
Security of VSH in the Real World
Version: March 16, 2006 (b)

Markku-Juhani O. Saarinen

Information Security Group
Royal Holloway, University of London

Egham, Surrey TW20 0EX, UK.
m.saarinen@rhul.ac.uk

Abstract. In this brief paper we offer commentary on the resistance of VSH,
very smooth hash, against some standard cryptanalytic attacks. Although the au-
thors of VSH claim only collision resistance, we show why one must be very
careful when using VSH in cryptographic engineering, where additional security
properties are often required.

1 Introduction

Many existing cryptographic hash functions were originally designed to be message di-
gests for use in digital signature schemes. However, they are also often used as building
blocks for other cryptographic primitives, such as pseudorandom number generators
(PRNGs), message authentication codes, password security schemes, and for deriving
keying material in cryptographic protocols such as SSL, TLS, and IPSec.

These applications may use truncated versions of the hashes with an implicit as-
sumption that the security of such a variant against attacks is directly proportional to the
amount of entropy (bits) used from the hash result. An example of this is the HMAC−n
construction in IPSec. Some signature schemes also use truncated hashes. Hence we are
driven to the following slightly nonstandard definition of security goals for a practically
useable hash function:

1. Preimage resistance. For essentially all pre-specified outputs x, it is difficult to
find a message m such that H(m) = x. The difficulty should be O(2n) when there
are n pre-specified bits in x.

2. 2nd-preimage resistance. Given a pre-specified message m1, it is difficult to find
another message m2 so that H(m1) = H(m2). The difficulty should be O(2n)
when there are n pre-specified bits that match in the hashes.

3. Collision resistance. It should require O(2n/2) effort to find any two messages m1

and m2 that produce a collision H(m1) = H(m2) in n pre-specified bits in the
hashes.

In addition to the above three usual goals, we state a fourth, more informal goal –
pseudorandomness. In essence, we would like a PRNG, stream cipher, or other derived
design that relies on a hash function to have at least O(2n/2) security, as if it was secured
with a “real” pseudorandom function.

Pseudorandomness implies that a hash has good statistical properties and resistance
against a wide array of distinguishing attacks.

All of the mentioned desirable properties are difficult if not impossible to prove
without nonstandard assumptions. We note that proofs based on assumptions are them-
selves assumptions, whether their origins are in the traditions of symmetric or asym-
metric cryptanalysis.

Relevance of Collision Resistance

Some researchers tend to concentrate their efforts on showing that their hash functions
that provide collision resistance, while ignoring other security properties. However, it
is well known thar collision resistance does not imply preimage-resistance or other
important hash function properties.

To illustrate this point, we present a classic counter-example. Consider an n + 1-bit
hash H ′(x) that has been constructed from an n - bit hash H as follows:

If |x| < n− 1 then H ′(x) = x || 1 || 0 0 · · · 0.

If |x| ≥ n− 1 then H ′(x) = H(x) || 1.

That is, if the message x is less than n − 1 bits long, H ′(x) consists of the message
itself, a single 1 bit and a padding of zero bits. If the message is n − 1 bits or longer,
the resulting hash consists of a (secure) hash of x, followed by a single 1 bit.

It is easy to show that H ′ is collision resistant if H is. It is also easy to see that
H ′ is not pre-image resistant for a large proportion of hash outputs, and that a slightly
truncated version is not collision resistant.

2 The VSH Algorithm

We describe the VSH algorithm in its most basic form, essentially as it appears in
section 3 of [1]. 1

Let p1 = 2, p2 = 3, p3 = 5, . . . be the sequence of primes. Let n be a large RSA
composite. Let k, the block length, be the largest integer such that

∏k
i=1 pi < n. Let m

be a be an l-bit message to be hashed, consisting of bits m1,m2, . . . ,ml, and assume
that l < 2k. To compute the hash of m:

1. Let x0 = 1.
2. Let L = dl/ke the number of blocks. Let mi = 0 for l < i ≤ Lk (padding).
3. Let l =

∑k
i=1 li2i−1 with li ∈ {0, 1} be the binary representation of the message

length l and define mLk+i = li for 1 ≤ i ≤ k.

1 There have been many changes to VSH, most recently in early March 2006 when message
length padding was changed to be performed after the message been hashed, rather than at the
beginning. Such small changes have significant implications on the development of practical
attacks. The attacks discussed in this paper apply only to this particular version of VSH; other
attacks may be devised on other variants.

4. For j = 0, 1, . . . , L in succession compute

xj+1 = x2
j

k∏
i=1

p
m(jk+i)
i mod n.

5. Return xL+1.

Selecting a 1024-bit n modulus has been suggested in the original paper, indicating
131-bit block size k.

2.1 Preimage resistance

VSH is multiplicative: If a, b, and z be three bit strings of equal length, where z consists
only of zeros bits and the strings strings satisfy x ∧ y = z. It is easy to see that

H(z)H(a ∨ b) ≡ H(a)H(b) (mod n),

As a result VSH succumbs to a time-memory trade-off attack.
To solve the n-bit preimage M of C = H(z)−1H(M) (mod n):

1. Tabulate H(x || 00 · · · 0) for 0 ≤ x < 2n/2.
2. Do table lookups for H(00 · · · 0 || y)−1C for y = 0, 1, 2, . . ., looking for a match.

The algorithm terminates when M = x || y, in other words before y < 2n/2.
A preimage attack on VSH therefore has O(2n/2) complexity rather than O(2n) as
expected.

Note that the final squarings proposed in section 3 of [1] under subtitle “short mes-
sage inversion” do not protect against this attack.

This type of attack is extremely serious if VSH is used to secure passwords, a typical
application for hash functions. Password cracking time is effectively square-rooted by
this attack. Note that the complexity of attack does not depend on the modulus size n,
but on the entropy of the password strings.

2.2 One-wayness (of the “Cubing” Variant)

In section 3.4 of the VSH specification, a variant that uses cubing instead of squaring
in its compression function is proposed. Using the Jacobi symbol, the compression
function

xj+1 = x3
j

k∏
i=1

pmi
i mod n,

becomes (xj+1

n

)
=
(xj

n

) k∏
i=1

(pi

n

)mi

.

We define a “binary” version of the Jacobi symbol:

j(c, n) =
1
2

(
1−

(c

n

))
.

We now have a linear equation giving the parity of some message bits:

j(xj+1, n) = j(xj , n) +
k∑

i=1

j(pi, n)mi (mod 2).

Note that the Jacobi symbol can be very efficiently computed and that j(pi, n) is
essentially randomly 0 or 1 for each randomly generated composite n. If the same
message has been hashed with k different moduli n, a system of k linear equations
can be obtained, leading to possible disclosure of bits using Gaussian elimination.

The same attack applies to the standard squaring version as well, but it only leaks
information about the message length. This was not the case for VSH versions 3.57 and
before.

One-wayness is implied by the standard hash security requirement of pre-image
resistance. If one obtains some information about some of the pre-image bits easily,
one can find the rest faster in an exhaustive search.

Hash functions have been used in cryptographic protocols as building blocks for
MACs. If a MAC (or a digital signature) is not post-encrypted in a communications
protocol, this will lead to disclosure of information about plaintext message bits.

2.3 Example of Collision Search in a Truncated VSH

We will first discuss a well-known generic technique for turning a partial collision attack
into a full collision attack.

Assume that there is a fast O(1) mapping f that causes the hash result to be in some
smaller subset of possible outputs: H(f(x)) ∈ S, where |S| < 2n. Typically f would
be chosen in such a way that certain hash result bits are forced to have the same constant
value. In other words, f forces partial collisions. Note that f itself should not produce
too many collisions, i.e. x1 6= x2 usually means that f(x1) 6= f(x2).

If such an f can be found, and it is fast, the complexity of finding full collisions
becomes O(

√
|S|). Note that f does not need to be able to force the hash to S on

each iteration, it is sufficient that it works with reasonable probability. The iteration in
low-memory parallel collision search algorithm becomes si+1 = H(f(si)) [2].

Attack on a simple variant. We will instantiate this attack on a VSH variant that only
uses the least-significant 128 bits of the hash function result. For basic VSH (1024-bit
n, k=131) the result of hashing a 128-bit message m1|m2| · · · |m128 is:

x =
(
19
(128∏

i=1

pmi
i

)2 mod n
)

mod 2128.

The constant 19 = p8 is caused by length padding. It is easy to see that modular
reduction by n occurs in this case with less than 50% probability if m is random (or
randomized) and its Hamming weight behaves accordingly. This will have an impact of
less than one bit on the the complexity of the overall attack.

The squaring will reverse the effect, since we shall state (without proof) that 02, 12,
22, . . ., (2128 − 1)2 maps to roughly 2125.4 (16.6%) different values mod 2128.

Let l = 42. For each of the 2l bit strings r of length l we precompute and store r,
indexed by (l∏

i=1

pri
i

)−2 mod 2l.

In the f function on each iteration we compute the partial product
(
∏128

i=l+1 pmi
i)2 mod 2l and use that to select message bits m1,m2, . . . ,ml using the

lookup table. This will usually force the least significant l bits to a certain constant
value on each iteration. Hence we have “forced” the result into a significantly smaller
subset with O(1) effort. There are additional technicalities to this attack, but its overall
complexity is:

– Pre-computing the table offline: O(242) time and space.
– Finding collisions: O(2(126−42)/2) = O(242) time.
– Total cost: roughly O(242), rather than O(264).

We acknowledge that this represents just one way of truncating VSH – using, say,
the most significant bits of the result would be an even worse option. Many other trun-
cated variants can be attacked using a different f function.

2.4 Other features of VSH

The authors of VSH do not explicitly note this, but the hash function result can be
updated after small changes without computing the entire hash again. A “bit flip” in
a message will always cause a predictable change in the message result (it becoming
multiplied mod n by certain power of a small prime or its inverse). This is due to the
highly algebraic nature of the hash.

We note such a property may be useful in some applications where rapid update of
the hash is required, but it is undesirable in many more as it facilitates adaptive attacks
against many cryptographic protocols.

3 Conclusions

In our opinion VSH is a simple, elegant design that is based on a plausible complexity-
theoretic assumption (NMSRVS: Nontrivial Modular Square Root of Very Smooth
Numbers). However, it should not be considered a general-purpose hash function as
usually understood in security engineering.

Collision resistance is apparently the only security goal of VSH (the authors discuss
other goals but give no sufficiently convincing results). VSH produces a very long hash
(typically 1024 bits). There are no indications that a truncated hash offers any significant
level of security. This appears to rule out the applicability of VSH in digital signature
schemes which produce signatures shorter than the VSH hash result.

A “political” standardisation consideration is that (by definition) VSH has a back-
door in the secret factorization of n. In the past it has been difficult to popularise cryp-
tographic techonologies that rely on trusted third parties.

References

1. S. Contini, A.K. Lenstra and R. Steinfeld. VSH, an efficient and provable collision resistant
hash function. IACR e-print 2005/193, 2005.

2. P. van Oorschot and M. Wiener. Parallel collision search with cryptanalytic applications.
Journal of Cryptology, 12 (1999), p 1-28.

