
A Cryptosystem Based on Hidden Order Groups and Its

Applications in Highly Dynamic Group Key Agreement

Amitabh Saxena and Ben Soh
Department of Computer Science and Computer Engineering

La Trobe University
VIC, Australia 3086

February 23, 2006

Abstract

Let G1 be a cyclic multiplicative group of order n. It is known that the Diffie-Hellman problem
is random self-reducible in G1 with respect to a fixed generator g if φ(n) is known. That is, given
g, gx ∈ G1 and having oracle access to a ‘Diffie-Hellman Problem’ solver with fixed generator g, it
is possible to compute g1/x ∈ G1 in polynomial time. On the other hand, it is not known if such
a reduction exists when φ(n) is unknown. We exploit this “gap” to construct a cryptosystem based
on hidden order groups by presenting a practical implementation of a novel cryptographic primitive
called Strong Associative One-Way Function (SAOWF). SAOWFs have interesting applications like
one-round group key agreement. We demonstrate this by presenting an efficient group key agreement
protocol for dynamic ad-hoc groups. Our cryptosystem can be considered as a combination of the
Diffie-Hellman and RSA cryptosystems.

1 Introduction

The problem of efficient key agreement in ad-hoc groups is a challenging problem, primarily because
membership in such groups does not follow any specified pattern. We refer the reader to [1, 2] for
a survey of key agreement protocols for ad-hoc groups. In the literature, most group key agreement
protocols are classified in three categories (a) Centralized, (b) Distributed (i.e. tree based) and (c)
Fully Contributory. In this paper, we describe a method that is fully contributory, yet it uses a central
controller. We elaborate this below.

The original two-party Diffie-Hellman key exchange [3] can be extended to fully contributory multi-
party key exchange as demonstrated in [4] using the Group Diffie-Hellman (GDH) protocol. However,
most protocols based on GDH require many rounds of sequential messages to be exchanged between
members.

Centralized protocols, on the other hand have their own disadvantages; the central controller needs to
maintain a large amount of state information for the groups it is managing. Our approach is to combine
the two methods and design an efficient one-round key agreement protocol where the central controller
does not maintain any state information.

Our protocol uses a central controller in computing the shared group key. However, the central
controller is not responsible for key distribution and is only used as an “oracle” (i.e. a computing device)
with public access. Users do not require secure channels in communicating with this oracle. Additionally,
we provide a method to verify that the oracle is performing correctly. In our protocol, this oracle has
some trapdoor information that can be efficiently used to compute partial public keys that are sent to
users over an insecure public channel. Thus, our protocol can be directly converted into a de-centralized
(or distributed) one simply by sharing this trapdoor information between a number of trusted authorities
and allowing multiple “copies” of this oracle to function simultaneously. In effect, we present an entirely
new way of doing secure group communication which is illustrated in figure 1.

1

In our model, secure group communication is facilitated by the Oracle. Assuming that public
keys are known in advance, users can use this Oracle to compute a shared secret group key
independently of the other users such that no active or passive adversary has the ability to
compute the this key. Essentially, users use the oracle as a “verifiable computing device”. We
will use both the active and passive adversaries to relay messages between the users and the
computing device.

Figure 1: Secure group communication in our model.

Our basic idea arises due to the key agreement protocols of Rabi and Sherman [5] based on hypothetical
primitives which we briefly discuss in the next section.

2 Preliminaries

Rabi and Sherman first proposed the idea of one-round group key agreement using hypothetical cryp-
tographic primitives called Strong Associative One-Way Functions (SAOWFs) [5] and our group-key
protocol is based on theirs. Before presenting our protocol, we first discuss some important properties of
SAOWFs.

2.1 Strong Associative One Way Functions

Let G be a finite abelian group with respect to the operation ?. The mapping f : G×G 7→ G defined by
f(a, b) = a ? b for a, b ∈ G has the following properties:

1. f(f(a, b), c) = f(a, f(b, c))∀a, b, c ∈ G [Associativity]

2

2. f(a, b) = f(b, a)∀a, b ∈ G [Commutativity]

3. There exists a unique identity element i ∈ G such that f(a, i) = a ∀a ∈ G.

4. For each a ∈ G, there exists a unique element b ∈ G such that f(a, b) = i. We say b is the inverse
of a and denote it by a−1 when there is no ambiguity in the notation.

The above properties come for “free” in any abelian group. We now additionally want to enforce the
following properties on f :

1. Computability: For all a, b ∈ G, f(a, b) must be efficiently computable.

2. Strong Non-Invertibility: Let a, b
R← G and c = f(a, b) ∈ G. Given a, c, computing b = f(c, a−1)

must be infeasible.

A function of the above type is called a Strong Associative One-Way Function (SAOWF).1 Although
functions exhibiting such behavior in the worst case can be easily constructed under the P 6= NP
assumption, we require the above conditions to hold in the average case (significant to cryptography).

The strong non-invertibility condition requires that for any c
R← image(f), inverting f with respect to

a given preimage a must be infeasible in the average case. However, this condition does not say anything
about weak non-invertibility, which requires that computing any preimage of c must be infeasible. In
fact, the results of [6] prove that there exists a one-way function that is strongly non-invertible but not
weakly non-invertible.2 In this paper, we do not enforce the weak non-invertibility requirement. Rather,
we allow the function to be weakly invertible. It turns out that our construction of SAOWF is strongly
non-invertible, yet it is weakly invertible. Our construction also demonstrates an example of a Group
with Infeasible Inversion (GII) [8].

Clearly, the above restrictions imply that computing inverses in G must be infeasible. Since we are
working in a finite group, the only way to achieve this is to keep the order of the group hidden. This is
the main idea behind our construction.

2.2 Oracle Based Construction of SAOWFs

We demonstrate a practical implementation of SAOWFs using a technique called Verifiable Oracles.
Informally, this is described as follows:

1. There is a central authority (the oracle) responsible for setting up the parameters of G.

2. Only the oracle has the ability to compute f . Thus we must give all instances of pairs (a, b) to the
oracle to compute f(a, b). The inputs must be of a special form and only the oracle has the ability
to decide if the input pairs are valid or not.

3. In certain special cases (when the elements of G have been sampled by us), we can compute f
directly without help from the oracle.

4. We can mask the pairs (a, b) by creating new pairs (a′, b′) and ask the oracle to compute f(a′, b′).
From the oracle’s output, f(a, b) can be directly computed. Additionally, even the oracle does not
know the value of f(a, b). We use Chaum’s blinding technique [9] for this.

5. The output of the oracle can be verified.
1Most researchers differentiate between commutative and non-commutative SAOWFs. For simplicity, in this paper we

drop the non-commutativity requirement and assume that all SAOWFs considered are necessarily commutative.
2For completeness, we also define a Weak Associative One-Way Function (WAOWF) as one which is weakly non-

invertible. A WAOWF may not be a SAOWF and vice-versa. For a discussion on the worst case analysis of Associative
One-Way Functions, see [7].

3

Such oracle based constructions are often called “black box” constructions and until now it has
been an open problem to present a practical example of a black box (or oracle-based) construction of
an SAOWF [8]. In this paper, we present the first practical example of a black box SAOWF using a
cryptosystem based on hidden order groups. The construction is possible due to certain homomorphic
properties of the group used in the Diffie-Hellman key exchange [3] and the the group used in the RSA
cryptosystem [10] for appropriately chosen parameters.

3 Our Construction

Our construction makes use of composite order groups that support a bilinear map. The bilinearity is
required to verify the outputs of the oracle for protection against active adversaries. On the other hand,
if protection is only required against passive adversaries, our construction works with any finite field
having a composite order multiplicative subgroup. We use the following notation.

3.1 Bilinear Pairings

Let G1 and G2 be two cyclic multiplicative groups both of the same composite order n such that computing
discrete logarithms in G1 and G2 is intractable. A bilinear pairing is a map ê : G1×G1 7→ G2 that satisfies
the following properties:

1. Bilinearity : ê(ax, by) = ê(a, b)xy ∀a, b ∈ G1 and x, y ∈ Zn.

2. Non-degeneracy : If g is a generator of G1 then ê(g, g) is a generator of G2.

3. Computability : The map ê is efficiently computable.

See, for example [11] for details on generating composite order bilinear maps for any given n that is
square free. We will assume that n = pq where p, q are large primes such that given the product n = pq,
factoring n is intractable. Let g be some fixed generator of G1. We define the following problems in G1.

A. Diffie-Hellman Problem (DHP(g,G1)): Given gx, gy ∈ G1 output gxy ∈ G1.

B. Decision Diffie-Hellman Problem (DDHP(g,G1)): Given gx, gy, gz ∈ G1 output 1 if z = xy ∈ Zn;
otherwise output 0.

C. Inverse Diffie-Hellman Problem (IDHP(g,G1)): Given gx ∈ G1 output g1/x ∈ G1.

Lemma 1. DDHP(g,G1) (the Decision Diffie-Hellman Problem) is easy

Proof. Clearly, from the properties of the mapping ê we have z = xy ∈ Zn if and only if ê(g, gz) =
ê(gx, gy). Thus, solving DDHP(g,G1) is equivalent to computing the mapping ê twice.

The security of our scheme depends on the following two hardness assumptions. We will return to
the security of our construction in section 6.

1. IDHP(g,G1) is intractable.

2. Breaking RSA with modulus n and public exponent e is intractable for anyone who does not know
the factorization of n. That is, for some e ∈ Z∗φ(n) computing x from xe ∈ Z∗n is infeasible. We call
this the RSA(e,n) problem.

Our goal is to construct an implementation of an SAOWF using this setup. The oracle is responsible for
generating the system parameters.

4

3.2 Initial Setup (Parameter Generation)

1. The oracle O sets a security parameter τ and generates p, q
R← N where p, q are large distinct primes

of ≈ τ bits each. Let n = pq. The oracle generates the parameters (ê, G1, G2) where G1, G2 are
descriptions of two groups both of order n and ê : G1 × G1 7→ G2 is a bilinear map as defined in
section 3.1. It then picks a random g

R← G1 such that g is a generator of G1.

2. The oracle computes φ(n) = (p−1)(q−1) and generates a pair e, d
R← Z∗φ(n) such that ed = 1 ∈ Z∗φ(n).

Here, (e, d) will be used exactly like an RSA key pair.

3. The oracle generates α
R← Z∗n, computes h = gα ∈ G1 and β = αe ∈ Z∗n.

4. The system parameters (ê, G1, G2, n, g, e, h, β) are made public in an authentic way. The oracle
keeps d secret.

3.3 Constructing a SAOWF

We construct an SAOWF using the oracle in four steps:

1. First define the mapping f1 : Z∗n 7→ Z∗n as f1(x) = xe ∈ Z∗n for any x ∈ Z∗n. This mapping is the
well known RSA function and is bijective. Thus the inverse mapping f−1

1 is also well defined (even
if not efficiently computable).

2. Now consider the set S (G1 defined as

S = {x|x = gy ∈ G1 for some y ∈ Z∗n}

Clearly, |S| = φ(n) = |Z∗n| and S is exactly the set of elements of G1 having order n. We will now
attempt to define a group structure using S.

3. Define the mapping f2 : Z∗n 7→ S as f2(y) = gf−1
1 (y) ∈ G1 for any y ∈ Z∗n. We note that f2 is bijective

and so the inverse map f−1
2 is also well defined. We see that f2 has the property f2(f1(a)) = ga or

f−1
2 (ga) = f1(a). Additionally,

(a) Both f2(f1(a)) and f1(a) are efficiently computable but neither of f2(a) or f−1
1 (a) are efficiently

computable without knowledge of the factors of n.

(b) For any x ∈ S computing f−1
2 (x) is also infeasible if computing discrete logarithms in G1 to

base g is intractable (because an algorithm that computes f−1
2 can be directly converted into

an algorithm that computes discrete logarithms in G1 to base g).

4. Define the set G (S× Z∗n as
G = {(x, y)|x = f2(y)}

We define a binary commutative operation ? on G using the mapping ? : G × G 7→ G as follows.
Given any two pairs A,B ∈ G, we let A = (xa, ya) and B = (xb, yb) where xa, xb ∈ S and ya, yb ∈ Z∗n.
Then C = (xc, yc) = A ? B is defined as follows:

yc = yayb ∈ Z∗n

and
xc = xa

f−1
1 (yb) = gf−1

1 (ya)f−1
1 (yb) = xb

f−1
1 (ya) ∈ G1 (1)

The reader can verify that ? is associative and commutative and that (g, 1) ∈ G is the identity
element. Also, since all the exponents are in Z∗n, every element of G is invertible with respect to ?
(i.e. every element has an inverse). In other words, G forms an abelian group with respect to the ?
operation. The order of this group |G| = φ(n) is effectively hidden from anyone who does not know
the factors of n.

5

For any A ∈ G, let the symbol Ai denote A ? A ? . . . A (i times). The inverse of A is denoted by
A−1. It can be trivially verified that the following are also true: Ai ? Aj = Ai+j ; (Ai)j = Aij ;
A ? A−1 = A0 = (g, 1) and; (Ai ? Bj)k = Aij ? Bjk, for all A,B ∈ G and all i, j, k in Z.

3.4 Computing the SAOWF

We now enumerate some important properties of (G, ?) which enable us to construct an SAOWF that
allows efficient “forward” computation without allowing the corresponding “reverse” computation.

1. G is efficiently sampleable. To sample from G, first generate random r
R← Z∗n. Then compute

x = f2(f1(r)) = gr ∈ G1 and y = f1(r) = re ∈ Z∗n. We see that (x, y) ∈ G. In this case we call r,
the sampling information for (x, y).

2. Let A,B ∈ G. Anyone who has sampled either one of A or B can compute A ? B efficiently. To see
this, let A = (xa, ya) be sampled using the sampling information ra ∈ Z∗n. That is, xa = gra ∈ G1

and ya = re
a ∈ Z∗n. Also let B = (xb, yb). We can compute C = A ? B as follows. Let C = (xc, yc).

Then xc = xra

b ∈ G1 and yc = yayb ∈ Z∗n.

3. Similarly, anyone who has sampled A ∈ G can also compute A−1 ? B for any B ∈ G because if
r ∈ Z∗n is the sampling information for A then r−1 ∈ Z∗n is the sampling information for A−1. Also,
for any i ∈ N, ri ∈ Z∗n is the sampling information for Ai ∈ G.

4. Let A,B ∈ G be given. For anyone who has not sampled at least one of {A,B,A−1, B−1} computing
A ? B is intractable if breaking RSA is hard.

5. Let A,B ∈ G be given. For anyone who has not sampled at least one of {A,A−1} computing
A−1 ? B is intractable if breaking RSA is hard.

6. It is infeasible to decide if any given pair (x, y) ∈ G unless breaking RSA is easy. However, it
appears that even the ability to decide membership of G does not help in breaking RSA.

7. Let A,B ∈ G. The oracle O has the ability to compute A ? B since it knows the secret information
d (effectively the factors of n) which can be used to compute f−1. Computing A ? B is then
straightforward using equation 1.

8. Additionally, it is possible to use the oracle to compute A?B for any A,B ∈ G such that the oracle
does not know either of A or B using the following blinding technique.

1. The input is A,B ∈ G such that none of {A,B,A−1, B−1} have been sampled by us.

2. Sample A1, B1
R← G. Thus we can compute A′ = A ? A1 and B′ = B ? B1. [See items 1 and 2

in the above discussion].

3. Use the oracle to output C ′ = O(A′, B′) = A′ ? B′. [See item 7 above].

4. Compute C = A−1
1 ? B−1

1 ? C ′ and output C = A ? B. [See item 3 above].

9. Due to the properties of bilinear maps, it is possible to verify the outputs of the oracle as follows.
Let A = (xa, ya) and B = (xb, yb) such that A,B ∈ G. Let C = (xc, yc) ∈ S × Z∗n be the
output of the oracle with input (A,B). Clearly, C = A ? B if and only if yc = yayb ∈ Z∗n and
ê(g, xc) = ê(xa, xb) ∈ G2. We will use this technique to protect against active adversaries.

10. Of the public values in the initial setup, the pair (h, β) ∈ G.

6

3.5 Oracle Functionality

The oracle O works as follows.

1. For any inputs A,B, if (A,B) /∈ G2, the oracle sets C = (g, 1) ∈ G.

2. On the other hand, if (A,B) ∈ G2 (i.e. the inputs are valid), the oracle computes C = A ? B ∈ G
using the method defined above.

3. It replies with C = O(A,B).

Thus, the oracle can also be used to decide if any given pair (x, y) ∈ G. Additionally, given any
A ∈ G, we can use the oracle to compute Ai for any i ∈ N using the “repeated squaring” method. The
replies of the oracle are assumed to be instantaneous.

The main idea behind out schemes is that the oracle allows us to compute ? (i.e. multiply in G) but
does not allows us to invert ? (i.e. divide). From this point onwards, we will use the notation O(A,B)
and A ? B interchangeably for any A,B ∈ G.

We emphasize that throughout this discussion we will assume that calls to the oracle are public and
any passive adversary is allowed to observe both the input and output. In case we require to use the
oracle to compute ? on secret information, we must blind the inputs using the method described in
section 3.4, item 8 to keep the values hidden from passive adversaries. Since we can verify the outputs of
the oracle (see section 3.4, item 9) we are also protected from active adversaries.

4 Group Key Agreement

We will use the protocol of Rabi and Sherman [5] to compute a shared group key. The operation ? on
G acts as a SAOWF. For any A,B ∈ G, if neither of A or B have been sampled by the us, we will use
the oracle to compute A ? B. Without loss of generality, we demonstrate how four users can compute a
shared key. The reader may find it useful to refer back to figure 1 at this time.

4.1 Key Agreement Protocol

The four users (1, 2, 3, 4) can use the oracle to compute a secret key as follows:

1. Recall that, from the set of public parameters, (h, β) ∈ G. Denote this value by P . The four
users (1, 2, 3, 4) generate private keys X1, X2, X3, X4

R← G respectively using the sampling method
described above. The sampling information is also kept as part of the private key.

2. Each user i computes the public key Yi = Xi ?P . This computation is possible because each private
key Xi has been sampled by user i. Thus, there are four public keys Y1, Y2, Y3, Y4 ∈ G. These keys
are long term (i.e. any smaller subset of the four users can use the same public keys to compute
their shared key).

3. User 1 uses the oracle to compute the partial public key Y234 = Y2 ? Y3 ? Y4 = X2 ? X3 ? X4 ? P 3

by making 2 calls; i.e. by computing Y234 = O(O(Y2, Y3), Y4). We note that everyone is allowed to
compute this partial public key Y234.

4. The shared key K1234 = X1 ? Y234 = X1 ? X2 ? X3 ? X4 ? P 3 can then be directly computed by user
1 without the help of the oracle using the secret sampling information for generating X1. User 2
computes K1234 independently of user 1 as K1234 = X2 ? Y134 = X2 ?O(O(Y1, Y3), Y4).

5. Likewise, the remaining two users can compute the same secret key K1234 using the oracle and their
secret sampling information. No other user except the oracle O has the ability to compute this key.

7

4.2 Join and Merge Operations

Clearly, members can join groups arbitrarily and groups can merge arbitrarily. Rather than giving a
formal model for this, we demonstrate this by the following examples.

Example 1: User 5 joins the group of users (1, 2, 3, 4) with group key created above.

1. User 5 has private key X5 ∈ G and public key Y5 = X5 ? P ∈ G.

2. To join the group, user 5 computes K12345 = X5 ?O(O(O(Y1, Y2), Y3), Y4) ∈ G.

3. Users 1 computes K12345 = X1 ?O(Y234, Y5). Similarly users (2, 3, 4) compute K12345 using their
private keys, partial public keys and Y5 by making one oracle call each.

Example 2: The group of users (1, 2, 3, 4) merges with the group of users (4, 5, 6).

4. Denote the set of users {1, 2, 3, 4} by sa and the set of users {4, 5, 6} by sb. The private key of sa

is Ka = K1234 and the public key is Ya = Y1234 = Y1 ? Y2 ? Y3 ? Y4. Similarly, the private key of sb

is Kb = K456 and the public key is Yb = Y456 = Y4 ? Y5 ? Y6.

5. Each member of sa computes Kab = Ka ?Yb using the oracle after blinding Ka, while each member
of Kb computes Kab = Kb ? Ya using the oracle after blinding Kb. User 4, who is common to sa

and sb can choose to compute Kab either way. The group public key corresponding to the group
private key Kab is Yab = Ya ? Yb.

4.3 Forward Secrecy

Observe that due to the above mentioned merge procedure, the compromise of the group key of a set sa of
users compromises the group key of any other set sc) sa. To overcome this weakness, if the private key
of group sa is compromised, at least one member of sa must compute a new public-private key pair. We
also note that compromise of a group private key does not compromise the private keys of any members
of that group.

4.4 Overview Of The Above Scheme

The above protocol is a constructive existence proof of a SAOWF because we construct the one-way
function using an oracle. Additionally, an attacker is allowed to make unlimited calls to the oracle
(limited only by time). Thus, we call our primitive an Oracle based-SAOWF (or O-SAOWF). We note
the following points about the cryptosystem.

1. Complexity : For a group of m users, a total of m − 2 oracle calls are required for each user to
compute the shared key. Thus a total of m(m− 2) calls are required for all the m users. However,
no specific ordering is required between the users. A user i may choose to compute the shared key
after a ciphertext is received. Additionally, oracle calls can be sent in a batch.

2. Universal Key Escrow : The oracle has universal escrow capability. Given a public key Yi = Xi ? P
for some private key Xi ∈ G, the oracle can invert ? and compute Xi.

3. Non-interactivity : Assuming that all the public keys Yi are known in advance, any user can compute
the shared key without interacting with the other users.

4. Verifiability of the Oracle: If verifiability of the oracle is not required (i.e. we need protection only
from passive adversaries) then instead of the bilinear groups G1, G2, we can use a finite field having
a multiplicative subgroup of order n. The set S is then the φ(n) elements of this field of order n.

5. Decentralizing the Oracle: We observe that an arbitrary number of “copies” of the oracle can be
run without any compromise in security. The ability to do more computations of ? does not give
any additional advantage.

8

5 Other Applications

The above discussion makes it evident that we do not provide a key agreement protocol. Rather, we
provide a practical implementation of a new cryptographic primitive called Strong Associative One-Way
Function (SAOWF). As shown in the literature, SAOWFs have many applications [8, 5]. To demonstrate
this, we present two more applications; (a) signatures and (b) multi-user (ring) signatures. Throughout
this discussion, we will assume that the oracle is trusted, the public parameters of the oracle are used in
constructing the function ? and that α ∈ Z∗n, the sampling information of P = (h, β) is kept secret by
the oracle.

5.1 Single-User Signatures

Let m ∈ N be some message. We compute a signature for user 1 with private key (X1, r1) (where X1 ∈ G
and r1 ∈ Z∗n is the sampling information for X1) and public key Y1 = X1 ? P ∈ G.

1. Sign: To sign message m, compute S = Xm
1 ? P . The signature of user 1 on m is S.

2. Verify : To verify a message-signature pair (m,S), we check if the equality Y m
1

?= S ? Pm−1 holds.

We note that S can be directly computed by user 1 without help of the oracle because the sampling
information for Xm

1 is rm
1 ∈ Z∗n. On the other hand, we need the oracle’s help to compute Y m

1 , Pm−1

and S ? Pm−1 using the repeated squaring method, which will amount to < k · log2(m) oracle-calls for a
verifier (for some small constant k). The above protocol demonstrates the connection between the Strong
Diffle-Hellman assumption and the Strong RSA assumption.

5.2 Multi-User And Ring Signatures

Our construction of group signatures is not that efficient, in that the signer is also required to use the
oracle. To sign messages, members of a group must share a secret group key which is computed using the
method given in section 4. For simplicity, we will only demonstrate (without loss of generality) how three
users (1, 2, 3) can sign messages once they have agreed on the group private key K123 = X1 ?X2 ?X3 ?P 2.
This group also has the group public key Y123 = O(O(Y1, Y2), Y3) = X1 ? X2 ? X3 ? P 3 which can be
computed using the help of the oracle.

1. Sign: As before, let m ∈ N be the message to be signed. User 1 computes S = Km
123 ? P using the

oracle. Since calls to the oracle are public, user 1 must use the the blinding technique mentioned
in section 3.4, item 8 to keep the value of K123 (and of the powers of K123) hidden from a passive
adversary. The signature on m is S.

2. Verify : To verify a message-signature pair (m,S), we check that Y m
123 = S ? Pm−1.

In the above construction, group signature are “closed”. In other words, it is not possible for any
group controller to revoke the anonymity of the signer (since there is no group controller). Thus, the
above scheme also demonstrates an example of ring signatures [12].

6 Security

The oracle is primarily used as a “computing device” in our proofs. We assume that the oracle always
functions correctly and keeps the trapdoor information d secret. Our initial task is to somehow “extract”
d from the oracle. However, this is equivalent to factoring n so we look at the next task; being able to
“divide” by P ∈ G (or in other words, invert ? with respect to P). We start by proving the following
theorem that shows that being able to “divide” by P allows us to compute P−1 directly.

Theorem 1. Let X, P
R← G where X 6= (g, 1) such that the sampling information of P is unknown. An

algorithm A1 that computes X ?P−1 ∈ G can be converted into an algorithm A2 that computes P−1 ∈ G.

9

Proof. A2 runs A1 as follows. The input to A2 is P ∈ G. Algorithm A2 samples X ← G such that
X 6= (g, 1). It gives the pair (X, P) as input to A1 which outputs B = X ? P−1 ∈ G. Algorithm A2 then
outputs P−1 = B ? X−1 ∈ G.

6.1 The Group Inversion Problem

Due to theorem 1, the security of all the above schemes reduces to the following problem.

Group Inversion Problem. (GIPG). Let P = (h, β) R← G be uniformly sampled. (using secret α
R← Z∗n

such that h = gα ∈ G1 and β = αe ∈ Z∗n). Given P , compute P−1 = (h′, β′) ∈ G where h′ = g1/α ∈ G1

and β′ = (1/α)e ∈ Z∗n, possibly by using the oracle O.

Clearly β′ = 1/β ∈ Z∗n can be efficiently computed. However, to compute h′ we need to know the
factorization of n in addition to having access to the oracle. Note that computing 1/α is out of question
since this will be equivalent to both breaking RSA and computing discrete logarithms in G1 to base g.
So we should look at indirect methods of computing g1/α ∈ G1 without having the ability to compute
1/α ∈ Z∗n. Formally, we define the advantage of an algorithm solving this as follows.

Definition 1. For any algorithm A, the advantage of A in solving the group inversion problem GIP-
AdvA(τ) for some security parameter τ is defined as:

GIP-AdvA(τ) = Pr

 (ê, G1, G2, p, q)← O(τ),
A(ê, n, G1, G2, g, e, h, β,O) = g1/α : n = pq, e← Z∗φ(n), g ← G1,

α← Z∗n, h = gα, β = αe

 (2)

where O is an oracle with the functionality defined in section 3.5.

Our security is based on the following conjuncture.

Conjuncure 1. For any random P ∈ G such that the sampling information for P is unknown, computing
P−1 (with respect to ?) is infeasible unless the factors of n are known. This assumption holds for any PPT
adversary having access to oracle O. In other words, for any algorithm A, we have that GIP-AdvA(τ) is
a negligible function in τ .

6.2 Relationship With Other Problems

To get more confidence in the above problem, we show its relation to the RSA problem and the Inverse
Diffie-Hellman Problem. The reader is referred back to section 3.1 for the notation used here. First we
define the following problems.

1. Discrete Log Problem (DLG(g,G1)): Let g be a fixed generator of G1. For any input gx ∈ G1, output
x ∈ Zn.

2. Extended RSA Problem (ERSA(g,e,n,G1)): Let g be a fixed generator of G1 and let e be a fixed RSA
public exponent with the modulus n. For any input xe ∈ Z∗n, output gx ∈ G1.

6.2.1 The Extended RSA Problem

The Group Inversion Problem reduces to the Extended RSA problem (theorem 4 below). We give a
sufficient condition for the Extended RSA problem to be hard in theorem 5.

Theorem 2. GIPG ⇒ ERSA(g,e,n,G1).

Proof. Given a GIPG instance (gx, xe) ∈ G, we compute x′ = 1/xe ∈ Z∗n. Then x′ forms an instance
of the ERSA(g,e,n,G1) problem, the solution of which will be a solution to the GIPG instance.

Theorem 3. A sufficient (but not necessary) condition that ERSA(g,e,n,G1) problem is hard is that
RSA(e,n) 6⇒ DLG(g,G1).

10

Proof. Let the ERSA(g,e,n,G1) problem be easy. Then given xe ∈ Z∗n, we can compute gx ∈ G1.
Thus, RSA(e,n) ⇒ DLG(g,G1). Therefore, if RSA(e,n) 6⇒ DLG(g,G1) then ERSA(g,e,n,G1) must be hard.
The converse may not be true; even if RSA(e,n) ⇒ DLG(g,G1) it may be that ERSA(g,e,n,G1) is still hard.

6.2.2 The Inverse Diffie-Hellman Problem

Clearly, the group inversion problem reduces to the inverse Diffie Hellman problem, IDHP(g,G1) (see
section 3.1). Although, it is not known if DHP(g,G1) reduces to the oracle O, we conjure that any method
of reducing IDHP(g,G1) to DHP(g,G1) will yield a method of reducing GIPG to the oracle O. We give a
series of conjunctures on the relation between the inverse Diffie-Hellman problem and the group inversion
problem.

Conjuncure 2a. Any method of reducing IDHP(g,G1) ⇒ DHP(g,G1) also provides a method of reducing
GIPG ⇒ oracle O.

Conjuncure 2b. Any method of reducing DHP(g,G1) ⇒ oracle O also provides a method of reducing
IDHP(g,G1) ⇒ GIPG.

We also give a “stronger” version of the above conjuncture which states that it is highly unlikely that
the Diffie-Hellman Problem can be reduced to the oracle O.

Conjuncure 2c. Any method of reducing DHP(g,G1) ⇒ oracle O also provides a method of reducing
DLG(g,G1) ⇒ RSA(e,n)

We can summarize our results using the following diagram. The boxes indicate problems relevant to
us. The solid double arrows indicate known reductions while the single dashed arrows indicate that a
reduction is not known. There is no reduction from the oracle O to DHP(g,G1) because the oracle O also
needs to decide if the inputs are elements of G or not, which a DHP(g,G1) oracle cannot do.

DHP(g,G1)OO

?

�
�
�
�
�
�
�
�

?

���
�
�
�
�
�
�
�

?

((m j h f d a _] Z X V T

ww
?

m j h f d a _] Z X V T
+3 DLG(g,G1)

?

���
�
�OO

? �
�
�

IDHP(g,G1)
ks

RSA(e,n)

Oracle O

<D���������������������

���������������������
+3

?

66Q T V X Z] _ a d f h j mgg

?

Q T V X Z] _ a d f h j m

ERSA(g,e,n,G1)

KS

GIPG

��

?

�
�
�
�
�
�
�
�

KS

ks

7 Implementation And Efficiency

In this section, we will briefly touch upon issues relating to implementation and efficiency of our primitive.
The security of the above protocols is based on the intractability of factoring n. Based on the current
state of the art factoring algorithms, we suggest using an RSA modulus of about 616 decimal digits
(≈ 2048 bits) for high security applications.3 This also makes computing discrete logarithms in G1 to
base g intractable using Pollard’s lambda method [13, p.128].

3See for example, the RSA factoring challenge (http://www.rsasecurity.com/rsalabs/node.asp?id=2092) and the article
“TWIRL and RSA key size” (http://www.rsasecurity.com/rsalabs/node.asp?id=2004). It is thought that 2048 bit keys will
be secure till the year 2030.

11

Although, our construction of O-SAOWF has other applications as demonstrated, we feel that the
primary use of our scheme will be for highly dynamic group key agreement in applications like “secure
chat”. Our system offers the advantage that the group key need not be precomputed for communication
between group members. Thus, there is no specific ordering (unlike the Group Diffie-Hellman (GDH)
protocol [4]) between the users. Additionally, since there is no need for a secure channel between any of
the participants, all messages may be directly broadcast. The blinding method described above allows
us to mask secret keys when using the oracle to compute with them.

For increased efficiency in partial public key computation, we will assume that calls to the oracle can
be batched as follows, for any i inputs A1, A2, . . . Ai ∈ G, the oracle outputs A1 ?A2 ? . . . Ai. In this case,
for key computation in a group of m users each user must make a batch call requiring a message of size
2log2(n)(m− 1) bits to be sent to the oracle. The reply of the oracle constitutes just one element of size
2log2(n). However, we lose the ability to verify the output of the oracle in a “batch query”.

To increase efficiency in applications where “exponentiation” in G is required using the oracle via the
repeated squaring method (i.e., we need to compute Ai for some A ∈ G and i ∈ N such that A has not
been sampled by us), the oracle can also accept “exponentiation” queries.

Finally, we note that it is possible to share the RSA decryption key (known only to the oracle) between
different trusted authorities with the weakness that compromise of even one would compromise the entire
system. We close this section with a comparison of our scheme with previously proposed group key
agreement methods in table 1.

Membership O-SAOWF GDH basic [4] AGKE [14] GKE[15]
size is m

Number of 1 m− 1 2 2
rounds sequential sequential sequential

Synchronization/ No Yes Yes Yes
ordering needed ?

Controller No No Yes (for initial Yes (for group key
Required ? key distribution) distribution)

Interaction No Yes Yes Yes (for synchroniza-
Required ? -tion) otherwise no

Key Agreement Oracle Self (interactive) Self (broadcast) Controller
Method

Message size (m− 1)k1 (m− 1)k2 k3(broadcast only) 2k4 (to controller)
per user (sent)∗ otherwise mk3

Message size k1 (no verification) (m− 1)k2 mk3 k4

per user (rcvd) (m− 2)k1 (verification)

Merge/Part with 1 round (total O(m±m1) rounds 2 rounds (total 2 rounds (total
m1 users 2(m + m1) messages) (fresh key) m + m1 broadcasts) 2m1 + m messages)

Partial Public Yes No No No
keys reusable ?

Optimization Yes∗∗ Not likely Not likely Not likely
Possible?

Protection under Yes# Susceptible to man Authentication Insecure under an
active attack Verifiable Oracle in the middle attack after 2nd round active attack [16]

Protection under Group Inversion Diffie-Hellman Diffie-Hellman Diffie-Hellman
passive attack Problem Problem Problem Problem

* We assume that k1, k2 . . . kn are constants.

** Assuming that intermediate controllers are used and partial public keys are cached.
Assuming that public keys are known in advance, the verifiability of the oracle ensures implicit group key

authentication and an active attack cannot be mounted on the key agreement protocol. On the other hand,
other protocols require the intermediate messages to be explicitly authenticated.

Table 1: Comparison of our group key agreement scheme

12

8 Conclusion

In this paper, we presented a practical implementation of a new cryptographic primitive known as an
Oracle-based Strong Associative One-Way Function (O-SAOWF) using the idea of hidden order groups.
As some practical applications of this primitive, we presented a one-round key agreement scheme for
dynamic ad-hoc groups based on a combination of the n(n − 1)-round Group Diffie-Hellman (GDH) [4]
and the 1 round protocol using Strong Associative One-Way Functions (SAOWFs) due to Rabi and
Sherman [5]. Our scheme can be extended to group signatures as demonstrated in section 5. In reality,
our scheme also demonstrates a “pay-per-use” cryptographic primitive using the oracle. The advantage of
our scheme in comparison with other centralized schemes is that the central controller does not maintain
any state information of the groups it is managing. It just acts as a “computing device” for users registered
with it and the only information needed for this computation is d, the private key corresponding to the
RSA public key (e, n). We envisage several interesting applications of our primitive in the near future.

As we demonstrate, the ability to “multiply” using the oracle does not give us the ability to “divide”
in G because its order is unknown. This ensures that an “Euclidean”-like Algorithm does not work here.
The curious property of the SAOWF demonstrated in this paper is that it is weakly invertible. In other
words, given A ∈ G, it is possible to compute two pairs (B,B′) ∈ G2 such that A = B ? B′ even without
using the oracle.4 It may be that all average-case SAOWFs exhibit this property. We conclude this paper
with three open questions (in addition to the conjunctures mentioned earlier).

1. Can we use the oracle O to factor n?

2. Is it possible to reduce IDHP(g,G1) to DHP(g,G1) without knowing the factorization of n?

3. Construct a group of hidden order where “multiplication” can be done without using an oracle.

Acknowledgment

We would like to thank Ronald Rivest, Virendra Sule and Chunbo Ma for useful feedback and for pointing
out some errors and missing citations in the original draft.

References

[1] Sandro Rafaeli and David Hutchison. A survey of key management for secure group communication.
ACM Comput. Surv., 35(3):309–329, 2003.

[2] Xukai Zou, Byrav Ramamurthy, and Spyros S. Magliveras. Secure Group Communications Over
Data Networks. Springer, New York, NY, USA, 2005.

[3] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Transactions on
Information Theory, IT-22(6):644–654, 1976.

[4] Michael Steiner, Gene Tsudik, and Michael Waidner. CLIQUES: A new approach to group key
agreement. In Proceedings of the 18th International Conference on Distributed Computing Systems
(ICDCS’98), pages 380–387, Amsterdam, 1998. IEEE Computer Society Press.

[5] Muhammad Rabi and Alan T. Sherman. An observation on associative one-way functions in com-
plexity theory. Inf. Process. Lett., 64(5):239–244, 1997.

[6] Lane A. Hemaspaandra, Kari Pasanen, and Jörg Rothe. If p 6= np then some strongly noninvertible
functions are invertible. In FCT ’01: Proceedings of the 13th International Symposium on Funda-
mentals of Computation Theory, pages 162–171. Springer-Verlag, 2001.

4To see this, sample B ← G. Then B′ = B−1 ? A.

13

[7] Lane A. Hemaspaandra, Jörg Rothe, and Amitabh Saxena. Enforcing and defying associativity,
commutativity, totality, and strong noninvertibility for one-way functions in complexity theory. In
ICTCS, 2005.

[8] Susan Hohenberger. The cryptographic impact of groups with infeasible inversion. Master’s thesis.

[9] David Chaum. Blind signatures for untraceable payments. In CRYPTO, pages 199–203, 1982.

[10] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and public-key
cryptosystems. Commun. ACM, 21(2):120–126, 1978.

[11] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-dnf formulas on ciphertexts. In Joe Kilian,
editor, TCC, volume 3378 of Lecture Notes in Computer Science, pages 325–341. Springer, 2005.

[12] Ronald L. Rivest, Adi Shamir, and Yael Tauman. How to leak a secret. Lecture Notes in Computer
Science, 2248:552–??, 2001.

[13] Alfred J. Menezes, Scott A. Vanstone, and Paul C. Van Oorschot. Handbook of Applied Cryptography.
CRC Press, Inc., Boca Raton, FL, USA, 1996.

[14] Hyun-Jeong Kim, Su-Mi Lee, and Dong Hoon Lee. Constant-round authenticated group key exchange
for dynamic groups. In Pil Joong Lee, editor, ASIACRYPT, volume 3329 of Lecture Notes in
Computer Science, pages 245–259. Springer, 2004.

[15] E. Bresson, O. Chevassut, A. Essiari, and D. Pointcheval. Mutual authentication and group key
agreement for low-power mobile devices, 2003.

[16] Seungjoo Kim Junghyun Nam and Dongho Won. Attacks on bresson-chevassut-essiari-pointcheval’s
group key agreement scheme for low-power mobile devices. Cryptology ePrint Archive, Report
2004/251, 2004.

14

