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Abstract. We say that a (2-message) protocol is consistent if apart from the usual ideal-world attacks, a malicious
server can also—instead of returning the output—force the honest client to halt based on the truth value of some
predicate on the client inputs. This can happen for example when the server switches her inputs between answer-
ing to client’s queries. Thus, the client can detect and then prove to third parties that server’s answers to different
queries are inconsistent; however, a justified public complaint violates his own privacy. In many applications, where
the long-term reputation of a service provider is more important than the privacy of an individual query, consistent
protocols can provide adequate protection with a minimal overhead compared to private protocols. Moreover, con-
sistency is an interesting security notion by itself, having applications in say private inference control. We propose
an efficient generic protocol for consistent cryptocomputing that combines a formal description of step-by-step
computation (like branching programs) with an equivocable and extractable commitment scheme. The commitment
scheme must have certificates that make it possible to verify that the output value of the computation is a result of a
correct computation process. The new protocol requires two messages per query and uses a number of new (or very
recent) cryptographic tools.
Keywords. Branching program, consistency, cryptocomputing, equivocable and extractable commitment.

1 Introduction

We consider two-party adaptive computations—like adaptive oblivious transfer—in the client-server model
where the client issues queries to the server, while the server obtains no legitimate output. In such protocols,
the server has an input x, and the client makes m adaptive queries qj . The protocols consist of a one-time
initialization phase (than can be costly) and then m query phases. We are interested in polylogarithmic-
communication cryptocomputing protocols where during every query phase, the client sends some cipher-
texts to the server, who after some computation returns a number of other ciphertexts.

Achieving full simulation-based security in this setting (and in the complexity-theoretic model) is often
very costly: using zero-knowledge proofs results at least 3 messages per query, and the only known generic
way to achieve sublinear communication [NN01] requires the costly computation of a PCP witness.1 To
reduce both communication and computation, it is customary [NP99a,AIR01,Lip05,IP07,LL07,Lip08] to
design protocols that are private in the malicious model but do not aim to provide correctness. In such
semisimulatable protocols, server’s privacy is proved by using a simulation-based approach, but the pri-
vacy of the client is proved by using a simpler game-based approach. Constructing 2-message per query
semisimulatable protocols is by now a standard practice.

However, privacy is not sufficient in many applications where one also needs some form of consistency
of protocol outputs. As already shown by Naor and Pinkas [NP99b], just privacy permits selective-failure
attacks, in which a malicious sender can induce transfer failures that are dependent on the message that
the receiver requests. As an illustrative example, consider private inference control [WS04] in the next
setting. The server holds a database of private keys that are used to encrypt various content, e.g., docu-
ments with different confidentiality levels. Clients have acquired different credentials and the server’s task

1 It is known how to construct 2-message per query simulatable protocols for say adaptive (n, 1)-oblivious transfer protocols but
they have linear communication. See for example [PVW08].
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is to release correct keys. Imagine that the corresponding document server is used in a large organiza-
tion, such as the army headquarters, and for security reasons the server should not learn which documents
are accessed by different clients. At the same time, the server should deny access for clients who do not
have appropriate credentials. (Such a goal can be efficiently accomplished with conditional disclosure of
secrets [GIKM00,AIR01,LL07].) In particular, in private inference control, the client should be able to dis-
tinguish between denial of service attacks, where the server acts maliciously, and legitimate denials, where
the client has no right to obtain a corresponding key. Moreover, to protect the service against inside attacks
the client should be able to prove to third parties that the denial is illegitimate.
OUR CONTRIBUTION. To improve on the efficiency of secure protocols and on the other hand to decrease
the influence of selective-failure attacks in semisimulatable protocols, we advocate an intermediate ap-
proach. We allow the server’s misbehavior to depend on the concrete inputs of the client. We require that an
honest client must always be able to detect and prove malicious behavior. We also require the protocol to re-
main client-private unless the client issues a complaint. Moreover, a publicly issued complaint should reveal
only a single bit of information (“client’s inputs were such that client’s output was incorrect”) about client’s
inputs to the malicious server. Thus, the corresponding security notion, consistency, is strictly weaker than
security in the malicious model. In other words, secure protocols prevent, consistent protocols detect, and
semisimulatable (private) protocols permit selective failures without even detecting them.

We now give an informal description of the new consistent cryptocomputing (that is, computing on ci-
phertexts) protocol. The protocol can be based on any semisimulatable protocol where the computation of the
final result is done by retrieving server’s output f from some memory location after following some formally
established computation process. In the consistent protocol, the client will follow exactly the same compu-
tation process but instead of f it receives it’s “certificate”. The value of f should be extractable from the
certificate, and the certificate should prove that the server retrieved f by following correct computation and
from a correct location. More precisely, there should exist a server’s input that is consistent with the certifi-
cate. Thus our construction “marries” a formal computation process with an extractable (DAG-commitment)
scheme. Despite of this simple description (and in fact, simple construction), the security definitions and the
security proofs are not obvious at all. We will now proceed to explain technical intricacies.

The definition of consistency is our first contribution. Formally, a malicious adversary can enforce a
complaint if client’s inputs satisfy certain halting predicate π. We modify the ideal world by allowing a ma-
licious server to submit to the trusted third party a description of an efficient halting machine Halt-Machine.
At the jth query qj , the trusted third party halts if Halt-Machine(q1, . . . , qj) = >. Otherwise, he returns
the correct function value. A protocol is consistent if for every adversary in the real world, there exists a
simulator in the (modified) ideal world, such that the restricted joint output distributions in the real and ideal
world are computationally indistinguishable; see Sect. 2. The machine Halt-Machine can be seen as imple-
menting m halting predicates π1(q1), π2(q1, q2), . . . , πm(q1, . . . , qm). If after round j, the client issues a
valid complaint about server’s incorrect behavior, the server will know that πj(q1, . . . , qj) holds. Different
protocols allow the server to enforce different classes of halting predicates. In particular, there is a trade-off
between the protocol complexity and the restrictiveness of enforceable halting predicates. See Sect. 6.

We need so called DAG-commitment schemes that satisfy relatively strong security notions, equivocabil-
ity and DAG-extractability. As our second contribution, in Sect. 3, we define DAG-commitment schemes and
their security notions, and then propose a concrete efficient DAG-commitment scheme. A DAG-commitment
scheme enables to commit to the set of sink labels of a DAG such that, given a short certificate, one can later
verify the value of a single sink label of the committed DAG. The new construction combines an extension
of hash trees with a suitable usual commitment scheme. We need the DAG-commitment scheme to be DAG-
extractable in the sense of [BL07] (where this property was called knowledge-binding). That is, we need
a DAG-commitment scheme where given a succinct commitment and access to the code and the random
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coins of the committer, one can construct a list of candidate committed elements, such that the probability
that an adversary can later open the commitment to an element not in the list is negligible. We prove by us-
ing a white-box reduction that every binding DAG-commitment scheme is also DAG-extractable, and thus
it suffices for the usual commitment scheme to be binding. We also prove that the new DAG-commitment
scheme is equivocable when the usual commitment scheme is equivocable. Note that it is possible to achieve
equivocability in the complex-theoretic model by requiring the participants to do additional work in the ini-
tialization phase; this does not increase the number of rounds per query.

Our third contribution is the consistent cryptocomputing protocol itself. It enables to cryptocompute any
functionality that can be computed by a family of polynomial-size branching programs where the values of
the sinks are independent from each other. (This is the case when uses a complete binary decision tree to
cryptocompute oblivious transfer like in [KO97,Ste98,Lip05] or in the case of conditional disclose of se-
crets [AIR01,LL07].) It combines recent techniques by [IP07,Lip08] for semisimulatable cryptocomputing
with an equivocable and DAG-extractable DAG-commitment scheme in a manner we described earlier: it
follows the private branching program protocol of [IP07], but instead of just the original output to the pro-
tocol, it also retrieves a certificate which proves that this output was retrieved from a correct branch of the
branching program. See Sect. 4 for more.

The new consistent cryptocomputing protocol is secure against unbounded malicious clients, uses 2
messages per single query, and has communication and computation comparable to that of the underlying
semisimulatable protocol. We also present more efficient protocols for specific functionalities like adaptive
m-out-of-n oblivious transfer and adaptive conditional disclosure of secrets (CDS), see Sect. 5. In partic-
ular, consistent adaptive CDS is directly applicable in private inference control where one is actually not
interested in fully-simulatable security. This shows that consistent computing is not only a weaker security
notion but it is interesting by itself. Finding other applications is an interesting open problem.
NOTATION. We assume that k is the security parameter, and that A = {Ak} is a non-uniform adversary.

2 Consistent Computation: Security Definitions

PRELIMINARIES. Many privacy-preserving applications—for example oblivious transfer and CPIR—are
asymmetric, so that only one participant (client) obtains output whereas the other (server) is just the service
provider. Their inputs are often asymmetric, too, with usually client’s input consisting of the query index but
server’s input consisting of the whole list. More precisely, the server holds an input x and the client makes
m adaptive queries q1, . . . , qm to retrieve the outputs of some functions f1(q1, x), . . . , fm(qm, x).

We consider the security of a two-party protocol Πf for adaptive computation of functionality f . In the
ideal world, the participants forward their inputs to a trusted third party (TTP) that computes f and sends
the corresponding outputs back to both parties. That is, the TTP receives x from the server, and for every
client’s input qj he sends⊥ to the client, if the server issues an abort command, or fj(qj , x), otherwise. Since
both parties can halt in the real world, the TTP halts if one of the participants sends a halting instruction in
the ideal world. Such formalism captures all client-server protocols where server’s input is non-adaptive. A
protocol Πf is correct, if in the case of honest participants, the client obtains the desired outputs.

Consider an arbitrary non-uniform polynomial-time malicious server and an honest client in the real
world. A protocol is client-secure if there exists a non-uniform polynomial-time simulator acting as the
server in the ideal world such that the joint output distribution of the server and the client is computationally
indistinguishable from the joint output in the real world. In the ideal world the honest client just submits his
inputs and outputs the values received from TTP. Server-security is defined analogously; because server does
not have an output, server-secrecy coincides with server-privacy. Thus, a protocol is (simulatably) secure
if it is client-secure and server-private. A protocol is statically private if malicious participants and their
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TTP computes
f1(q1,x), . . . fm(qm,x)

A client adaptively
queries q1, . . . , qm

A server submits
x = (x1, . . . , xn)

Halt-Machine

may stop TTP

qi fi

q1, . . . , qm

ok or ⊥

πi(·)
x = (x1, . . . , xn)

Fig. 1. Ideal world model for consistent computations. A malicious server can send a description of halting
predicates πi(·) to Halt-Machine but the communication is unidirectional.

simulators are unbounded, and the output distributions are statistically indistinguishable. (This uses a weak
definition of statistical security that is common in the existing literature on two-message oblivious transfer
protocols. According to a standard definition, it is required that the simulator works in time, polynomial in
the working time of the malicious party.)

Security requirements in the client-server model are often asymmetric, as there are few servers and
many clients. Servers are also more concerned about their reputation than clients. Thus, and to also in-
crease efficiency, in the case of client-server protocols one often considers the notion of semisimulatable
privacy [NP99a,AIR01,Lip05,IP07,LL07,Lip08], where only client-privacy is guaranteed. More precisely,
client-privacy is only protected in the sense of CPA-security; that is, it is required that the server is not able
to distinguish which of the two candidate inputs the client is using. Server-privacy is defined as before. It is
possible to design efficient 2-message semisimulatable protocols for many applications [IP07,Lip08].

A semisimulatable protocol provides no guarantees about the correctness of client’s output. On the other
hand, a simulatable protocol guarantees that a client can detect server’s malicious behavior. More precisely,
an honest client detects all possible deviations from the protocol that may change output for some client’s
input. Thus, the client can freely complain if needed since the server knows herself when she acts mali-
ciously and thus a complaint does not give away any information about client’s inputs. The generic way to
implement such a “universal fraud detection” is based on zero-knowledge proofs. Although zero-knowledge
proofs can be compressed by employing the PCP theorem [NN01], the existing techniques for this are only
asymptotically communication-efficient and in practice, the resulting protocols have a prohibitively large
communication and computation overhead. Due to the nature of zero-knowledge proofs, secure protocols
seem to require 4 messages per query in the complexity-theoretic model.
CONSISTENCY. We propose a security notion that allows more efficient implementations than simulatable
protocols but is considerably stronger than semisimulatability. First we note that the universal fraud detec-
tion mechanism is not always necessary. For example, any semisimulatable 1-out-of-n oblivious transfer is
formally also simulatably secure because there are no consistency restrictions to client’s outputs; acting as
an honest client it is possible to extract a server’s database that perfectly models client’s outputs in the real
world. To tackle this problem, one often constructs verifiable protocols where the parties first commit their
inputs and then verify the consistency between the committed inputs and the outputs [CC00].

Intuitively, a protocol is consistent if it includes an existential fraud detection mechanism so that a client
detects malicious behavior if and only if it infects the output that corresponds to her actual inputs. Therefore,
by issuing a complaint the client releases a single bit of information (“my inputs were such that the result
returned by the server was incorrect”). For formal definition of consistency, we make explicit changes into
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the ideal world model, see Fig. 1. In the new model, a malicious server can additionally influence the outputs
of the client, after server’s inputs x are submitted to the TTP, as follows. The server sends to the TTP
a description of stateful randomized polynomial-time predicates π1(q1), . . . , πm(q1, . . . , qm). (Polynomial
time-bound means here that there exists a c > 0 such that the time needed to evaluate πi(·) is at most kc

times larger than the running time of the malicious server, where k is the security parameter.) Altogether such
predicates describe a halting machine Halt-Machine. Computation in the ideal world proceeds as follows.
Given the jth query qj , TTP feeds qj into Halt-Machine that evaluates πj(q1, . . . , qj). The TTP sends to the
client fj(qj , x) if πj(q1, . . . , qj) holds, and ⊥ otherwise.

Definition 1 (Consistency). A protocol Πf is consistent if for any non-uniform polynomial-time malicious
client or server, there exists a non-uniform polynomial-time adversary (simulator) in the modified ideal
world such that the restricted joint output distribution of the real world and the modified ideal world are
computationally indistinguishable for any set of inputs, and for any auxiliary string hist that is given as
input both to the malicious party and the simulator.

Here, the explicit use of hist assures sequential composability. Note that a consistent protocol is strictly more
secure than the straightforward sequential composition of semisimulatable protocols, since in a consistent
protocol it is impossible to influence client’s output by changing server’s inputs during the protocol.

Whenever a client issues a valid public complaint, some information is leaked. As the ideal and real
world outputs are indistinguishable, it is sufficient to consider the effect of complaints in the ideal world.
If the client notifies the server whether the jth computation failed or not, then the malicious server learns
the value of πj(q1, . . . , qj). Therefore, the decision to issue a complaint must depend on whether the client
values more the utility of fj(qj , x) or the privacy of πj(q1, . . . , qj). Here, the precise predicate πj is unknown
to him. To limit privacy exposure, it is important to limit the possible class of enforceable halting predicates
πi(·). We consider this explicitly in Sect. 6, where we define various classes of enforceable predicates.

If a client reaches the accepting state, then his output is the same as it would be in the ideal world. Thus,
a non-accepting client can prove to the court, without interacting with the server, that server’s behavior was
indeed malicious. Also, an honest server can easily disprove false accusations, since server’s honest behavior
leads always to acceptance. If a protocol is only semisimulatable, then to disprove a false accusation the
honest server must repeat her computations and prove in zero-knowledge that her actions were correct. Even
that might be insufficient, since sometimes it is possible to change protocol inputs to hide malicious behavior.
Moreover, to prove such claims, the server has to store all computations which is clearly impractical if she
serves many clients. Similar concerns have been addressed earlier in the literature, see [AL07] for discussion
and further references. However, all models provided by Aumann and Lindell allow significantly larger
exposure, since they do not use halting predicates and in the case of a successful cheating they give the
inputs of honest parties directly to the adversary.

3 DAG-Commitment Schemes

Within this paper, a DAG is directed acyclic graph with a single source and n sinks. All protocols presented
in this paper use DAG-commitment schemes, a generalization of commitment schemes that makes it possible
to commit to the set of sinks of any DAG. In this section, we give a formal definition of the syntax and
semantics of DAG-commitment schemes. The most novel property here is DAG-extractability in the sense
of [BL07] (where this property was called knowledge-binding). This is followed by a new construction.
DEFINITIONS. Here, and in the next, G is a short encoding of a DAG, and x = (x1, . . . , xn) ∈ Mn is
a list of poly(k) elements mapped to n sinks of G. We will assume that G is publicly known and fixed,
and thus usually omit it as an argument to com, cert and open. A DAG-commitment scheme is a quadruple
gc = (gen, com, cert, open) of efficient algorithms:
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– Key-generator gen(1k) generates public parameters ck.
– Commitment algorithm outputs a pair (c, d)← comck(G, x) of commitment and decommitment values.
– For (c, d)← comck(G, x) and i ∈ {1, . . . , n}, certck(G, d, i) returns a certificate cti.
– If cti = certck(G, d, i) and (c, d)← comck(G, x) then openck(G, c, cti) := (i, xi). Incorrect certificates

lead to openck(G, c, cti) = ⊥.

Every DAG-commitment scheme must be binding and hiding. For binding, consider the next game:

1. Challenger generates ck← gen(1k) and sends ck to Ak.
2. Ak generates a commitment ĉ and two certificates ĉt0, ĉt1.
3. Ak wins if the certificates allow to open ĉ to different values of xi. That is: Let (ib, xb)← openck(ĉ, ĉtb)

for b ∈ {0, 1}. Ak wins if and only if i0 = i1 6= ⊥ and ⊥ 6= x0 6= x1 6= ⊥.

We say gc is (τk, εk)-binding if Pr[Ak wins] ≤ εk for any non-uniform adversary Ak that works in time τk.
For hiding (in the sense of CPA-security), consider the next game:

1. Challenger generates ck← gen(1k) and sends ck to Ak.
2. Ak generates two lists x0, x1 of sink labels, and sends them to the challenger. It is required that the

databases have elements only fromM, and that |x0| = |x1| = n, where n = poly(k) is the number of
sinks of a fixed DAG G.

3. Challenger generates a random bit b← {0, 1}, and sets (c, d)← comck(xb). He sends c to Ak.
4. Adversary makes a number of queries to certck(d, ·), where she is restricted to query certck(d, ·) only on

indexes i with x0
i = x1

i .
5. Adversary outputs a bit b′, and wins if b = b′.

We say gc is (τk, εk)-hiding if 2 · |Pr[Ak wins in the hiding game]− 1/2| ≤ εk for any non-uniform adver-
sary Ak that works in time τk.

A DAG-commitment scheme is computationally hiding if it is (poly(k), k−ω(1))-hiding, and computa-
tionally binding if it is (poly(k), k−ω(1))-binding. In the case of unbounded adversaries, we speak respec-
tively about statistical hiding and statistical binding.

A DAG-commitment scheme gc is perfectly equivocable [CIO98] if there exist three additional algo-
rithms ĝen, ĉom and equiv, such that no unbounded adversary A can distinguish between the following two
experiments for any fixed DAG G with n = poly(k) sinks and even after submitting many vectors x:

– The first experiment models the normal operation of the DAG-commitment scheme. It sets ck ←
gen(1k), and sends ck to A. Then, A gets an access to the oracle O that, given x = (x1, . . . , xn),
computes (c, d)← comck(x), cti ← certck(d, i) for i ∈ {1, . . . , n}, and outputs (c, ct1, . . . , ctn).

– The second experiment models the faked commitments. First, it sets (ek, ck) ← ĝen(1k), and sends
ck to A. Then, A gets an access to the oracle Ô that, given x = (x1, . . . , xn), computes (ĉ, η) ←
ĉomck(ek, n), ĉti ← equivek(ĉ, η, i, xi), and outputs (ĉ, ĉt1, . . . , ĉtn).

Clearly, adversary’s chances to distinguish the experiments do not increase if it queries the certificates adap-
tively depending on the received commitment and certificate values: formally, we can build a wrapper around
the adversary that first queries the whole tuple and then gradually releases the requested elements. The defi-
nition of statistical and computational equivocability are analogous.

One can build non-interactive equivocable (non-DAG) commitment schemes based on any one-way
functions in the common reference string (CRS) model [CIO98,Di 02,DG03]. In the standard model, 3
rounds are needed to implement an equivocable commitment scheme. Thus, all subsequent results that use
equivocable commitment schemes require 3 messages. However, all but the last message can be transferred
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during the initialization phase, so this is not a problem. The Pedersen commitment scheme [Ped91] is per-
fectly equivocable and the Fujisaki-Okamoto commitment scheme [FO97] is statistically equivocable in the
CRS model. In non-interactive equivocable Pedersen commitment scheme, the CRS is (G, q, g, h) where G
is a group of order q, and g 6= h are its two random generators. The equivocation key is equal to x = logg h.
In the interactive version of this scheme, the committer and the receiver jointly compute random g and h.
LIST-EXTRACTABILITY. We also need some sort of extractability. More precisely, given a certain trapdoor
one should be able to reconstruct which elements were DAG-committed. However, because the commit-
ments c are very short, they can be opened in many different yet legitimate ways. As a result, we use a some-
what weaker DAG-extractability property proposed by Buldas and Laur [BL07] (they called it knowledge-
binding). Essentially, a DAG-commitment scheme is DAG-extractable if the DAG-committed elements are
efficiently extractable given a white-box access to the committing algorithm and to the used randomness.
However, the definition given in [BL07] has some minor technical shortcomings. In particular, the defini-
tion was given in a standalone model where the adversary did not have input. As a result their definition
is not sequentially composable. We slightly extend the definition. Namely, for DAG-extractability, consider
the next game, where A = {Ak} is a non-uniform adversary, KAk

is some fixed “extractor” machine, and
history hist and advice advice are any fixed bitstrings:

1. Generate a new public key ck← gen(1k) and a new random tape ω.
2. Adversary gets hist, ck as inputs and ω as her random tape. She outputs a DAG-commitment c to a “list”

of size n, (c, n)← Ak(hist, ck;ω).
3. Extractor gets hist, ck and ω as inputs. Extractor guesses some candidate list of sink labels,

(x̂1, . . . , x̂n)← KAk
(hist, ck, ω).

4. On input advice, the adversary outputs a set of certificates (ct1, . . . , ctm)← Ak(advice).
5. Adversary wins if she output at least one certificate that is consistent with the commitment and that

corresponds to a list element, not correctly guessed by the extractor, i.e., if ∃j : (⊥ 6= (i, x) =
openck(c, ctj) ∧ x 6= x̂i).

A DAG-commitment scheme gc is (tk, τ e
k , ε

e
k)-DAG-extractable if for every tk-time stateful randomized

algorithm Ak there exists a dedicated τ e
k -time extractor machine KAk

such that max Pr[Ak wins] ≤ εek,
where the maximum is taken over the choice of hist, advice ∈ {0, 1}tk .

If a commitment scheme is not binding then it is trivially not DAG-extractable. More precisely, if gc is
not (τ b

k , ε
b
k)-binding, then the probability εek to violate—in closely related time τ e

k = (1 + o(1))τ b
k—DAG-

extractability is at least εbk. Analogously to the case of proofs of knowledge [BG92], we define εbk to be
the knowledge error. A DAG-commitment scheme gc is (computationally) DAG-extractable if there exists a
polynomial p such that τ e

k = p(tk)/(εek − εbk) for any polynomial tk.
Given this asymptotic definition of DAG-extractability, we obtain the next result. (A quite involved proof

of this theorem is given in App. A.)

Theorem 1. Any binding DAG-commitment scheme is also (white-box) DAG-extractable.

Since in the next we use several (DAG-)commitment schemes in parallel, in such cases we denote the
algorithms by prefixing the name of the concrete commitment scheme. For example, then we talk about
algorithm gc.open.
DOUBLE-LAYERED DAG-COMMITMENT PROTOCOL. Fix a DAG G with n sinks. Our construction
of a DAG-commitment scheme has two layers. The lower layer is just an ordered list of individual
commitments to n sink labels. As the second layer, we use a generalization of hash trees to DAG’s
to compress the list into a succinct root digest c∗. More formally, the double-layered hash commit-
ment dlh = (dlh.gen, dlh.com, dlh.cert, dlh.open) is specified by a conventional commitment scheme
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cs = (cs.gen, cs.com, cs.open) and a collision-resistant hash function family {Hk}. The setup procedure
dlh.gen outputs (ck, h) for ck ← cs.gen(1k), h ← Hk. To commit to x = (x1, . . . , xn), one first computes
(ci, di) ← cs.comck(xi) for i ∈ {1, . . . , n} and then computes a root hash c∗ from c1, . . . , cn by using the
standard recursive hash tree methodology as applied to DAG G. One then outputs (c∗, n) as the commitment
and d∗ = (c1, . . . , cn, d1, . . . , dn) as the decommitment. Let t-cert(ci) = (ci, . . .) be the minimum amount
of information needed to recompute the root hash c∗ from the ith position in the corresponding DAG. A
certificate for xi is (di, t-cert(ci))← dlh.cert(ck,h)(d∗, i). To open, one first validates t-cert(ci) with respect
to (c∗, n), and on success outputs xi ← cs.openck(ci, di).

Intuitively, it is clear that dlh inherits the hiding and equivocability properties of the lower level com-
mitment scheme, as the hashing level only compresses information. Similarly, it is binding if the lower level
commitment is binding.

Theorem 2. Assume thatH is a collision-resistant hash function family and that cs is a (conventional) com-
mitment scheme. Then dlh inherits the hiding, binding and equivocability from cs. Hiding and equivocability
also preserve statistical and perfect security. The efficiency of the scheme is comparable to the hash tree.

Proof. The claims about hiding and binding are evident. For the equivocability note that given the equivo-
cation key ek for commitment scheme cs, it is possible to use cs.ĉom to generate a list ĉ1, . . . , ĉn of fake
commitments for lower level that can be later opened to any values using the function cs.equivek. Thus,
preservation of equivocability follows directly from the definition. ut

In practice, the Pedersen commitment scheme is a good choice for cs, since its public key is a group element
y ∈ 〈g〉 such that computing the discrete log x = logg y is intractable. Here, x is also the equivocability
trapdoor. Hence, the key can be generated jointly by sender and receiver by using a secure three-message
multiplication protocol to multiply two random group elements. Alternatively, the client may specify y since
the Pedersen commitment is perfectly hiding for all y. Then, we lose equivocability unless we are willing to
find the discrete logarithm of y in exponential time.

4 Generic Protocol for Consistent Cryptocomputing

Following [SYY99], by cryptocomputing we mean computing on encrypted data. In [IP07], Ishai and Paskin
generalized the earlier computationally-private information retrieval protocols by [KO97,Ste98,Lip05] from
complete ordered binary decision trees to arbitrary branching programs. This protocol was then refined
in [Lip08]. The resulting semisimulatable protocol PrivateBP (private branching programs) can crypto-
compute any functionality f(q, x), where q is client’s input and x is server’s input, given that for any
fixed x f(·, x) can be computed by a polynomial-size branching program, that is, belongs to the com-
plexity class L/poly [Weg00]. For completeness’s sake, we first describe a simple variant of PrivateBP;
see [IP07,Lip08] for a precise description. After that, we show how to make this protocol consistent. We
assume that the reader is familiar with the notions like branching program [Weg00] and (single-database)
(n, 1)-CPIR [CGKS95,KO97].
PREVIOUS WORK: LIPMAA’S EFFICIENT (2, 1)-CPIR PROTOCOL. In [Lip05], Lipmaa proposed an effi-
cient two-message client-private (2, 1)-CPIR protocol for `-bit strings, see [Lip08] for a succinct description.
This protocol is based on Damgård-Jurik cryptosystem [DJ01], and its security is based on the Decisional
Composite Residuosity Assumption [Pai99]. Importantly, both messages of Lipmaa’s protocol have length
≤ ` + 2k, and it can be applied for arbitrary values of `. Denote the first message of Lipmaa’s (2, 1)-
CPIR protocol by Q(`, q) and the second message by R(`, x,Q), where q ∈ {0, 1} is client’s input and
x = (x0, x1) is server’s input. Thus |Q(`, q)|, |R(`, x,Q)| ≤ ` + 2k. As shown in [Lip05], there exists a
compress function C, such that C(`, `′, Q(`, q)) = Q(`′, q) for any `′ < `.
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PREVIOUS WORK: THE PRIVATEBP PROTOCOL [IP07,LIP08]. Following [IP07,Lip08], one can crypto-
compute an arbitrary class F of functions f : {0, 1}n → {0, 1}` as follows. (Our description and notation
is based on [Lip08].) Assume that Pf is an efficient layered branching program [Weg00] that computes f .
Fix server’s input f and a branching program Pf that computes f . Let len(Pf ) be its length and size(Pf )
its size. The sinks of Pf are labeled by client’s possible outputs. Let `max := ` + (maxg∈F len(Pg) + 2)k.
The client submits her input bits qi as Qi := Q(`max, qi). At every node of the branching program that is
labeled by a variable qi, given input values b0, b1 to the node, and Qi, the output value of the node will
be R(`∗, (b0, b1), C(`max, `

∗, Qi)), where `∗ := |b0| = |b1|. Thus the output of the branching program is
equal to a maxg F-times application of R(·, ·, ·) to some sink label, selected by the encrypted branching
variables. At the end of the cryptocomputing, the server returns the output value to the client who computes
the sink label in question by recursively applying the local decoding process of the (2, 1)-CPIR protocol
maxg∈F len(Pg) times.

Thus, client-communication is upper-bounded by n · `max. Server-communication consists of one mes-
sage with length `max. Server’s computation is linear in size(Pf ). (For simplicity’s sake, here and in the
following we assume that the server does a unit amount of work at every node.) Therefore, every set
F pf functions has a client-private cryptocomputing protocol with total communication ≤ (n + 1)`max.
See [IP07,Lip08] for a precise description and generalizations. In particular, in [Lip08] it was shown that a
variation of the PrivateBP has communication (1 + o(1)`+Θ(n ·maxg∈F len(Pg))k.

The described protocol by itself does not guarantee server-privacy. One can use the conditional disclo-
sure of secrets protocol from [LL07] to achieve server-privacy, without losing too much in efficiency. In a
nutshell, one randomizes the sink labels of the branching program so that in the first level of branching-
program computation, the resulting ciphertext encrypts a value, statistically close to random, if client’s en-
crypted input used for branching is invalid, that is, non-binary. See [Kal05,IP07] for alternative techniques
and [Lip08] for more discussion. We assume that the PrivateBP protocol guarantees server-privacy.
OUR CONTRIBUTION: CONSISTENT CRYPTOCOMPUTING. We are interested in consistent cryptocomput-
ing for adaptive protocols. In an adaptive m-out-of-n f -protocol, the server has an input x. Client’s input is
q = (q1, . . . , qm). In each adaptive phase the client learns f(qj , x) if qj is a valid input, and ⊥ otherwise.
Differently from the previous subsection, we assume that f is a publicly known function and that the sink
values of the branching program are independent of each other. This is a serious limitation compared to the
server-private protocols of [IP07,Lip08] where it was required that for every possible fixed server’s input
there exists a polynomial-size branching program and there was no limitation on the sink values. Still, one
can construct efficient consistent protocols for several interesting functionalities.

We first give an informal description of the protocol. The protocol uses PrivateBP as the basis, but
it can also be based on any other semisimulatable protocol where the computation of the final result is
done by retrieving server’s output f from some memory location after following some formally established
computation process. In the consistent, protocol the client will follow exactly the same computation process
but retrieve a certificate of f . The value of f should be extractable from the certificate. Moreover, the
certificate should prove that the server retrieved f by following correct computation and from a correct
location. More precisely, there should exist a server’s input that is consistent with the certificate. Thus our
construction “marries” a formal computation process (in this case, PrivateBP—but in the next section we will
talk about other possibilities) with an extractable (DAG-commitment) scheme. The next formal description
explicitly assumes the use of PrivateBP.

Let P be a branching program for f , on a DAG G, such that the sink labels correspond to different
server inputs xj . Next, we construct an adaptive m-out-of-n f -protocol Ada = Ada[gc] from Lipmaa’s
(2, 1)-CPIR protocol Γ and an equivocable and DAG-extractable DAG-commitment scheme gc that handles
`-bit elements and has ≤ `s(G)-bit certificates:
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– In the setup phase of Ada, the trusted dealer runs ck← gc.gen(1k) to generate public parameters of the
DAG-commitment scheme.

– In the commitment phase of Ada, the server first computes (c, d) ← gc.comck(x) and sends the com-
mitment c to the client. Then he computes cti ← gc.certck(d, i) for every sink i ∈ {0, . . . , n− 1}.

– In the ith query phase of Ada with client’s query qi:
1. The client sends ci ← Q(`s(G) + (len(P ) + 2)k, qi) to the server.
2. The server cryptocomputes Ada on client’s input ci, by using the semisimulatable PrivateBP proto-

col, and returns the result r back to the client.
3. Let r′ be the result of len(P )-times application of Γ ’s decoding procedure to r. The client outputs
xqi if gc.openck(P, c, r′) = (qi, xqi) 6= ⊥, and ⊥, otherwise.

For clarity’s sake, we have described Ada using a trusted setup phase; we will later show how to eliminate
the need for trusted dealer by running a certain multiparty protocol. Using trusted setup phase makes the se-
curity proofs more modular. Also, many semisimulatable oblivious transfer protocols [Lip05,AIR01,LL07]
are given in the trusted setup model.

Theorem 3. If gc is equivocable and binding and Γ is computationally client-private, then Ada is consis-
tent.

(Proof is given in App. B.)

Corollary 1. If gc is statistically equivocable, then Ada is statistically server-private. ut

The construction of the knowledge-extractor was essentially white-box. We can however show the following.

Theorem 4 (Black-box reduction). If the server’s input space S is polynomial in the security parameter
and gc is binding, then the knowledge-extractor K can be constructed by using black-box methods.

Proof. Note that the advice of Aideal is from the set S. Hence, one can evaluate Aideal(ck, hist, advice;ω)
for all |S| advice strings and reconstruct all valid certificates and corresponding openings in polynomial
time. Since gc is binding, then the probability of a double opening is negligible, and it is possible to a
uniquely reconstruct x̂. ut

For example, in the case of m-out-of-n adaptive oblivious transfer, where |S| = nm, one can construct a
polynomial-time black-box extractor K if m is a constant, or a subexponential-time black-box extractor K
if m = o(n/ log n).

5 Efficient Consistent Protocols For Specific Problems

Recall that Ada was based on an underlying semisimulatable protocol, where the client’s outputs corre-
sponded to sinks in a certain DAG. To make the protocol consistent, we let the client to obtain short certifi-
cates that the sink labels agree with the previous commitment. Next, we give a few examples.
ADAPTIVE OBLIVIOUS TRANSFER. In the special case of adaptivem-out-of-n oblivious transfer protocols,
the consistent protocol of Sect. 4 is just a semisimulatable oblivious transfer protocol, based on Lipmaa’s
(n, 1)-CPIR protocol [Lip05], applied to the database of certificates. One can instead apply an arbitrary
semisimulatable (n, 1)-CPIR protocol to the database of certificates to achieve the same result. In particular,
one can use the Gentry-Ramzan (n, 1)-CPIR protocol [GR05] to minimize communication compared to the
general solution of Sect. 4.
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SECRET SHARING. The Benaloh-Leichter secret sharing scheme [BL88] for arbitrary adversary structures
use also a tree structure, and propagate the secret up on the tree according to some fixed rules. We can make
their protocol consistent by instead propagating the corresponding certificate. Details are omitted.
CONSISTENT ADAPTIVE CONDITIONAL DISCLOSURE OF SECRETS. In a conditional disclosure of secrets
(CDS) protocol for some set S, the client obtains server’s secret if and only if his own input to the protocol
was “valid”, i.e., belonged to S. In particular, consistent CDS provides a solution to the private inference
control problem [WS04]; there, consistency is precisely the correct security notion and one is not interested
in simulatability. In [AIR01,LL07], the authors proposed CDS protocols based on homomorphic cryptogra-
phy. In their protocols, the server cryptocomputes some value based on fixed, problem-dependent, tree. As
in the general case, one can transform their protocol to a consistent adaptive one by letting the server, instead
of the original secret, to cryptocompute its certificate. This direct solution is more efficient than applying
the general solution of Sect. 4.

Since the server can restore encrypted inputs of clients, consistent CDS protocols can be used in pay-
per-view systems: one client’s input corresponds to an encryption of credit stored an updated by the server.
It is straightforward to test that credit > 0 by using consistent CDS based on [LL07]. Another application
is restricted access to private data, e.g., TV or military broadcasts with complex access policy, based on
credentials that are represented as random keys.

6 Different Subclasses of Consistent Protocols

In a consistent protocol, an honest client can detect and prove that the server’s outputs are not consistent.
On the other hand, a malicious server may introduce selective protocol failures so that issuing a complaint
leaks information about client’s inputs. The definition of consistency limits the corresponding information
gain to polynomial-time randomized predicates, i.e., the server gets to know if π(q1, . . . , qj) = 1 for some
polynomial-time randomized predicate π. In practice one might want to further restrict the set of enforceable
predicates π. Next we will study this issue a bit more closely.
MEMORYLESS CONSISTENCY. An adaptive protocol is memoryless-consistent if the halting predicates
π1, . . . , πm are independent from previous queries, i.e., πi(q1, . . . , qi) = πi(qi). As a result, the server
cannot relate results of different queries. As we show next, Ada is memoryless-consistent when the subse-
quent executions of the underlying protocol do not share random variables. (We only state the results for
white-box reductions from now on.)

Theorem 5 (Memoryless consistency). A semisimulatable protocol Ada is computationally memoryless-
consistent, if gc is computationally binding, and them instantiations of the underlying protocol do not share
random variables.

Proof. Assume that an adversary A breaks the memoryless-consistent property of Ada. That is, it can force
the client to abort if and only if a predicate pi holds on client’s queries (q1, . . . , qi) thus far, where pi is a
non-trivial function of at least two different values qa and qb for a < b ≤ i. Since the protocol is stateless
then the adversary can play the role of the client in round b > a, to breach the privacy of the client in round
a: given its knowledge of whether the client aborted in round b, it will have some advantage in guessing qa,
given the value pi(qa, qb). ut

Note that there is no black-box construction from an arbitrary stateful semisimulatable 1-out-of-n f -protocol
Π to a memoryless-consistentm-out-of-n protocol for f . A formal separation is following. LetΠ be a CPA-
secure public-key cryptosystem and assume that the client and the server use the same public key pk in allm
rounds. LetE be the corresponding encryption algorithm. Now, if client augments all his queries withE(qj)
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and accepts the reply only if the server adds an encryption of qj to her reply, then the corresponding protocol
is certainly semisimulatable. However, if a malicious server replaces E(qj) with the encryption E(qj−1)
from the previous round then she can force an halting predicate [qj−1 = qj ]. More natural examples can
be based on the semisimulatable homomorphic oblivious transfer protocol from [AIR01], where the client’s
message is just E(qj). If we construct the adaptive protocol so that all invocations of Π share the same pk
then the server can force many affine halting predicates.

What is the practical relevance of this? In the theory of cryptography, protocols are required to be state-
less. However, in practice one could want to use stateful protocols. For example, in public-key cryptography
based protocols like the oblivious transfer protocols of [AIR01,Lip05], the parties may want to use the same
client’s public key in several instances — in fact, this will result in a private m-out-of-n adaptive proto-
col. Thus, combining such a protocol with a DAG-commitment scheme does not result in a memoryless-
consistent adaptive protocol. On the other hand, if one uses a different public key in every round then the
resulting adaptive protocol is also memoryless-consistent.

HOMOMORPHIC CONSISTENCY. The PrivateBP protocol [IP07,Lip08] but also many efficient oblivious
transfer protocols [Ste98,AIR01,Lip05,LL07] are based on homomorphic cryptography. In such protocols,
client encrypts his inputs by using a homomorphic cryptosystem, and thus the sender can cryptocompute
(i.e., compute on ciphertexts) arbitrary affine combinations of inputs. More formally, let Paff(q) consist
of all base predicates of type [αq = β] and their conjunctions; let Pb-aff(q) consist of all base predicates
of type α1q[1] + · · ·αkq[k] = β where q[k] . . . q[1] is the bit-representation of q, and their conjunctions.
A protocol is homomorphically consistent if all enforceable halting predicates π1(q1), . . . , πm(q1, . . . , qm)
belong either to the class Paff(q1, . . . , qj) or to the class Pb-aff(q1, . . . , qj). Such a set of predicates is rather
restricted, and also minimal if we use a homomorphic encryption. One can straightforwardly prove that if
one uses an “ideal” homomorphic cryptosystem, that does not allow to cryptocompute any other operation on
ciphertexts, together with the PrivateBP protocol, then the resulting adaptive protocol is homomorphically
consistent.

Extensive work has been done on cryptographic protocols that use the properties of existing homomor-
phic cryptosystems. There is no evidence that any non-affine predicate can be cryptocomputed in the case
of any of well-known homomorphic cryptosystems. Thus, it is reasonable to make the next seemingly novel
gap assumption that only affine predicates can be computed-on-ciphertexts.

Assumption 1 (Gap homomorphic assumption for Π .) Let Π be an additively homomorphic cryptosys-
tem such as the Paillier [Pai99]. For any non-affine efficiently verifiable t-ary predicate π, t ≥ 1, the
probability that some polynomial-size probabilistic circuit A, given access to a randomly generated public
key pk and to random encryptions of any t elements qi, can output an encryption of π(q1, . . . , qt), is neg-
ligibly different to the probability that A can guess the value of π(q1, . . . , qt), given its knowledge of the
distribution from which the plaintexts qi are drawn.

Alternatively, if Assumption 1 cannot be proved for some concrete cryptosystem, one should still describe
the class of computable predicates, as it provides a subset of predicates that can be efficiently cryptocom-
puted using additively homomorphic encryption. The set of cryptocomputable predicates that can be com-
puted with constant communication is currently unknown and is one of the most interesting problems in
the design of efficient cryptographic protocols. For example, one can extend this discussion to any of the
protocols that are based on cryptosystems that allow to cryptocompute quadratic polynomials [BGN05] in
which case we can define a similar gap assumption.
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A Proof of Thm. 1

Proof. This proof is similar to the recent proof of Buldas and Laur [BL07] that every binding DAG-
commitment scheme is also DAG-extractable. We add an explicit treatment of history and allow the ad-
versary output more than one certificate.

We give the proof in the exact setting. Fix k and any tk > 0, ε′k > 0. Assume that the list size is upper-
bounded by some N = poly(k). Assume that gc is a (τ b

k , ε
b
k)-binding DAG-commitment scheme for τ b

k =
(1+o(1))(N/ε′k +1)tk and for some εbk. Assume thatA = (A1, A2) is a tk-time adversary, and denote by ωi

the random tape of Ai. Here A1(hist, ck;ω1) outputs a commitment c, n and a state η, and A2(η, advice;ω2)
outputs a set of valid certificates ct = {ct1, . . . , ctm} such that, for any i, gc.openck(c, cti) 6= ⊥.

Let τ e
k = (1+o(1))(N/ε′k +1)tk = (1+o(1))τ b

k . To simplify notation, let us write (i, x̂) ∈ x if and only
if x̂ = xi. We show that there exists a τ e

k -time knowledge extractor KAk
so that for any advice: if ct 6= ∅

then KAk
(hist, ck, ω1) produces a database x̂ = (x̂1, . . . , x̂n) of candidate sink labels such that for any i,

gc.openck(c, cti) /∈ x̂ with a negligible probability.
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For a fixed A, let W = (wij) be the matrix defined as follows. Its rows are indexed by i = (ck, ω1), and
its columns are indexed by j = (hist, advice, ω2). For such i, j, we setwij = q where q is the list of locations
of the revealed elements ct← A2(η, advice;ω2). If ct = ∅ then q = ∅. By Lem. 1, there exists a columnset
I with |I| ≤ N/ε′k, such that for any j, Pri[∅ 6= wij 6⊆ Li ∧ |Li| < N ] ≤ ε′k, where Li :=

⋃
j∈I wij is the

set of locations “revealed” by I. Given such an I, consider the next knowledge extractor KAk
= KAk,I :

1. Given (hist, ck, ω1), store (c, n, η)← A1(hist, ck;ω1) and set x̂i = ⊥ for all i ∈ {1, . . . , n}.
2. For each (q, ω2) ∈ I do:

– Compute ct← A2(η, advice;ω2).
– For all j ∈ {1, . . . ,m}, compute (qj , xj)← gc.openck(c, ctj) and set x̂qj ← xj .

3. Return the last snapshot of x̂.

Fix (hist, advice, ω2). There are now two possibilities for KAk
to fail. Let (c, n, η) ← A1(hist, ck;ω1) and

ct← A2(η, advice;ω2) as before. For a revealed element (qj , xj)← gc.openck(c, ctj) we can have x̂j = ⊥
only if |L(ck,ω1)| < N . But by the construction of I, the probability of the latter is not larger than ε′k. The
second possibility is that xj /∈ x̂, i.e., xj 6= x̂qj 6= ⊥. In this case, we can construct break the binding
property of the DAG-commitment scheme. Clearly, KAk

works in time τ e
k and extracts x with probability

1 − (εbk + ε′k). Therefore, gc is (tk, τ e
k , ε

b
k + ε′k)-DAG-extractable and thus also DAG-extractable because

τ e
k = (1 + o(1))(N/ε′k + 1)tk = poly(k)tk/((εbk + ε′k)− εbk). ut

To prove Thm. 1, we are now left to prove the next technical result. It generalizes Lemma 1 from [BL07]
to the case m > 1.

Lemma 1. Consider a finite matrixW = wij , the rows of which are indexed by i ∈ R, columns are indexed
by j ∈ C, and its entries are sets of integers. Assume that a certain probability measure is defined over the
row indexes R. For any δ > 0 and N ∈ N, there exists a set of column indexes ∅ ⊆ I ⊆ C such that
0 ≤ |I| ≤ N/δ and for every column j ∈ C,

Pr
i

[∅ 6= wij 6⊆ Li ∧ |Li| < N ] ≤ δ ,

where Li =
⋃

j∈I wij \ {∅} is the set of nonzero elements “revealed” by I.

Proof. Consider the next iterative procedure:

1. Set I ← ∅ and initialize ctri ← N for i ∈ R.
2. While exists j ∈ C such that Pr[i : wij 6= ∅] ≥ δ do

(a) Choose a j such that Pr[i : wij 6= ∅] ≥ δ; insert j into I
(b) For each row i ∈ R such that wij 6= ∅ do

i. Set w = {w1, . . . , wm} ← wij

ii. For each j′ ∈ C, t ∈ [m]: If wt ∈ wij′ then wij′ ← wij′ \ {wt}
iii. Set ctri ← ctri − 1

(c) For all j′ ∈ C: if ctri = 0 then wic′ ← ∅

Let N = {i : ∃wij 6= ∅} denote the set of nonzero rows, and let Nold, Nnew denote the value of N before
and after some update at Step 2. Let mean[N ] =

∑
i∈N ctri ·Pr[i] be the average counter value. Then by the

construction mean[Nnew] ≤ mean[Nold] − δ after a single iteration of Step 2. As initially mean[N ] ≤ N ,
then after bN/δc iterations Pr[N ] ≤ mean[N ] < δ. Note that the algorithm nullifies the elements wij′

only if they already belong to Lr or |Lr| ≥ N . In the end, each column j contains at most a δ-fraction of
elements that satisfy the predicate wij 6= ∅ ∧ wij 6∈ Lr ∧ |Lr| < N and the claim follows. (Note that I can
be empty.) ut

See Tbl. 1 for an example.



16 Sven Laur and Helger Lipmaa

Table 1. An example, illustrating Lem. 1, with δ = 0.25 and N = 2

I = ∅ L ctr I = {1} L ctr

{1, 2} {2, 3} ∅ {1, 4} {1, 2}
∅ ∅ ∅ {2, 3} ∅

{2, 4} {2, 3} {1, 3} ∅ ∅
∅ {2, 3} ∅ {1, 3} {1, 4}

{1, 2} {3, 4} ∅ ∅ ∅

∅
∅
∅
∅
∅

2
2
2
2
2

∅ {3} ∅ {4} ∅
∅ ∅ ∅ {2, 3} ∅
∅ {3} {1, 3} ∅ ∅
∅ {2, 3} ∅ {1, 3} {1, 4}
∅ {3, 4} ∅ ∅ ∅

{1, 2}
∅

{2, 4}
∅

{1, 2}

1
2
1
2
1

I = {1, 2} L ctr I = {1, 2, 4} L ctr

∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ {2, 3} ∅
∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ {1} {1, 4}
∅ ∅ ∅ ∅ ∅

{1, 2, 3}
∅

{2, 3, 4}
{2, 3}

{1, 2, 3, 4}

0
2
0
2
0

∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ {4}
∅ ∅ ∅ ∅ ∅

{1, 2, 3}
{2, 3}
{2, 3, 4}
{1, 2, 3}
{1, 2, 3, 4}

0
1
0
1
0

B Proof of Theorem 3

Proof. Follows from Lemmas 2 and 3. ut

Lemma 2 (Honest Client). If gc is binding and Γ is computationally client-private, then Ada is consistent.

Proof. If the client is honest, we must consider the joint output distribution in the ideal and real world.
Let Areal be the real-world adversary, and let hist be any history. Construct the next ideal-world adversary
Aideal(hist, ck, q1, . . . , qm): (1) Run the setup phase to obtain public parameters for gc and Γ . (2) Run the
commitment phase with Areal(hist) and output a commitment c. (3) Cryptocompute the branching program
betweenAreal(hist) and the honest clientC with inputs q1, . . . , qm. (4) Output the corresponding certificates
ctq1 , . . . , ctqm and the final state of Areal.

Define advice := (q1, . . . , qm). Because gc is binding then it is also DAG-extractable. More precisely,
assume that gc is (tk, τ b

k , ε
b
k)-DAG-extractable, where tk is the running time ofAideal(hist, ck, advice). Thus,

there exists a τ e
k -time knowledge extractor KAideal , that given (ck, hist), outputs a prediction x̂ such that the

probability εek that Aideal(ck, hist, advice) can produce a valid certificate, that leads to an element not in x̂,
is negligible. Here, by definition, τ e

k = p(tk)/(εek − εbk) for some non-negative polynomial p. Thus, we can
construct the next ideal-world adversary Ŝim:

1. She runs the setup phase to obtain the public key ck and the randomness ω for Aideal.
2. She computes x̂← KAideal(ck, hist;ω) and sends x̂ to TTP.
3. She sends the description of Aideal(ck, hist, advice;ω) to Halt-Machine that evaluates
Aideal(ck, hist, advice;ω) and stops TTP on the jth round if ctqj is not valid. (She can find out
(q1, . . . , qm) by rewinding the client m times, and every time observing what is the client’s (j + 1)th
query when Halt-Machine = Aideal(ck, hist, q1, . . . , qj , 0, . . . , 0;ω).)

4. She runs Aideal(ck, hist, 1, . . . , 1;ω) and outputs the final state of Areal.

Clearly, also Ŝim works in time poly(tk)/(εek − εbk). By the construction the honest client receives ⊥ in the
ideal world whenever the client receives ⊥ also in the real world w.r.t. the randomness ω. Otherwise, the
client’s outputs are different only if the prediction x̂qj 6= xqj and such event is negligible by the construction.
Since Γ is computationally client-private then the outputs of Ŝim and Areal are indistinguishable. The claim
follows. ut

Lemma 3 (Honest Server). If gc is equivocable, then Ada is server-private.
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Proof. Assume that the server is honest. Then the output of the server in the ideal and real model is ⊥ and
we can consider only the output of a malicious client. Let World0 be the ideal world, let World1 be the real
world.

To demonstrate the closeness of World1 and World0, let us convert a malicious client Ĉ1 from World1

to a malicious client Ĉ0 for World0 as follows:

1. Generate the equivocability key (ek, ck)← gc.ĝen(1k) for the DAG-commitment scheme.
2. Compute (ĉ, η)← gc.ĉomck(ek, n) and send ĉ to the adversary Ĉ1.
3. Given Ĉ1’s query qj , obtain xqj from TTP and compute ĉtj ← gc.equivek(ĉ, η, qj , xqj ).
4. Return the output of the adversary Ĉ1.

Note that in both worlds Ĉ1 plays the equivocability game even if Ĉ1 uses history in the attack. In world
World1, the adversary Ĉ1 interacts with the oracle O and in World0 it interacts with oracle Ô. Since the
commitment scheme is equivocable, the outputs of Ĉ1 and Ĉ0 must be indistinguishable. Also, the compu-
tational overhead of Ĉ0 is only polynomial and thus the transformation is plausible. ut
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