE (t, q, µ, q′, µ′) := maxA{Advint-ctxt

SE, A } for all t, q, µ, q′, and µ′, where the maximum
is taken over all A restricted to time-complexity t, at most q queries to Ek of total length at most
µ bits, and at most q′ queries to D∗

k of total length at most µ′ bits.

4.2 A CPA-Secure Encryption Scheme

Damg̊ard and Nielsen [9] introduced the following mode of operation for constructing a IND-P2-
C0 secure encryption scheme based on any VOL-WPRF V : {0, 1}κ × {0, 1}n × N→ {0, 1}n. Let
SE1 denote the symmetric encryption scheme defined by encrypting a message m ∈ {0, 1}∗, under
the key k ∈ {0, 1}κ and some auxiliary uniform randomness r ∈ {0, 1}n, as

(k, r,m) 7→
(
r, Vk(r, |m|) ⊕m

)
. (SE1) (4)

The following proposition, similarly given in [9], states that SE1 is IND-P2-C0-secure if V is a
VOL-WPRF. For completeness, the proof is provided in Appendix C.

Proposition 1. For any t, q, and µ

Advind-p2-c0
SE1

(t, q, µ) ≤ 2 ·Advvol-wprf
V (t, q, µ) +

q − 1
2n−1

.

13 The parameters (q, µ) and (q′, µ′) are omitted when x = 0 and y = 0, respectively.
14 As shown in [14], IND-P1-CY implies IND-P2-CY for Y ∈ {0, 1, 2}. Furthermore, IND-P2-C0 and IND-P2-C2 are

equivalent to FTG-CPA and FTG-CCA, respectively, and FTG implies the ROR, LOR, and SEM notions [3].
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We optimize the above scheme by using ICT as VOL-WPRF (as opposed to PRT, cf. (2)), i.e.,

(k, r,m) 7→
(
r, ICTk(r, |m|) ⊕m

)
. (SE ′1) (5)

The security proof follows directly from Proposition 1 and Theorem 2.

Corollary 1. For any t, q and µ,

Advind-p2-c0
SE ′1 (t, q, µ) ≤ 2 · dmax ·Advwprf

F (t′, q2dmax−1) +
4dmax · q2 + q

2n
,

where t′ = t +O( q·lmax

n · tF ), dmax := blog2(dlmax/ne)c+ 1, and lmax ≤ µ is the maximum allowed
output length of ICTF .

Remark 1. As for the encryption scheme defined by using PRT as VOL-WPRF in (4), this mode
of operation (using ICT as VOL-WPRF instead) needs one invocation of F per message block to
encrypt/decrypt15 as the generated keys that are used can be pre-processed (if no pre-processing
is used ICT is more efficient, cf. Section 3.2). The main advantage of using ICT instead of PRT
is not only that a shorter initial key is needed, the number of generated keys which need to be
securely stored (in case of the pre-processing) is also reduced by a factor of roughly 2. Given
the strong optimality arguments for ICT it appears as this is the best possible for this mode of
operation.

4.3 A Non-Adaptive CCA-Secure Encryption Scheme

To achieve IND-P2-C1-security of SE1 we note that it is sufficient to WMAC the auxiliary random-
ness r. To be precise, for V : {0, 1}κ1 ×{0, 1}n ×N→ {0, 1}∗ and W : {0, 1}κ2 ×{0, 1}n → {0, 1}`
let SE2 denote the encryption scheme defined by encrypting a message m ∈ {0, 1}∗ under the key
(k1, k2) ∈ {0, 1}κ1 × {0, 1}κ2 and some auxiliary uniform randomness r ∈ {0, 1}n as

(k1, k2, r,m) 7→
(
r, Vk1(r, |m|) ⊕m,Wk2(r)

)
. (SE2) (6)

The following theorem states that SE2 is IND-P2-C1-secure if V is a VOL-WPRF and W is a
WMAC. The proof is provided in Appendix C.

Theorem 3. For any t, q, µ, q′, and µ′

Advind-p2-c0
SE2

(t, q, µ) ≤ Advind-p2-c0
SE1

(t, q, µ), and

Advind-p2-c1
SE2

(t, q, µ, q′, µ′) ≤ 2 · q′ ·Advwmac
W (t, q) + Advind-p2-c0

SE1
(t, q, µ).

Remark 2. Recall that if F : {0, 1}n × {0, 1}n → {0, 1}n is a WPRF, then ICF is a PRF and
hence also a (W)MAC. Therefore, by for instance using ICF as WMAC and ICTF as VOL-WPRF
in (6) results in a IND-P2-C1 secure encryption scheme from any WPRF. Since ICF is invoked
on random inputs, n/2 (or 3n/2− 1 in case of no pre-processing) invocations of F will be needed
on average for each call to ICF independently of the message length.
15 Recall that standard modes like CBC and CTR also invoke the underlying block cipher once per message block.
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4.4 A CCA-Secure Encryption Scheme

The well-known encrypt-then-MAC method is a mode of operation for constructing an INT-
CTXT- and IND-P2-C2-secure encryption scheme from any IND-P2-C0-secure encryption scheme
SE = (E,D) and a VIL-MAC W . The idea is to simply encrypt with E and then authenticate
the ciphertext using W [15, 6]. We note that for our purpose (i.e., for the IND-P2-C0 encryption
scheme SE1 having ciphertexts indistinguishable from random) we can weaken the assumption
on W to that of a VIL-WMAC. To be more precise, for V : {0, 1}κ1 × {0, 1}n × N → {0, 1}∗
and W : {0, 1}κ2 × {0, 1}∗ → {0, 1}` let SE3 denote the encryption scheme defined by encrypting
m ∈ {0, 1}∗ under the key (k1, k2) ∈ {0, 1}κ1 × {0, 1}κ2 as

(k1, k2, r,m) 7→
(
r, Vk1(r, |m|) ⊕m︸ ︷︷ ︸

c

,Wk2(r‖c)
)
, (SE3) (7)

where r
$←{0, 1}n is auxiliary randomness. The following theorem states that SE3 is and INT-

CTXT- and IND-P2-C2-secure if V is a VOL-WPRF and W is a VIL-WMAC (or a VIL-MAC).

Theorem 4. For any t, q, µ, q′, and µ′

Advind-p2-c0
SE3

(t, q, µ) ≤ Advind-p2-c0
SE1

(t, q, µ)

Advint-ctxt
SE3

(t, q, µ, q′, µ′) ≤ min
{
Advvol-wprf

V (t, q, µ) +
q2

2n+1
+ q′ ·Advvil-wmac

W (t, q, µ+qn+µ′),

q′ ·Advvil-mac
W (t, q, µ+qδ+µ′)

}
Advind-p2-c2

SE3
(t, q, µ, q′, µ′) ≤ 2 ·Advint-ctxt

SE3
(t, q, µ, q′, µ′) + Advind-p2-c0

SE1
(t, q, µ).

An interesting open question for further research is how efficient constructions there are of
VIL-WMACs from any WPRF (or WMAC). Next, we briefly discuss a general approach [22] (see
also [20, 7]) for constructing a VIL-MAC W (which of course also is a VIL-WMAC) from any
PRF. Combining this with SE3, our PRF ICF , and VOL-WPRF ICTF yields an efficient CCA
secure encryption scheme from any WPRF F . The idea (for the construction of W ) is to first hash
the message using an ε-almost universal hash function16 H :{0, 1}κ′ ×{0, 1}∗ → {0, 1}N and then
to apply ICF : {0, 1}κ × {0, 1}N → {0, 1}n to the result, i.e., Wk,k′(x) := ICF

k ◦Hk′(x).17 This
method is appealing since it is stateless, H exists unconditionally, and the cryptographic function
ICF is only invoked on short inputs.

Remark 3. Damg̊ard and Nielsen [9] also proposed to use the encrypt-then-MAC method for
achieving CCA-security of SE1. However, their approach for constructing the VIL-MAC from any
WPRF introduces a too large overhead for the solution to be practical (the number of applications
of the WPRF per evaluation is in the order of the message length). Our construction of the VIL-
MAC from any n-bit block WPRF is more efficient using at most N (or 2N −1 in case of no
pre-processing) applications of the WPRF independently of the message length, where N � n.18

16 H is ε-almost universal (ε-AU) [21] if for all distinct m,m′ ∈ {0, 1}∗, we have Pr[k← Uκ′ : Hk(m) = Hk(m′)] ≤ ε.
17 For any Q : {0, 1}κ × {0, 1}N → {0, 1}n and ε-AU hash function H : {0, 1}κ′ × {0, 1}∗ → {0, 1}N we have that

Advvil-mac
Q◦H (t, q, µ) ≤ Advprf

Q (t, q) + q(q − 1)ε/2 + 1/2n (see [7]).
18 There are 2

2N -AU hash functions with key length shorter than 4N and maximal input length 2N (see [22]). Hence,
as long as N ∈ ω(log(n)) the collision probability is sufficiently small for our purposes.
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We stress that this additive overhead is of little concern for long messages. Constructing CCA-
secure encryption schemes based on WPRFs that is efficient even for very short messages is an
open problem.

5 Conclusions

We have proposed two constructions (ICT and IC) that are more efficient than prior constructions.
Whereas ICT gives an optimal way to extend the output-length of weak PRFs, IC is a construction
of a PRF from any weak PRF. These results imply an optimization of Damg̊ard and Nielsen’s
CPA-secure encryption scheme based on any weak PRF [9], and the first efficient CCA-secure
encryption scheme based on any weak PRF. It is an open problem to construct a CCA-secure
encryption scheme from any weak PRF, which is efficient even for very short messages. An other
open question is whether more efficient constructions of weak MACs based on weak PRFs exist
(than the once presented in this paper).

Basing the security on weaker primitives gives not only a better security guarantee. Weaker
primitives are also potentially more efficiently implementable than stronger ones. Although several
highly efficient candidates for weak PRFs exist, none were targeted at this particular security
notion explicitly. It is an interesting question for further research how much block-cipher design
can benefit from this weakening of the desired security goal.
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A Proof of Theorem 1

Proof (of Theorem 1). Let Π0 denote the following game for an adversary A with resources (t, q):

(k, r, r′) $←{0, 1}n × {0, 1}n × {0, 1}n, b← A
ICF

k,r,r′ .

Recall the algorithm describing ICF on page 6. For j = {1, . . . , N}, let Π2j−1 be the same game as
Π2j−2, except that Fkj

is replaced by a random function, and let Π2j be the same game as Π2j−1,
except that kj is replaced by a random string and for each query x to ICF the intermediate value
τj is replaced by a random string unless x[1, j] is not a prefix of an earlier query. Finally, note
that Π2N is equivalent to

R←RN,n, b← AR.

Let Sj denote the event that b = 1 in Πj (for j ∈ {0, . . . , 2N}). Then

Advprf

ICF,A
:=
∣∣Pr[S0]−Pr[S2N ]

∣∣ ≤ N∑
j=1

(∣∣Pr[S2j−2]−Pr[S2j−1]
∣∣+ ∣∣Pr[S2j−1]−Pr[S2j]

∣∣)

≤
N∑

j=1

Advwprf
F

(
t,min{q+1, 2j−1+1})+ min

{
(q+1)q
2n+1

,
(2j−1+1)2j−1

2n+1

}

≤ N ·
(
Advwprf

F (t, q + 1) +
q(q + 1)

2n+1

)
,

which follows from the triangle inequality, the easily verified fact that A can be transformed
to a wprf -distinguisher (restricted to time-complexity t and most min(q + 1, 2j−1 + 1) oracle
invocations) which has advantage at least Pr[S2j−2] − Pr[S2j−1], and the fact that Π2j−1 and
Π2j (for all j ∈ {1, . . . , N}) are equivalent games as long as r and the assignments of the vari-
able τj−1 in the algorithm are all distinct. The probability of this event is upper bounded by
min

{
(q+1)q/2n+1, (2j−1+1)2j−1/2n+1

}
, as these values are at most min{q+1, 2j−1+1} and dis-

tributed uniformly at random. ut
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B Proof of Theorem 2 (and two PRGs from any WPRF)

For any function f : {0, 1}n → {0, 1}n and bitstring x = x1‖ · · · ‖xs ∈ {0, 1}sn, where x1, . . . , xs

are n-bit blocks, let f(x) := f(x1)‖ · · · ‖f(xq). If D1 and D2 are two probability distributions over
S, then let the distinguishing advantage of a distinguisher A be defined as

AdvD1,D2

A :=
∣∣∣Pr[s← D1, b← A(s) : b = 1]− Pr[s← D2, b← A(s) : b = 1]

∣∣∣ ,
and the maximal distinguishing advantage as

AdvD1,D2(t) := max
A
{AdvD1,D2

A },

where the maximum is taken over all D with time-complexity t.
Before we present the proof of Theorem 2, let us consider the following two constructions of

PRGs from any WPRF F : {0, 1}n × {0, 1}n → {0, 1}n and any nonzero s, d ∈ N:

GF
s : {0, 1}n × {0, 1}n × {0, 1}sn → {0, 1}n × {0, 1}n × {0, 1}2sn

(k, r,x) 7→ (Fk(r), r,x‖Fk(x)) (8)

GF
s,d : {0, 1}n × {0, 1}n × {0, 1}sn → {0, 1}n × {0, 1}n × {0, 1}2dsn

(k, r,x) 7→ GF
s2(d−2) ◦GF

s2d−1 ◦ · · · ◦GF
s20(k, r,x). (9)

The following two lemmata state that the above constructions are PRGs if F is a WPRF.

Lemma 1. For any t and s > 0

Advprg
GF

s
(t) ≤ Advwprf

F (t, s + 1) +
s(s + 1)

2n+1
.

Proof. Consider the following three distributions:

D1 := Fk(r) ‖ r ‖x ‖Fk(x), D2 := R(r) ‖ r ‖x ‖R(x), and D3 := U2(s+1)n,

where r‖x← U (s+1)n and R←Rn,n. Then

Advprg
GF

s
(t) = AdvD1,D3(t) ≤ AdvD1,D2(t) + AdvD2,D3(t)

≤Advwprf
F (t, s + 1) +

s(s + 1)
2n+1

,

which follows directly from the triangle inequality, the fact that D2 and D3 are the same distribu-
tions as long as the values r, x1, . . . , xs are all distinct (an event upper bounded by s(s+1)/2n+1),
and the trivial fact that any distinguisher for D1, D2 can be transformed into a wprf-adversary
(for F ) which makes s + 1 oracle invocations, and has the same advantage and time-complexity.

ut
Lemma 2. For any t and s, d > 0

Advprg

GF
s,d

(t) ≤ d ·Advwprf
F (t, s2d−1 + 1) +

s2 · (4d − 1)
2n+1

.
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Proof. The proof follows from a simple hybrid argument and Lemma 1.

Advprg

GF
s,d

(t) ≤
d−1∑
i=0

Advprg

GF
s2i

(t) ≤
d−1∑
i=0

(
Advwprf

F (t, s2i + 1) +
s2i (s2i + 1)

2n+1

)

≤ d ·Advwprf
F (t, s2d−1 + 1) +

1
2n+1

(
s2 (4d − 1)

3
+ s · (2d − 1)

)
︸ ︷︷ ︸

≤s2·(4d−1)

.

ut
Proof (of Theorem 2). Note that the ICT-construction can similarly be defined as follows. For
any l ∈ N, let d = blog2(dl/ne)c + 1. Then

ICTF : {0, 1}2n × {0, 1}n × N→ {0, 1}∗
(k‖r, x, l) 7→ G̃F

1,d(k, r, x)[1, l],

where G̃F
s,d(k, r,x) is defined by GF

s,d(k, r,x) = (k′, r,x‖G̃F
s,d(k, r,x)), i.e., the first two output-

components of GF
s,d(k, r,x) and x are not an output.

Let r, k, x1, . . . , xq ← Un, li ∈ N the length of the ith output, lmax the maximal allowed
output length of ICTF , and dmax := blog2(dlmax/ne)c + 1. For R ← Rn,∗, consider the following
distributions where A v B indicates that distribution A can be sampled with help of B, by first
sampling from B and then removing and reranging bits of the sample.

D1 := x1‖ · · · ‖xq‖R(x1, l1) ‖ · · · ‖ R(xq, lq)
D2 := x1‖ · · · ‖xq‖ ICTF (k‖r, x1, l1) ‖ · · · ‖ ICTF (k‖r, xq , lq)

= x1‖ · · · ‖xq‖ G̃F
1, dmax

(k, r, x1)[1, l1] ‖ · · · ‖ G̃F
1, dmax

(k, r, xq)[1, lq ]

v x1‖ · · · ‖xq‖ G̃F
q,dmax

(k, r, x1‖ · · · ‖xq) v GF
q,dmax

(k, r,x) =: D′
2

D3 := Uqn+l1+···+lq v U (2+q2dmax )·n =: D′
3 .

By the triangle inequality and Lemma 2 it follows that when19 t′ = t +O( q·lmax

n · tF )

Advvol-wprf

ICTF (t, q, µ) ≤AdvD1,D3(t′) + AdvD′
2,D′

3(t′) ≤ q(q − 1)
2n+1

+ Advprg

GF
q,dmax

(t′)

≤ q(q − 1)
2n+1

+ d ·Advwprf
F (t′, s2dmax−1 + 1) +

q2 · (4dmax − 1)
2n+1

. ut
Remark 4 (Reduction of key material). All the (initial) keys of our constructions (in this paper)
can be generated from a WPRF F : {0, 1}n×{0, 1}n → {0, 1}n, two publicly random domain points
(i.e., two n-bit strings r and r′), and a secret key k of F . To generate t (n-bit) keys k1, . . . , kt one
simply computes k1‖ . . . ‖kt := ICTF

k‖r(r
′, tn). This follows from the fact that

(r, r′, k) 7→ r‖r′‖ ICTF
k‖r(r

′, tn) = GF
1,dlog2(t)e(k, r, r′)[n+1, (t+3)n] (10)

is a PRG for any fixed t > 1, according to Lemma 2. This key generation method is more efficient
and uses a shorter key than the method presented in [9].

Remark 5. To construct a length doubling PRG from a WPRF F : {0, 1}n × {0, 1}n → {0, 1}n,
we simply set t = 4 in (10). This results in a PRG {0, 1}3n → {0, 1}6n which invokes F 6 times
(i.e., in the computation of ICTF

k‖r(r
′, 4n)).

19 The worst-case running time for sampling D1, D′2, or D′3 is in O( q·lmax
n
· tF ).
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C Proof of Proposition 1, Theorem 3, and Theorem 4

Proof (of Proposition 1). Recall that SE1 = (E,D) is defined as Ek(m) := (r, Vk(r, |m|) ⊕ m),
where V is a VOL function family. Let Π0 denote the IND-P2-C0 game for any adversary A with
resources (t, q, µ), i.e.,

k
$←{0, 1}κ; (x0, x1)← AEk ; b

$←{0, 1}; y ← Ek(xb); b̂← AEk(y).

Furthermore, let Π1 be the same game as Π0, except that Vk is replaced by Rn,*. Let Π2 be the
same game as Π1, except that the input y to the adversary is replaced by a truly random string
y′ of the same length. For i ∈ {0, 1, 2} let Si denote the event that b̂ = b in game Πi. Then

Advind-p2-c0
SE1,A

:= 2 · Pr[S0]− 1 = 2

(
Pr[S2] +

1∑
i=0

Pr[Si]− Pr[Si+1]

)
− 1

≤ 2 ·
(

1
2

+ Advvol-wprf
V (t, q, µ) +

q − 1
2n

)
− 1,

where the inequality follows from the easily verified fact that A implies a distinguisher A′ for V
with the same resources and advantage at least Pr[S0] − Pr[S1] (A′ simply runs A answering its
oracle queries with help of its own oracle in place of V and returns whatever A does), the fact that
Π1 and Π2 are equivalent games as long as the input to Rn,* in the computation of y is different
from the other inputs to Rn,* (an event upper bounded by (q−1)/2n), and that Pr[S2] = 1/2 since
b is independent of y. ut

Proof (of Theorem 3). Recall that SE2 = (E,D) is defined as

Ek1,k2(m) :=
(
r, Vk1(r, |m|) ⊕m,Wk2(r)

)
,

where V is a VOL-WPRF and W is a WMAC. We prove the second inequality (the proof of the
first inequality is straight forward and therefore omitted).

Let Π0 denote the IND-P2-C1 game for any adversary A with resources (t, q, µ, q′, µ′), i.e.,

(k1, k2)
$←{0, 1}κ1×{0, 1}κ2 ,

(x0, x1)← AEk1,k2
,Dk1,k2 ,

b
$←{0, 1}, y ← Ek1,k2(xb),

b̂← AEk1,k2 (y).

Furthermore, let Π1 be the same game as Π0, except that all decryption queries, for which the
auxiliary random part r is distinct from the auxiliary random parts r1, r2, . . . of the ciphertexts
received from the encryption oracle, are rejected. Furthermore, let Si, for i ∈ {0, 1}, denote the
event that b̂ = b in Πi. Then

Advind-p2-c1
SE2,A := 2 · Pr[S0]− 1 = 2 ·

(
Pr[S0]− Pr[S1]

)
+ 2 · Pr[S1]− 1

≤ 2 · Pr[E ] + Advind-p2-c0
SE2

(t, q, µ),
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where E denotes the event that A queries a valid ciphertext to its decryption oracle for which the
r-value is distinct from the once returned from the encryption oracle. The inequality follows from
the fact that Π0 and Π1 are equivalent games unless E occurs and that the decryption queries
do not help the adversary in Π1 since the adversary can simulate the decryption oracle itself. It
remains to show that

Pr[E ] ≤ q′ ·Advwmac
W (t, q).

This follows from the fact that A can be transformed to a forger A′ for W with advantage at least
Pr[E ]/q′ using the resources (t, q) as follows. A′ picks a random i ∈ Zq′ and runs A answering
its encryption oracle queries with help of its own oracle and rejecting the first i queries to the
decryption oracle. If A presents its challenge input (m0,m1), A′ flips a coin, encrypts mb with
help of its own oracle, and returns the resulting ciphertext to A. A′ returns A’s (i + 1)-th query
to the decryption oracle as its forgery. ut

Proof (of Theorem 4). Recall that SE3 = (E,D) is defined as

Ek1,k2(m) :=
(
r, Vk1(r, |m|) ⊕m︸ ︷︷ ︸

c

,Wk2(r‖c)
)
.

We prove the second and third inequality (we omit the proof of the first as it is straight forward).
Let Π0 denote the INT-CTXT game for any adversary A with resources (t, q, µ, q′, µ′), i.e.,

(k1, k2)
$←{0, 1}κ1 × {0, 1}κ2 , A

Ek1,k2
,D∗

k1,k2 .

Let Π1 denote the same game as Π0 except that V has been replaced by Rn,∗. Furthermore, let
Π2 be the same game as Π1 except that the output of Rn,∗ is replaced by a truly random string
(no matter of the input). Let E i denote the event that D∗ outputs 1 in Πi for i ∈ {0, 1, 2}. Then

Advint-ctxt
SE3,A = Pr[E0] ≤

∣∣∣Pr[E0]− Pr[E1]
∣∣∣+ ∣∣∣Pr[E1]− Pr[E2]

∣∣∣+ Pr[E2]

≤Advvol-wprf
V (t, q, µ) +

(q − 1)q
2n+1

+ q′ ·Advvil-wmac
W (t, q, µ + qn + µ′).

The inequality follows from the following three facts. First, A implies a vol-wprf-distinguisher
A′ for V with advantage |Pr[E0]− Pr[E1]| and resources (t, q, µ). A′ simply runs A answering its
oracle queries with help of its own oracle in place of V and iff A is successful A′ outputs 1. Second,
Π1 and Π2 are equivalent games unless the auxiliary random r-values are not all distinct, an event
upper bounded by q(q − 1)/2n+1. Finally, from A we can construct a vil-wmac-forger A′′ for W
with advantage Pr[E2]/q′ and resources (t, q, µ + qn + µ′). A′′ picks a random element i ∈ Zq′ and
simply runs A answering its queries to E with help of its own oracle and rejecting its first i queries
to D∗. When A makes its (i+1)-th query to D∗, A′′ returns it as its forgery. Similarly, one can show
that A implies a vil-mac-forger for W with advantage Pr[E0]/q′ and resources (t, q, µ + qn + µ′).
Hence

Advint-ctxt
SE3,A = Pr[E0] ≤ q′ ·Advvil-mac

W (t, q, µ + qn + µ′).
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Let Π ′
0 denote the IND-P2-C2 game for any adversary A with resources (t, q, µ, q′, µ′), i.e.,

(k1, k2)
$←{0, 1}κ1×{0, 1}κ2,

(x0, x1)←AEk1,k2
,Dk1,k2,

b
$←{0, 1}, y←Ek1,k2(xb),

b̂←AEk1,k2
,Dk1,k2 (y).

Let Π ′
1 be the same game as Π ′

0, except that all decryption queries are rejected. Moreover, let Si

for i ∈ {0, 1} denote the event that b̂ = b in Π ′
i. Then

Advind-p2-c2
SE3,A := 2 · Pr[S0]− 1 = 2 ·

(
Pr[S0]− Pr[S1]

)
+ 2 · Pr[S1]− 1

≤ 2 · Pr[E ] + Advind-p2-c0
SE3

(t, q, µ),

where E denotes the event that a query to the decryption oracle in Π ′
1 (or Π ′

0) is correctly formed
(and hence not rejected). The inequality follows from the the fact that Π ′

0 and Π ′
1 are equivalent

games unless E occurs, and since Π ′
1 is the IND-P2-C0 game. It remains to show that

Pr[E ] ≤ Advint-ctxt
SE3

(t, q, µ, q′, µ′).

This is the case as A can trivially be transformed into a int-ctxt-adversary A′′′ (for SE3) using
the same resources and having advantage Pr[E ]. A′′′ simply runs A and forwards the encryption
(decryption) queries to its own encryption (decryption*) oracle. If A presents its challenge input
(m0,m1), A′′′ flips a coin, queries its encryption oracle with mb, and returns the result to A. ut
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