
Consistent Adaptive Two-Party Computations

Sven Laur1 and Helger Lipmaa2

1 Helsinki University of Technology, Finland
2 University College London, UK

Abstract. Secure protocols for complicated tasks are usually constructed in two
phases. Initially, one designs a protocol that is secure in a semihonest model. Sec-
ond, zero-knowledge correctness proofs are added to assure correctness and pri-
vacy against malicious adversaries. Often the corresponding communication and
computational overhead makes this approach intractable in practice. Therefore,
we define an intermediate notion of security—consistency. In a consistent proto-
col, participants always learn if their opponent cheats but cannot complain without
violating their own privacy. Thus, a potential victim has to choose between the util-
ity of the correct output and a potential privacy breach. In many contexts, where
the long-term reputation of a service provider is more important than the privacy
of an individual query, such security notion provides adequate protection with a
minimal overhead. Private inference control and adaptive oblivious transfer are
the most straightforward examples of such protocols.
Keywords. Commitment scheme, hash tree, oblivious transfer, private inference
control, two-party computation.

1 Introduction

The security of a two-party protocol is defined by comparing real protocol runs with
an ideal world implementation. In the ideal world, the parties send their private inputs
to a trusted third party (TTP), and then the TTP answers by forwarding them their pri-
vate outputs. If the protocol is adaptive, then the ideal world implementation consists of
several adaptive rounds. To gain indistinguishability between the real and ideal world,
one must guarantee consistency between the outputs. Usually, this is done by proving
in zero-knowledge that for any input the output would be correct. The latter provides
security but is prohibitively resource demanding if the input size is big [9, p. 599].

For many functionalities, the only known method of reducing the communica-
tion of secure protocols is the method outlined in [9], where the parties use a
communication-efficient commitment scheme to commit their inputs. After that, they
use communication-efficient zero-knowledge proofs that are based on the PCP theorem:
the statement that a party has behaved correctly belongs to NP, and thus has a PCP wit-
ness. However, while the resulting protocols have sublinear communication, they are
still quite resource demanding: the participant needs to compute a PCP witness, and
in the complexity-theoretic model the protocol has at least 2 messages in the initial-
ization phase, and 4 additional messages per query. Moreover, for a concrete protocol
instance the communication can be intractable in practice, especially, when the inputs
are megabytes long. Also, the round complexity is 4 messages per query instead of the

2 Sven Laur and Helger Lipmaa

optimal 2 messages per query. To avoid this complexity, many papers propose proto-
cols that achieve security only in the semihonest model where correctness proofs are
unnecessary.

A common alternative security definition for asymmetric two-party protocols is re-
laxed security, see, e.g., [1]. In asymmetric protocols, only one party (the client) ob-
tains the output while the other party (the server) learns nothing. A protocol is relaxed-
secure if it is secure against malicious clients and semihonest servers. Relaxed security
is a standard security notion for say oblivious transfer protocols. Many other interest-
ing functionalities can be relaxed-securely implemented with two messages [7]. In par-
ticular, for many tasks like oblivious transfer, there exist low-degree polylogarithmic-
communication 2-message protocols.

However, relaxed security does not provide the client a correctness guarantee. E.g.,
consider private inference control (PIC, [12]) in the next setting. The server holds a
database of private keys that are used to encrypt various content, e.g., radio or television
channels. The clients have acquired different credentials and server’s task is to release
correct keys. Obviously, the client must distinguish between the denial of service attacks,
where the server acts maliciously, and legitimate denials, where the client has no right to
obtain a corresponding key. On the other hand, the server should not get to know which
(legal) key the client obtained. Client’s complaint must be verifiable without interacting
with the server, as she might not want to disclose her full input in court.
Our contribution. To accommodate such a design goal, we introduce a new security
notion. Consistent protocols guarantee consistency of client’s outputs and allow to detect
and prove server’s malicious behavior based only on the protocol transcript. See Sect. 3
for formal definitions and Sect. 4 and 5 for concrete implementations.

For relaxed-secure protocols, such as adaptive oblivious transfer, it is impossible to
guarantee that the server does not change her input during the protocol. Also, for an hon-
est server it is much harder or even impossible to defend against false accusations. For
many relaxed-secure protocols, the server must publicly reconstruct all the computations
and even that might not be sufficient to invalidate a false accusation.

Differently from secure protocols, consistent protocols do not guarantee that the out-
puts are correct for any possible input, i.e., server’s malicious behavior may cause a
protocol failure only for a limited set of client’s inputs. Thus, issuing a valid complaint
reveals a single bit of information about client’s inputs. To quantify such an informa-
tion leakage, we define special halting predicates πj . Predicates π1(q1), π2(q1, q2),. . . ,
πm(q1, q2, . . . , qm) are enforceable if a malicious server can force the honest client with
inputs q1, . . . , qm to halt whenever πj(q1, . . . , qj) holds for some j ∈ [m]. Different con-
sistent protocols have different sets of plausible halting predicate classes P1, . . . ,Pm.
Protocols with more restrictive predicate classes are more “secure”, see Sect. 6, but on
the other hand, lead to a smaller number of PIC-like applications.

Our central construction is a transformation from a relaxed-secure 1-out-of-n obliv-
ious transfer protocol to an m-out-of-n consistent adaptive oblivious transfer protocol
AOT. In the transformed protocol, the server first publishes a short list commitment to
the whole database. List commitment schemes, see Sect. 2, allow to use short certificates
(partial openings) for opening committed database elements, the best-known (although
not hiding) list commitment scheme is the hash tree. During execution of every 1-out-
of-n oblivious transfer protocol, the client obtains the corresponding private output with

*** Submission to FC 2007. October 16, 2006 *** 3

a certificate that is sufficient to verify that the retrieved output is consistent with the list
commitment. If the list commitment is statistically hiding and oblivious-transfer pro-
tocols are statistically server-private, the resulting AOT protocol is statistically server
private, otherwise the security guarantees are only computational. (See Sect. 4.)

Consistent PIC protocols (see Sec 5) can be build on top of conditional disclosure of
secrets (CDS) that is strengthened similarly to oblivious transfer. Recall that conditional
disclosure of secrets [1, 7] allows to reveal database elements only if a certain public
predicate (access restriction) holds. Clearly, if we can build a consistency check into
the CDS protocol, then an honest client can always prove a denial of service attack
without the help from the server. Sect. 5 presents a consistent CDS protocol. We also
construct a general consistent protocol for a relatively large class of other functionalities.
We conclude with a number of open questions.
Notation. For t ∈ Z+, let [t] := {1, . . . , t}. Let k be the security parameter. Throughout
this paper, we denote the number of composed protocols by m.

2 List Commitments

In this section we define list commitment schemes as commitment schemes where one
can commit to a list and then later open separately list elements. List commitment
schemes are natural generalizations of hash trees, but because nobody has before de-
fined them formally, we next provide formal definitions and a simple construction.

Recall that a commitment scheme Com, specified by a triple of algorithms (Gen,
Com,Open), is assumed to be hiding and binding. The initialization algorithm Gen gen-
erates public parameters pk. The commitment algorithm Compk : M× R → C × D
is used to get a randomized pair (c, d) ← Compk(m; r), where the commitment c
is sent to another party and the state d is kept for later use. We omit r and use
Compk(m) instead if r is chosen uniformly at random from R. The opening algorithm
Openpk : C × D → M ∪ {⊥} opens c ∈ C, given access to the state d, so that for all
x ∈M, Openpk(Compk(x)) = x.

A list commitment scheme is a commitment scheme for lists x = (x1, . . . , xn), with
n ≤ poly(k). A list commitment scheme LC is specified by quadruple (Gen,Com,Cert,
Open), where Gen and Com are defined as in the case of usual commitment schemes. In
addition, partial decommitment values (certificates) can be obtained from the state d via
Certpk : D × N → D. I.e, for every x ∈ Mn and every i ∈ [n], if (c, d) ← Compk(x)
then Certpk(d, i) returns a value si such that Openpk(c, si) = (i, xi). For incorrect cer-
tificates, Open returns ⊥. Sometimes, Gen is an interactive protocol between the client
and the server. We emphasize the interactive nature by explicit notation Gen〈R,S〉(1k),
where S is the party who is going to commit and R is the client of the commitment.

The simplest list commitment consists of the list of ordinary commitment values
(c1, . . . , cn) to (x1, . . . xn), with linear-in-n commitment length |Compk(x)|. Another
famous example of a binding (though not hiding, see below for formal definitions) list
commitment is hash tree, where Gen generates a random h from a collision-resistant hash
function family, Comh(x) returns the hash tree root on x and a description of the shape
of the hash tree as a commitment value c, and sets d← x. A partial opening Certh(x, i)
is the hash certificate of the ith node, i.e., the minimum amount of information required

4 Sven Laur and Helger Lipmaa

to recompute the root value from xi located at the ith position in the corresponding tree
shape. As we can always fix a canonical shape for each number of leafs, we assume that
the commitment value c consists of the root hash and of the leaf count. We assume that
the certificate returned by Certh(x, i) contains the value xi.

Like usual commitments schemes, a list commitment scheme must be binding and
hiding. More precisely, for a non-uniform stateful adversary A = {Ak} and a honest
client R and honest server S, define Advbind

LC (A, k) to be the probability that Ak can
generate a c and two certificates to the same index i, so that the certificates allow to open
c to different values of xi, i.e.,

Advbind
LC (A, k) := Pr

 pk← Gen〈Ak, R〉(1k), (c, s0, s1)← Ak(pk),
(ib, xb)← Openpk(c, sb), for b ∈ {0, 1}
i0 = i1 ∧ ⊥ 6= x0 6= x1 6= ⊥

 .

Also, define Advhide
LC (A, k) to be the probability that Ak can distinguish commitments to

two databases, given c and oracle access to certificates, i.e.,

Advhide
LC (A, k) := 2 ·

∣∣∣∣∣∣∣∣Pr

pk← Gen〈S, Ak〉(1k),

(
x0,x1

)
← Ak(pk),

b← {0, 1}, (c, d)← Compk

(
xb

)
:

x0,x1 ∈Mn ∧A
Certpk(d,·)
k (pk, c) = b

− 1
2

∣∣∣∣∣∣∣∣ .

Here, the probability is taken over coin tosses of all relevant algorithms, A is allowed
to query Cert(d, i) only on indices i with x0

i = x1
i , and the size of committed lists

must be polynomial. A list commitment scheme is (1) computationally hiding if for
any non-uniform polynomial time adversary A = {Ak}, Advhide

LC (A, k) ≤ k−ω(1), and
(2) computationally binding if for any non-uniform polynomial time adversary A =
{Ak}, Advbind

LC (A, k) ≤ k−ω(1). In the case of unbounded adversaries, we speak about
statistical hiding and statistical binding.

Going back to the example of hash trees, the certificate si is valid when it is consistent
with the root hash c, otherwise Openh(d, si) = ⊥. Clearly, the computational binding
property follows from the collision-resistance of the function family H against non-
uniform adversaries: if an adversary can find a double opening (i, xi) 6= (i, x̂i) then there
must be a collision in the root path, since the shape of the tree is fixed. Thus, collision
resistance ofH implies that polynomial-size hash trees are computationally binding. On
the other hand, a pure hash tree is not hiding since the hash certificate Certh(x, i) reveals
not only xi but also xi⊕1, the sibling of xi in the tree. However, one can make hash trees
hiding by using hiding commitments in the leafs.

Theorem 1. Assume that Com is a computationally (resp., statistically) hiding commit-
ment scheme and thatH is a collision-resistant hash function family. Then there exists a
computationally (resp., statistically) hiding list commitment scheme LC with efficiency
comparable to the hash tree.

Proof. Let Com = (Gen,Com,Open). Construct the list commitment scheme LC as fol-
lows. Given x ∈ M∗, compute a commitment and decommitment vector (c,d), where
(ci, di) ← Compk(xi). Then use the non-hiding hash-tree list commitment scheme on

*** Submission to FC 2007. October 16, 2006 *** 5

c and output the corresponding root value and the shape of the hash tree as the com-
mitment value. The corresponding global decommitment value is the vector (c,d). The
certificate si for xi consists of di and of the ith hash tree certificate. In order to verify
a certificate si, one has to verify that the corresponding hash tree certificate is correct
and that Openpk(ci, di) 6= ⊥. Clearly, this construction is (resp., statistically) hiding if
Com is (resp., statistically) hiding. Similarly, LC is computationally binding if H is a
collision-resistant hash function family and Com is computationally binding. ut

Note that if the commitment scheme is statistically hiding for each pk then the public
parameters h ← H and pk ← Gen can be generated the client. Since the commitment
scheme is statistically hiding for every pk, then the client can only harm herself by choos-
ing pk differently form the output distribution of Gen.

3 Secure Adaptive Asymmetric Two-party Computation

The standard security definition of a two-party protocol Πf for functionality f is given
via comparison with its ideal model implementation and real protocol runs. In the ideal
world, participants forward their inputs to a trusted third party (TTP) that computes the
desired functionality f and sends back the corresponding outputs one by one. Since both
parties can halt in the real world, the TTP is allowed to halt if one of the participants
sends a halting instruction in the ideal world.

We focus on adaptive asymmetric computations between the client and the server,
where the server holds an input x and the client makes m adaptive queries q1, . . . , qm to
retrieve the outputs of some functions f1, . . . , fm. In the ideal world, the TTP receives
x from the server and for every client’s input qj sends ⊥ to the client if the server
issues an abort command and fj(qj ,x) otherwise. Such formalism captures all client-
server protocols where server’s input is non-adaptive. Πf is correct, if the client obtains
the desired outputs f1(q1,x), . . . , fm(qm,x) provided that both parties act honestly. In
particular, protocol’s inputs must be from a valid range, and it may give arbitrary outputs
for incorrect inputs. The following definitions of privacy, relaxed-security and security
are standard, and given here (without all the details) for the sake of completeness.
Privacy. Πf is computationally client-private, if for any non-uniform polynomial-time
malicious server, there exists a non-uniform polynomial-time adversary acting as the
server (simulator) in the ideal world such that the output distributions are computa-
tionally indistinguishable if the client is honest. A protocol is computationally server-
private, if for every non-uniform polynomial time malicious client, there exists a non-
uniform polynomial-time adversary acting as the client (simulator) in the ideal world
such that the output distributions are computationally indistinguishable when the server
is honest. Protocol is statically private if malicious participants and the corresponding
simulators are unbounded and the output distributions are statistically indistinguishable.
Relaxed-security. Πf is computationally (resp., statistically) relaxed-secure if it is com-
putationally client-private and computationally (resp., statistically) server-private in the
malicious model. The dual case when the server is unbounded is known to require linear
communication in the case of the computationally-private information retrieval and is
therefore not very interesting from practical viewpoint.

6 Sven Laur and Helger Lipmaa

Security. Πf is secure if it is correct even if the server is malicious. More precisely,
consider an arbitrary non-uniform polynomial-time malicious server and an honest client
in the real world. A protocol is secure if there exists a non-uniform polynomial time
adversary acting as the server in the ideal world such that the joint output distribution
of the server and the client is computationally indistinguishable from the joint output in
the real world. In the ideal world the honest client just submits his inputs and outputs the
values received from TTP. In particular, security means that the client can detect server’s
malicious behavior that might change his output value for some valid input. Thus, the
client can freely complain, as the server herself knows that she acts maliciously.

One can artificially make some relaxed-secure protocols secure. Consider for ex-
ample 1-out-of-2 oblivious transfer where the client wants to learn one of the database
elements (x1, x2). Assume that the client interprets a protocol failure as output 0. Con-
sider a simulator that acts as an honest client, queries both (x1, x2), submits the outputs
to TTP, and outputs server’s last output message. Then the output distributions of the
real and ideal world are indistinguishable. The latter is an artifact of missing consistency
requirements—one can always reconstruct a valid database from any protocol outputs.
Thus, one often constructs verifiable protocols where the parties first commit their inputs
and then verify the consistency between the inputs and the outputs. A secure adaptive
protocol needs explicit consistency, as one input value must correspond to all outputs.
Consistency. As already mentioned in the introduction, a secure protocol seems to need
4 messages per query in the complexity-theoretic model. Moreover, due to the use of the
PCP theorem, existing secure sublinear-communication protocols are not easy to imple-
ment. On the other hand, there exist several relaxed-secure oblivious transfer protocols
with low-degree polylogarithmic communication [8, 5] and 2 messages per query. Such
protocols exist also for many other practical functionalities [7]. Our goal is to strengthen
security requirements so that simple and communication efficient two round protocols
still exist. In particular, client should be able to detect and prove inconsistency between
outputs; this is extremely important as the server can change her input during a straight-
forward sequential composition of relaxed-secure protocols.

Intuitively, a protocol is consistent when an honest client who does not detect the
fraud in the real world obtains the same result as in the ideal world. However, the exact
formalization is not so straightforward, as a malicious server can use different inputs. In-
stead we consider a ideal world, where the server first sends her input x to TTP, and then
additionally specifies randomized halting predicates π1(q1), . . . , πm(qm). In a concrete
protocol, the set Pj of enforceable predicates can be restricted, see Sect. 6.

More formally, the server sends a description of Halt-Machine that is a stateful ran-
domized polynomial-time algorithm1 with its running time polynomial in the security
parameter k. Given the jth query qj , TTP feeds qj into Halt-Machine. The TTP sends
to the client fj(qj ,x), if Halt-Machine outputs accepting state, and ⊥, otherwise.2 A
correct and relaxed-secure protocol Πf is consistent if for any non-uniform polynomial-
time server there exists a non-uniform polynomial time adversary acting as the server

1 Note that the server may send different descriptions of Halt-Machine and the polynomial time-
bound means that there exists a constant c such that the working time of all Halt-Machine
generated by the server Sk are bounded by kc.

2 Alternatively, the server could send the truth table directly to TTP but such approach leads to
inefficient simulators as the size of the truth table can be exponential.

*** Submission to FC 2007. October 16, 2006 *** 7

in the ideal world such that the restricted joint output distribution of the real world
and ideal world are computationally indistinguishable. Additionally, after the jth in-
put, Halt-Machine is restricted to compute only enforceable predicates πj ∈ Pj on
(q1, . . . , qj).

By the construction of ideal world, a malicious server might be able to cause protocol
failure selectively for client’s some inputs and thus potentially learn a single bit—the
value of the halting predicate πj on (q1, . . . , qj)—of information about client’s query.
Clearly, If the client reaches the accepting state then he is guaranteed that his output is
the same as it would be in the ideal world. Thus, a non-accepting client can prove to
the court that server’s behavior was indeed malicious, without anymore interacting with
the server. The client must show the protocol transcript and prove to the court that his
actions were correct. On the other hand, an honest server can now easily disprove false
accusations, since server’s honest behavior leads always to acceptance.

When a protocol is only relaxed-secure then an honest server must repeat her compu-
tations and prove (in zero-knowledge) that her actions were correct to falsify the accusa-
tion and even that might be insufficient, since sometime it is possible to change protocol
inputs to hide malicious behavior. Moreover, to prove such claims, the server has to store
all computations which is clearly impractical if she serves many clients.

The main drawback of consistent protocols is the potential 1-bit information leak-
age. One natural goal is to restrict the set of potential halting predicates. In Sec 6, we
consider different subclasses of consistent protocols that have different sets of plausible
halting predicates. On the other hand, consistent-but-not-secure protocols have their own
applications, see Sect. 5.

4 Consistent Adaptive Oblivious Transfer

Consider a simple application, where the server sells some digital goods, such as access
rights (encryption keys) to TV programs, or sensitive end-results of statistical queries.
The client wants hide the information about purchased goods but on the same time he
wants to get some guarantees that the obtained result was not tampered. The latter is
especially important when the client has no prior knowledge about the product before
obtaining it. Such problem can be formalized as adaptive oblivious transfer (AOT). In
an adaptive m-out-of-n oblivious transfer protocol, the server has a static database x =
(x1, . . . , xn) and the client wants to adaptively fetch database elements xq1 , . . . , xqm .
More formally, in each phase the client must learn f(q, x) = xq when q ∈ [n], and ⊥
otherwise. The value of qj may depend on the values of xq1 , . . . , xqj−1 . In the case of a
1-out-of-n oblivious transfer protocol, only a single query can be submitted.

Assume that we are given a list commitment scheme LC for tuples consisting of `-bit
elements, where the length of certificates si ← Certpk(d, i) is bounded by `s(n). Let OT
be a 1-out-of-n oblivious transfer protocol for `ot = ` + `s(n) bit strings. Then under
suitable assumptions given below, Prot. 1 is a consistent m-out-of-n oblivious transfer
protocol. Since it uses OT in a black-box way, it can be seen as a transformation from
relaxed-secure oblivious transfer protocols to consistent oblivious transfer protocols. It
is easy to see that Prot. 1 is correct.
Efficiency. Prot. 1 has total communication |Gen|+ |Compk(s)|+ m ·C(n, `ot), where
|Gen| is the communication of the key generation protocol and C(m, `ot) is the com-

8 Sven Laur and Helger Lipmaa

COMMON INPUT: Both parties hold k, n, `, m and `ot := ` + `s(n).
CLIENT’S INPUT: possibly adaptively chosen (q1, . . . , qm) ∈ [n]m

SERVER’S INPUT: x = (x1, . . . , xn), xi ∈ {0, 1}`.
UNDERLYING PROTOCOLS:

An oblivious transfer protocol OT for `ot-bit strings.
A list commitment scheme LC = (Gen, Com, Open, Cert).

Initialization phase:

1. The client and the server generate jointly a pk← Gen(1k).
2. Server sets counter← 1 and computes (c, d)← Compk(x), stores a database

s = (s1, . . . , sn), where si ← Certpk(d, i) for i ∈ [n] and send c to the client.
3. The client stores c.

Protocol execution on a single query q:

1. The server aborts if counter > m. Otherwise, the server increments counter.
2. The client and the server execute a single run of OT on the database s.
3. Let ŝq be client’s private output in OT.
4. The client outputs x̂q if Openpk(c, ŝq) = (q, x̂q) 6= ⊥, and ⊥, otherwise.

Protocol 1: A new consistent m-out-of-n oblivious transfer protocol

munication of OT for `ot-bit strings. Since C is at most linear in `ot and `s(n) is log-
arithmic in n for good list commitment schemes, the communication overhead is mini-
mal. For hash-tree based list commitments, `s(n) = (log2 n − 1)λ + Θ(`), where λ is
the output length of the underlying hash function and Θ(`) terms counts the size of leaf
commitment and decommitment values. As one can use oblivious transfer protocols with
low-degree polylogarithmic-communication [8, 5] in conjunction with communication-
efficient list commitment schemes, the total communication of Prot. 1 is low-degree
polylogarithmic Θ(m ·poly(log n)). As there are commitment schemes where the client
can choose the public parameters pk, Prot 1 can be implemented with 2m + 2 rounds.

Theorem 2 (Relaxed-security). If LC is statistically hiding for every pk← Gen〈R,S〉
and computationally binding and OT is statistically relaxed-secure, then Prot. 1 is sta-
tistically relaxed-secure.

Proof. Computational client-privacy follows straightforwardly, as OT is client-private
and Gen〈R,S〉(1k) is independent from client’s inputs.

Statistical server-privacy follows from the next standard hybrid argument. Consider
three worlds: World0 corresponds to the ideal world, in World1 only the instances of OT
are replaced with ideal implementations of 1-out-of-n oblivious transfer and World2 is
the real world. Clearly, any malicious client in World2 can be converted to a malicious
client in World1 such that their output distributions are statistically close, as OT is sta-
tistically server-private. As the commitment scheme is statistically hiding for every pk,
then there exist unbounded algorithm that can open Compk(0), where 0 = (0, . . . , 0), to
any other vector x ∈ {0, 1}n` with negligible failure. Moreover, such algorithm must be
able to change unopened elements on the fly or otherwise the commitment is not statis-

*** Submission to FC 2007. October 16, 2006 *** 9

tically hiding. Hence, we can convert a malicious client R̂1 from World1 to a malicious
client R̂0 for World0 as follows:

1. Run protocol Gen〈R̂1, S〉 to get pk. Compute (c, d)← Compk(0) and sent c to R̂1.
2. Given query qj obtain xqj

, compute a ŝj such that Openpk(c, ŝj) = (qj , xqj
).

3. Output the output of R̂1.

As commitment is statistically hiding for every pk the output distributions for R̂0 and
R̂1 are statistically indistinguishable. The claim follows. ut

The transformation from World1 to World0 fails if we cannot generate faked certifi-
cates on the fly. Therefore, the proof fails for computationally hiding commitments un-
less list commitment does not have a necessary trapdoor, i.e., is equivocable, see App. A
for the corresponding definitions and the proof of Cor. 1.

Corollary 1. If LC is computationally hiding, equivocable and binding and OT is
relaxed-secure, then Prot. 1 is computationally relaxed-secure.

The proof of consistency consists of two main steps. First, we must extract suitable
input from the malicious server and second, we must show that if an honest client reaches
the accepting state then his output has same distribution as in the ideal model. The ex-
traction part is tricky, since a malicious server might act honestly only under specific
conditions. Thus, we have to probe the server with all possible queries.

Theorem 3 (Consistency). Prot. 1 is computationally consistent, if it is relaxed-secure,
LC is computationally binding, and nm is polynomial in the security parameter.

Proof. Consider an input extractor that first chooses randomness for the honest client
and the malicious server Ŝ and then sends all possible nm queries to Ŝ, reconstructs
from the replies the corresponding database x and an nm-element truth table with
H[q1, . . . , qm] = true only if the client does not halt. Second, it submits x and
Halt-Machine that uses H to answer queries to TTP and outputs the last output of Ŝ.

By the construction, the output distributions of the real and ideal world w.r.t. the same
random inputs coincide unless the probing reveals double openings (i, xi) and (i, x̂i) that
do not allow to reconstruct x. If some xi is not revealed then it is also never queried, and
we can set xi ← 0. The probability that some queries reveal a double opening is negligi-
ble because otherwise the input extractor together with a malicious server breaks binding
property of LC. Since the protocol is client-private by assumption the joint distributions
are computationally indistinguishable. As simulator’s working time is dominated by the
execution of nm oblivious transfer protocols, the simulator runs in polynomial time. ut

In particular, the simulator runs in polynomial time if m is an arbitrary constant.
Alternatively, we can make a stronger assumption thatLC is binding against non-uniform
adversaries of subexponential size; such an assumption is quite common. Then, Prot. 1
is computationally consistent for m = o(n/ log n).
Comparison with previous work. Currently several 2-round client-private 1-out-of-n
private information retrieval protocols with low-degree polylogarithmic-communication
are known [8, 5]. All of these protocols can be converted to relaxed-secure 1-out-of-n

10 Sven Laur and Helger Lipmaa

oblivious transfer protocols using well-known communication efficient transformation
techniques from [10, 1, 7]. Thus, it is known how to construct 2-round relaxed-secure
oblivious transfer with low-degree polylogarithmic communication. On the other hand
all practical protocols for adaptive oblivious transfer that achieve security are based on
zero-knowledge proofs and have thus communication Ω(mn). The latter can be escaped
with explicit use of PCP theorem [9] but these approaches aren’t currently practical, as
they are optimal only in asymptotic sense. Therefore, Prot. 1 can be viewed as the most
communication efficient transformation from private information retrieval to consistent
adaptive oblivious transfer.

5 Consistent Conditional Disclosure of Secrets

Consistent conditional disclosure of secrets (CDS) is the most natural way to achieve
private inference control (PIC, [12]) where the server holds a database of private keys
and has to distribute them according to some public rules, e.g., in micro-payment pro-
tocols. In such scenarios, consistency provides necessary protection for the server and
the client, as the client can detect and prove unjustified denials of service and the honest
server can protect herself against false accusations. The concept of homomorphic CDS
was first introduced in [1] and latter extended in [7].
Background. The core of a CDS protocol is the disclose-if-equal (DIE) subprotocol
where the client submits an encryption Encpk(q), and learns a secret x if and only
if q is equal to server’s input y; the server learns Encpk(q). In such a protocol, the
client generates a key pair (sk, pk) ← Gen of an additively homomorphic cryptosys-
tem and sends pk to the server. When client sends Encpk(q), the server computes re-
ply as u ← (Encpk(q)Encpk(−y))sEncpk(x) = Encpk(s(q − y) + x), for s ← Zq. If
the plaintext space has prime order q, like in the additively homomorphic lifted ElGa-
mal, then the resulting protocol is relaxed secure and perfectly sender-private [1]. For
cryptosystems with composite plaintext order, one needs slightly more elaborate pro-
tocols [7]. It is straightforward to extend basic DIE to and-DIE protocol, where the
client learns a secret x only if his encrypted inputs Encpk(q1), . . . ,Encpk(qm) satisfy
constraint [q1 = y1 ∧ · · · ∧ qm = ym]. In the case of lifted ElGamal, sender’s reply
is u ← (Encpk(q1)Encpk(−y1))s1 · · · (Encpk(qm)Encpk(−ym))smEncpk(x). In an or-
DIE protocol, defined similarly, the server must compute two replies, and the client can
choose the correct one, for which qi = yi, and recover the secret. For more complex
operations, the server must divide secrets using secret sharing and use simpler DIE sub-
protocols to transfer the sub-secrets, e.g. set x1 +x2 = x and use sub-protocols to assure
[q1 = y1] and [q2 = y2] [7]. As shown in [7], the server can efficiently release secret x if
a predicate Ψ has a polynomial circuit size. Such protocol is called circuit-CDS [7].
Consistent circuit-CDS. As all access rules in PIC protocols are public then circuit-CDS
protocol is exactly what is needed to implement PIC. More precisely, let Ψ be the cir-
cuit for the key release constraint, then the circuit-CDS protocol implements the desired
functionality. However, the known CDS protocols are not consistent. It is straightforward
to make DIE protocol consistent by letting the server first send a commitment to x, and
then use the DIE protocol to transfer the decommitment string. Since the circuit-CDS
protocol uses properly generated sub-secrets x1, . . . , xn to transfer the main secret z,

*** Submission to FC 2007. October 16, 2006 *** 11

COMMON INPUT: Both parties hold k, n, `, m, `ot := ` + `s(n) and a formula Ψ .
CLIENT’S INPUT: is possibly adaptively chosen (q1, . . . , qm) ∈ [n]m for Ψ -CDS.
SERVER’S INPUT: a master secret z ∈ {0, 1}`.
UNDERLYING PROTOCOLS:

A relaxed-secure circuit-CDS protocol Ψ -CDS for `ot bit strings.
A list commitment scheme LC = (Gen, Com, Open, Cert).

Initialization phase:

1. The client and the server generate jointly pk← Gen(1k) for commitment
2. The client generates (pk′, sk′)← Gen′(1k) for CDS and sends pk′ to the server.
3. The server computes all necessary sub-secrets x = (x1, . . . , xn) needed for Ψ -CDS.

She computes (c, d)← Compk(x) and s = (s1, . . . , sn), where si ← Certpk(d, i).
4. The server sends c to the client who stores c.

Modified Ψ -CDS protocol:

1. The server and client run Ψ -CDS protocol where sub-secrets are s instead of x.
2. The client determines based on q and Ψ what sub-secrets xr1 , . . . , xrt he should learn.

In the modified protocol the client should learn sr1 , . . . , srm .
3. The client computes xri = Openpk(c, sri) for i ∈ [t] and halts if any xri = ⊥.

Finally, the client restores the master secret z from xr1 , . . . , xrt by using the original Ψ -CDS.

Protocol 2: A new consistent conditional disclosure of secrets protocol

then sending commitments to all secrets xi is a simple way to make the protocol consis-
tent. A more communication-efficient way is just to send list commitment3 Compk(x),
see Prot. 2.

Theorem 4. Let Ψ -CDS be relaxed-secure. If LC is computationally hiding and equiv-
ocable and binding, then Prot. 2 is computationally relaxed-secure. If LC is also statis-
tically hiding for every pk← Gen〈R,S〉 and Ψ -CDS is statistically server-private, then
Prot. 2 is statistically server-private. If the set of satisfiable inputs for Ψ is polynomial
in the security parameter then Prot. 2 is computationally consistent.

Proof. The proof is analogous to the security analysis of Prot. 1 and thus omitted. ut

Example applications. Since the server can restore encrypted inputs of clients consistent
CDS protocols can be used in pay-per-view systems: one client’s input corresponds to
Encpk(credit) stored an updated by the server. It is straightforward to test that credit >
0 by using consistent circuit-CDS. Another application is restricted access to private
data, e.g., TV or military broadcasts with complex access policy, based on credentials
that are represented as random keys.

6 Different Subclasses of Consistent Protocols

The main advantage of consistent computations is verifiability: an honest client can
detect and prove that the server has managed to alter her input. On the other hand, a

3 Public parameters of commitment scheme are different from public key of DIE protocol.

12 Sven Laur and Helger Lipmaa

malicious server can cause selective protocol failures so that issuing a complaint leaks
information about client’s inputs. The definition of consistency limits the correspond-
ing information gain to polynomially computable randomized predicates, however, we
might want to quantify it in more fine-grained level.
Memoryless consistency. An adaptive protocol is memoryless-consistent if the halt-
ing predicates π1, . . . , πm are independent from previous queries, i.e., πi(q1, . . . , qi) =
πi(qi). As a result, the server cannot relate results of different queries.

Note that there is no black-box construction from an arbitrary stateful relaxed-secure
1-out-of-n oblivious transfer protocol OT to a memoryless-consistent m-out-of-n obliv-
ious transfer. A formal separation is following. Let (Enc,Dec) be a randomized encryp-
tion scheme. Now, if client augments all his queries with Enc(qj) and accepts the OT
reply only if the server adds an encryption of qj to her reply, then the corresponding pro-
tocol is certainly relaxed-secure. However, if a malicious server replaces Enc(qj) with
the encryption Enc(qj−1) from the previous round then she can force an halting predicate
[qj−1 = qj]. More natural examples can be based on the relaxed-secure homomorphic
oblivious transfer protocol from [1], where the client’s message is just Enc(qj). If we
construct Prot. 1 so that all OT invocations share the same pk then the server can force
many affine halting predicates. On the other hand, Prot. 1 is memoryless-consistent when
the subsequent executions of oblivious transfer do not share random variables.

Theorem 5 (Memoryless consistency). Relaxed-secure Prot. 1 is also computationally
memoryless consistent, if LC is computationally binding and nm is polynomial in the
security parameter and oblivious transfer protocols do not share random variables.

Proof. Assume that we have an adversary A that breaks the memoryless-consistent prop-
erty of Prot. 1. That is, it can force the client to abort if and only if a predicate pi holds
on client’s queries (q1, . . . , qi) thus far, where pi is a non-trivial function of at least two
different values qa and qb for a < b ≤ i. Since the protocol is stateless then the adver-
sary can play the role of the client in round b > a, to breach the privacy of the client in
round a: given its knowledge of whether the client aborted in round b, it will have some
advantage in guessing qa, given the value pi(qa, qb). ut

The same result holds also for consistent private inference control. If client gener-
ates each time a new encryption key then the corresponding protocols are memoryless-
consistent. However, such approach might be impractical in some applications. Achiev-
ing memoryless-consistency by other means is an interesting open question.
Homomorphic consistency. Many efficient oblivious transfer protocols are based on ho-
momorphic encryption [11, 1, 8, 7]. In such protocols, client’s input is sent in encrypted
form and thus it is possible to compute ciphertexts of affine combinations of inputs. More
formally let Paff(q) consist of all base predicates of type [αq = β] and their conjunc-
tions; let Pb-aff(q) consist of all base predicates of type α1q[1] + · · ·αkq[k] = β where
q[k] . . . q[1] is the bit-representation of q and their conjunctions. Then a protocol is ho-
momorphically consistent if the halting predicates π1(q1), . . . , πm(q1, . . . , qm) belong
either to the class of Paff(q1, . . . , qj) or to the class Pb-aff(q1, . . . , qj). Note that such a
set of predicates is rather restricted and minimal if we use oblivious transfer based on
homomorphic encryption. One can straightforwardly prove that if we use ideal homo-
morphic encryption, that does not allow to compute any other operation on ciphertext, for
the constructions [11, 1, 8, 7] then resulting protocols are homomorphically consistent.

*** Submission to FC 2007. October 16, 2006 *** 13

Many researchers have worked on extensively on cryptographic protocols that use
extensively the properties of existing homomorphic cryptosystems. There is no evidence
that any non-affine predicate can be computed-on-ciphertexts (“cryptocomputed”) in the
case of any of such cryptosystems. Thus, it is reasonable to make the next seemingly
novel gap assumption that only affine predicates can be computed-on-ciphertexts.

Assumption 1 (Gap homomorphic assumption for Π .) Let Π be an additively homo-
morphic cryptosystem such as the Paillier. For any non-affine efficiently verifiable t-ary
predicate π, t ≥ 1, the probability that some polynomial-size probabilistic circuit A,
given access to a randomly generated public key pk and to random encryptions of any t
elements qi, can output an encryption of π(q1, . . . , qt), is negligibly close to the proba-
bility that A can guess the value of π(q1, . . . , qt), given its knowledge of the distribution
from which the plaintexts qi are drawn.

Alternatively, if Assumption 1 cannot be proven, one should still describe the class
of computable predicates, as it provides a subset of predicates that can be efficiently
cryptocomputed using additively homomorphic encryption. The set of cryptocomputable
predicates that can be computed with constant communication is currently unknown and
is one of the most interesting problems in the design of efficient cryptographic protocols.

7 Discussion and Open Problems

We showed how to build consistent m-out-of-n oblivious transfer given only client-
private 1-out-of-n information retrieval protocols and binding list commitment scheme
that is either statistically hiding or equivocable. One can verify that the existence of list
commitment schemes is necessary. Using similar techniques to [6], one can build a list
commitment scheme based on every (adaptive) sublinear consistent oblivious transfer
protocol. Thus, in particular, a sublinear consistent oblivious transfer protocol exists if
and only f there exists a communication efficient list commitment scheme. The require-
ment of equivocability is also rather standard though somewhat restricting. Therefore,
one possible further research direction would be the elimination of equivocability using
different construction or more powerful proof technique.
Minimizing assumptions. Prot. 1 uses list commitment schemes and oblivious transfer
protocols. List commitment schemes can be built from hash trees—for which one needs
collision-resistant hash functions—and from statistically-hiding commitment schemes.
One can construct a collision-resistant hash family from a sublinear client-private oblivi-
ous transfer protocol [6], and a statistically hiding commitment scheme from an arbitrary
collision-resistant hash family [3]. Therefore, one can also construct list commitment
schemes from any sublinear client-private oblivious transfer protocol. As shown in [4],
one can construct a relaxed-secure oblivious transfer protocol from any client-private
oblivious transfer protocols. Thus Prot. 1 is an efficient “client-private oblivious transfer”
to “consistent oblivious transfer” transformation without any need for extra assumptions
like the existence of collision-resistant hash functions.
More efficient proof techniques. A shortcoming of the current consistency proof is its
inherent inefficiency in the extraction phase, as simulator runs in time Θ(nm) probing
all possible inputs. The same problem appears also in the case of consistent private infer-
ence control protocols. As a result, simulator works in polynomial time if m is constant.

14 Sven Laur and Helger Lipmaa

If m = o(n/ lnn) then the oblivious transfer and the list commitment scheme must
be secure against non-uniform adversaries that work in sub-exponential time. Such re-
striction seems rather artificial, especially, if we do not care about the revealed halting
predicates. Therefore, we need more efficient extraction techniques to extend security
proofs for many other interesting cases.
General construction for consistent computations. In the current article, we gave con-
structions for consistent oblivious transfer and conditional disclosure of secrets, however,
we did not give a general construction. One can turn general relaxed-secure two-round
circuit evaluation protocols for additively shared output into constant round consistent
circuit evaluation protocols by running two copies of the protocol with changed identi-
ties and afterwards doing secure comparison. But such construction requires more than
4 rounds so the question whether round-efficient general consistent computation proto-
cols exist remains open. Note that a slightly weaker version of consistency—where in
the ideal model, the server sends the values of fj(qj ,x) for all possible values of qj’s
and for a fixed value of x to the TTP—that is equivalent to the consistency in the case
of oblivious transfer protocols, one can implement many functionalities by executing
Prot. 1 with server’s input y, yi = (fj(i,x)).

References

1. William Aiello, Yuval Ishai, and Omer Reingold. Priced Oblivious Transfer: How to Sell Digi-
tal Goods. In Birgit Pfitzmann, editor, Advances in Cryptology — EUROCRYPT 2001, volume
2045 of Lecture Notes in Computer Science, pages 119–135, Innsbruck, Austria, May 6–10,
2001. Springer-Verlag.

2. Ivan Damgård and Jens Groth. Non-Interactive And Reusable Non-Malleable Commitment
Schemes. In Proceedings of the Thirty-Fifth Annual ACM Symposium on the Theory of Com-
puting, pages 426–437, San Diego, CA, USA, June 9–11 2003. ACM Press.

3. Ivan Damgård, Torben P. Pedersen, and Birgit Pfitzmann. Statistical secrecy and multibit
commitments. IEEE Transactions on Information Theory, 44(3):1143–1151, 1998.

4. Giovanni Di Crescenzo, Tal Malkin, and Rafail Ostrovsky. Single Database Private Informa-
tion Retrieval Implies Oblivious Transfer. In Bart Preneel, editor, Advances in Cryptology
— EUROCRYPT 2000, volume 1807 of Lecture Notes in Computer Science, pages 122–138,
Bruges, Belgium, 14–18 May 2000. Springer-Verlag.

5. Craig Gentry and Zulfikar Ramzan. Single-Database Private Information Retrieval with Con-
stant Communication Rate. In Luis Caires, Guiseppe F. Italiano, Luis Monteiro, Catuscia
Palamidessi, and Moti Yung, editors, The 32nd International Colloquium on Automata, Lan-
guages and Programming, ICALP 2005, volume 3580 of Lecture Notes in Computer Science,
pages 803–815, Lisboa, Portugal, 2005. Springer-Verlag.

6. Yuval Ishai, Eyal Kushilevitz, and Rafail Ostrovsky. Sufficient Conditions for Collision-
Resistant Hashing. In Joe Kilian, editor, The Second Theory of Cryptography Conference,
TCC 2005, volume 3378 of Lecture Notes in Computer Science, pages 445–456, Cambridge,
MA, USA, February 10–12, 2005. Springer Verlag.

7. Sven Laur and Helger Lipmaa. Additive Conditional Disclosure of Secrets And Applications.
Technical Report 2005/378, IACR, November 21 2005.

8. Helger Lipmaa. An Oblivious Transfer Protocol with Log-Squared Communication. In Jiany-
ing Zhou and Javier Lopez, editors, The 8th Information Security Conference (ISC’05), vol-
ume 3650 of Lecture Notes in Computer Science, pages 314–328, Singapore, September 20–
23, 2005. Springer-Verlag.

*** Submission to FC 2007. October 16, 2006 *** 15

9. Moni Naor and Kobbi Nissim. Communication preserving protocols for secure function eval-
uation. In Proceedings of the Thirty-Third Annual ACM Symposium on the Theory of Com-
puting, pages 590–599, Heraklion, Crete, Greece, July 6–8 2001. ACM Press.

10. Moni Naor and Benny Pinkas. Oblivious Transfer and Polynomial Evaluation. In Proceedings
of the Thirty-First Annual ACM Symposium on the Theory of Computing, pages 245–254,
Atlanta, Georgia, USA, May 1–4, 1999. ACM Press.

11. Julien P. Stern. A New and Efficient All or Nothing Disclosure of Secrets Protocol. In Kazuo
Ohta and Dingyi Pei, editors, Advances on Cryptology — ASIACRYPT ’98, volume 1514 of
Lecture Notes in Computer Science, pages 357–371, Beijing, China, October 18–22, 1998.
Springer-Verlag.

12. David P. Woodruff and Jessica Staddon. Private Inference Control. In Vijayalakshmi Atluri,
Birgit Pfitzmann, and Patrick Drew McDaniel, editors, Proceedings of the 11th ACM Con-
ference on Computer and Communications Security, pages 188–197, Washington, DC, USA,
October 25–29, 2004.

A Equivocable Commitments and Relaxed Security

In the first glance Prot. 1 seems relaxed-secure whenever the underlying list commit-
ment LC is binding and hiding. However, there is a small subtlety: a malicious client
can choose the queries based on Compk(x) and released certificates si. The latter makes
simulation hard, as the simulator must somehow iteratively put queried xi under the
commitment so that the client does not change his asked queries. For that we need a
trapdoor so that we could successfully execute the simulation algorithm given in Thm 2.
Such property is known as equivocability. An equivocable commitment scheme [2] has
a special trapdoor functionality (SimCom,Equiv) that allows to forge decommitments.
More specifically, a modified setup algorithm Ĝen can return extra information sk that
allows to compute fake commitments (c, σ) ← SimComsk such that c can be opened to
any value using the function Equivsk I.e. for all (c, σ) ← SimComsk, x ∈ M we have
Openpk(c,Equivsk(x, c, σ)) = x. Second, it should be infeasible to distinguish between
true and faked commitments. More precisely, let D be a nonuniform polynomial time
distinguisher that chooses x according to pk← Gen and x̂ according to p̂k← Ĝen. Then
triples (pk, c, d) and (p̂k, ĉ, d̂), where (c, d) ← Compk(x) and (ĉ, σ) ← SimComsk and
d̂← Equivsk(x̂, ĉ, σ) must be computationally indistinguishable for D. The correspond-
ing notion of equivocable list commitment schemes are defined analogously allowing D
to ask also partial openings. Note that if we use equivocable commitments on the leafs
of hash tree, we get equivocable list commitment.

Now, it is straightforward to augment the simulation algorithm in the proof of Thm. 2
by using Ĝen, SimComsk and Equivsk to fake openings on the fly. Equivocability assures
that the output of malicious client must be computationally indistinguishable from the
output in World1.

