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Abstract

Message Authentication Codes (MACs) are a widely-used building-block for secure protocols. Their
security is given by a bound on the probability that any adversary can forge messages after at most q

calls to an oracle that produces MAC tags for the adversary’s queries. However, in certain settings we
may wish to know what happens after a forgery has occurred. Does the MAC remain relatively secure,
or can an adversary efficiently produce further forgeries?

In this paper, we examine the notion of “reforgeability” for MACs. We first give a definition for this
new notion, then examine some of the most widely-used and well-known MACs under our definition. We
show that for each of these MACs there exists an attack that allows efficient forgeries after the first one
is obtained, and we show that simply making these schemes stateful is insufficient. Finally, we exhibit a
new scheme, FCHC, which is provably-secure against reforging attacks.
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1 Introduction

Message Authentication Codes. Message authentication codes (MACs) are a widely-used means to
guarantee message authenticity and integrity in the symmetric-key setting. They work like this: if Alice
wishes to send a message M to Bob, she processes M with an algorithm MAC using her shared key K and
possibly some state or random bits we denote with s. This produces a short string Tag and she then sends
(M, s,Tag) to Bob. Bob runs a verification algorithm VF with key K on the received tuple and VF outputs
either ACCEPT or REJECT. The goal is that Bob should virtually never see ACCEPT unless (M, s,Tag)
was truly generated by Alice; that is, an imposter should not be able to impersonate Alice and forge valid
tuples.

There are a large number of MACs in the literature. Most have a proof of security where security is
expressed as a bound on the probability that an attacker will succeed in producing a forgery after making q
queries to an oracle that produces MAC tags on messages of his choice. The bound usually contains a term
q2/2t where q is the total number of tags generated under a given key and t is the tag length in bits. This
quadratic term typically comes from the probability that two identical tags were generated by the scheme
for two different messages; this event is typically called a “collision” and once it occurs the analysis of the
scheme’s security no longer holds. The well-known birthday phenomenon is responsible for the quadratic
term: if we generate q random uniform t-bit strings independently, the expected value of q when the first
collision occurs is about

√
π2t−1 = Θ(2t/2).

Reforgeability. The following is a natural question: if a forgery is observed or constructed by an adversary,
what are the consequences? One possibility is that this forgery does not lead to any additional advantage
for the adversary: a second forgery requires nearly as much effort to obtain as the first one did. We might
imagine using a random function f : Σ∗ → {0, 1}t as a stateless MAC. Here, knowing a forgery amounts
to knowing distinct M1,M2 ∈ Σ∗ with f(M1) = f(M2). However it is obvious this leads to no further
advantage for the adversary: the value of f at points M1 and M2 are independent of the values of f on all
remaining unqueried points.

Practical MAC schemes, however, usually do not come close to truly random functions, even when
implemented as pseudorandom functions (PRFs). Instead they typically contain structure that allows the
adversary to use the obtained collision to infer information about the inner state of the algorithm. This
invariably leads to further forgeries with a minimum of computation.

Applications. One might reasonably ask why we care about reforgeability. After all, aren’t MACs designed
so that the first forgery is extremely improbable? They are, in most cases, but there are several reasons why
we might want to think about reforgeability nonetheless.

It is true that some MACs have such small forgery bounds that it is irrelevant to speak of even one
forgery, from a practical standpoint. For example, a MAC with a forgery bound of q2/2128 guarantees that
forgeries will occur with probability smaller than 2−64 provided no more than about 4 billion messages are
processed with a given MAC key. For most settings this is more than enough assurance. But there are other
MAC schemes with much larger bounds; for example CBC MAC using triple-DES outputs only 64 bits. To
keep the probability of forgery below 2−16 we must refrain from MACing more than about 224 messages
under a given MAC key. One can easily imagine applications where messages are MACed at a sufficiently
high rate that 224 would not be such a large number (for example, a busy access point using a single key for
all associations). And a 2−16 bound is not all that reassuring.

It might therefore be reasonable to consider the question of reforgeability in this context: if a tag collision
occurs or a forgery is obtained, do the floodgates open or is it just an isolated event?

Other applications might intentionally employ a low-security MAC. In sensor nodes, where radio power
is far more costly than computing power, short tag-length MACs might be employed to reduce the overhead
of sending tags. Of course here we have to accept the risk that reduced security implies we might see some
forgeries, but we would want to limit the extent to which forgeries could be generated.

In streaming video applications we might use a low-security MAC with the idea that forging one frame
would hardly be noticable to the viewer; our concern would be that the attacker would be unable to efficiently
forge arbitrarily many frames, thereby taking over the video transmission.



MAC Scheme Expected Queries for Succumbs to Succumbs to Insecure even
j Forgeries Padding Attack Other Attack when Stateful

CBC MAC C1 + j
√ √

EMAC C1 + j
√ √ √

XCBC C1 + j
√ √ √

PMAC C1 + j
√ √

ANSI retail MAC C1 + j
√ √ √

HMAC
∑

i Ci/2
i + j

√ √

UHF in FH mode Expected Queries for Reveals Key Queries for key
j Forgeries Recovery

hash127 C1 + j
√

C1 + log m
Square Hash C1 + j

√
mC1

LFSR-based Topelitz Hash C1 + j
Bucket Hash C1 + j
MMH C1 + j
NMH C1 + j

Figure 1: Summary of Results. The upper table lists each well-known MAC scheme we examined, along with its resistance
to reforgeability attacks. Here n is the output length (in bits) of each scheme, and m is the length (in n-bit blocks) of the
queries to the MAC oracle; the i-th collision among the tags is denoted by event Ci. For most schemes, the first forgery
is made after the first collision among the tags, and each subsequent forgery requires only one further MAC query. For
most MAC schemes listed above, the first collision is expected at around 2n/2 MAC queries, although the exact bound for
each scheme differs somewhat. The lower table lists 6 well-known universal hash families, each made into a MAC via the
FH construction. These similarly succumb to reforgeability attacks after a collision in the output tags, with hash127 and
Square-Hash surrendering their key in the process. The last column gives the expected number of queries for key recovery,
where possible.

Finally, the question seems a natural one and answering it should help lend a deeper understanding about
one of the fundamental objects in cryptology. The fact that the question of reforgeability has recently arisen
in newsgroups, online discussions, and conference hallways lends support to this.

Main Results. In this paper we conduct a systematic study of reforgeability. We first give a definition of
reforgeability, both in the stateless and stateful settings. We then examine a variety of well-known MAC
schemes and assess their resistance to reforgeability attacks. We find that in every case there exists an attack
that enables efficient generation of forgeries given knowledge of an existing one. In some cases this involves
fairly constrained modification of just the final block of some fixed message; in other cases we obtain the
MAC key and have free rein.

Figure 1 gives a synopsis of our findings. In every case, our attack is based on finding collisions and this
in turn leads to a substantial number of subsequent forgeries; the degree to which each scheme breaks is
noted in the table and below. We briefly summarize the attacks.

• CBC MAC. We show that after an initial collision between two m-block messages, we can forge
arbitrary m-block messages where the first two blocks are identical to those of the colliding messages,
but the last m− 2 blocks can be chosen arbitrarily.

• EMAC [6], XCBC [11], ANSI Retail MAC [1], HMAC [2]. The first three schemes are variants
of the basic CBC MAC and succumb to the same attack just mentioned. Additionally all four of these
MACs allow varying-length messages (unlike the basic CBC MAC) and therefore admit an additional
attack, the “Padding Attack” [26] that allows arbitrary blocks to be appended to colliding pairs at the
cost of one additional MAC query.

• PMAC [12]. For PMAC the best attack we found was quite limited: given a colliding pair of messages,
we can arbitrarily alter the last block of one message and produce a forgery after a single additional
MAC query using the other.
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• hash127 [8]. Hash127 is a polynomial-hash based on evaluating polynomials over the field Z mod
2127 − 1. Any collision among tags is catastrophic: given two colliding messages their difference
produces a polynomial whose roots include the hash key. Finding roots of polynomials over a finite
field is computationally efficient using Berlekamp’s algorithm [7] or the Cantor-Zassenhaus algorithm
[14].

• Square Hash [18]. Square-Hash is another fast-to-compute universal hash function family suggested
for use in MACs. Once again, any tag collision results in an efficient algorithm that derives the hash
key. The attack is specific to the Square-Hash function and we specify it in Section 3.4 where the
scheme is described in full.

• Remaining UHFs. For each of the remaining universal hash function families we examine [20, 22, 28]
we similarly show that collisions in the tag lead to further forgeries for the MAC scheme, provided we
use the FH construction that composes a PRF (or PRP) with a member of the hash family. (If a PRF
is used, our attacks work only if the tag collision occurs in the underlying universal hash function.
This can be efficiently detected.) The idea that multiple forgeries can be obtained after one collision
in Carter-Wegman style MACs is not new [29].

Note that we are not claiming the attacks given above are the best possible: there may be even more
damaging attacks. But these were sufficient to make us wonder if there exists an efficient and practical
MAC scheme resistant to reforgeability attacks. A natural first try is to add state, in the form of a counter
inserted in a natural manner, to the schemes above. We show, however, that this approach is insufficient.
We therefore devised a new (stateful) scheme, FCHC, that allows a single forgery once a collision is observed,
but for which is it nearly as difficult to forge again as it was to forge initially. The scheme is described fully
in Section 4 but briefly it works as follows.

Let H be some ε−AU hash family H = {h : D → {0, 1}l}, and R a set of functions R = Rand(l + b, L).

Let ρ0, ρ1
$←R; the shared key is (ρ0, ρ1). Let 〈cnt〉b denote the encoding of cnt using b bits. To MAC a

message (M, cnt), the signer first ensures that cnt < 2b− 1 and if so sends (cnt, ρ0(〈cnt〉b ‖hcnt(M))), where
hcnt is selected by the first s bits of ρ1(〈cnt〉b ‖ 10l−1). To verify a received message M with tag (i, t), the
verifier computes ρ0(〈i〉b ‖ hi(M)) and ensures it equals t.

The scheme is not quite as efficient as we might hope: we must invoke two separate PRFs along with a
member of our universal hash family. The PRF keys are fixed, but the hash function key varies per message
and for some families this could be expensive in practice. Nonetheless, FCHC might be of use in settings
where, say, short tags are required but reforgeability cannot be tolerated. An in-depth discussion of the
security properties and tradeoffs of this scheme can be found in section 4.

Related Work. David McGrew and Scott Fluher have recently done some work [23] on a similar sub-
ject. They also examine MACs with regard to multiple forgeries, although they view the subject from a
different angle. They show that for HMAC, CBC MAC, and Galois Counter Mode (GCM) of operation
for blockciphers, reforgeability is possible. However, they examine reforgeability in terms of the number of
expected forgeries (parameterized by the number of queries) for each scheme, which is dependent on the
precise security bounds for the respective MACs. We instead focus not on the fact that reforgeability is
possible with existing MACs (although we demonstrate that this is in fact the case for a large number of
well-known MACs), but we examine why this is so and look at different approaches to MACs which may
avoid some of these properties.

2 Preliminaries

Let {0, 1}n denote the set of all binary strings of length n. For an alphabet Σ, let Σ∗ denote the set of
all strings with elements from Σ. Let Σ+ = Σ∗ − {ε} where ε denotes the empty string. For strings s, t,

let s ‖ t denote the concatenation of s and t. For set S, let s
$← S denote the act of selecting a member s

of S according to a probability distribution on S. Unless noted otherwise, the distribution is uniform. For
a binary string s let |s| denote the length of s. For a string s where |s| is a multiple of n, let |s|n denote
|s|/n. Unless otherwise noted, given binary strings s, t such that |s| = |t|, let s⊕ t denote the bitwise XOR
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of s and t. For a string M such that |M | is a multiple of n, |M |n = m, then we will use the notation
M = M1 ‖M2 ‖ . . . ‖Mm such that |M1| = |M2| = . . . = |Mm|. Let Rand(l, L) = {f | f : {0, 1}l → {0, 1}L}
denote the set of all functions from {0, 1}l to {0, 1}L.

Universal Hash Families. Universal hash families are used frequently in the cryptographic literature.
We now define several notions needed later.

Definition 1 (Carter and Wegman [15]) Fix a domain D and range R. A finite multiset of hash functions
H = {h : D → R} is said to be Universal if for every x, y ∈ D with x 6= y, Prh∈H[h(x) = h(y)] = 1/|R|.

Definition 2 Let ε ∈ R
+ and fix a domain D and range R. A finite multiset of hash functions H = {h :

D → R} is said to be ε-Almost Universal (ε-AU) if for every x, y ∈ D with x 6= y, Prh∈H[h(x) = h(y)] ≤ ε.

Definition 3 (Krawczyk [22], Stinson [30]) Let ε ∈ R
+ and fix a domain D and range R ⊆ {0, 1}r for some

r ∈ Z
+. A finite multiset of hash functions H = {h : D → R} is said to be ε-Almost XOR Universal

(ε-AXU) if for every x, y ∈ D and z ∈ R with x 6= y, Prh∈H[h(x)⊕h(y) = z] ≤ ε.

Message Authentication. Formally, a (stateless) message authentication code is a pair of algorithms,
(MAC,VF), where MAC is a ‘MACing’ algorithm that, upon input of key K ∈ K for some key space K,
and a message M ∈ D for some domain D, computes a τ -bit tag Tag; we denote this by Tag = MACK(M).
Algorithm VF is the ‘verification’ algorithm such that on input K ∈ K, M ∈ D, and Tag ∈ {0, 1}τ , outputs
a bit. We interpret 1 as meaning the verifier accepts and 0 as meaning it rejects. This computation is
denoted VFK(M,Tag). Algorithm MAC can be probabilistic, but VF typically is not. A restriction is that
if MACK(M) = Tag, then VFK(M,Tag) must output 1. If MACK(M) = MACK(M ′) for some K, M , M ′,
we say that messages M and M ′ collide under that key.

The common notion for MAC security is resistance to adaptive chosen message attack [3]. This notion
states, informally, that an adversary forges if he can produce a new message along with a valid tag after
making some number of queries to a MACing oracle. Because we are interested in multiple forgeries, we now
extend this definition in a natural way.

Definition 4 [MAC Security—j Forgeries] Let Π = (MAC,VF) be a message authentication code, and let
A be an adversary. We consider the following experiment:

Experiment Exmtjuf -cma
Π (A, j)

K
$←K

Run AMACK(·),VFK(·,·)

If A made j distinct verification queries (Mi,Tagi), 1 ≤ i ≤ j, such that
— VFK(Mi,Tagi) = 1 for each i from 1 to j
— A did not, prior to making verification query (Mi,Tagi), query its
MACK oracle at Mi

Then return 1 else return 0

The juf-cma advantage of A in making j forgeries is defined as

Advjuf -cma
Π (A, j) = Pr

[

Exmtjuf -cma
Π (A, j) = 1

]

.

For any qs, qv, µs, µv, t ≥ 0 we overload the above notation and define

Advjuf -cma
Π (t, qs, µs, qv, µv, j) = max

A
{Advjuf -cma

Π (A, j)}

where the maximum is over all adversaries A that have time-complexity at most t, make at most qs MAC-
oracle queries, the sum of those lengths is at most µs, and make at most qv verification queries where the
sum of the lengths of these messages is at most µv.
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The special case where j = 1 corresponds to the regular definition of MAC security. If, for a given MAC,
Advjuf -cma

Π (t, qs, µs, qv, µv, j) ≤ ε, then we say that MAC is (j, ε)-secure. For the case j = 1, the scheme is
simply ε-secure.

It is worth noting that the adversary is allowed to adaptively query VFK and is not penalized for queries
that return 0. All that is required is for j distinct queries to VFK return 1, subject to the restriction these
queries were not previously made to the MACing oracle.

Stateful MACs. We will also examine stateful MACs that require an extra parameter or counter value.
Our model will let the adversary control the counter, but only allow one forgery for each counter value.

A stateful message authentication code is a pair of algorithms, (MAC,VF), where MAC is an algorithm
that, upon input of key K ∈ K for some key space K, a message M ∈ D for some domain D, and a state value
S from some prescribed set of states S, computes a τ -bit tag Tag; we denote this by Tag = MACK(M,S).
Algorithm VF is the verification algorithm such that on inputs K ∈ K, M ∈ D, Tag ∈ {0, 1}τ , and
S ∈ S, VF outputs a bit, with 1 representing accept and 0 representing reject. This computation is denoted
VFK(M,S,Tag). A restriction on VF is that if MACK(M,S) = Tag, then VFK(M,S,Tag) must output 1.

Definition 5 [Stateful MAC Security—j Forgeries] Let Π = (MAC,VF) be a stateful message authentica-
tion code, and let A be an adversary. We consider the following experiment:

Experiment Exmtjsuf -cma
Π (A, j)

K
$←K

Run AMACK(·),VFK(·,·,·)

If A made j distinct verification queries (Mi, si,Tagi), 1 ≤ i ≤ j, such that
— VFK(Mi, si,Tagi) = 1 for each i from 1 to j
— A did not, prior to making verification query (Mi, si,Tagi), query
its MAC oracle with (Mi, si)
— A did not, prior to making verification query (Mi, si,Tagi), make a
successful verification query (Mk, sk,Tagk) with si = sk

Then return 1 else return 0

The jsuf-cma advantage of A in making j forgeries is defined as

Advjsuf -cma
Π (A) = Pr

[

Exmtjsuf -cma
Π (A, j) = 1

]

.

For any qs, qv, µs, µv, t, j ≥ 0 we let

Advjsuf -cma
Π (t, qs, µs, qv, µv, j) = max

A
{Advjsuf -cma

Π (A, j)}

where the maximum is over all adversaries A that have time-complexity at most t, make at most qs MACing
queries, the sum of those lengths is at most µs, and make at most qv verification queries where the sum of
the lengths of the messages involved is at most µv.

Note that the adversary is allowed to make repeated queries to either MACK or VFK with the same s
value, but is given as credit a maximum of one forgery per value of s.

3 Attacks

As mentioned in the introduction, all MACs we investigate fail to be secure under the definitions of security
given above. We first examine stateless MACs based on a blockcipher and show they are insecure. We then
examine what occurs when these MACs maintain some form of state, and we find that in almost all cases
this does not add significant security. After this we show HMAC and some stateless universal-hash-based
schemes are insecure as well.

Preneel and van Oorschot noted that for any iterated hash function one collision can be used to find
others by simply appending identical message blocks to the colliding messages [26]. In the same paper they
describe why prepending and appending key material or the block length of the message does not prevent
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this weakness. Several of their ideas are reiterated in what follows. In other instances, where their attacks
do not apply, we employ our own methods. In particular, we investigate the composition of functions from
a universal hash family with a PRF and ask how easily an adversary, given a colliding pair of messages, can
produce another colliding pair of messages.

Many of these attacks in this and other subsections exploit the knowledge of certain types of collisions
to forge successfully. Although a typical birthday attack will usually suffice to find these collisions, more
efficient attacks may exist for the particular scheme involved. For example, Bellare and Kohno [4] describe
a way to find collisions in hash functions with certain properties using computational resources significantly
less than that required for a standard birthday attack. Perhaps similar attacks exist for the schemes we
describe, but we are instead focusing on what happens after those collisions have occurred, so it is not so
important that collisions may be found more easily by using methods other than a standard birthday attack.

3.1 Blockcipher Based MACs

Let E = {0, 1}k × {0, 1}n → {0, 1}n be a mapping such that for a fixed K (called the key), E(K, ·) (also
denoted by EK(·)) is a permutation on binary strings of n bits. Many MACs use blockciphers as an underlying
building block. The security of such schemes usually reduces to the security of the blockcipher used. We
present several widely-used MACs based on blockciphers and examine their security. For the purposes of
these attacks, we assume no weaknesses of the blockcipher; the attacks work regardless of the family of
permutations chosen.

CBC MAC. The tag produced by CBC MAC with key K on message M ∈ {0, 1}nm, for some fixed m,
denoted by CBCMACK(M), is is computed iteratively as follows: Let h0 = 0n and hi = EK(Mi⊕hi−1)
for 1 ≤ i ≤ m. Then CBCMACK(M) = hm. The values h0, h1, . . . , hm are sometimes referred to as the
“chaining values.” The security of this scheme is dependent on the fact that all input messages are the same
length in the number of n-bit blocks, and a security bound is given in [3]. Once a pair of messages (M,M ′)
that collide have been found, we can easily produce other colliding messages based on an attack by Preneel
and van Oorschot in [26], which also serves as the basis for the rest of the attacks in this subsection. The
best known attack for finding collisions in CBC MAC is a birthday attack, needing an expected 2n/2 queries
to produce a colliding pair of messages (M,M ′). Without loss of generality, assume that the fixed length of
messages is 2n (m = 2), and let M = M1 ‖M2 and M ′ = M ′

1 ‖M ′
2 such that |M1| = |M ′

1| = |M2| = |M ′
2| = n.

If CBCMACK(M) = CBCMACK(M ′) then, because EK is one-to-one,

EK(M2⊕EK(M1)) = EK(M ′
2⊕EK(M ′

1))⇒M2⊕EK(M1) = M ′
2⊕EK(M ′

1)

Let v ∈ {0, 1}n − 0n be arbitrary and query the MAC oracle on input M1 ‖M2⊕ v to receive tag t∗. Then
we can submit the pair (M ′

1 ‖M ′
2⊕ v, t∗) as a forgery pair. To see why, consider the following:

M2⊕EK(M1) = M ′
2⊕EK(M ′

1)

⇒M2⊕ v⊕EK(M1) = M ′
2⊕ v⊕EK(M ′

1)

⇒ EK(M2⊕ v⊕EK(M1)) = EK(M ′
2⊕ v⊕EK(M ′

1))

We can repeat this attack as long as we select a distinct v each time. Each additional forgery requires one
query to the MACing oracle. If the set length of messages is m blocks, we can query messages which have
identical blocks in the last m− 2 blocks, so that the birthday attack finds a collision in the chaining values
after the first two blockcipher invocations during the computation of CBCMAC. This allows the adversary
to forge messages for which the last m− 2 blocks are of the adversary’s choice.

XCBC. The XCBC scheme is an extension of CBC MAC that allows for messages of arbitrary length. Given
keys K1,K2,K3, |K1| = k, |K2| = |K3| = n, and an input message M ∈ {0, 1}∗, the tag produced by
XCBC on input M , denoted by XCBCK1,K2,K3(M), is defined by the following: There are two cases. First
suppose that |M | is a multiple of n and that |M |n = m for some m. Let h0 = 0n and hi = EK1(Mi⊕hi−1)
for 1 ≤ i ≤ m − 1. Then the tag produced by XCBC is EK1(hm−1⊕Mm⊕K2). Now suppose |M | is
not a positive multiple of n. Let M ∗ be M ‖ 10l where l = n − 1 − |M | mod n so that |M ∗| = m for
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some m. Let h0 = 0n and hi = EK1(M
∗
i ⊕hi−1) for 1 ≤ i ≤ m − 1. Then the tag produced by XCBC is

EK1(hm−1⊕M∗
m⊕K3).

Suppose XCBCK(M) = XCBCK(M ′) for M 6= M ′, and n does not divide |M | or |M ′|. Then the XOR-
ing of K3 before the last blockcipher invocation does not prevent the attack used on CBC MAC. Namely, if
we assume that M and M ′ have lengths, in n-bit blocks, of m and m′, respectively, then

Mm⊕K3⊕EK(Mm−1) = M ′
m′ ⊕K3⊕EK(M ′

m′−1)

⇒Mm⊕K3⊕ v⊕EK(Mm−1) = M ′
m′ ⊕K3⊕ v⊕EK(M ′

m′−1)

⇒ EK(Mm⊕K3⊕ v⊕EK(Mm−1)) = EK(M ′
m′ ⊕K3⊕ v⊕EK(M ′

m′−1))

Similarly, if XCBCK(M) = XCBCK(M ′) for M 6= M ′ and n divides |M | and |M ′|, then the XOR-ing of
K2 before the last blockcipher invocation does not prevent the attack used on CBC. The adversary gets to
choose the length of the queried messages, so the adversary may guarantee that a found collision will be of
one of these two forms; we will note, however, that a collision between distinct M,M ′ such that n divides
|M | but n does not divide |M ′| is apparently not useful to an adversary. Again, an adversary can generate
collisions that occur in the second chaining variable so that the last m− 2 blocks of a forged message are of
the adversary’s choice and again, one MACing query is required for each additional forgery.

EMAC. The EMAC scheme [6] is an extension of CBC MAC which attains security without requiring that
all messages be of a fixed length. Let M ∈ ({0, 1}n)+ such that |M |n = m for some m. For keys K1,K2 let
h0 = 0n and hi = EK1(Mi⊕hi−1) for 1 ≤ i ≤ m. Then the tag produced by EMAC with keys K1,K2 on
message M , denoted by EMACK1,K2(M), is EK2(hm). This extra encryption under the blockcipher keyed
with K2 does nothing to prevent the attack we described on CBC MAC, so an adversary can forge messages
in exactly the same way as the attack described there.

An attack on PMAC similar to the ones presented in this subsection can be found in Appendix A.

3.2 Padding Attacks

Iterated Hash Functions. Cryptographic hash functions are useful in many contexts. A particularly
popular methodology, suggested first by Merkle [24] and later by Damg̊ard[16], is the iterated construction.
Formally, let f : {0, 1}n × {0, 1}l → {0, 1}l and define the iterated hash H : ({0, 1}n)+ × {0, 1}l → {0, 1}l
based on f by the following: On inputs M ∈ ({0, 1}n)+, IV ∈ {0, 1}l such that M = M1 ‖M2 ‖ . . . ‖Mm,
H(M, IV) = hm, where h0 = IV and hi = f(Mi, hi−1) for 1 ≤ i ≤ m.1

Application to MACs. For many MACs, we can think of modeling the MAC abstractly as g(f(·)) where
f is an iterated hash function and g is a post-processing function, typically a PRF or PRP. There is a
conceptual difference in that cryptographic hash functions do not require a secret key and have notably
different security goals than that of MACs, but we feel modeling MAC functions in this way is pedagogically
useful.

EMAC. EMAC lends itself well to the above abstraction: On input message M such that |M |n = m,
we define f : K × ({0, 1}n)+ → {0, 1}n, fK1(M) = hm where hm is as from the description of EMAC
earlier. Then define g : K × {0, 1}n → {0, 1}n, gK2(x) = EK2(x) so that EMACK1,K2(M) = gK2(fK1(M)).
Padding attacks work by exploiting known properties in the function f . Namely, in our example of EMAC,
it is easy to see that if f(M) = f(M ′) for some M,M ′ ∈ ({0, 1}n)+, then for any string s ∈ ({0, 1}n)+,
f(M ‖ s) = f(M ′ ‖ s). This is a property of all iterated hash functions and has been observed by others
[21, 26]. This padding attack is effective against EMAC [6], ANSI retail MAC [1], XCBC [11], and HMAC
[2].

HMAC. Let H : ({0, 1}l)+ × {0, 1}L → {0, 1}L be an iterated hash function. Given a secret key K and
input message M , HMACK(M) is defined as H(K̄ ⊕ opad ‖ H(K̄ ⊕ ipad ‖ M)) where opad and ipad are

1Typically the length of the message (|M |) is appended to the message before hashing, but for all attacks presented in this
paper the messages queried by the adversary are assumed to be of the same length (unless otherwise noted), so for simplicity
we have omitted this extra step.
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predefined constants and K̄ denotes the unambiguous padding of K to match the input block size of H.
HMAC will succumb to the padding attack described above because of its use of an iterated hash function.
Let M,M ′ ∈ ({0, 1}l)+, |M | = |M ′| = m be distinct messages that collide under HMACK . If we assume
that the collision occurs in the hash function keyed by K̄ ⊕ ipad (see [26] for methods on ensuring this event
occurs), then by the observation made above about collisions in iterated hash functions, M ‖ s will collide
with M ′ ‖ s for s ∈ ({0, 1}l)+. The adversary forges by querying the MACing oracle at M ‖ s to receive tag t
and querying the verification oracle at (M ′ ‖s, t). We can also generate the collision within the first iteration
of the compression function used in H via the method described in the attack on CBC MAC (common
suffixes among all queried messages); this allows an adversary to forge messages for which all but the first
message block is of the adversary’s choice.

XCBC. Similarly, we can view XCBCK1,K2,K3(M) as g(f(M)) where g(x) = EK1(x⊕K2) if n divides |M |
and g(x) = EK1(x⊕K3) otherwise. First suppose that |M | is a multiple of n and that |M |n = m for some
m. Let h0 = 0n and hi = EK1(Mi⊕hi−1) for 1 ≤ i ≤ m − 1. Then f(M) is defined as hm−1⊕Mm. Now
suppose |M | is not a positive multiple of n. Let M ∗ be M ‖10l where l = n−1−|M | mod n so that |M ∗| = m
for some m. Let h0 = 0n and hi = EK1(M

∗
i ⊕hi−1) for 1 ≤ i ≤ m− 1. f(M) is defined as hm−1⊕M∗

m. Let
M,M ′ ∈ ({0, 1}n)+ collide under f so that g(f(M)) = g(f(M ′)). By the properties of iterated functions
discussed above, for an arbitrary v ∈ ({0, 1}n)+, f(M ‖ v) = f(M ′ ‖ v)⇒ g(f(M ‖ v)) = g(f(M ′ ‖ v)). The
case where the lengths of M and M ′ are not multiples of n can be handled similarly.

3.3 Effects of Adding State

A natural question to ask is whether adding state to the schemes discussed above adds sufficient security
under our definition. For two natural ways to do so the answer is negative, as we shall see.

One obvious way to add state to a stateless MAC Π = (MAC,VF) is to parameterize inputs with a
counter, cnt. Let 〈cnt〉b denote the b-bit encoding of cnt. Upon an input (M, cnt), and with key K ∈ K,
the new stateful algorithm outputs the tag generated by MACK on input 〈cnt〉b ‖M . Just as naturally, the
algorithm can be defined to return the value MACK(M ‖ 〈cnt〉b).

CBC MAC. Suppose that we have chosen to add state to CBC MAC by appending an encoding of the state
to the messages before MACing. Suppose (M, i) collides with (M ′, j) and consider the attack on CBC MAC
discussed earlier. Because of the way the state is appended to the message, the variable v in the attack is
now XOR-ed with the counter values instead of the last blocks of M,M ′. Thus, let v be a value such that
the counter values k, l defined as i⊕ v and j⊕ v, respectively, have not been queried by the adversary. Then
the adversary may query on (M,k) to receive tag t, and forge with (M ′, l, t). Note that in this attack each
counter value is queried at most once.

Now suppose an encoding of the state is prepended to each message in the setting of CBC MAC. A
successful attack can be made if an adversary queries messages of the form Ri ‖M where Ri is a randomly-
chosen value from {0, 1}n and M is a fixed, arbitrarily chosen string from {0, 1}n(m−1) until j distinct

collisions of this form have been found. It is expected that j collisions will occur after Θ(
√

j2n+1) MAC
queries, which is clearly less than linear in j and the number of expected queries to find one collision. Suppose
(Ri‖M, i) collides with (Rj ‖M,k). Because the last m−1 blocks of the message are the same, we know that,
during the computation of the tags, a collision occurs in the second chaining value (h2) and is propagated
through the rest of the computation. This implies that EK(〈i〉n)⊕Ri = EK(〈k〉n)⊕Rk. The adversary
picks arbitrary v ∈ {0, 1}n− 0n, M ′ ∈ {0, 1}n(m−1) and queries on (Ri⊕ v ‖M ′, i) to receive tag t and forges
with (Rk ⊕ v ‖M ′, k, t). The justification of this claim is almost identical to the justification for the attack
on the stateless CBC MAC and is omitted.

At this point we must stop and note that this particular method of adding state does quite a bit better
under our definition of security than all previous schemes we have covered. Instead of allowing an adversary
to forge one message per query after one collision in the output tags, an attacker must find a collision using
new counter values for each forgery he wishes to make. There are two downsides, however. One is that
the number of possible forgeries grows as a square in proportion to the number of times an adversary can
query 2n/2 messages. We will see later that this can be improved upon so that the relationship between the
number of messages an adversary must query to the number of probable forgeries can be linear. The other
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downside is that there is no proof of security that the above attack is the best an adversary can do. Again,
we do not claim that any of our attacks are the most damaging.

For the same reason that the non-padding attack on CBC MAC worked with only slight alterations for
EMAC and XCBC, the attack described above will also work on EMAC and XCBC with the same alterations.
A discussion of how adding state affects attacks on HMAC and PMAC can be found in the appendix.

3.4 Attacks on Universal Hash Function Families

There are several MAC paradigms of the Carter-Wegman style [15] described in this paper. One of them is
FH[H,R]. In this paradigm we require the hash function family to be ε-AU. The shared key between signer

and receiver is (h, ρ), where h
$←H = {h : D → {0, 1}l} and ρ

$←R = Rand(l, L). To MAC message M ,
the signer sends ρ(h(M)). To verify a received message M with tag t, the verifier computes ρ(h(M)) and
ensures it equals t.

The attack on this scheme is dependent on the family of universal hash functions used. We will show that
for each of the families hash127, Square-Hash, LFSR-based Topelitz Hash, Bucket Hash, MMH, NH, and
NMH there exists an adversary A such that A can forge j messages in the FH[H,R] paradigm in resources
comparable to those required for a single forgery.

The adversary works by hashing messages to the birthday bound of h and, with the knowledge of two
messages M,M ′ such that h(M) = h(M ′), producing two more messages F, F ′ related to M,M ′ such that
h(F ) = h(F ′). This allows the adversary to forge by querying the MAC oracle on F to receive tag t∗

and to forge with (F ′, t∗). Notably, h(F ) = h(F ′) implies that ρ(h(F )) = ρ(h(F ′)). We describe the
insecurity of the hash functions by showing ways to, given a colliding pair of messages M,M ′ under that
hash function instance, produce a new pair of messages which collide under the same instance without making
any additional queries. Of course, if we see a collision in the tags computed by a particular instance of FH
on messages M,M ′, we do not know whether h(M) = h(M ′) or h(M) 6= h(M ′) and the collision occurred in
ρ. We get around this by assuming the former event until we see evidence to the contrary. That is, we apply
the techniques covered throughout the rest of this subsection and if more collisions occur as predicted, we
can be reasonably confident that the collision occurred first in h.

Most of the hash function families are examined in the Appendix A, but we have included the analysis
of two families here which yield to key-recovery attacks when distinct messages M,M ′ are found such that
h(M) = h(M ′) for an h in the respective family.

hash127. Let M = (M0,M1, . . . ,Mm−1) be a sequence of integers in [−231, 231−1]. For any integer x define
hx(M) = (xm+1 +M0x

m +M1x
m−1 + . . .+Mm−1x) mod (2127− 1). Bernstein proves that the set of such h

defined over all x is an ε-AU hash family for a small ε and describes a way [8] to efficiently compute hx(M),
where x corresponds to the secret key. This function is used to hash a message M = M0 ‖ . . . ‖Mm−1 by
interpreting each Mi as a four byte integer.

Claim 6 Let M = (M0,M1, . . . ,Mm−1), M ′ = (M ′
0,M

′
1, . . . ,M

′
m−1) be two distinct messages such that

hx(M) = hx(M ′). Then for an arbitrary non-zero constant v ∈ [−231, 231 − 1] such that Mi + v < 231 − 1,
M ′

i +v < 231−1, the messages F = (M0, . . . ,Mi−1,Mi +v,Mi+1, . . . ,Mm−1) and F ′ = (M ′
0, . . . ,M

′
i−1,M

′
i +

v,M ′
i+1, . . . ,M

′
m−1) will also collide under hx.

Proof: hx(F ) = (hx(M) + xm−iv) mod (2127 − 1)

= hx(M) mod (2127 − 1) + xm−iv mod (2127 − 1)

= hx(M ′) mod (2127 − 1) + xm−iv mod (2127 − 1)

= (hx(M ′) + xm−iv) mod (2127 − 1)

= hx(F ′).

One can do better than finding more collisions, however. Let g(x) be the monic polynomial of degree m
over the field modulo the prime used in hash127 (2127 − 1) where the coefficient of the m + 1− i-th term is
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(M0−M ′
0)

−1(Mi−M ′
i) (all arithmetic is done modulo 2127−1) for 0 ≤ i ≤ m. We know g is non-zero because

M 6= M ′. Because hx(M) = hx(M ′), g(x) = 0. Using Berlekamp’s algorithm [7] for factoring polynomials
over large fields, we can find all zeros of g and test them via the MAC oracle to determine x with arbitrarily
high probability. There are at most m zeros of g (g may have as factors irreducible polynomials of degree
> 1), so a probabilistic algorithm will need an expected log m queries to the MAC oracle to determine the
key with probability close to 1 − 1/2127. This probability can be brought arbitrarily close to 1 with more
queries. The algorithm for doing this is described in Appendix B.

Square-Hash. We describe the universal hash family Square-Hash, first described in [18] as follows: choose
a prime number p. For a given secret key x ∈ Z, and message M , Square-Hash is computed by hx(M) =
(M + x)2 mod p. An interesting property of Square-Hash is that when two messages M and M ′ are found
to collide under hx, it is possible to recover the secret x.

Claim 7 Let M , M ′ be two distinct messages such that hx(M) = hx(M ′). Then x ≡ (2M−2M ′)−1((M ′)2−
M2) mod p, where the multiplicative inverse is taken over the field of integers modulo p.

Proof: By definition, because hx(M) = hx(M ′), we know that

(M + x)2 mod p ≡ (M ′ + x)2 mod p⇒

(M2 + 2Mx + x2) mod p ≡ ((M ′)2 + 2M ′x + x2) mod p⇒

(M2 + 2Mx) mod p ≡ ((M ′)2 + 2M ′x) mod p⇒

(2M − 2M ′)x mod p ≡ ((M ′)2 −M2) mod p⇒

x mod p ≡ (2M − 2M ′)−1((M ′)2 −M2) mod p

To allow messages of greater lengths, Square-Hash was extended to a family SQH∗ by using a sum.2 Let
M = M1 ‖M2 ‖ . . . ‖Mm where |Mi| = n and let x be an m-vector with coordinates x1, x2, . . . , xm in the
integers. Then SQH∗

x(M) is computed as
∑m

i=1(Mi + xi)
2 mod p. In this scheme, key recovery is possible

using m separate birthday attacks. For 1 ≤ i ≤ m, query messages up to the birthday bound of the form

0n(i−1) ‖Rk ‖ 0n(m−i) where Rk
$←{0, 1}n so that tags are computed using only the secret value xi and the

MAC is reduced to the original Square-Hash. A collision among messages of this form will yield the value
of xi. After m such attacks are completed the entire key x may be recovered.

To forge messages after only one collision has occurred, an attacker may find the appropriate xi using
the attack above then query on an arbitrary message M = M1 ‖M2 ‖ . . . ‖Mm to receive tag t. Note that
(Mi + x)2 ≡ a mod p is a quadratic residue mod p and that there are two distinct values b, c mod p such
that b2 ≡ c2 ≡ a mod p. Clearly (Mi + x)2 is one of those values. The attacker merely finds the other value
and computes M ′

i from this value. Then let M ′ be the message formed by letting M ′
j = Mj for j 6= i and

M ′
i from this value computed earlier. Then MAC(M) = MAC(M ′).

FCH. The counter mode Carter-Wegman paradigm FCH[H,R] is described below. Let H be some ε−AU

hash family H = {h : D → {0, 1}l}, and R a set of functions R = Rand(l + b, L). Let ρ
$←R and h

$←H.
(ρ, h) is the shared key between signer and verifier. The signer has a counter, cnt, which is an integer variable.
To MAC message M , the signer first ensures that cnt < 2b − 1 and if so sends (cnt, ρ(〈cnt〉b ‖ h(M))). To
verify a received message M with tag (i, t), the verifier computes ρ(〈i〉b ‖ h(M)) and ensures it equals t.

An adversary can compute j forgeries successfully as follows: query an expected 2l/2 messages of the
form (M, cnt) to the MACing oracle for some fixed cnt and varying M to find messages M , M ′ such that
h(M) = h(M ′) and M 6= M ′. The adversary then makes a query (M, cnt′) to the MACing oracle for some
cnt′ 6= cnt and receives tag t. The adversary then forges with (M ′, cnt′, t).

2The fully optimized version of Square-Hash has some minute differences from the scheme presented here that complicate
the exposition yet do not hinder the general nature of our attack; thus this simplified version is presented.
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4 Schemes Resistant to Reforgeability

While FCH[H,R] is not secure under a j forgery attack, we introduce a new paradigm for Carter-Wegman
MACs based on FCH[H,R] that is secure under such an attack. We will call this new paradigm FCHC[H,R].
It works as follows. Let H be some ε−AU hash family H = {h : D → {0, 1}l}, and R a set of functions

R = Rand(l + b, L). Without loss of generality assume that |H| = 2s for some s < L. Let ρ0, ρ1
$←R; the

shared key between signer and verifier is (ρ0, ρ1). Let 〈cnt〉b denote the encoding of cnt using b bits. To MAC
message (M, cnt), the signer first ensures that cnt < 2b − 1 and if so sends (cnt, ρ0(〈cnt〉b ‖ hcnt(M))) as the
tag, where hcnt is selected by the first s bits of ρ1(〈cnt〉b ‖ 10l−1). To verify a received message M with tag
(i, t), the verifier computes ρ0(〈i〉b ‖ hi(M)) and ensures it equals t. The proof can be found in Appendix C.

Theorem 8 Let H be ε-AU and let R = Rand(l + b, L). Then FCHC[H,R] is

(

j,

(

(ε+2−L)q2

2j2

)j)

-secure.

Relative Security of FCHC. What does theorem 8 mean and what sorts of security comparisons are
appropriate? The fact that it is stateful requires that extra bits are transmitted with each signed message,
and this mitigates the benefits of FCHC in comparison to, say, a stateless scheme which uses those extra bits
to push back the birthday phenomenon, but it would be incorrect to say that this fact nullifies all benefits.
Consider MACs such that the total number of bits transferred (including state and/or random coins, if
applicable) is 64 and consider an adversary that has resources to query 240 input/output pairs to the MAC
oracles.3 For a stateless MAC, all 64 bits are used for the tag. A collision in tags is expected after around
232 queries and if the MAC is one of the stateless MACs covered in this paper, the adversary can now forge
once per query thereafter. The expected number of forgeries in this case is close to 239.

How does FCHC do under such parameters? Say an instance of FCHC uses a PRF and an ε-AU hash
family which both output 32 bits (so ε is near 1/232). The other 32 bits are used for the state. Each forgery
requires an expected 216 queries, so an adversary can expect to forge around 224 messages, although the first
forgery comes much earlier compared to the stateless scheme. This is a drastic difference from the stateless
MAC where fully almost half of the messages queried by the adversary are forgeries. With FCHC and these
parameters, only one in every 216 queries will be a forgery.

Let’s change the parameters slightly. If our instance of FCHC uses a PRF and an ε-AU hash family
with output lengths of 48 bits, with the other 16 bits used for the state, then each forgery requires an
expected 224 queries. The adversary can then expect to forge 216 messages. In some applications, forgery of
a few thousand messages may be tolerable, while a complete break where 239 forgeries are allowed would be
intolerable.

What about adding state to get beyond the birthday bound? Unintuitively, this can actually make
matters worse. Suppose of the 64 bits used, 32 are used for the tag and 32 are used for the state. Let’s
say we use FCH. In our model, repeated queries with the same tag are allowed, so this just pushes the
first collision up so that only 216 queries are needed. Again, almost 239 forgeries are allowed. It may be
argued that such a security model is unrealistic and gives and adversary too much power. To address this
criticism, let us analyze the scenario where the adversary is not allowed repeat signing queries with the same
state value but is allowed repeat queries the verification oracle which use the same state. In this case, the
adversary works as follows: make one query (M, s) to the signing query to receive tag t. The adversary then
queries an expected 232 message/tag pairs (Mi, s, t) to the verification oracle to find some message M ′ such
that the verification oracle returns 1 on input (M ′, s, t) - the adversary has found a collision in the UHF (or
the outer PRF - if this is the case, additional queries must be made, but the expected number is still on the
order of 232). The MAC is now completely broken, and the adversary obtains one forgery for each additional
query thereafter, for, again, an expected 239 forgeries.

What if our stateful MAC uses only 16 bits for the state and we still do not allow repeated signing queries
with the same state value? This is where things get a little hairier with regard to comparisons. With only
240 resources, it is unlikely that the strategy above will yield many collisions. However, if the adversary
makes 238 verification queries and does find a message M ′ such that the verification oracle returns 1 on
query (M ′, s, t), then the adversary can again obtain near 239 forgeries. What is the probability that the

3We choose 64 bits because it seems more in line with our motivating scenarios (i.e. applications which must use short tags).
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adversary finds such a message M ′? About one in a thousand. Is it worth the risk that one in a thousand
times the security of the MAC will be completely broken? Or is it more tolerable to admit 216 forgeries
with assurance that that is the worst that will happen? The answer to these questions will depend on the
application and risk model.

Efficiency. The cost of FCHC is roughly twice that of FH or FCH. Typically, the cost of the MAC is
dominated by how many blocks the PRF must process. In FH and FCH, high speeds are achieved by only
requiring the PRF to process one block per message. In FCHC, two blocks are processed per message by
the PRF, one to select the instance of the UHF, and the other to process the output of the UHF instance on
the message input. Thus the cost is roughly twice that of FH and FCH. The trade here is that some speed
is sacrificed for the benefit of avoiding reforging attacks.

Some may complain that the non-static key to the UHF could potentially seriously degrade performance.
While most Universal Hash Families do require key expansion, some are designed with interchangability
of keys as a selling point. Bernstein’s poly1305 family is such an example [9] that does not rely on any
precomputation with respect to the key material.
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A Attacks

A.1 Blockcipher-Based MACs

PMAC. The MAC PMAC is described as follows: for a given blockcipher E and a given message M =
M1 ‖ M2 ‖ . . . ‖ Mm for some m, |Mi| = n for 1 ≤ i ≤ m − 1, we let Xi = Mi⊕ γi · L for 1 ≤
i ≤ m where the operation ‘·’ as well as the constants γi and L are given in the original PMAC paper
[11]. The tag produced by PMAC with key K on message M of m blocks, denoted by PMACK(M),
is EK(pad(Mm)⊕Xm⊕EK(X1)⊕ . . . ⊕EK(Xm − 1)) where pad is a function that unambiguously pads
strings of length less than n to strings of length n.

For two distinct messages (M,M ′) that collide with respective lengths, in n-bit blocks, of m and m′, we
know that the following must be true:

EK(pad(Mm)⊕Xm⊕EK(X1)⊕ . . . ⊕EK(Xm − 1)) =

EK(pad(M ′
m′)⊕X ′

m′ ⊕EK(X ′
1)⊕ . . . ⊕EK(X ′

m′ − 1))

⇒ pad(Mm)⊕Xm⊕EK(X1)⊕ . . . ⊕EK(Xm−1) =

pad(M ′
m′)⊕X ′

m′ ⊕EK(X ′
1)⊕ . . . ⊕EK(X ′

m′−1)

Let l = min{|Mm|, |M ′
m′ |} and let v ∈ {0, 1}l − 0l be arbitrary. Let F = M1 ‖ . . . ‖Mm−1 ‖Mm⊕ v and

let F ′ = M ′
1 ‖ . . . ‖M ′

m′−1 ‖M ′
m′ ⊕ v. Then PMACK(F ) = PMACK(F ′). Indeed,

EK(pad(Mm⊕ v)⊕Xm⊕EK(X1)⊕ . . . ⊕EK(Xm − 1)) =

EK(pad(M ′
m′ ⊕ v)⊕X ′

m′ ⊕EK(X ′
1)⊕ . . . ⊕EK(X ′

m′ − 1))

⇒ pad(Mm)⊕ v⊕Xm⊕EK(X1)⊕ . . . ⊕EK(Xm−1) =

pad(M ′
m′)⊕ v⊕X ′

m′ ⊕EK(X ′
1)⊕ . . . ⊕EK(X ′

m′−1)

⇒ pad(M ′
m′)⊕X ′

m′ ⊕EK(X ′
1)⊕ . . . ⊕EK(X ′

m′−1)

To forge an attacker would query the oracle on input F to receive tag t∗ and forge with F ′, t∗ The reason
that we cannot XOR by a string with more than l bits is that in that case the composition of functions pad
and XOR is not commutative - if we XOR by a string longer than the original length of Mm or M ′

m′ , the
messages are not padded in the same way and we are not changing the same bits in both messages. Again,
the adversary chooses the lengths of the messages, so this does not hinder the effectiveness of the attack.

A.2 Attacks on Universal Hash Families

LFSR-Based Topelitz Hash. In Carter and Wegman’s original paper, they provided an example of a
Universal hash family. Fix parameters m and n. Let A be a random m × n binary matrix. The family
H = {h : {0, 1}m → {0, 1}n} is Universal where a member of the family is specified by the choice of A. We
compute h(M) by AM . Krawczyk introduced another family based on this [22], with changes designed to
speed up hardware implementations. The changes are not relevant to the attack discussed here, however,
because a member of the scheme that Krawczyk describes is still a matrix A, and h(M) is still defined as
AM .

Consider distinct messages M,M ′ in the domain of h such that h(M) = h(M ′). This means that

AM = AM ′ ⇒ A(M −M ′) = 0

Because M 6= M ′, we have found a non-zero vector vector w such that Aw = 0 (clearly A must be singular
for this to occur, but for h to be a compression function m > n anyway, so this assumption is acceptable).
Pick F in the domain of h not equal to M or M ′ arbitrarily. Then let F ′ = F −M + M ′.

14



Claim 9 h(F ) = h(F ′)

Proof: AF −AF ′ = A(F − F ′) = A(F − (F −M + M ′) = A(M −M ′) = 0

Bucket Hash. First described by Rogaway in 1995 [28], the bucket hashing scheme is as follows: fix three
positive integers: a word-size w, a block size n and a security parameter N (we will call N the “number of
buckets”). To hash a message M we break M into n words of w bits each. So M = M1 ‖M2 ‖ . . . ‖Mn

with each |Mi| = w. Then we imagine N “buckets” (which are simply variables of w bits) into which we will
XOR the words of M . For each word Mi of M we XOR Mi into three randomly chosen buckets. Finally we
concatenate all the bucket contents as the output of the hash function. The only restriction on the buckets
for any Mi is that they cannot be the same three buckets as were used for any Mj with i 6= j. Formally, let
x be a randomly chosen n-vector with distinct coordinates, each coordinate being a 3-element set of w-bit
words. We denote the ith coordinate of x as xi = {xi1, xi2, xi3}. For any M ∈ {0, 1}nw we run the following
algorithm:

bucket hash(M)
for i← 1 to N do Yi ← Ow

for i← 1 to N do
Yxi1

← Yxi1
⊕Mi

Yxi2
← Yxi2

⊕Mi

Yxi3
← Yxi3

⊕Mi

return Y1 ‖ Y2 ‖ . . . ‖ Yn

Pick an arbitrary v ∈ {0, 1}w such that v 6= 0w. Define F as the result of XOR-ing every Mi with v, and
similarly define F ′ as the result of XOR-ing every M ′

i with v.

Claim 10 bucket hash(F ) = bucket hash(F ′).

Proof: Consider the string returned by bucket hash(F ) which we will label by Z1 ‖ Z2 ‖ . . . ‖ Zn. Also, let
bucket hash(F ′) = Z ′

1 ‖ Z ′
2 ‖ . . . ‖ Z ′

n. Consider block Zj . This block is equal to

Fj1⊕Fj2⊕ . . . ⊕Fjkj

where the indices correspond to the blocks of F that were XOR-ed into bucket j. Similarly,

Z ′
j = F ′

j1⊕F ′
j2⊕ · · · ⊕F ′

jkj

But

Fj1⊕Fj2⊕ · · · ⊕Fjkj
= Mj1⊕ v⊕Mj2⊕ v⊕ · · · ⊕Mjkj

⊕ v =

M ′
j1⊕ v⊕M ′

j2⊕ v⊕ · · · ⊕M ′
jkj
⊕ v = F ′

j1⊕F ′
j2⊕ · · · ⊕F ′

jkj

MMH. The MMH family [20] is H = {h : ({0, 1}32)n → {0, 1}32} where a member of this set is selected by
some n-vector x with coordinates in {0, 1}32. For any message M taken as an n-vector with coordinates in
{0, 1}32 we compute hx(M) as

[[[ n
∑

i=1

Mixi

]

mod 264

]

mod (232 + 15)

]

mod 232

where xi denotes the ith coordinate of x and Mi the ith coordinate of M . Through some clever implementa-
tion tricks, this family is very efficient in software. Consider message M and M ′ such that hx(M) = hx(M ′).
Choose arbitrary non-zero v ∈ {0, 1}32 and i0 ∈ [1 . . . n]. Define F in the following manner: Fi = Mi for all
i 6= i0 and Fi0 = Mi0 + v mod 232. Similarly we define F ′ as F ′

i = M ′
i for i 6= i0 and F ′

i0
= M ′

i0
+ v.
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Claim 11 hx(F ) = hx(F ′).

Proof:

hx(F ) =

[[[

vxi0 +
∑n

i=1 Mixi

]

mod 264

]

mod (232 + 15)

]

mod 232 =

[[[

∑n
i=1 Mixi

]

mod 264

]

mod (232 + 15)

]

mod 232+

[[[

vxi0

]

mod 264
]

mod (232 + 15)
]

mod 232 =

[[[

vxi0 +
∑n

i=1 M ′
ixi

]

mod 264

]

mod (232 + 15)

]

mod 232 = hx(F ′)

The equalities are justified by the fact that modular arithmetic can be distributed over addition.

NMH. Also mentioned in the MMH paper [20] is the adaption of the authors’ methods to a family created by
Mark Wegman. NMH is defined as H = {h : ({0, 1}32)n → {0, 1}32} where a member of this set is selected
by some n-vector x with coordinates in {0, 1}32. We assume here, for simplicity, that n is even. For any
message M taken as an n-vector with coordinates in {0, 1}32 we compute hx(M) as

[[[ n/2
∑

i=1

(M2i−1 + x2i−1 mod 232)(M2i + x2i mod 232)

]

mod 264

]

mod (232 + 15)

]

mod 232

where xi denotes the ith coordinate of x and Mi the ith coordinate of M .
Consider the case where there are two distinct message M , M ′ such that hx(M) = hx(M ′). Pick distinct

i0, i1 ∈ [1 . . . n]. Without loss of generality assume both i0 and i1 are both even. For concision denote
a = Mi0−1−M ′

i0−1 and b = Mi1−1−M ′
i1−1. Let v0 = ab2 and v1 = −a2b. Define message F in the following

manner: Fi = Mi for i /∈ {i0, i1} and Fib
= Mib

+ vb for b ∈ [12]. Define message F ′ as F ′
i = Mi for

i /∈ {i0, i1} and F ′
ib

= Mib
+ vb for b ∈ [12].

Claim 12 hx(F ) = hx(F ′)

Proof:

hx(F ) =

[[[

v0(Mi0−1 + xi0−1) + v1(Mi1−1 + xi1−1)+

∑n/2
i=1(M2i−1 + x2i−1 mod 232)(M2i + x2i mod 232)

]

mod 264

]

mod (232 + 15)

]

mod 232

But note that

hx(F ′) =

[[[

v0(M
′
i0−1 + xi0−1) + v1(M

′
i1−1 + xi1−1)+

∑n/2
i=1(M

′
2i−1 + x2i−1 mod 232)(M ′

2i + x2i mod 232)

]

mod 264

]

mod (232 + 15)

]

mod 232

It will suffice to show that v0(Mi0−1 + xi0−1) + v1(Mi1−1 + xi1−1) = v0(M
′
i0−1 + xi0−1) + v1(M

′
i1−1 + xi1−1).

After subtracting the common terms in x from both sides, note that this is equivalent to showing that
v0a = −v1(b). By the way v0 and v1 were defined, v0a = a2b2 = −v1b.

The family NH used in UMAC [10] is very similar to NMH - essentially the differences amount to the
constants chosen over which to do modular arithmetic. As such, the above attack can be easily adopted to
NH.
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A.3 Effects of Adding State

HMAC. Recall that given a secret key K and input message M , HMACK(M) is defined as

H(K̄ ⊕ opad ‖H(K̄ ⊕ ipad ‖M))

where H denotes some iterated hash function and K̄ denotes the unambiguous padding of K to match the
input block size of H. Suppose H takes strings of the form ({0, 1}n)+ as input and the state is encoded
as a string of length n and prepended to the message M to obtain a string M ∗; the returned tag is the
output of the stateless version of HMAC on input M ∗. An adversary can efficiently attack this construction
by querying messages of the form (M, i) for varying values of i and an arbitrary, fixed M . This querying is
done until j colliding pairs of messages have been found - as mentioned earlier, this will occur with much
fewer than j times the number of queries required to produce the first collision. For each pair of colliding
messages (M, i), (M, j), the adversary picks an arbitrary M ′ 6= M in the domain of H, queries the oracle on
(M ′, i) to receive tag t, and forges with (M ′, j, t). This will be a correct forgery by the properties of iterated
hash functions described earlier.

Now suppose the encoding of the state is appended to the message M to obtain message M ∗, which is
used as the input to HMAC. The adversary first queries, up to the birthday bound, messages of the form
(M i, a) for distinct M i where n divides |M i| and fixed a, until a pair of colliding messages (M i, a), (M j , a) is
found. The attacker can now forge messages by arbitrarily choosing an unqueried counter value k, querying
the oracle at (M i, k) to receive tag t and forging with (M j , k, t).

PMAC Prepending the state to a message M before MACing does not prevent forgeries for PMAC in
our model. The attack is as follows: messages of the form (Ri ‖ 0n, i), where Ri is a random string from
{0, 1}n(m−1), are queried. Suppose the queries (Ri ‖ 0n, i), (Rj ‖ 0n, j) to the MAC oracle return the same
tag t. Then by an analysis similar to the stateless (specified) version of PMAC, an adversary may query on
(Ri ‖ 1n, i) to get tag t′ and forge with (Rj ‖ 1n, j, t′). The justification for this is the same for the stateless

case. Again, j forgeries may be obtained in expected queries within a constant factor of
√

j2n+1.

WC. WC[H,R] is another Carter-Wegman MAC paradigm computed in the following manner. Let H = {h :

D → {0, 1}b} and P be an infinite random string, P = P1 ‖ P2 ‖ . . . with |Pi| = b. Let h
$←H. The shared

key between the signer and verifier is (P, h). The signer has a counter, cnt, which is an integer variable. To
MAC a message M ∈ D, the signer sends (cnt, Pcnt⊕h(M)). to verify a received message M with tag (i, t),
the verifier computes Pi⊕h(M) and ensures it equals t.

An adversary can compute j forgeries successfully as follows: query 2l/2 messages of the form (Mi, cnt)
to MACP,h for some fixed cnt to find messages Mi, Mj such that h(Mi) = h(Mj) and Mi 6= Mj . (The
adversary will know when this happens because the output of h is XOR-ed with the same pad every time;
thus a collision in two tags ti and tj implies a collision between h(Mi) and h(Mj).) The adversary then
makes a query (M, cnt′) to MACP,h for some cnt′ 6= cnt and receives tag t. The adversary then forges with
(M ′, cnt′, t).

B Details of the hash127 Attack

Let us briefly recall the scenario described in Section 3.4. The adversary has knowledge of two messages
M,M ′ such that hx(M) = hx(M ′) for the unknown instance hx of hash127. The adversary has constructed
a polynomial g(x) over the field of integers modulo p = 2127 − 1, denoted by Fp, one of the roots of which
is the secret x. g has at most m roots (where m is the length of the message, in blocks of 32 bits), and
these can be found efficiently using Berlekamp’s algorithm [7] or the Cantor/Zassenhaus algorithm [14]. Let
x1, x2, . . . , xk denote these roots (k ≤ m). We assume here that the adversary has made at least one extra
query M ′′ to the MAC oracle (besides the colliding messages), and received in response tag t′′. If this is not
the case (in which case the adversary was extremely lucky - the first two queries yielded a collision!), then
the adversary must make one extra query.

The attack is probabilistic and needs an expected log m additional queries. The algorithm is described
below.
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Algorithm Find Key
X ← {xi : 1 ≤ i ≤ k}
while |X| > 1 do:

• Z1 ← {xi : 1 ≤ i ≤
⌊

|X|
⌋

}

• Z2 ← {xi : 1 ≤ i ≤
⌈

|X|
⌉

}

• Let R← {ri : 1 ≤ i ≤ m− |Z1|} be randomly-chosen elements from Fp.

• Construct a monic polynomial f∗(y) of degree m such that f∗ ←∏

z∈Z1
(y − z)

∏

r∈R(y − r)

• Choose the coefficients of message M ∗, using simple subtraction, so that the polynomial f , whose
m + 1− i-th term is (M ′′

i −M∗
i ), is equal to f∗.

• Query the MAC oracle on M∗ to receive tag t∗.

• if t∗ = t′′ then X ← Z1 else X ← Z2

end do
return contents of X

The algorithm works by choosing messages M ∗ such that the polynomial f∗ has zeros on half of the
remaining possible roots. That is, if the real key x is a root of f ∗, then by the way f∗ was formed,
hx(M ′′) = hx(M∗), and t∗ = t′′. If the real key x is not a root of f∗, then t∗ = t′′ with probability less
than (2m + 4)/2127 + 1/2n [8], where n is the output size, in bits, of the MAC oracle. The algorithm may
be repeated as necessary with different values of M ′′ (which must be queried) if the adversary suspects the
returned value xi is not the real key x, so that with probability arbitrarily close to 1 the adversary may be
sure he has the correct value of x.

C Proof of Theorem 8

This section contains the proof of Theorem 8.

Proof: To review, an adversary A succeeds if it makes q = qs + qv queries, qs queries Qs =

{(M1, cnt1), (M2, cnt2), . . . , (Mqs
, cntqs

)}

of the MACing oracle and qv queries Qv =

{(M∗
1 , cnt∗1), (M

∗
2 , cnt∗2), . . . , (M

∗
qv

, cnt∗qv
)}

of the verification oracle such that j of the qv queries to the verification oracle returned 1, (Mi, cnti) 6=
(M∗

k , cnt∗k) for 1 ≤ i ≤ qs, 1 ≤ k ≤ qv, and there are no repeat counter values among the j successful
queries to the verification oracle. We must show that A can only succeed with probability that is related to
probability of one successful forgery over a term of j2, with the entire quantity being exponential in j.

Note that, by the way the MAC is parameterized by cnt, we are guaranteed that the inputs to ρ0 for queries
(M, cnt), (M ′, cnt′) are distinct so long as cnt 6= cnt′. For this reason we can think of cnt as parameterizing
ρ0 into a family of functions, with each value selecting an independent member of that family. Also, because
a new member of H is chosen randomly for each value of cnt, if we fix cnt we can think of the MAC as an
instance of FH[H,R] completely independent from another instance of FH[H,R] chosen by cnt′ 6= cnt.

Let qs,i, 1 ≤ i ≤ j denote the number of signing queries made for a particular counter value cnti such that
∑

i qs,i = qs. Similarly, let qv,i, 1 ≤ i ≤ j, denote the number of verification queries made for that same
counter value cnti such that

∑

i qv,i = qv.4

4In light of the fact that the adversary is adaptive and has access to random coins, it may seem incorrect to define qs,i

and qv,i in this manner. We note that we can parameterize the adversary by a sufficiently long random string, selected at
the beginning of the experiment along with the keys to FCHC. At this point, all the random coins have been flipped and the
adversary is deterministic. The definitions now make sense and the probabilities are taken over these initial random choices.
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Claim 13 The adversary’s advantage in forging correctly for counter value cnti is bounded above by (ε +
1/2L)qv,i + (εqs,i(qs,i − 1))/2.

Proof: Any verification query made before a collision has occurred between two signing queries made with
the counter value cnti is tantamount to guessing. To see why, note the following. Say a query (M ∗, cnti, t

∗)
is made to the verification oracle. There are two cases. In the first case, assume that t∗ was not returned
as a tag for some previous signing query. Then for the verification oracle to return 1, the adversary must
correctly guess an unqueried domain point of ρ0, which will occur with probability 1/2L because ρ0 was
uniformly selected from R. Now assume that t∗ was returned as a tag for some previously queried message
(Mk, tk, cnti). The adversary is then correct if hcnti

(M∗) = hcnti
(Mk) or if hcnti

(M∗) 6= hcnti
(Mk) but

ρ0(〈cnti〉b ‖ hcnti
(M∗)) = ρ0(〈cnti〉b ‖ hcnti

(Mk)). These will occur, respectively, with probabilities of ε and
1/2L. Thus, the advantage of the adversary for the verification queries is no more than (ε + 1/2L)qv,i.

Now we must show that the advantage from the signing queries is no more than (εqs,i(qs,i − 1))/2. This is
purely conditioned on the probability that a collision occurs among the tags, at which point we give up and
admit a forgery. Let C` be the event that a collision occurs on the `-th signing query. Clearly, C1 = 0. In
general, C` ≤ (` − 1)(ε + 1/2L) because there are ` − 1 chances to collide and each occurs with probability
at most (ε + 1/2L). Then the probability of a collision is bounded above by

∑

`

C` ≤
qs,i
∑

`=1

(`− 1)(ε + 2−L) = (ε + 2−L)

qs,i−1
∑

`=0

` = (ε + 2−L)qs,i(qs,i − 1)/2

Therefore the probability that A successfully forges j messages is bounded above by

j
∏

i=1

(

(ε + 2−L)qv,i + (ε + 2−L)qs,i(qs,i − 1)/2

)

Here we must make a slight diversion into strategies used by the adversary. To simplify the analysis, we
only analyze the case of a maximally efficient adversary. All other adversaries by definition will have less
of a chance of success. If the adversary is bounded by q total queries split between verification and signing
queries, it is clear by the above analysis that an efficient adversary will only attempt a verification query
with a counter value of cnti after it has found a collision between two signing queries with cnti. Before that
point the probability of success increases quadratically with respect to the signing queries made, and only
linearly with respect to the verification queries.

Now, the probability that an adversary A successfully forges j messages is bounded above by

j
∏

i=1

(ε + 2−L)qs,i(qs,i − 1)/2 ≤
j

∏

i=1

(ε + 2−L)q2
s,i

2

(where
∑

i qs,i ≥ q − j because all but at most j of the q queries are signing queries). Stated more simply,
an adversary must optimize the following product:

∏

P

ci=S

c2
i

where ci = qs,i and S = qs. This is an equivalent problem to optimizing the following product:

∏

P

ci=S

ci

Now we assume the adversary is adept at solving optimization problems, because the product above can
be maximized by thinking about maximizing the content (or hypervolume) of a generalized rectangle in
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j-dimensional space where the sum of the length of sides is fixed. This occurs when all the sides are the
same length or, in our case, when qs,i = qs,k for 1 ≤ i, k ≤ j. That is, qs,i + 1 ≤ q/j for 1 ≤ i ≤ j.

Then
j

∏

i=1

(ε + 2−L)q2
s,i

2
≤

j
∏

i=1

(ε + 2−L)q2

2j2
=

(

(ε + 2−L)q2

2j2

)j

To verify the claim above about maximizing content in j-dimensional space, consider the following proof
by induction: using the same notation as above, consider the case when j = 2. Then the product can be
expressed in terms of one variable, x. Namely, x(S − x) where x can range from 0 to S. Using simple
techniques from calculus, it is clear that the maximum value to the function is obtained when x = S/2.
Suppose that for j ≥ 2,

∏

P

ci=S,1≤i≤j ci is maximized when ci = S/j for 1 ≤ i ≤ j. We want to show that
∏

P

ci=S,1≤i≤j+1 ci is maximized when ci = S/(j + 1) for 1 ≤ i ≤ j + 1. We can express this product as

x
∏

P

ci=S−x,1≤i≤j ci for 0 ≤ x ≤ S and now we just need to show that the optimal value for x is S/(j + 1).

Because of the inductive hypothesis, we know that this product is equivalent to the function, in x, x( S−x
j )j .

The derivative of this function in x is (S − x)j/jj − x(S − x)j−1/jj−1. The bounds on x determine that
S−x ≥ 0, and therefore that this function has only one zero (not including the boundaries), when xj = S−x.
This occurs when x = S/(j + 1).
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