
Unspecified Journal
Volume 00, Number 0, Pages 000–000
S ????-????(XX)0000-0

FURTHER REFINEMENT OF PAIRING COMPUTATION BASED
ON MILLER’S ALGORITHM

CHAO-LIANG LIU, GWOBOA HORNG, AND TE-YU CHEN

Abstract. In 2006, Blake, Murty and Xu proposed three refinements to

Miller’s algorithm for computing Weil/Tate Pairings. In this paper we ex-
tend their work and propose a generalized algorithm, which integrates their

first two algorithms. Our approach is to pre-organize the binary representation

of the involved integer to the best cases of Blake’s algorithms. Further, our
refinement is more suitable for Solinas numbers than theirs. We analyze our

algorithm and show that our refinement can perform better than the original

algorithms.

1. Introduction

The Weil/Tate pairing is a mapping with nondegenerate and bilinear properties,
which will map a special pair of points on elliptic curves to a certain multiplicative
subgroup of a finite field. In 1993, Menezes, Okamoto and Vanstone [9] found that
the Weil pairing could be applied to reduce the elliptic curves discrete logarithm
problem on supersingular elliptic curves into a discrete logarithm problem of the
multiplicative subgroup of a finite field. Their result shows that supersingular
elliptic curves are unsuitable for many cryptographic schemes.

Since then, The Weil/Tate pairing exactly provide a constructive tool for cryp-
tography. Indeed, many cryptographic applications based on pairings have been
proposed, such as identity-based encryption system [2], digital signature [1, 3, 13],
signcryption [8, 12], key agreement [7, 15], and so on. As a result, the application of
pairings plays an important role in modern cryptography. Therefore, the computa-
tion of pairings is a critical issue for those applications based on pairings. The first
efficient algorithm for computing pairing was proposed by Miller in 1986 [11]. The
main idea of Miller’s algorithm is to use lines to integrate the divisors, which the
algorithm has processed (see section 2, for details). Many researches are directed in
many different aspects in order to enhance the efficiency of the computation [5, 6].

In 2006 Blake, Murty and Xu [4] proposed a brand new concept based on the
conjugate of a line, to reduce the total number of lines in Miller’s algorithm. Though
this concept does not dramatically decrease the cost of points adding, but it is
novel and can be applied to decrease the number of field multiplications. They
proposed three different algorithms for three cases: when there are relatively more

2000 Mathematics Subject Classification. Primary .
Key words and phrases. Algorithm, Elliptic curve, Cryptography, Weil pairing, Tate pairing,

Miller’s algorithm.

This research was supported by NSC94-2213-E-005-028.

c©0000 (copyright holder)

1



2 CHAO-LIANG LIU, GWOBOA HORNG, AND TE-YU CHEN

zero bits (or average cases) of the integer n (see section 2, for details), when there
are relatively more one bits, and when the characteristic of the field is three.

In this paper, we continue their work and suggest a generalized algorithm, which
can reduce more lines than the first two algorithms in average cases. Even in
the extreme cases, our algorithm still performs as well as the best one of Blake’s
algorithms. In our algorithm, we use the same technique as Blake et al., but we
consider the bits globally. We divide the binary representation integer n, which is
a constant in every pairing base cryptosystem, into fragments. In accordance with
these fragments, we design an algorithm to further reduce lines.

The rest of the paper is organized as follows. We briefly describe the mathe-
matical preliminaries of Miller and Blake et al.’s algorithms in section 2. In section
3, we describe our proposed algorithm. Its analysis is given in section 4. Finally,
some concluding remarks are given in section 5.

2. Mathematical preliminaries

2.1. Weil/Tate pairing and Miller’s algorithm. Let q = pk with a prime p,
then Fq is a finite field with q elements and p is the characteristic of Fq. An elliptic
curve E define over Fq, can be described as the set of points (x, y) satisfying the
Weierstrass equation y2 + a1xy + a3y = x3 + a2x

2 + a4x + a6, where ai ∈ Fq. If
K is an extension of Fq, the set of K-rational points of E together with with an
additional point at infinity, denoted as ∞. There exists an abelian group law on
E. Explicit formulas for computing the coordinates of a point R = P + Q from the
coordinates of P and Q are well know[10, 14].

A divisor D is a formal sum with symbols on E and with integer coefficients,
denote as D =

∑
P∈E nP (P ). The set of all divisors, denoted by Div(E), is a

free abelian group generated by E(K). The degree and the sum of a divisor D
are defined as deg(D) =

∑
P∈E nP and sum(D) =

∑
P∈E nP P , respectively. Let

Div0(E) = {D ∈ Div(E)|deg(D) = 0}. Then the sum function is a surjective
homomorphism from Div0(E) to E.

Define the divisor of a nonzero rational function f as div(f) =
∑

P∈EordP (f)(P ),
where ordP (f) is the order of f at P . Then div(f) ∈ Div0(E) and it is called a
principle divisor. It is well known that the set of principle divisors is the kernel of
sum. The quotient group Div0(E)/(principle divisors) is called the Picard group
of E. Moreover, two divisors D1 and D2 are said to be equivalent, denoted as
D1 ∼ D2, iff D1 − D2 is principle, i.e. there exists a nonzero rational function f
such that D1 = D2+div(f). The support of a divisor D is the set of points with
nonzero coefficients, that is, supp(D) = {P ∈ E|nP 6= 0}. If div(f) and D have
disjoint support, then we can evaluate f(D) =

∏
P∈E f(P )nP .

Let n be an integer relatively prime to q. Points P,Q ∈ E[n], where E[n] is
the n-torsion subgroup of E(K). Then there exist divisors DP and DQ such that
DP ∼ (P ) − (∞) and DQ ∼ (Q) − (∞). Further, there exist functions fP and
fQ such that div(fP ) = nDP and div(fQ) = nDQ. If DP and DQ have disjoint
supports, then we can define the Weil pairing as

en(P,Q) =
fP (DQ)
fQ(DP )

.

And the Tate pairing of order n is the map

τn : E(Fq)[n]× E(Fqk)/nE(Fqk)→ Fqk



FURTHER REFINEMENT OF PAIRING COMPUTATION BASED ON MILLER’S ALGORITHM3

defined as
τn(P,Q) = fP (DQ)(q

k−1)/n.

Hence, computing the Weil/Tate pairing can be reduced to the evaluation of
fP (S), for each point S in the support of DQ. In 1986, an unpublished manuscript
by Miller [11] showed how to do this efficiently. The main idea of Miller’s algorithm
is using lines to integrate the divisors which has been processed. We briefly describe
it as follows:

Let DP = (P +R)− (R) with an auxiliary point R, and define Dj
P = j(P +R)−

j(R)− (jP ) + (∞) then there is a rational function fj such that div(fj) = Dj
P , for

each integer j, in particular, fn = fP . Let LS,T be the line through points S and
T , if T /∈ {S,−S} then LS,T is a chord, else if T = S then LS,S is a tangent, else
if T = −S then LS,−S a vertical line through points S and −S. We will denote
LS,−S as LS . Then we have

div(LjP,kP ) = (jP ) + (kP ) + (−(j + k)P )− 3(∞) and
div(L(j+k)P ) = ((j + k)P ) + (−(j + k)P )− 2(∞). Hence
div(fj+k) = div(fj) + div(fk) + div(LjP,kP )− div(L(j+k)P ), and

fj+k = fjfk
LjP,kP

L(j+k)P
.

We can compute fn(S) recursively with initial values1f0 = 1 and f1 = LP+R/LP,R.
We describe the following algorithm, which is similar to the algorithm proposed in
[4, 5]. Note that we can perform Miller’s algorithm to compute Tate pairing by
changing the initial value f1 = 1, see [5] for details.

Algorithm 1 (Miller’s algorithm).
Input: Elliptic curve E, integer n =

∑t
i=0 bi2i with bi ∈ {0, 1} and bt = 1, and

points P, S ∈ E where P has order n.
Output: f = fn(S).

f ← f1; Z ← P ;
for j ← t− 1 down to 0 do

f ← f2 LZ,Z(S)
L2Z(S) ; Z ← 2Z;

if bj = 1 then
f ← f1f

LZ,P (S)
LZ+P (S) ; Z ← Z + P ;

return f

2.2. Blake’s algorithms. As we have seen above, the double-and-add method
is used in Miller’s algorithm. Two lines or four lines must be used if the bit is
zero, or one respectively, in the binary expansion of n. From the analysis in [4],
we know that the more lines we use, the more field multiplications are required
in Miller’s algorithm. For this reason, Blake et al. propose three algorithms to
reduce the number of lines. The first algorithm, referred to as BMX-1, is suitable
for every case. The second algorithm, referred to as BMX-2, can work well if the
Hamming weight of n (the number of one bits in the binary expansion of n, denote
as H(n)) is high. The third algorithm is proposed for field of characteristic 3. We
are interested in the first two algorithms since it is possible to combine them to

1There is a typo in [4] where f1 = hP,R/hP+R should be f1 = hP+R/hP,R.



4 CHAO-LIANG LIU, GWOBOA HORNG, AND TE-YU CHEN

further minimize the number of lines. Therefore, we will only describe Blake et al.’s
basic idea and their first two algorithms in this section2. Their algorithms are based
on the following two lemmas proved in [4]:

Lemma 2.1. If the line L(x, y) = 0 intersects with E at points P = (a, b), Q =
(c, d) and −(P + Q) = (α, β), then L(x, y)L(x, y) = −(x− a)(x− c)(x− α), where
L(x, y) is the conjugate of L with L(R) = L(−R) for R ∈ E.

Lemma 2.2. Let Q ∈ E[n] and S 6= Q, 2Q, . . . , nQ, then

(1)
LQ,Q(S)

L2
Q(S)L2Q(S)

= − 1
LQ,Q(−S)

(2)

∀k ∈ Z⇒
L(k+1)Q,kQ(S)

L(k+1)Q(S)L(2k+1)Q(S)
= − LkQ(S)

L(k+1)Q,kQ(−S)
(3)

LQ,Q(S)L2Q,Q(S)
L2Q(S)L3Q(S)

= −LQ,Q(S)LQ(S)
L2Q,Q(−S)

.

Notice that only the vertical lines can be reduced by lemma 2. Thus, all of
the vertical lines can be eliminated in the best cases. In other word, one can only
replace the tangents and chords by their conjugate to the denominator. We call
the tangents and chords as necessary components of Miller’s algorithm. There are
totally 50% of lines are necessary, these components will appear in denominator or
numerator depend on whether Lemma 2 is applied or not. Two of the applications
of Lemma 2 are algorithms BMX-1 and BMX-2 which are given with initial value
f1 = LP+R/LP,R or f1 = 1.

Algorithm 2 (BMX-1).
Input: Elliptic curve E, integer n =

∑r
i=0 qi4i with qi ∈ {0, 1, 2, 3} and qr 6= 0,

and points P, S ∈ E where P has order n.
Output: f = fn(S).

f ← f1; Z ← P ;
if qr = 2 then

f ← f2 LP,P (S)
L2P (S) ; Z ← 2P ;

if qr = 3 then

f ← f3 L2
P,P (S)LP (S)

L2P,P (−S) ; Z ← 3P ;
for j ← r − 1 down to 0 do

if qj = 0 then

f ← f4 L2
Z,Z(S)

L2Z,2Z(−S) ; Z ← 4Z;
if qj = 1 then

f ← f1f
4 L2

Z,Z(S)L4Z,P (S)

L2Z,2Z(−S)L4Z+P (S) ; Z ← 4Z + P ;
if qj = 2 then

f ← f2
1 f4 L2

Z,Z(S)L2
2Z,P (S)

L2
2Z(S)L2Z+P,2Z+P (−S)

; Z ← 4Z + 2P ;
if qj = 3 then

2There is another typo in the case ”bi−1 = 0, bi−2 = 1”, at the end of page 141 in [4].



FURTHER REFINEMENT OF PAIRING COMPUTATION BASED ON MILLER’S ALGORITHM5

f ← f3
1 f4 L2

Z,Z(S)L2
2Z,P (S)L4Z+2P,P (S)

L2
2Z(S)L2Z+P,2Z+P (−S)L4Z+3P (S)

; Z ← 4Z + 3P ;
return f

BMX-1 reduces the lines by processing a pair of consecutive bits together. The
best case happened when the pair of bits is ”00”, which can reduce 50% of lines.
The worst case happened when the pair of bits is ”11”, which can only reduce 25%
of lines. Therefore, they suggest using this algorithm for lower H(n) or average
cases. However, we observe that BMX-1 is more suitable for cases with consecutive
zeros. Similarly, BMX-2 described in the following, is more suitable for cases with
consecutive ones.

Algorithm 3 (BMX-2).
Input: Elliptic curve E, integer n =

∑t
i=0 bi2i with bi ∈ {0, 1} and bt = 1, and

points P, S ∈ E where P has order n.
Output: f = fn(S).

if bt−1 = 0 then
f ← f2

1 LP,P (S); Z ← 2P ;
else

f ← f3
1

LP,P (S)L2P,P (S)
L2P (S) ; Z ← 3P ;

for j ← t− 2 down to 0 do
if bj = 0 then

f ← f2 L2Z(S)
LZ,Z(−S) ; Z ← 2Z;

else
f ← f1f

2 L2Z,P (S)
LZ,Z(−S) ; Z ← 2Z + P ;

return f

BMX-2 always delays the computation of the value of L2Z(S)(or LZ+P (S), de-
pending on the bit bj) in Miller’s algorithm at each iteration of the for loop. It is
easy to see that BMX-2 can reduce 50% of lines if the bit is one. For this propose,
every vertical line of zero bits must be reused. Unfortunately, the line reused at
the cost of no line can be reduced when the bit is zero. This is why they suggest
performing BMX-2 for higher H(n).

3. Refinement of BMX algorithms

In this section, we propose a refinement to the BMX algorithms. We segment n
into different bit sequences. For each sequence, we carefully design the algorithm to
reduce more lines. From Lemma 2(a), there are two different kinds of bit sequences
which can reduce all of the vertical lines, and they are the best two cases presented
in [4]. One is a sequence of even number of zero bits, denoted by 02r, and the other
is a sequence of ones between two zeros, denoted 01m0. In the following, we give
two simple examples to explain why these two cases can reduce 50% of lines (all of
the vertical lines can be reduced). Suppose the Miller’s algorithm has performed
up to a point where f = λ and Z = Q before processing these two cases.

The first example is the case of qj = 0 in BMX-1. Miller’s algorithm performs
the following two steps.



6 CHAO-LIANG LIU, GWOBOA HORNG, AND TE-YU CHEN

(a)

f ← f2 LZ,Z(S)
L2Z(S)

;Z ← 2Z; and

(b)

f ← f2 LZ,Z(S)
L2Z(S)

;Z ← 2Z; .

Putting together, we have

f ← (λ2 LQ,Q(S)
L2Q(S)

)2
L2Q,2Q(S)
L4Q(S)

= λ4
L2

Q,Q(S)
L2

2Q(S)
L2Q,2Q(S)
L4Q(S)

= λ4
L2

Q,Q(S)
L2Q,2Q(−S)

.

To simplify the notations, we use ”◦” to denote a line, which belongs to a zero bit,
use ”•” to denote a line of a one bit, and use ”∗” to denote a conjugate of a tangent
or chord by Lemma 2. Such a representation of lines is called the corresponding
dot notation of the lines. Note that, ”◦” or ”•” which appear in denominator
is a vertical line. It can be reduced by some suitable conjugate lines. And the
others are necessary components, which are tangents or chords in numerator or the
conjugate of them. Omitting the exponents and λ will not affect the reductions
because Miller’s algorithm always performs squaring operations in each step. We
can denote the deduction of ”00” in terms of its corresponding dot notation as
follows.

◦
◦
◦
◦

=
◦
∗
,

and the reduction ratio of the lines of ”00” is (4− 2)/4 = 50%.

The second example is the case of processing ”0110”.
Miller’s algorithm performs:

(a)

f ← f2 LZ,Z(S)
L2Z(S)

;Z ← 2Z;

(b)

f ← f2 LZ,Z(S)
L2Z(S)

;Z ← 2Z; and f ← f1f
LZ,P (S)
LZ+P (S)

;Z ← Z + P ;

(c)

f ← f2 LZ,Z(S)
L2Z(S)

;Z ← 2Z; and f ← f1f
LZ,P (S)
LZ+P (S)

;Z ← Z + P ;

(d)

f ← f2 LZ,Z(S)
L2Z(S)

;Z ← 2Z; .

And we have
(a)

f ← λ2 LQ,Q(S)
L2Q(S)

,



FURTHER REFINEMENT OF PAIRING COMPUTATION BASED ON MILLER’S ALGORITHM7

(b)

f ← λ4
L2

Q,Q(S)
L2

2Q(S)
L2Q,2Q(S)
L4Q(S)

and f ← f1λ
4
L2

Q,Q(S)
L2

2Q(S)
L2Q,2Q(S)L4Q,P (S)
L4Q(S)L4Q+P (S)

,

(c)

f ← f2
1 λ8

L4
Q,Q(S)

L4
2Q(S)

L2
2Q,2Q(S)L2

4Q,P (S)
L2

4Q(S)L2
4Q+P (S)

L4Q+P,4Q+P (S)
L8Q+2P (S)

and

f ← f3
1 λ8

L4
Q,Q(S)

L4
2Q(S)

L2
2Q,2Q(S)L2

4Q,P (S)
L2

4Q(S)L2
4Q+P (S)

L4Q+P,4Q+P (S)L8Q+2P,P (S)
L8Q+2P (S)L8Q+3P (S)

,

(d)

f ← f6
1 λ16

L8
Q,Q(S)

L8
2Q(S)

L4
2Q,2Q(S)L4

4Q,P (S)
L4

4Q(S)L4
4Q+P (S)

L2
4Q+P,4Q+P (S)L2

8Q+2P,P (S)
L2

8Q+2P (S)L2
8Q+3P (S)

L8Q+3P,8Q+3P (S)
L16Q+6P (S)

.

Reducing f by Lemma 2(a), we have:

f ← f6
1 λ16L8

Q,Q(S)
L4

4Q,P (S)
L4

2Q,2Q(−S)
L2

8Q+2P,P (S)
L2

4Q+P,4Q+P (−S)
1

L8Q+3P,8Q+3P (−S)
.

We can denote the corresponding dot notation of the reduction of ”0110” as
follows

◦
◦
••
••
••
••
◦
◦

= ◦•
∗
•
∗

1
∗
,

and the reduction ratio of the lines is (12− 6)/(12) = 50%.

Inductively, the reduction of 02r = (00)r is

(
◦
◦
◦
◦
)r = (

◦
∗
)r,

with reduction ratio of the lines is 2r/4r = 50%, and the reduction of the other
case ”01m0” is

◦
◦
••
••
••
••

. . .
••
••︸ ︷︷ ︸

m

◦
◦

= ◦ •
∗
•
∗

. . .
•
∗︸ ︷︷ ︸

m

1
∗
,

with the reduction ratio (2m + 2)/(4m + 4) = 50%. As above, the two lines of
bit zero can be reduced only with the lines of the previous or the next bit. But,
the four lines of one bit can be reduced with both of the lines of the previous and
next bit, if available. That is why BMX-2 can ”cascading-cut” the lines of one bit
by coercing the last line at denominator to be shifted to the next step, but the
reduction ratio of zero bits is always 0%. To summarize, there are at most 50% of
lines, which can be reduced in Miller’s algorithm by the concept of ”conjugate”.

In order to further reducing the number of lines in BMX-1 and BMX-2, we
propose an algorithm [see Appendix] to segment n from right to left into various
patterns. It tries to find the longest chain of bit 1s and distribute the bit 0s carefully.
There are four cases in this algorithm when scanning the binary expansion of n.
There are described as follows.

(1) If the current two bits are ”00” then find the first 1 bit, bk, from right to
left. The algorithm will collect all of the zero bits but the leftmost zero into
a block. It produces a block of ”0m”. The current two bits will become
”10”.



8 CHAO-LIANG LIU, GWOBOA HORNG, AND TE-YU CHEN

(2) If the current two bits are ”10” then the algorithm will find the first 0 bit
from right to left. It will collect all of them and produce a block of ”01m0”.
Finally, the algorithm will move the pointer to the next two bits.

(3) If the current two bits are ”01” then the algorithm will produce a block of
”(01)m” and move the pointer to the next two bits.

(4) If the current two bits are ”11” then the algorithm will find the first 0 bit
from right to left. It will collect all of them to produce a block as ”01w”
and move the pointer to the next two bits.

In case 2, if no zero bit can be found then it will produce a bloke of ”1m0”, and in
case 4, if no zero bit can be found then it will produce a block of ”1m”. Therefore,
we have six kinds of patterns l0 = 0m, l1 = 1m, l2 = (01)m, l3 = 01w, l4 = 1m0 and
l5 = 01m0, where m ≥ 1 and w ≥ 2. There are certain restrictions among the
patterns, we state them as basic properties.

(1) 1m and 1m0 can only appear in the leftmost block. Every pattern can follow
1m0, but only (01)m, 01w and 01m0 can follow 1m.

(2) If i ≥ 1 and Bi ∈ {0m, (01)m, 01w} then Bi−1 ∈ {(01)m, 01w, 01m0}. But
(01)m can never follow (01)m.

(3) (01)m, 01w and 01m0 can follow any pattern.

The following is a simple example of the Segmentation algorithm.
Let n = (1111100111000101010111)2. Then the output of Segmentation algorithm
is ”{(l4, 4), (l5, 3), (l0, 1), (l2, 3), (l3, 3)}”.

A bit pattern is said to be ”perfect” if we can reduce 50% of lines of the corre-
sponding lines in Miller’s algorithm. It is said to be ”standard” if we can reduce
more than 25% of lines, in the other words, 50% of vertical lines are reduced. If we
can not reduce any lines of a bit, then the bit is said to be ”isolate”. Hence 01m0
and 02r are two perfect patterns, both of 02r−1 and 11 always have an isolate bit,
and the others are standard.

Before describing the algorithm we illustrate the reduction rule and compute the
reduction ratio for those imperfect patterns as follows.Note that, the last vertical
line in Miller’s algorithm is LnP = 1, therefore, we do not have to count it.

(1)

l0 = 02r−1 : (
◦
◦
◦
◦
) . . . (

◦
◦
◦
◦
)︸ ︷︷ ︸

r−1

◦
◦

=
◦
∗
◦
∗

. . .
◦
∗︸ ︷︷ ︸

r−1

◦
◦
, we need 2r lines.

However, if it appears in the rightmost block then we need 2r − 1 lines.
Note that, the last zero bit is an isolate bit.

(2)

l1 = 1m :
••
••
••
••

. . .
••
••︸ ︷︷ ︸

m

=
••
•
•
∗

. . .
•
∗︸ ︷︷ ︸

m−2

•
∗•

, we need 2m + 2 lines.

However, if the Segmentation algorithm produces of only one block ”1m”
then we need only 2m + 1 lines. If m = 1 then there is an isolated bit and
the corresponding dot notation is ••

•• .



FURTHER REFINEMENT OF PAIRING COMPUTATION BASED ON MILLER’S ALGORITHM9

(3)

l2 = (01)m : (
◦
◦
••
••

) . . . (
◦
◦
••
••

)︸ ︷︷ ︸
m

= (
◦•
∗•

) . . . (
◦•
∗•

)︸ ︷︷ ︸
m

, we need 4m lines.

However, if it appears in the rightmost block then we need 4m − 1 lines.
Note that it is similar to the cases qr = 1 or qr = 2 in BMX-1.

(4)

l3 = 01w :
◦
◦
••
••
••
••

. . .
••
••︸ ︷︷ ︸

w

= ◦ •
∗

. . .
•
∗︸ ︷︷ ︸

w−1

•
∗•

, we need 2w + 2 lines.

However, if it appears in the rightmost block then we need 2w + 1 lines.

(5)

l4 = 1m0 :
••
••
••
••

. . .
••
••︸ ︷︷ ︸

m

◦
◦

=
••
•
•
∗

. . .
•
∗︸ ︷︷ ︸

m−2

•
∗∗

, we need 2m + 2 lines.

As we have seen above, cases (2) and (5) always appear in the leftmost part of
n, as a result, there is a vertical line which cannot be reduced in the leftmost bit in
Miller’s algorithm. All of the cases from (1) to (4) have a vertical line at the final
bit. There are m vertical lines in total which cannot be reduced in case (3). This
is the worst case. Fortunately, in practically interesting cases, such as, when n is
Solinas number of the form 2a ± 2b ± 1[4, 11], the cases (01)m are rare. Therefore,
our refinement is more suitable for Solinas numbers than BMX algorithms. The
following algorithm is designed based on these rules to minimize the number of lines
in Miller’s algorithm. As usual, the initial value is f1 = LP+R

LP,R
or 1.

Algorithm 4 (Refinement of BMX algorithm).
Input: Elliptic curve E, integer n = {Bt, Bt−1, . . . , B1, B0} where
Bj ∈ {(l0,m0), (l1,m1), (l2,m2)(l3, w), (l4,m4), (l5,m5)} and mi, w ∈ N, w ≥ 2 and
points P, S ∈ E where P has order n.
Output: f = fn(S).

f ← f1; Z ← P ;
for j ← t down to 0 do

if Bj = (l0,m) then B case 1.
if m is even then

m← m/2;
for k ← 1 to m do

f ← f4 L2
Z,Z(S)

L2Z,2Z(−S) ; Z ← 4Z;
else

m← (m− 1)/2;
for k ← 1 to m do

f ← f4 L2
Z,Z(S)

L2Z,2Z(−S) ; Z ← 4Z;

f ← f2 LZ,Z(S)
L2Z(S) ; Z ← 2Z;

if Bj = (l1,m) then B case 2.



10 CHAO-LIANG LIU, GWOBOA HORNG, AND TE-YU CHEN

if m = 1 then
f ← f3

1
LP,P (S)L2P,P (S)

L2P (S)L3P (S) ; Z ← 3P ;
else if m = 2 then

f ← f7
1

L2
P,P (S)L2

2P,P (S)L6P,P (S)

L2
2P (S)L3P,3P (−S)L7P (S)

; Z ← 7P ;
else

f ← f3
1

LP,P (S)L2P,P (S)
L2P (S) ; Z ← 3P ;

for k ← 1 to m− 2 do
f ← f1f

2 L2Z,P (S)
LZ,Z(−S) ; Z ← 2Z + P ;

f ← f1f
2 L2Z,P (S)

LZ,Z(−S)L2Z+P (S) ; Z ← 2Z + P ;

if Bj = (l2,m) then B case 3.
for k ← 1 to m do

f ← f1f
4 L2

Z,Z(S)L4Z,P (S)

L2Z,2Z(−S)L4Z+P (S) ; Z ← 4Z + P ;

if Bj = (l3, w) then B case 4.
f ← f2LZ,Z(S); Z ← 2Z;
for k ← 1 to w − 1 do

f ← f1f
2 L2Z,P (S)

LZ,Z(−S) ; Z ← 2Z + P ;

f ← f1f
2 L2Z,P (S)

LZ,Z(−S)L2Z+P (S) ; Z ← 2Z + P ;

if Bj = (l4,m) then B case 5.
if m = 1 then

f ← f6
1

L2
P,P (S)L2

2P,P (S)

L2
2P (S)L3P,3P (−S)

; Z ← 6P ;
else

f ← f3
1

LP,P (S)L2P,P (S)
L2P (S) ; Z ← 3P ;

for k ← 1 to m− 1 do
f ← f1f

2 L2Z,P (S)
LZ,Z(−S) ; Z ← 2Z + P ;

f ← f2 1
LZ,Z(−S) ; Z ← 2Z;

if Bj = (l5,m) then B case 6.
f ← f2LZ,Z(S); Z ← 2Z;
while m 6= 1 do

f ← f1f
2 L2Z,P (S)

LZ,Z(−S) ; Z ← 2Z + P ; m← m− 1;

f ← f2
1 f4 L2

2Z,P (S)

L2
Z,Z(S)L2Z+P,2Z+P (−S)

; Z ← 4Z + 2P ;

return f

4. Analysis

We denote NAlg(n) to be the number of lines used by the algorithm Alg with
input integer n. For example, NRef (n) is the number of lines used in our refinement.
We will show NRef (n) ≤ NBMX−1(n) in section 4.1 and NRef (n) ≤ NBMX−2(n)
in section 4.2. That is, our algorithm can reduce more lines than both of the BMX
algorithms. To simplify the analysis, we count the number of lines based on the



FURTHER REFINEMENT OF PAIRING COMPUTATION BASED ON MILLER’S ALGORITHM11

corresponding dot notations introduced in section 3. Suppose n is a k + 1 bits
integer, that is n =

∑k
i=0 bi2i with bk 6= 0, and we can segment n into t + 1 blocks,

denoted as {Bt, Bt−1, . . . , B0} where Bi ∈ {(01)m, 01w, 01m0, 0m, 1m0, 1m}, with
t ≥ 0,m ≥ 1 and w ≥ 2. Then NRef (n) =

∑t
i=0 NRef (Bi) and NBMX−2(n) =∑t

i=0 NBMX−2(Bi).

4.1. Comparison of BMX-1 and the Refinement. There are four cases per-
formed in BMX-1, namely qj = 0, qj = 1, qj = 2 and qj = 3. We will show
that our refinement requires no more lines than BMX-1 in each case. Hence
NRef (n) ≤ NBMX−1(n).

(1) The case qj = (3)4 = (11)2 is obvious. There are six lines needed in BMX-1.
In our refinement, the best location of (11)2 is when it is part of 01m0, 1m,
1m0 and 01w, in these cases only four lines are needed. And the worst case
is when (11)2 located in the first block, which needs six lines. Note that
our refinement and Miller’s algorithm always neglect the leftmost bit, but
BMX-1 must consider this bit. Therefore, BMX-1 needs 6 lines in this case.

(2) Four lines are required in the case qj = (2)4 = (10)2 when we perform
BMX-1. The zero bit in (10)2 can never be an isolate bit in our algorithm,
and it will be reduced with the previous or the next bit, so that four lines
are needed in our algorithm.

(3) Similarly, four lines are required in the case qj = (1)4 = (01)2 when we
perform BMX-1. In our algorithm, it is part of the pattern (01)m. We do
it better when (01)2 interlaces with (10)2. For example, when (01)2 is part
of the pattern (0110)2. In BMX-1, (0110)2 will be reduced as

◦
◦
••
••
••
••
◦
◦

=
◦•
∗•
••
•∗

,

whereas it is reduced as
◦•
∗
•
∗∗

in our refinement.

(4) The case qj = (0)4 = (00)2 is the most complicated one. We need to show
that the isolate zero bits do not affect the total number of lines. By the way
the bit sequence is divided into patterns, the isolate zero bits will appear
in the block (02r−1)2 between (. . . 10)2 and (01 . . .)2, by the properties of
the patterns we have described in session 3, except that it is in the front or
tail. Because there are odd number of zeros in (02r−1)2. If we encode the
binary notation [. . . 10)(02r−1)(01 . . .]2 in tetral, then there are two possi-
ble cases to deal with the zero chain. One is to aggregate the leftmost zero
bit to another zero bit which in the previous block, the other is to aggre-
gate the rightmost zero bit to another zero bit which in the next block. In
both cases, there are even number of zero bits remained. As we know, all
the vertical lines of the even number zero bits can be reduced by BMX-
1 and our algorithm. Therefore, we can simplify [. . . 10)(02r−1)(01 . . .]2 to
[. . . 10)(0)(01 . . .]2. And it is easy to see that, we can do better than BMX-1
in the case of [. . . 110)(0)(011 . . .]2. Therefore, we consider the two sub-cases



12 CHAO-LIANG LIU, GWOBOA HORNG, AND TE-YU CHEN

when dividing the sequence [. . . 010)(0)(010 . . .]2.

(a)

[. . . 10(0)010 . . .]2 = [. . . 202 . . .]4 ⇒ . . . (
••
••
◦
◦
)(
◦
◦
◦
◦
)(
••
••
◦
◦
) . . .

BMX-1 reduces it to ” . . . (
••
•∗

)(
◦
∗
)(
••
•∗

) . . . ”, and the number of

lines for the corresponding bits is ten.
The dot notation for the corresponding bits of our refinement is

” . . .
•
∗∗

)(
◦
◦
)(◦ •
∗∗

) . . . , ” which has only nine lines.

Note that, if the location of the first one bit is k− 1, then we need ten
lines, too.

(b)

(. . . 010(0)01 . . .)2 = (. . . 101 . . .)4 = . . . (
◦
◦
••
••

)(
◦
◦
◦
◦
)(
◦
◦
••
••

) . . .

The dot notation for the corresponding bits of BMX-1 is

” . . . (
◦•
∗•

)(
◦
∗
)(
◦•
∗•

) . . . ”,

and the number of lines of the corresponding bits is ten.

The dot notation for the corresponding bits of our refinement is

” . . . (
◦•
∗∗

)(
◦
◦
)(◦•
∗

. . . ” or ” . . . (
◦•
∗∗

)(
◦
◦
)(
◦•
∗•

) . . . ”.

Therefore, we need nine lines in the general cases and ten lines in the
worst cases. Note that if the last one bit is the right most bit then the
number of lines required in our refinement and BMX-1 is nine.

Since our refinement requires no more lines in each case, we have NRef (n) ≤
NBMX−1(n).

4.2. Comparison of BMX-2 and the Refinement. Before the comparison, we
describe the requirement of the number of lines for each bit of n in BMX-2. It is
easy to see that, every bit, bi, needs two lines in the for loop. Before the iteration,
BMX-2 needs only one line if the first bit, bk−1, is zero, otherwise it needs three
lines. And if the last bit, b0, is zero, it needs one line. Therefore, we can compute
the total number of lines of a sequence of bits. Based on the number of lines of our
refinement by the corresponding dot notations in section 3, we summarize them in
the following table.

Table 1. NRef (Bi) and NBMX−2(Bi)
Bi NBMX−2(Bi) NBMX−2(Bt) NRef (Bi) NRef (B0)

(01)m 4m 4m− 1 4m 4m− 1
01w 2w + 2 2w + 1 2w + 2 2w + 1
01m0 2m + 4 2m + 3 2m + 2 2m + 2
0m 2m 2m− 1 dm/2e × 2 m
1m0 — 2m + 2 2m + 3 2m + 2
1m — 2m + 1 2m + 2 2m + 1



FURTHER REFINEMENT OF PAIRING COMPUTATION BASED ON MILLER’S ALGORITHM13

From those underlined items in Table 1, we have NRef (Bt) = NBMX−2(Bt) +
1, when Bt ∈ {01w, 0, 1m0, 1m} and 1 ≤ t. For the remaining blocks, we have
NRef (Bi) ≤ NBMX−2(Bi) for 0 ≤ i < t. Therefore,

t−1∑
i=0

NRef (Bi) ≤
t−1∑
i=0

NBMX−2(Bi).

If Bt /∈ {01w, 0, 1m0, 1m} or t = 0 then we have

NRef (n) =
t∑

i=0

NRef (Bi) ≤
t∑

i=0

NBMX−2(Bi) = NBMX−2(n).

Therefore, to show NRef (n) ≤ NBMX−2(n) with integer n segmented into t + 1
blocks {Bt, Bt−1, . . . , B0} where Bt ∈ {01w, 0, 1m0, 1m} and 1 ≤ t, we only need to
prove

∑t−1
i=0 NRef (Bi) <

∑t−1
i=0 NBMX−2(Bi) since NRef (Bt) = NBMX−2(Bt) + 1.

First we show the following two properties.

(1) If Bk = 01m0 for some k and 0 ≤ k ≤ t then NRef (n) ≤ NBMX−2(n).

(2) If Bk ∈ {(01)m, 01w} for some k and 0 ≤ k < t then
∑t−1

i=0 NRef (Bi) <∑t−1
i=0 NBMX−2(Bi).

Property (1) can be verified by a straightforward calculation. We prove the case for
Bk = (01)m in (2) as follows. The other case, Bk = 01w, can be proved similarly.

As we have seen in Table 1, if 1 ≤ t and B0 ∈ {(01)m, 01w, 01m0, 0m} then
we have NRef (B0) < NBMX−2(B0). Therefore, suppose j is the minimal index
such that Bj = (01)m. If j = 0 then we are done. Otherwise, by the prop-
erties stated in section 3, Bj−1 ∈ {01w, 01m0}. If j − 1 = 0 or Bj−1 = 01m0
then we have

∑t−1
i=0 NRef (Bi) <

∑t−1
i=0 NBMX−2(Bi). Otherwise, Bj−1 = 01w,

and Bj−2 ∈ {01w, (01)m, 01m0}. Since j is the minimal index for Bj = (01)m,
Bj−2 ∈ {01w, 01m0}. Therefore, we are left with only two cases B0 = 01w and
Bl = 01m0 for some l and 0 ≤ l ≤ j − 2. Both of them we have

∑t−1
i=0 NRef (Bi) <∑t−1

i=0 NBMX−2(Bi), if there exists Bk = (01)m for some k and 0 ≤ k < t.
Now we are ready to show NRef (n) ≤ NBMX−2(n) when n is segmented into

t + 1 blocks {Bt, Bt−1, . . . , B0} with 1 ≤ t and Bt ∈ {01w, 0, 1m0, 1m}. As we
have known, if Bt ∈ {01w, 0, 1m} then Bt−1 ∈ {(01)m, 01w, 01m0}. From properties
(1) and (2), we have NRef (n) ≤ NBMX−2(n). And if Bt = (01)m then Bt−1 ∈
{01w, 01m0}. Based on the same argument we have NRef (n) ≤ NBMX−2(n).

4.3. Examples. We give three examples to show the strength of our refinement.
The first two examples come from [4]. BMX-1 (BMX-2) has a good result in the
first example (respectively, the second example). We will use the best of BMX-1
and BMX-2 to compare with our refinement. The third example shows that our
refinement is better than both of BMX-1 and BMX-2. We shorten the symbols
LaP,bP , LaP as La,b, La respectively, and denote LaP,bP (−S) as La,b. In the fol-
lowing tables, ”o” stands for Miller’s algorithm, ”i” stands for BMX-1, ”ii” stands
for BMX-2, ”iii” stands for our refinement and ”NL” stands for the number of lines
required in the corresponding algorithm.



14 CHAO-LIANG LIU, GWOBOA HORNG, AND TE-YU CHEN

Example 4.1. Compute f257:

n: 257 = (100000001)2 = (10001)4 ⇒ {(l0, 6), (l2, 1)} NL

o: f257
1

L128
1,1

L128
2

L64
2,2

L64
4

L32
4,4

L32
8

L16
8,8

L16
16

L8
16,16

L8
32

L4
32,32

L4
64

L2
64,64

L2
128

L128,128
L256

L256,1
L257

17

i: f257
1

L128
1,1

L
64
2,2

L32
4,4

L
16
8,8

L8
16,16

L
4
32,32

L2
64,64

L128,128

L256,1
L257

9

iii: f257
1

L128
1,1

L
64
2,2

L32
4,4

L
16
8,8

L8
16,16

L
4
32,32

L2
64,64

L128,128

L256,1
L257

9

Example 4.2. Compute f191:
n: 191 = (10111111)2 ⇒ {(l3, 6)} NL

o: f191
1

L64
1,1

L64
2

L32
2,2

L32
4

L32
4,1

L32
5

L16
5,5

L16
10

L16
10,1

L16
11

L8
11,11

L8
22

L8
22,1

L8
23

L4
23,23

L4
46

L4
46,1

L4
47

L2
47,47

L2
94

L2
94,1

L2
95

L95,95
L190

L190,1
L191

25

ii: f191
1 L64

1,1
L32

4,1

L
32
2,2

L16
10,1

L
16
5,5

L8
22,1

L
8
11,11

L4
46,1

L
4
23,23

L2
94,1

L
2
47,47

L190,1

L95,95
13

iii: f191
1 L64

1,1
L32

4,1

L
32
2,2

L16
10,1

L
16
5,5

L8
22,1

L
8
11,11

L4
46,1

L
4
23,23

L2
94,1

L
2
47,47

L190,1

L95,95L191
13

Example 4.3. Compute f1567:
n: 1567 = (11000011111)2 = (120133)4 ⇒ {(l3, 1), (l0, 2)(l3, 5)} NL

o: f1567
1

L512
1,1

L512
2

L512
2,1

L512
3

L256
3,3

L256
6

L128
6,6

L128
12

L64
12,12

L64
24

L32
24,24

L32
48

L16
48,48

L16
96

L16
96,1

L16
97

L8
97,97

L8
194

L8
194,1

L8
195

L4
195,195

L4
390

L4
390,1

L4
391

L2
391,391

L2
782

L2
782,1

L2
783

L783,783
L1566

L1566,1
L1567

31

i: f1567
1

L512
1,1

L512
2

L512
2,1

L
256
3,3

L128
6,6

L
64
12,12

L32
24,24

L
16
48,48

L16
96,1

L16
97

L8
97,97

L8
194

L8
194,1

L
4
195,195

L4
390,1

L4
391

L2
391,391

L2
782

L2
782,1

L783,783

L1566,1
L1567

21

ii: f1567
1

L512
1,1 L512

2,1

L512
2

L256
6

L
256
3,3

L128
12

L
128
6,6

L64
24

L
64
12,12

L32
48

L
32
24,24

L16
96,1

L
16
48,48

L8
194,1

L
8
97,97

L4
390,1

L
4
195,195

L2
782,1

L
2
391,391

L1566,1

L783,783
21

iii: f1567
1

L512
1,1

L512
2

L512
2,1

L
256
3,3

L128
6,6

L
64
12,12

L32
24,24

L16
96,1

L
16
48,48

L8
194,1

L
8
97,97

L4
390,1

L
4
195,195

L2
782,1

L
2
391,391

L1566,1

L783,783L1567
17

There is a typo of ”Compute f191” in [4] where f191
1 h64

1,1
h32
4,1

h
32
2,2

h16
5,5

h16
10

h16
10,1

h
16
5,5

h8
22,1

h
8
11,11

h4
46,1

h
4
23,23

h2
94,1

h
2
47,47

h190,1

h95,95
should be f191

1 h64
1,1

h32
4,1

h
32
2,2

h16
10,1

h
16
5,5

h8
22,1

h
8
11,11

h4
46,1

h
4
23,23

h2
94,1

h
2
47,47

h190,1

h95,95
.

5. Concluding remarks

We have proposed a refinement to the BMX algorithms. Roughly speaking, our
refinement can reduce more vertical lines than BMX-1 (BMX-2) by an amount of
H(n) (H0(n), respectively) in the best cases. Therefore, the saving in the num-
ber of multiplications of our algorithm is more than that of the BMX algorithms.
Moreover, if n is a Solinas number then our refinement has better performance than



FURTHER REFINEMENT OF PAIRING COMPUTATION BASED ON MILLER’S ALGORITHM15

BMX algorithms. We believe that our refinement is optimal in the sense that no
other segment of the order n can reduce more lines.

References

1. D. Boneh, X. Boyen, and H. Shacham, Short Group Signatures, CRYPTO 2004, LNCS 3152,

pp.41-55, Springer-Verlag, 2004.
2. D. Boneh, and M. Franklin, Identity-base encryption from the Weil pairing, CRYPTO 2001,

LNCS 2139, pp.213-239, Springer-Verlag, 2001.

3. D. Boneh, B. Lynn, and H. Shacham, Short signature from the Weil pairing, ASIACRYPT
2001, LNCS 2248, pp.514-532, Springer-Verlag, 2001.

4. I.F. Blake, V.K.Murty, and G. Xu, Refinement of Miller’s algorithm for computing the

Weil/Tate pairing, Journal of Algorithms. Vol.58, pp.134-149, 2006.
5. P.S.L.M. Barreto, H.Y. Kim, B. Lynn, and M. Scott, Efficient algorithms for pairing-based

cryptosystems, CRYPTO 2002, LNCS 2442, pp.354-368, Springer-Verlag, 2002.

6. K. Eisenträger, K.Lauter, and P.L. Montgomery, Fast elliptic curve arithmetic and improved
Weil pairing evaluation, CT-RSA 2003, LNCS 2612, pp. 343-354, Springer-Verlag, 2003.

7. A. Joux, A one round protocol for tripartite Diffie-Hellman, ANTS IV, LNCS 1838, pp.385-

393, Springer-Verlag, 2000.
8. X. Li, and K. Chen, Identity based proxy-signcryption scheme from pairings, IEEE-SCC 2004,

Sept. pp.494-497, 2004.
9. A.J. Menezes, T. Okamoto, and S.A. Vanstone, Reducing elliptic curve logarithms to loga-

rithms in a finite field, IEEE Tran. Inform. Theory, vol.39 pp.1639-1646, 1993.

10. A.J. Menezes, Elliptic curve cryptosystems, Kluwer Academic Publishers, 1993.
11. V. Miller, Short programs for functions on curve,” unpublished manuscript, 1986.

12. D. Nalla and K.C. Reddy, Signcryption scheme for identity-based cryptosystems, Cryptology

ePrint Archive, Report 2003/066, 2003.
13. R. Sakai, K. Ohgishi, and M. Kasahara, Cryptosystems based on pairing, SCIS 2000 Okinawa,

Japan, Jan. pp.26-28, 2000.

14. J.H. Silverman, The Arithmetic of Elliptic Curves, Grad. Texts in Math., vol.106, Springer,
New York, 1986.

15. N.P. Smart, An identity based authenticated key agreement protocol based on Weil pairing,

Electronics Letters Vol.38, pp.630-632, 2002.

6. Appendix A

Algorithm 5 (Segmentation).
Input: Integer n =

∑m
i=0 bi2i with bi ∈ {0, 1} and bm = 1.

Output: {Bi, Bi−1, . . . , B0}, Bt ∈ {l0, l1 . . . , l5} × N.

Function Tracker(x, y)
while x 6= m and bx 6= y

do x← x + 1;
if x = m then return -1
else return x

i← 0; j ← 0; k ← 0;
while j < m− 1 do

if (bj+1, bj) = (0, 0) then B case 1.
k ← Tracker(j + 2, 1);
if k = −1 then

Bi ← (l0,m− j); j ← m;
else

Bi ← (l0, k − j − 1); j ← k − 1; i← i + 1;



16 CHAO-LIANG LIU, GWOBOA HORNG, AND TE-YU CHEN

if (bj+1, bj) = (0, 1) then B case 2.
if i− 1 > 0 and Bj−1 = (l2, α) then

Bi−1 ← (l2, α + 1); j ← j + 2;
if j = m then i← i− 1;

else
Bi ← (l2, 1); j ← j + 2;
if j 6= m then i← i + 1;

if (bj+1, bj) = (1, 0) then B case 3.
k ← Tracker(j + 2, 0);
if k = −1 then

Bi ← (l4,m− j − 1); j ← m;
else

Bi ← (l5, k − j − 1); j ← k + 1;
if j 6= m then i← i + 1;

if (bj+1, bj) = (1, 1) then B case 4.
k ← Tracker(j + 2, 0);
if k = −1 then

Bi ← (l1,m− j); j ← m;
else

Bi ← (l3, k − j); j ← k + 1;
if j 6= t then i← i + 1;

end-while;
if j = m then return {Bi, Bi−1, . . . , B0}
else if bm−1 = 1 then Bi ← (l1, 1);

else Bi ← (l0, 1);
return {Bi, Bi−1, . . . , B0}

Department of Computer Science, National Chung-Hsing University, 250 Kuo-Kuang
Road, Taichung 402, Taiwan, ROC

E-mail address: s9056001@cs.nchu.edu.tw

Department of Computer Science, National Chung-Hsing University, 250 Kuo-Kuang

Road, Taichung 402, Taiwan, ROC

Current address: Department of Computer Science, National Chung-Hsing University,
250 Kuo-Kuang Road, Taichung 402, Taiwan, ROC, Tel.: +886-422840497-912; fax: +886-

422853869.

E-mail address: gbhorng@cs.nchu.edu.tw

Department of Information Management, Hsiuping Institute of Technology,, No.11,

Gungye Rd., Dali City, Taichung 412, Taiwan, ROC
E-mail address: chendy@mail.hit.edu.tw


