
Security of VSH in the Real World

Markku-Juhani O. Saarinen

Information Security Group
Royal Holloway, University of London

Egham, Surrey TW20 0EX, UK.
m.saarinen@rhul.ac.uk

Abstract. In Eurocrypt 2006, Contini, Lenstra, and Steinfeld proposed a new
hash function primitive, VSH, very smooth hash. In this brief paper we offer com-
mentary on the resistance of VSH against some standard cryptanalytic attacks, in-
cluding preimage attacks and collision search for a truncated VSH. Although the
authors of VSH claim only collision resistance, we show why one must be very
careful when using VSH in cryptographic engineering, where additional security
properties are often required.

1 Introduction

Many existing cryptographic hash functions were originally designed to be message di-
gests for use in digital signature schemes. However, they are also often used as building
blocks for other cryptographic primitives, such as pseudorandom number generators
(PRNGs), message authentication codes, password security schemes, and for deriving
keying material in cryptographic protocols such as SSL, TLS, and IPSec.

These applications may use truncated versions of the hashes with an implicit as-
sumption that the security of such a variant against attacks is directly proportional to the
amount of entropy (bits) used from the hash result. An example of this is the HMAC−n
construction in IPSec [1]. Some signature schemes also use truncated hashes. Hence we
are driven to the following slightly nonstandard definition of security goals for a hash
function usable in practice:

1. Preimage resistance. For essentially all pre-specified outputs X , it is difficult to
find a message Y such that H(Y ) = X . The difficulty should be ≈ 2l when there
are l pre-specified bits in X .

2. 2nd-preimage resistance. Given a pre-specified message X , it is difficult to find
another message Y so that H(X) = H(Y ). The difficulty should be ≈ 2l when
there are l pre-specified bits that match in the hashes.

3. Collision resistance. It should require ≈ 2l/2 effort to find any two messages X
and Y that produce a collision H(X) = H(Y ) in l pre-specified bits in the hashes.

In addition to the above three usual goals, we state a fourth, more informal goal –
pseudorandomness. In essence, we would like a PRNG, stream cipher, or other derived
design that relies on a hash function to have at least ≈ 2l/2 security, as if it was secured
with a “real” pseudorandom function.



Pseudorandomness implies that a hash has good statistical properties and resistance
against a wide array of distinguishing attacks.

All of the mentioned desirable properties are difficult if not impossible to prove
without nonstandard assumptions. We note that proofs based on assumptions are them-
selves assumptions, whether their origins are in the traditions of symmetric or asym-
metric cryptanalysis. An assumption based on the sieving phase of the NFS factoring
algorithm may seem like a “hard problem” to a researcher who has spent a lot of time
tweaking the sieving phase of the NFS factoring algorithm. On the other hand, a person
who has dedicated years of his life into symmetric cryptanalysis may feel that symmet-
ric cryptography possesses equally well studied “hard problems”, while also allowing
more efficient overall implementation.

A “political” standardisation consideration is that (by definition) VSH has a back-
door in the secret factorisation of n. In the past it has been difficult to popularise cryp-
tographic technologies that rely on trusted third parties.

In our opinion VSH is a simple, elegant design that is based on a plausible
complexity-theoretic assumption (VSSR: Very Smooth number nontrivial modular
Square Root). However, it should not be considered a general-purpose hash function
as usually understood in security engineering.

On VSH Security Claims

“VSH is not a Hash Function.”
– Arjen K. Lenstra, Eurocrypt 2006 1

Collision resistance is the only property proven for VSH. In Section 3 of the VSH
paper [2], short message inversion (equivalent to preimage resistance) is considered
and one possible “solution” is provided. As will be shown in Section 2.1 of this paper,
the solution is not adequate.

The authors therefore clearly expected VSH to exhibit some level of preimage and
2nd preimage resistance. These are standard requirements in the very definition of a
“cryptographic hash function”. The authors of VSH are very clear in that “VSH should
not be used to model random oracles”. Random oracle behaviour is not a standard hash
function security requirement.

Some researchers tend to concentrate their efforts on showing that their hash func-
tions provide collision resistance, while ignoring other security properties. However,
it is well known that collision resistance does not imply preimage-resistance or other
important hash function properties.

To illustrate this point, we present a classical counter-example. Consider an l+1-bit
hash H ′(x) that has been constructed from an l - bit hash H as follows:

If |x| < l − 1 then H ′(x) = x || 1 || 0 0 · · · 0.

If |x| ≥ l − 1 then H ′(x) = H(x) || 1.

1 Quoted with permission. During the conference A.K. Lenstra used some of the results from this
note in his presentation, with appropriate credit. This has led some people to mistakenly think
that the results in this note were already contained in [2]. All cryptanalytic results presented in
this paper are by the author; a draft was circulated with the authors of VSH before Eurocrypt
2006.



That is, if the message x is less than l − 1 bits long, H ′(x) consists of the message
itself, a single 1 bit and a padding of zero bits. If the message is l− 1 bits or longer, the
resulting hash consists of a (secure) hash of x, followed by a single 1 bit.

It is easy to show that H ′ is collision resistant if H is. It is also easy to see that
H ′ is not preimage resistant for a large proportion of hash outputs, and that a slightly
truncated version is not collision resistant.

2 The VSH Algorithm

We describe the VSH algorithm in its most basic form, essentially as it appears in the
beginning section 3 of [2]. We note that the attacks can be extended to most of the
variants given in the VSH paper, especially the Fast VSH variant in section 3.1 of [2]. 2

Let p1 = 2, p2 = 3, p3 = 5, . . . be the sequence of primes. Let n be a large RSA
composite. Let k, the block length, be the largest integer such that

∏k
i=1 pi < n. Let m

be a be an l-bit message to be hashed, consisting of bits m1,m2, . . . ,ml, and assume
that l < 2k. To compute the hash of m:

1. Let x0 = 1.
2. Let L = dl/ke the number of blocks. Let mi = 0 for l < i ≤ Lk (padding).
3. Let l =

∑k
i=1 li2i−1 with li ∈ {0, 1} be the binary representation of the message

length l and define mLk+i = li for 1 ≤ i ≤ k.
4. For j = 0, 1, . . . , L in succession compute

xj+1 = x2
j

k∏
i=1

p
m(jk+i)
i mod n.

5. Return xL+1.

Selecting a 1024-bit modulus n has been suggested in the original paper, indicating
131-bit block size k.

2.1 Preimage resistance

VSH is multiplicative: Let x, y, and z be three bit strings of equal length, where z
consists only of zero bits and the strings satisfy x ∧ y = z. It is easy to see that

H(z)H(x ∨ y) ≡ H(x)H(y) (mod n).

This multiplicative property is similar, although simpler, than the one used by Cop-
persmith to attack (then) Annex D of X.509 [3].

2 There were many changes to VSH before its final publication, most recently in early March
2006 when message length padding was changed to be performed after the message been
hashed, rather than at the beginning. Such small changes have significant implications on the
development of practical attacks. Remarkably, the “security proof” required no modification.
The attacks discussed in this paper apply only to the published Eurocrypt version of VSH;
other attacks may be devised on other variants.



As a result VSH succumbs to a classical time-memory trade-off attack that applies
to multiplicative and additive hashes. The attack is similar in many aspects to Shanks’
baby-step giant-step algorithm for discrete logarithms [5].

We set the secret message m as (x ∨ y) and rewrite the equation as

H(y) = H(x)−1H(z)H(m) (mod n).

To solve the l-bit preimage m of H(m):

1. Tabulate H(x || 00 · · · 0)−1H(z)H(m) (mod n) for 0 ≤ x < 2l/2.
2. Do table lookups for H(00 · · · 0 || y) for y = 0, 1, 2, . . ., looking for a match.

The algorithm terminates when m = x || y, in other words before y < 2l/2. A
preimage attack on VSH therefore has ≈ 2l/2 complexity rather than ≈ 2l as expected.

Final squarings proposed in section 3 of [2] under subtitle “short message inversion”
do not protect against this attack.

This type of attack is extremely serious if VSH is used to secure passwords, a typical
application for hash functions. Note that the complexity of attack does not depend on
the modulus size n, but on the entropy of the password strings.

Example 1. VSH is being used to secure a 4 character lower case alphabetic password
M , stored with ASCII encoding. For demonstration purposes we choose k = 32 and a
169-bit modulus n:

n = (284 + 3)(285 − 19)
= 748288838313422294120286382894166426220969123119047.

The hash of the secret is

H(m) = 16844120625154617337159062413466716693049866864325.

In this case H(z) = 13; the first iteration yields 1, and the second round 13,
the sixth prime, as the length of the message is 25 = 32 bits. We tabulate
H(x)−1H(z)H(m) (mod n) for 262 = 676 values T [0 . . . 675]:

x: aa.. Binary: 01100001 01100001 00000000 00000000
T[0] = 91345572106882035279752100576530653

x: ab.. Binary: 01100001 01100010 00000000 00000000
T[1] = 116156501606261492576199026944080853

. . .
x: zz.. Binary: 01111010 01111010 00000000 00000000
T[675] = 384284712674090018973838770853950813384926485216514

In the second phase we run through the values of H(y):

H(..aa) = 3904844677556216209933
H(..ab) = 3396095819174949308197
...



A match is found after 83 steps at H(..df) = 30205660456999582781162559493,
which matches with T [18] = H(as..)−1H(z)H(m) (mod n). Hence the secret
password M is “asdf”.

Note that it is not necessary to store the entire value to the table T [i]; appropriate
number of least significant bits usually suffices. When the table is indexed by, say,
T [i] mod 232, search becomes an O(1) operation.

This example illustrates that password cracking time is effectively “square-rooted”
by this attack; l-character passwords offer a level of security expected from l/2-
character passwords.

2.2 One-wayness (of the “Cubing” Variant)

In section 3.4 of the VSH specification, a variant that uses cubing instead of squaring
in its compression function is proposed. Using the Jacobi symbol, the compression
function

xj+1 = x3
j

k∏
i=1

pmi
i mod n,

becomes (xj+1

n

)
=
(xj

n

) k∏
i=1

(pi

n

)mi

.

We define a “binary” version of the Jacobi symbol:

j(c, n) =
1
2

(
1−

( c

n

))
.

We now have a linear equation giving the parity of some message bits:

j(xj+1, n) = j(xj , n) +
k∑

i=1

j(pi, n)mi (mod 2).

Note that the Jacobi symbol can be very efficiently computed and that j(pi, n) is
essentially randomly 0 or 1 for each randomly generated composite n. If the same
message has been hashed with k different moduli n, a system of k linear equations
can be obtained, leading to disclosure of bits by solving the system of equations.

The same attack applies to the standard squaring version as well, but it only leaks
information about the message length. This was not the case for VSH versions 3.57
and before (ePrint revisions of VSH published before March 2006), where information
about the contents of the last message block could be obtained.

One-wayness is implied by the standard hash security requirement of preimage re-
sistance. If one obtains some information about some of the preimage bits easily, one
can find the rest faster in an exhaustive search, as the search space is smaller.



Example 2. Assume that a 64-bit password has been hashed with VSH. For demon-
stration purposes we define the modulus n to be equivalent to the RSA-1024 factoring
challenge number n = 1350..(300 digits)..7563 [4].

The Jacobi symbols for the first small primes modulo n are:( 2
n

)
= −1

( 3
n

)
= −1

( 5
n

)
= −1

( 7
n

)
= 1

(11
n

)
= 1

(13
n

)
= −1 · · ·

Since the length padding (last round) will simply consist of cubing the product of primes
and multiplying that with length indicator p6 = 13, we may write

(H(m)
n

)
=
(13

n

) 64∏
i=1

(pi

n

)mi

.

Using the binary j(c, n) function and knowledge of n, this can be further simplified
into the following parity equation:

j(H(m), n) ≡ 1 + m1 + m2 + m3 + m6 + m7 + m10 + m13 + m14 + m15 +
m16 + m17 + m22 + m24 + m25 + m26 + m27 + m28 + m29 +
m31 + m33 + m36 + m39 + m40 + m43 + m44 + m46 + m49 +
m51 + m52 + m57 + m59 + m61 + m64 (mod 2).

We can therefore speed up dictionary search against the password by a factor close
to two as half of the password candidates can be rejected with simple bit shift, AND
and XOR operations, rather than with computationally expensive modular arithmetic
required to compute the full hash.

Note that if the same secret has been hashed with multiple different moduli n, the
speedup grows almost exponentially; two distinct moduli yield a speedup factor close
to 4 etc.

2.3 Collision Search for Truncated VSH Variants

VSH produces a very long hash (typically 1024 bits). There are no indications that
a truncated VSH hash offers security that is commensurate to the hash length. This
appears to rule out the applicability of VSH in digital signature schemes which produce
signatures shorter than the VSH hash result, such as Elliptic Curve signature schemes.

To illustrate this point, we will describe give an attack on one truncated variant of
VSH.

Partial Collision Attacks. We will first discuss a generic technique for turning a partial
collision attack into a full collision attack.

Assume that there is a fast O(1) mapping f that causes the hash result of an l-
bit hash H to be in some smaller subset of possible outputs: H(f(x)) ∈ S, where
|S| < 2l. Typically f would be chosen in such a way that certain hash result bits are
forced to have the same constant value. In other words, f forces partial collisions. Note



that f itself should not produce too many collisions, i.e. x1 6= x2 usually means that
f(x1) 6= f(x2).

If such an f can be found, and it is fast, the complexity of finding full collisions
becomes ≈

√
|S|. Note that f does not need to be able to force the hash to S on each

iteration, it is sufficient that it works with reasonable probability. The iteration in low-
memory parallel collision search algorithm becomes si+1 = H(f(si)), and generic
parallel collision search algorithms such as those described in [6] can be used.

Attack on VSH Truncated to Least Significant 128 bits. We will instantiate this
attack on a VSH variant that only uses the least-significant 128 bits of the hash func-
tion result. For basic VSH (1024-bit n, k=131) the result of hashing a 128-bit message
m1|m2| · · · |m128 can be simplified to:

x =
(
19
( 128∏

i=1

pmi
i

)2 mod n
)

mod 2128.

The constant 19 = p8 is caused by the length padding in the second (and final)
round.

It is easy to see that modular reduction by n occurs in this case with less than 50%
probability if m is random (or randomised) and its Hamming weight behaves accord-
ingly. This is due to the fact that if only half of the bits in the message are ones, the
product of corresponding small primes will be roughly the same bit size as

√
n. The

square of this will still be less than n with a significant probability and hence there is
no modular reduction by n. Hamming weight of a random bit string is binomially dis-
tributed. In practice the modular reduction happens in this case with roughly P ≈ 0.35
probability. We get the following approximation that is valid with significant probabil-
ity:

x = 19
( 128∏

i=1

pmi
i

)2 mod 2128.

Note that the iteration is independent of the RSA modulus n if there is no reduction.
Precomputation phase: For each of the 241 bit strings r of length 41 we compute

and store r into a lookup table, indexed by the product

( 42∏
i=2

p
ri−1
i

)−1 mod 242.

We will choose the f mapping as follows: Select message bits m43,m44, . . . ,m128

from corresponding bits of si. Compute the partial product
∏128

j=43 p
mj

j mod 242 and
use that to select message bits m2,m3, . . . ,m42 using the lookup table (m1 is always
set to zero).

This will often (P ≈ 0.5) force the least significant 42 bits to a certain con-
stant value, 19, on each iteration. Note that if the table lookup fails, we may select
m2,m3, . . . ,m42 to be some arbitrary deterministic value; one that satisfies si ≡
19 (mod 2l) for some l < 42 would be a good choice.



Hence we have can cause the iteration to run in a significantly smaller subset with
essentially O(1) effort (constant-factor increase), and collisions can be found signifi-
cantly faster.

Example 3. We will start with s1 = 242 + 19, and try to produce a sequence satisfying
si ≡ 19 (mod 242) for a significant portion of i.

The partial product
∏128

i=43 pmi
i mod 242 yields p43 = 191 for s1. We will then

perform a lookup in the precomputed table; it turns out that selecting message bits m1

through m42 as

01110010 01010101 00000000 11100001 11110111 00

will force the product the desired subset, as the product of primes corresponding to
those message bits is

3 · 5 · 7 · 17 · 29 · 37 · 43 · 53 · 97 · 101 · 103 · 131 · 137 · 139 · 149 · 151 · 163 · 167 · 173

= 1164213571911795168635778009100095,

and this multiplied by the partial product satisfies

191 · 1164213571911795168635778009100095 ≡ 1 (mod 242).

Clearly squaring a number that is congruent to 1 mod 242 maintains that property. The
final multiplication by 19 results in that that the second element of the sequence satisfies
the desired property s2 ≡ 19 (mod 242). We have

s2 = 19 (191 · 1164213571911795168635778009100095)2 mod 2128

= 79424F79408D6B27F52A50000000001316

With this sequence we only need to rely on a birthday collision in the upper 128−42 =
86 bits of the sequence. Roughly 243 iterations are required with algorithms of [6] to
achieve this.

Note that with some probability this algorithm will yield false collisions due to
the fact that the inverse of the partial product is not always found in the lookup table.
Modular reduction by n may also cause false collisions. This only results in a constant
factor increase to the complexity of the algorithm, however; we only need to restart with
different starting points until a proper collision is found.

Overall complexity. In essence, the complexity of this attack against VSH truncated
to l bits is:

– Pre-computing the table offline: ≈ 2
l
3 time and space.

– Finding collisions: ≈ 2
l
3 iterations.

– Total cost: roughly ≈ 2
l
3 , rather than ≈ 2

l
2 as expected from a hash function with

good pseudorandomness properties.

We acknowledge that this represents just one way of truncating VSH – using, say,
the most significant bits of the result would be an even worse option. Many other trun-
cated variants can be attacked using a different f function.



2.4 Other features of VSH

The authors of VSH do not explicitly note this, but the hash function result can be
updated after small changes without computing the entire hash again. A “bit flip” in
a message will always cause a predictable change in the message result (it becoming
multiplied mod n by certain power of a small prime or its inverse). This is due to the
highly algebraic nature of the hash.

We note such a property may be useful in some applications where rapid update
of the hash is required, but it is undesirable in many more as it can facilitate adap-
tive attacks against some cryptographic protocols. Similar multiplicative property was
sufficient for the X.509 Annex D hash function to be considered broken [3].

3 Acknowledgments

The author would like to thank Arjen K. Lenstra and other authors of VSH for en-
couragement. The paper wouldn’t exist unless Kenny Paterson would have insisted
that publication of relatively simple results is important for “real world” security engi-
neers. Keith Mitchell, Daniel J. Bernstein and anonymous program committee members
helped to make the paper significantly easier to read.

References

1. M. Bellare, R. Canetti and H. Krawczyk. HMAC: Keyed-Hashing for Message Authentica-
tion. IETF RFC 2104, 1997.

2. S. Contini, A.K. Lenstra and R. Steinfeld. VSH, an efficient and provable collision resistant
hash function. Proc. EUROCRYPT 2006.

3. D. Coppersmith. Analysis of ISO/CCITT Document X.509 Annex D. IBM Research Division,
Yorktown Heights, N.Y., 11 June 1989.

4. RSA Laboratories. RSA-1024 Factoring Challenge Number. Available from
http://www.rsasecurity.com/rsalabs/node.asp?id=2093

5. D. Shanks. Class number, a theory of factorization and genera. Proc. Symp. Pure Math. pp.
415 – 550. AMS, Providence, R.I., 1979.

6. P. van Oorschot and M. Wiener. Parallel collision search with cryptanalytic applications.
Journal of Cryptology, 12 (1999), pp. 1 – 28.


