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Abstract

Recently there has been active research on secure sketch schemes. The
current constructions with the set difference as the distance metric cannot
be extended to multi-sets. In this paper, we give an efficient secure sketch
scheme for multi-sets, with entropy loss and sketch size similar to previous
constructions.
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1 Introduction

In some applications, small changes to the data do not affect their authenticity.
This cannot be done with traditional cryptographic schemes since they do not
allow even the slightest changes. The fuzzy commitment scheme [3] is one of the
first formal approaches to achieve robustness against noises, and it makes use of
error-correcting codes to recover changes measured by Hamming distance. The
set difference metric is first considered by Juels et al. [2], who give a fuzzy vault
scheme. The notions of secure sketch and fuzzy extractor are introduced by Dodis
et al. [1], with several constructions for Hamming distance, set difference, and
edit distance. In their framework, the secure sketch is used to recover the original
from the corrupted data, which is then used to extract a reliable and almost
uniform key that can be used with traditional cryptographic schemes. Dodis et
al. [1] give three constructions for set difference, with similar security level. The
three constructions differ in the sizes of the sketches, efficiency in computation,
and also the ease of implementation in practice. One of the constructions has
small sketches and achieves “sublinear” (with respect to the size of the universe)
decoding by careful reworking of the standard BCH decoding algorithm. None
of these existing schemes for set difference can be extended to handle multi-sets
(i.e., sets that allow duplicated elements) with minor modifications.

In this paper, we consider secure sketch for multi-sets, where the distance
metric is the difference between multi-sets, which we will define formally later.
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Our construction is similar to the set reconciliation protocol in [4], but the
problem settings are different.

The proposed scheme gives a sketch of size at most 2t(1 + logn), where n
is the size of the universe, and t is the number of errors we want to tolerate.
In addition, there exists a simple and yet efficient decoding algorithm – we just
need to solve a linear system with 2t equations and unknowns and find the roots
of two degree t polynomials.

2 Notations

Let U be the universe. In the rest of this paper, we assume that U = {0, . . . , n−
1} to be a set of n distinct integers. We assume that the original data X is an
enssemble of s elements, and we write X = {x1, . . . , xs}, where xi ∈ U for all
1 ≤ i ≤ s. Note that the elements in X are not necessarily distinct. We call
such X a multi-set, and write X ⊆m U . For two multi-sets of the same size, we
define their distance as below.

Definition 1 For any X = {x1, . . . , xs} and Y = {y1, . . . , ys} such that X,Y ⊆m
U , the multi-set difference between X and Y is

D(X,Y ) = s−max
f
|{i | xi = yf(i)}| (1)

for all one-to-one corresponse f on {1, . . . , s}.

In other words, we find the maximum match between X and Y , and the
difference is the number of elements that do not match. We then further define
the “closeness” between X and Y as below.

Definition 2 For two multi-sets X and Y , we say that they are close if D(X,Y )
is defined, and D(X,Y ) ≤ t for some threshold t.

A secure sketch scheme with universe U and threshold t consists of an en-
coder Enc and a decoder Dec, such that given multi-sets X and Y from U ,
Dec(Enc(X), Y ) = X if X and Y are close. We call P = Enc(X) the sketch.

To measure the security of such a scheme, we follow the definition of entropy
loss introduced by Dodis et al. [1]. Let H∞(A) be the min-entropy of random
variable A, i.e., H∞(A) = − log(maxa Pr[A = a]). For two random variables

A and B, the average min-entropy of A given B is defined as H̃∞(A|B) =
− log(Eb←B [2−H∞(A|B=b)]). This definition is useful in the analysis, since for

any `-bit string B, we have H̃∞(A|B) ≥H∞(A) − `.
We say that the sketch scheme is m-secure if for all random variable X from

U , the entropy loss of P is at most m. That is, H∞(X)−H̃∞(X | Enc(X)) ≤ m.
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3 Proposed Scheme

To handle a special case, we assume that X does not contain any element in
{0, 1, . . . , 2t − 1}, and will discuss how to remove this assumption later at the
end of this section.

3.1 The encoder Enc.

Given X = {x1, . . . , xs}, the encoder does the following.

1. Construct a monic polynomial p(x) =
∏s
i=1(x− xi) of degree s.

2. Publish P = 〈p(0), p(1), . . . , p(2t− 1)〉.

3.2 The decoder Dec.

Given P = 〈p(0), p(1), . . . , p(2t− 1)〉 and Y = {y1, . . . , ys}, the decoder follows
the steps below.

1. Construct a polynomial q(x) =
∏s
i=1(x − yi) of degree s.

2. Compute q(0), q(1), . . . , q(2t− 1).

3. Let p′(x) = xt +
∑t−1

j=0 ajx
j and q′(x) = xt +

∑t−1
j=0 bjx

j be monic polyno-
mials of degree t. Construct the following system of linear equations with
the aj ’s and bj ’s as unknowns.

q(i)p′(i) = p(i)q′(i), for 0 ≤ i ≤ 2t− 1 (2)

4. Find one solution for the above linear system. Since there are 2t equations
and 2t unknowns, such a solution always exists.

5. Solve for the roots of the polynomials p′(x) and q′(x). Let them be X ′

and Y ′ respectively.

6. Output X̃ = (Y ∪X ′) \ Y ′.

The correctness of this scheme is straight forward. When there is exactly t
replacement errors, we can view p′(x) as the “missed” polynomial whose roots
are in X ′ = X \ Y . Similarly, q′(x) is the “wrong” polynomial, whose roots are
in Y ′ = Y \X . Since the roots of p(x) and q(x) are in X and Y respectively,
we have q(x)p′(x) = p(x)q′(x). This interpretation motivates the equation (2).

When there are less than t replacement errors, there will be many degree
t monic polynomials p′(x) and q′(x) that satisfy q(x)p′(x) = p(x)q′(x). For
any such p′(x) and q′(x), they share some common roots, which could be some
arbitrary multi-set Z. That is, X ′ = (X \ Y ) ∪ Z, and Y ′ = (Y \X) ∪ Z. In
Step 6, this extra Z will be eliminated.

When X∩{0, . . . , 2t−1} 6= ∅, some equations in (2) would degenerate, which
makes the rank of the linear system less than 2t. In this case, it is not clear
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how to find the correct polynomial in the solution space. Hence we require that
X ∩ {0, . . . , 2t− 1} = ∅.

Note that in the above we do not require the elements of X and Y to be
distinct, so this scheme can handle multi-sets. Furthermore, since the size of
each p(i) for 1 ≤ i ≤ 2t is (logn), the size of P is 2t(logn). Therefore, we have
the

Theorem 3 When X ∩ {0, . . . , 2t− 1} = ∅, the entropy loss due to Encs(X) is
at most 2t logn.

3.3 Removing the assumption on X and Y .

The assumption that X cannot contain any element from {0, . . . , 2t− 1} can be
easily relaxed. We can find the smallest prime m such that m − n ≥ 2t, and
then apply the scheme on Zm. But instead of publishing p(0), . . . , p(2t− 1), we
publish p(m−1), . . . , p(m−2t). In this way, the size of the sketch is 2t logm. In
practice, this is not a problem since the size of the universe may not be prime,
and we will need to choose a larger finite field anyway. For t that is not too
large (say, t ≤ n/4), we can always find at least one prime in [n+2t, 2n]. Hence,
we have the

Corollary 4 When t ≤ n/4, the entropy loss due to Encs(X) is at most 2t(1+
logn).
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