
1

A Simpler Sieving Device:

Combining ECM and TWIRL

Willi Geiselmann1, Fabian Januszewski2, Hubert Köpfer1, Jan Pelzl3, and
Rainer Steinwandt4?

1 Institut für Algorithmen und Kognitive Systeme, Fakultät für Informatik,
Am Fasanengarten 5, Universität Karlsruhe, 76128 Karlsruhe, Germany,

geiselma@ira.uka.de
2 Mathematisches Institut II, Englerstraße 2, Universität Karlsruhe, 76128 Karlsruhe,

Germany, fabian.januszewski@math.uni-karlsruhe.de
3 Horst Görtz Institute for IT-Security, Ruhr University of Bochum, Universitätsstraße 150,

44780 Bochum, Germany, pelzl@crypto.rub.de
4 Department of Mathematical Sciences, Florida Atlantic University, 777 Glades Road, Boca

Raton, FL 33431, USA, rsteinwa@fau.edu

Abstract. A main obstacle in manufacturing the TWIRL device for realizing the
sieving step of the Number Field Sieve is the sophisticated chip layout. Especially
the logic for logging and recovering large prime factors found during sieving adds
significantly to the layout complexity. We describe a device building on the Elliptic
Curve Method (ECM) that for parameters of interest allows to replace the com-
plete logging part in TWIRL by an off-wafer postprocessing. The postprocessing
is done in real time, leaving the total sieving time basically unchanged.
The proposed device is an optimized ECM implementation building on curves
chosen to cope with factor sizes as expected in the output of TWIRL. According
to our preliminary analysis, for the relation collection step expected for a 1024 bit
factorization our design is realizable with current fab technology at very moderate
cost. The proposed ECM engine also determines the vast majority of the needed
cofactor factorizations. In summary, we think the proposed device to enable a
significant decrease of TWIRL’s layout complexity and therewith its cost.

Keywords: RSA, NFS, ECM, cryptanalytic hardware

1 Introduction

Lacking paramount theoretical progress in the design of algorithms for factor-
ing integers, in recent years significant efforts have been invested into designing
special purpose hardware for factoring. Having in mind a record factorization
of a 1024 bit RSA-modulus, at the moment the (General) Number Field Sieve
(NFS) seems to be the algorithm of choice, and consequently several proposals
for using dedicated hardware to speed up the time-dominating steps of the NFS
have been put forward. In particular, for the NFS’ linear algebra step significant
progress has been achieved [2, 14, 8, 5, 6]—for the most recent designs thinking of
a practical implementation for the 1024 bit case does not seem too far-fetched.

? This work was partially supported by a Federal Earmark grant for Research in Secure
Telecommunication Networks (2005-06).

On the other hand, even the most recent designs that have been proposed for
implementing the sieving step of the NFS—the other time-dominating part of
the NFS—rely on highly non-trivial technological assumptions: for mesh-based
devices along the lines of [2, 7, 9, 10] no practically promising parameter set for
the 1024-bit case has been proposed so far, the TWIRL device [23, 15] involves
rather large chip sizes along with a non-trivial layout, and for SHARK [4] the
actual implementation of the underlying butterfly transport system is techno-
logically challenging. From a practical point of view, finding modifications or
alternatives to the existing proposals that are of comparable performance but
closer to existing fab technology is highly desirable.

In this contribution we describe a device that allows to remove the complete
“diary circuitry” from TWIRL (see [15, Appendix A.7]). This part of TWIRL
adds significantly to the layout complexity, but unfortunately seems vital for the
recovery of largish prime factors found during sieving. Below we show that for
relevant parameter choices it is feasible to omit the recording of prime factors
during sieving, and to recover them in a postprocessing phase with an optimized
implementation of the Elliptic Curve Method (ECM): Our design builds on ellip-
tic curves chosen to cope with factor sizes as expected in the output of TWIRL.
Specifically, for the parameters currently considered as realistic for the 1024-bit
case, according to our preliminary analysis the proposed ECM engine can be
implemented on chips of standard size at very moderate cost. Additionally, the
suggested device computes almost all the required cofactor factorizations. As the
required computations can be performed in real time, the overall sieving time
remains basically unchanged. In summary, we think the proposed ECM engine
to allow for a significant decrease of TWIRL’s layout complexity and therewith
its implementation cost. Due to the very modest hardware requirements our ap-
proach may be of independent interest for NFS implementations on “classical”
hardware platforms.

Further related work We do not claim the idea of using a dedicated ECM circuitry
within the relation collection step of the NFS to be a novel one, e. g., the idea of
a parallel ECM engine for smoothness testing is mentioned in [2, 15] already, and
[20] proposes a dedicated ECM engine in connection with the SHARK device.
The design presented below differs significantly from that in [20] resp. SHARK,
however. To the best of our knowledge our proposal is the first that aims at coping
with the performance requirements needed to substitute parts of the TWIRL
architecture through an ECM engine and has been explored at this level of detail.
We deem it an interesting question for future work to what extent the ideas below
can also facilitate an implementation of SHARK—and vice versa how to integrate
ideas from [20] with TWIRL.

Should we do better? It may look tempting to expand the role taken by ECM in
the relation collection, and we considered a hybrid design where an ECM engine
replaces the algebraic TWIRL device altogether. However, so far we could not

2

identify a concrete design, where this approach yields a device that is easier to
implement than the known proposals.

2 Preliminaries and Parameters

Providing an introduction to the NFS is beyond the scope of this contribution,
and we refer to [22] for a survey and to the standard reference [13] for details
of the NFS. Section 2.1 gives a brief summary of those aspects of the (relation
collection step of the) NFS, that are crucial for our design. Similarly, for an
introduction to ECM we refer to [16], but Section 2.2 recalls those aspects that
are relevant for describing our design.

2.1 Choice of NFS parameters

In this paper we deal with the NFS’ relation collection step only. At this we are
given two univariate polynomials f(x), g(x) ∈ Z[x] sharing a common root m
modulo the integer n to be factored:

f(m) ≡ g(m) ≡ 0 (mod n).

Everything related to f(x) is usually referred to as belonging to the algebraic

side, and analogously for everything related to g(x) we use the term rational

side. We are specifically interested in the case of a 1024-bit factorization with
n = 1350 . . . 7563 being the number RSA-1024 as specified in [12]. To this aim
we assume the polynomials f(x) and g(x) to be chosen of degree 5 and 1, respec-
tively, as proposed in [23, Appendix B.2] resp. [15, Appendix B]. Both of these
specific polynomials are non-monic, and accordingly we define two homogeneous
polynomials Na(a, b) := |b5 · f(a/b)| (of degree 5) and Nr(a, b) := |b · g(a/b)| (of
degree 1). Now the goal of the relation collection step can be phrased as finding
pairs of coprime integers (a, b) with b > 0 such that both Na(a, b) and Nr(a, b)
split into a product of primes smaller than a smoothness bound ya resp. yr. At
this, we do not require a “full splitting”, but allow that Na(a, b) resp. Nr(a, b)
contain up to `a resp. `r “large” prime factors below some semi-smoothness bound
za resp. zr.

The question of the concrete choice of these parameters and of the required
sieving range for the pairs (a, b) obviously arises. As our device aims at an integra-
tion with TWIRL, for the analysis of the 1024-bit case we adopt the parameters
from [23] resp. [15, Table 10]:

– On the rational side, the smoothness and semi-smoothness bounds are chosen
as yr = 3.5 · 109 and zr = 4 · 1011, respectively.

– On the algebraic side, the smoothness and semi-smoothness bounds are chosen
as ya = 2.6 · 1010 and za = 6 · 1011, respectively.

– 2 + 2 large primes are used, i. e., both on the rational and on the algebraic
side we allow for `r = `a = 2 large prime factors.

3

– For the sieving region −A < a ≤ A, 0 < b ≤ B we choose A = 5.5 · 1014 and
B = 2.7 · 108.

Another figure that is important for analyzing the 1024-bit case in more detail,
is the rate at which (a, b)-candidates are output by TWIRL: To be of practical
interest, the required test of simultaneous smoothness of Nr(a, b) and Na(a, b)
should be be completed in real-time and not require extensive buffering. Following
[23, Appendix A.7], we can expect that a fraction of γ := 2 · 10−11 of the sieve
locations will be output by TWIRL as interesting (a, b)-candidate. With the 1024-
bit parameters in [23], TWIRL handles sa = 215 sieve locations per clock cycle,
running at a clock speed of f := 1 GHz. If the candidates were output in regular
time intervals, we thus had to handle about

∆′ := f · γ · sa ≈ 655

sieve locations per second with our ECM engine. At the beginning of the sieving
phase more candidates are to be expected, but at this early stage we can sim-
ply store the candidates in some buffer, and it seems safe to design our ECM
engine to handle ∆ := 1000 candidate (a, b)-pairs/second. The unlikely case
of a buffer overflow can be tolerated and is compensated by simply perform-
ing slightly more sieving. For each of these candidates we have to determine
the norms Nr(a, b), Na(a, b) and compute the prime factorizations hereof if the
smoothness conditions are met. With the mentioned choices for Nr, Na, A and
B the numbers to be factored can be expected to have no more than 216 bit on
the rational and 350 bit on the algebraic side.

It is certainly acceptable to allow the ECM engine to fail for a small fraction of
the “good” (a, b)-candidates. Based on software simulations, for the NFS param-
eters considered here, we decided to use 84 curves on each side, and we estimate
that < 0.5% of the “good” (a, b)-candidates get lost. To further decrease the
error, one could implement a version of our design applying more curves and pay
for this with an increased chip area. E. g., allowing 128 curves, on the algebraic
side, we encountered only 8 integers out of 100, 000 that would be semi-smooth
on the algebraic side, but could not be factored by the curves used in our design.
The chosen number of 84 curves seems to be an acceptable trade-off between
error rate and chip area.

2.2 The Elliptic Curve Method (ECM)

To factor a composite n ∈ N with Lenstra’s ECM method, one starts by choos-
ing a random point P = (x : y : 1) on a random elliptic curve in Weierstrass
normal form. Assuming gcd(6, n) = 1, in affine coordinates that is a solution of
a Weierstrass equation

y2 = x3 + ax + b (1)

modulo n, where gcd(4a3 − 27b2, n) = 1. Then the solutions of (1) modulo a
prime divisor q of n constitute a finite abelian group Eq if we adjoin a point

4

O = (0 : 1 : 0) at infinity (serving as identity element). Lenstra’s idea was to
apply Pollard’s “p − 1”-method of factorization [21] but to work in Eq instead
of (Z/qZ)∗. The key point here is that the order of Eq depends on a, b and q,
i. e., not only on q. This allows multiple tries with different curves for the same
composite n. Formulae for the group law for curves in Weierstrass form are given
in [16]. One can expect that with a certain positive probability—depending on
the number of B-smooth integers in (q + 1 − 2

√
q; q + 1 + 2

√
q)—the order #Eq

is B-smooth for a fixed bound B (and #Eq′ is not B-smooth for prime divisors
q′ 6= q of n). Then the computation of

∏

p<B

pep · P, ep = blogp(q + 1 + 2
√

q)c, (2)

yields the prime divisor q of n.
After the computation of (2) we can run a so-called continuation as in the case

of Pollard’s method of factorization. This resembles Shanks’ Babystep-Giantstep
method. If we choose a second bound C > B, a sufficient condition for a continu-
ation of ECM to find q is then that Eq be divisible by a prime p, B ≤ p < C, and
#Eq/p be B-smooth. We will explain the choice of the continuation in Section 3.2
below.

3 Splitting the Norms in Real Time

The goal of our device is to check whether the candidates (a, b) received (from a
diary-free TWIRL) satisfy the rational and algebraic semi-smoothness conditions.
If yes, the factorizations of Nr(a, b) and Na(a, b) are to be computed. These
computations are to be done in real time, so that no excessive buffering or a
significant increase of the time spent for relation collection becomes necessary.
The proposed design naturally splits into two parts which process the received
values in a pipelined manner: a Rational Factorization Unit and an Algebraic

Factorization Unit.

3.1 Basic Components

The Rational Factorization Unit is distributed on four identical chips. Each of
these chips consists of four parts: The first part, a controller, handles the I/O,
distributes the tasks to the other parts on the chip and stores the results. The
second part receives the (a, b) pairs from TWIRL through the controller and
calculates the rational norm Nr(a, b), where b remains constant during the siev-
ing of one line. After some preprocessing for each line, calculating the rational
norm (which can be expected to have no more than 216 bit) therefore reduces to
the evaluation of an affine polynomial, i. e., one multiplication and one addition.
These operations are performed using a 16 bit adder, some logic for the multipli-
cation and four registers up to a length of 216 bit. The norm Nr(a, b) is forwarded
to the trial division pipeline that performs the divisions with all primes/prime

5

powers ≤ 100, 000 and reports the factors found to the controller. The remaining
factor of Nr(a, b) (with ≈ 200 bit on average) is then forwarded, through the
controller, to the fourth and largest part of the chip, the ECM engine. Details of
the trial division pipeline and the ECM engine which factors the remaining part,
if the semi-smoothness conditions are met, will be discussed in Section 4.2. If an
(a, b)-pair turns out to satisfy the rational semi-smoothness bounds, it is—along
with a report encoding the factors found on the rational side—forwarded to the
subsequent algebraic factorization unit.

The Algebraic Factorization Unit is realized with five chips and has the same
structure as its rational counterpart, but it considers only those (a, b)-pairs where
the rational semi-smoothness conditions turned out to be fulfilled already. As on
the rational side, first the norm Na(a, b) has to be computed, which for a con-
stant b amounts to 5 multiplications and 5 additions (using Horner’s rule). On
the algebraic side we have to deal with larger integers than on the rational side,
and we can Na(a, b) expect to have no more than 350 bit. However only those
(a, b)-pairs fulfilling the rational semi-smoothness conditions are forwarded to
this device. Therefore on average no more than 80 inputs are expected per chip
and second. This reduced number of inputs compensates the larger multiplica-
tion/division time. Again, the trial division pipeline and an ECM engine is used
to split Na(a, b) into prime factors.

3.2 Design of the ECM Engine

From a mathematical point of view, our use of ECM on the algebraic and the
rational side is the same: We build on an identical set of 84 curves over Q, and for
the second phase we use the same improved standard continuation. Due to the
different operand sizes, however, the hardware implementation on the algebraic
and the rational side is different. In the remaining part of this section we focus on
theoretical parameter choices underlying our design. Section 4 discusses aspects
related to a hardware implementation.

Choice of Curves Any elliptic curve over a field K with char K - 6 is isomor-
phic to a curve in Weierstrass form (1). Referring to ideas of Suyama, in [19]
Montgomery suggests to use different families of curves to speed up ECM. In
fact, it is possible to choose a random elliptic curve Eq over Fq and to guarantee
d | #Eq for any fixed d ∈ {4, 12, 16}5. Basing on software experiments of one of
the authors [11], for our purposes the family proposed by Atkin and Morain in
[1] with d = 16 seems to perform best.

In [19] Montgomery proposed to use elliptic curves of the form

sy2 = x3 + tx2 + x, gcd(s(t2 − 4), n) = 1. (3)

5 By a celebrated result of Mazur we cannot expect more, because of 16 being the maximal
order arising for a torsion subgroup of an elliptic curve over Q.

6

Equation (3) usually is referred to as Montgomery form or Chudnovsky form,
and [19] gives efficient formulae for the computation on curves of this form. One
major advantage is that these formulae enable the evaluation of the product (2)
without the use of inversions. Additionally the order of a curve of this type is
known a priori to be divisible by 4. Besides being useful for factoring this also
implies that not all elliptic curves can be isomorphically transformed into this
form. The family of Atkin and Morain may be transformed into Montgomery
form. Generation of random curves of this family involves computations on an
elliptic curve which cannot be transformed into Montgomery form (due to the
reason mentioned above). The aspects of curve generation are discussed in the
following paragraph.

Generation of Curves For a composite n we generate a random elliptic curve
modulo n and a point on it as follows. According to [1], S := (12 : 40 : 1) is
a point of infinite order on E : Y 2 = X3 − 8X − 32 over Q. Therefore we get
for every r ∈ N a different point (x : y : 1) := r · S ∈ E. According to [1] and
[11] every (x, y) yields an elliptic curve Er in Montgomery form for which we can
guarantee 16 | #Er as follows:

Define α := (x − 9)/(x + y + 16) and β := 4α2 + 2α + 1/2. Then x̃ :=
(β + 2α)β + 2α + 1/2, z̃ := (2α + 1)2 yield a point (x̃ : ỹ : z̃) of infinite order
on the elliptic curve Er given by sY 2 = X3 + tX2 + X. For actual computations
we do not need to know the values of ỹ, α̃, t but the values of

t + 2

4
=

β4

(2α(2α + 1)(4α + 1))2
, and d =

z̃2β2(β + 2α)

(2α(4α2 + 1))2(4α2 − 1/2)5
.

The first term is needed by the arithmetic described by Montgomery in [19].
The second term d gives a multiple of a square root of the discriminant of the
curve. For our design it seems practical to precompute the values of α over Q for
r ∈ {1, . . . , 84} and to proceed then modulo n to compute d, x̃, z̃ and (t + 2)/4.
Nominators and denominators of the coordinates (x, y) grow rather quickly over
Q. Since we restricted our setting to the “first” 84 curves of this family the
nominators and denominators of the values of α (or 2α) we need to handle are
bounded in size by 68 kbits.

Modular reduction of such large numbers takes time. Therefore we partition
the set of the values of α as follows. The k-th partition consists of the curves for
r ∈ {k, k+21, k+42, k+63}. To factor n we then choose randomly6 k ∈ {1, . . . , 21}
and apply the curves k, k + 21, k + 42, k + 63 on n (in that order, because the
absolute values of the nominator and denominator of α are smaller for r small).
During the computation on an elliptic curve we may precompute the modular
reduction needed for the next curve.

6 In a hardware implementation the needed random value can be determined, e. g., using an
LFSR.

7

First Phase We choose B = 402 so that there are 79 primes p1, . . . , p79 < B. Ad-
ditionally we choose v = 530, ei := blogp vc and compute k =

∏

79

i=1
pei

i . Then the
first phase consists in computing Q = k · P. This can be done efficiently without
inversions using Montgomery’s formulae [19]. Finally we do a gcd computation
to check if this computation already yields a nontrivial divisor d of n (this is
necessary for our primality test, see below). If this does yield a nontrivial divisor
of n we can continue the computation modulo n′ := n/d with Q′ := Q (mod n′).

We restricted v to the value of 530 instead of v = (q + 1 + 2
√

q)/16 corre-
sponding to Equation (2) with yr ≤ q ≤ za since the probability that a greater
power of pei

i divides ord(P) was seen to be very low in simulations for candidates
in our setting, see [11]. So the reduction of v leads to a considerable speedup of
ECM.

Continuation As second phase for ECM we choose the improved standard
continuation as described in [3, Section 3.2] and [11] which may be realized using
Montgomery’s arithmetic. We choose C = 9680 and let Q = k · P denote the
result of the first phase. In the continuation we compute sequentially the points
2 · Q, 4 · Q, . . . , 2t · Q. Then we can write every prime q with B ≤ q < C in the
form q = 2(st ± r) + 1, with 1 ≤ r ≤ t. This enables us to test if q · Q = O
holds modulo a divisor d of n by checking if 2r · Q = ±(2st + 1) · Q holds
modulo d. If l · Q = (Xl : − : Zl) for l ∈ N this can be done by checking if
d | X2rZ2st+1 − X2st+1Z2r which in an implementation amounts to computing
gcd(n, X2rZ2st+1 − X2st+1Z2r). Instead of computing every gcd separately we
may compute d0 = gcd(n, T0,0) where T0,0 =

∏

r,s (X2rZ2st+1 − X2st+1Z2r) for
all relevant pairs (r, s) which correspond to a prime q (or a pair of primes) as
above.

If d0 is composite this implies that several prime divisors were found at once.
In that case we may try to recover those prime divisors by splitting the product
T0,0 into subproducts T1,0 =

∏

some r,s (X2rZ2st+1 − X2st+1Z2r), T1,1 = T0,0/T1,0

followed by a computation of d1 = gcd(d0, T1,0), d2 = gcd(d0, T1,1) = d0/d1. If
1 6= d1 6= d0 we successfully reconstructed a finer factorization d0 = d1d2. This
process may be repeated recursively to eventually compute a decomposition of d0

into prime factors. We refer subsequently to this structure as the tree structure

and call the Ti,j the product tree.

In our design we compute first T1,0 and T1,1 and then T0,0 = T1,0T1,1 . To
have a chance of 50% to split a composite d0 into nontrivial d1, d2 we (once
for all) choose the (r, s)-pairs which contribute to T1,0 randomly from all pairs.
Due to the parameters chosen, there are 1116 primes in the continuation so
that there are at most dlog2 1116e = 11 levels of recursion or equivalently, a
product tree of height 11, if we want to recover in all cases all information that
the continuation may provide. We limit us to a height of 3 so that there are 15
values T0,0, T1,0, T1,1, . . . , T3,7 to be stored. Since we use that tree structure also
as a basis for our primality test we compute d0 = gcd(n, T0,0) and proceed to
compute d1 = gcd(d0, T1,0) if d0 > 1. Then we compute d2/d1 and depending

8

on whether d1 > d2 or not we continue by computing d3 = gcd(d1, T2,0) or
d3 = gcd(d2, T2,2). Likewise we continue to compute d4 = gcd(d3, T3,i) for an
i ∈ {0, 2, 4, 6}. Consequently we end up with precisely 4 gcd computations after
the continuation. See [11] for more details.

We choose t = 30 so that there are only 16 different values for r which occur
in a representation of a prime q considered in the continuation. Therefore we
only need to keep 16 points of the form 2r ·Q in memory while s runs from 1 to
162. Furthermore a pair (r, s) may represent two primes at once. Our choice of t
reduces the number of 1116 primes to precisely 1024 pairs.

Primality Test We know that numbers n ≥ za are composite and that com-
posite numbers n < za are of the form n = p · q with p, q prime, because we
assume that the trial division removed all small prime factors less than 100,000.
Assuming p < q this leads to p ≤ 774,593. Then for every elliptic curve Ep over
Fp we have #Ep ≤ 776,353 and we may assume 16 | #Ep such that the greatest
prime dividing #Ep is bounded from above by C̃ := ṽ := 48,522. For the same
reason every prime whose square divides #Ep is less than B̃ := 220. We could
use ECM with the parameters v, B, C replaced by ṽ, B̃, C̃ to search for p and
thereby checking primality. But the values of v, B, C we choose for factoring do
not differ significantly from those given here. In fact, an analysis of the orders
of the curves resp. starting points of our family modulo all primes p ≤ 774,593
showed that we may use the same ECM parameters for factoring and primality
testing. This enables us to factor and test primality at once. Therefore we need
no additional circuitry for a primality test.

There are 1,377,153,921 squarefree composites n = p · q with p, q prime and
100,000 ≤ p, q ≤ 774,593. Table 1 shows the number and percentage of those
composites which will not be factored after the given number of partitions of
curves. If we assume that every candidate output by the sieving process leads
to four composites of the form p · q as discussed above and if we assume that
every such composite passes at least 8 curves then Table 1 shows that there are
at most 6.6 ·107 semi-smooth candidates which remain composite after the ECM
processing. In reality this number should be even smaller.

curves 4 8 12 16 20 24

missed 8.4 · 106 74, 000 1, 000 23 1 0.07

% 0.61 5.4 · 10−3 7.6 · 10−5 1.7 · 10−6 7.4 · 10−8 5.1 · 10−9

Table 1. Number and percentage of squarefree composites n = p · q missed.

Performance of ECM The performance of ECM as a primality test has already
been discussed above. Software simulations give evidence that 84 curves suffice
to factor most candidates possible. With a set of 84 curves we expect to be able

9

to factor the norms successfully for at least 99.5% of all candidates meeting both
the algebraic and the rational semi-smoothness criteria.

4 Hardware Estimates and Implementation Considerations

The objective of our architecture is an AT-efficient design of ECM that for pa-
rameters of interest can be implemented with existing technology. In this section
we briefly describe the area and time complexity resulting from our choice of
algorithms and derive estimates for the overall performance of our design when
being applied to the above NFS parameters for RSA-1024.

4.1 Modular Arithmetic

The proposed design requires modular multiplication, squaring, addition, sub-
traction, and gcd computations. For performing the modular arithmetic opera-
tions, we choose Montgomery residues allowing for an efficient method for mod-
ular multiplication [18]. Montgomery’s algorithm replaces divisions by simple
shift operations and, thus, is very efficient in hard- and software. The method is
based on a representation of the residue class modulo an integer n. The corre-
sponding n-residue of an integer x is defined as x′ = x · r mod n where r = 2m

with 2m−1 < n < 2m such that gcd(r, n) = 1. Since it is costly to switch al-
ways between integers and their n-residue and vice versa, we will perform all
computations in the residue class.

Modular subtraction and addition can be computed with a single circuit using
simple carry ripple adders (CRA). To guarantee a low latency, operations are done
word-wise at an appropriate word size and corresponding number of words. An
efficient architecture for modular multiplication is described in [24] and seems
suitable for our design. Squaring will be realized with the multiplication circuit
since a separate squaring circuit would unnecessarily increase the overall area-
time (AT) product. A variant with carry ripple adders has been implemented and
analyzed for the use with ECM in [20]. The architecture allows for a word-wise
multiplication and is scalable regarding operand size, word size, and pipelining
depth.

For the required gcd computations and modular inversions, we adopt the (ex-
tended) binary euclidean algorithm [17] which can easily be implemented with
the presence of a subtraction hardware and some registers. As additional func-
tionality, two registers must perform a simple shift operation (equivalent to a
division by two). Since the (extended) gcd operations are always performed after
the actual point operations, we can use internal registers for the computation
and do not need additional hardware.

4.2 Factorization Unit

A detailed analysis of the modular arithmetic underlying a hardware implemen-
tation of ECM can be found in [20] and its modification for this contribution is
summarized in Appendix A.

10

ECM Cluster: Excluding the time for pre- and post-processing, for the 1024-
bit parameters discussed above a single candidate requires a total of 10 ms on
the rational and 22 ms on the algebraic side if we assume a (realistic) clock
frequency of 240 MHz. For the rational and algebraic ECM unit, the overall
transistor count amounts approximately to 290,000 and 340,000, respectively.
Assuming standard 0.13 µm CMOS technology, the silicon area required for an
ECM cluster, i.e., 4 ECM units together with the reduction unit, is no more than
3.27 mm2 (rational) and 3.81 mm2 (algebraic). For details on the complexity
estimate of the required area and time, we refer to Appendix A. Figure 1 shows
the basic layout of a factorization unit consisting of the norm evaluation, the
division pipeline, a central control unit with memory, and the ECM clusters.

evaluation
norm

trial division
pipeline

central control unit

ECM

ECM

reduction
unit

ECM

ECM ECM

ECM

reduction
unit

ECM

ECMECM

ECM

reduction
unit

ECM

ECM

memory

ECM cluster ECM clusterECM cluster

Fig. 1. Basic layout of a factorization unit

Division Pipeline: For the pre-processing of presumably semi-smooth numbers,
we perform a trial division by 9592 primes and 108 prime powers up to 100,000
which is realized by a pipelined structure. Once the pipeline is filled it can handle
all divisors at a rate of approximately 330 (rational) and 210 (algebraic) numbers
per second at a clock rate of 240 MHz. This is sufficient since trial division is
done on each chip. The estimated area consumption of the architecture is approx.
60,000 and 75,000 equivalent logic transistors (0.17 mm2 and 0.21 mm2) on the
rational and algebraic side, respectively.

Central Control Unit: Per chip, we assume a central control unit taking care
of all incoming pairs (a, b), the respective factors found during trial division, the

11

computation of the curve parameters, and the corresponding results from the
ECM stages. The central control unit can be realized with a standard CPU core
attached to some memory for keeping track of the numbers coming from the trial
division pipeline and their factorization. We estimate such a unit to consume no
more than 1 mm2 of silicon area.

For a moderate chip size of 147 mm2, the size of a Pentium 4 processor, we
can group 156 rational or 128 algebraic ECM units (39 rational or 32 algebraic
clusters) on a single chip.

4.3 Application to TWIRL

For the discussed NFS parameters, when combining our design with TWIRL
we estimate that it suffices to handle about 1000 sieve locations per second (cf.
Section 2.1). Basing on software simulations, we assume that on the rational side
on average 61 curves are used for the factorization of one norm. This requires
a computing time of 0.6 seconds per norm. On the algebraic side on average 70
curves are used, this results in a factorization time of 1.5 seconds per algebraic
norm. With 4 chips of the size of 147 mm2 (each including 156 ECM units) up
to 1040 rational norms can be factored per second. With 5 chips of the same size
(each including 128 ECM units) up to 420 resulting candidates can be checked on
the algebraic side. Thus, for the discussed parameters, about 9 chips of standard
size should suffice to substitute the diary logic from TWIRL and to compute
almost all of the occurring cofactor factorizations.

5 Conclusion

The above discussion shows that the integration of ECM with a diary-free TWIRL
results in a sieving design with a significantly simpler layout, but basically the
same performance as the original TWIRL. For parameters as currently expected
for an NFS-based factorization of RSA-1024, the additional circuitry can be ex-
pected to fit on about nine chips of standard size and moderate complexity. Due
to its moderate technological requirements, our design might also be of interest
for being used in connection with “classical” sieving implementations.

Acknowledgments

We thank Adi Shamir and Eran Tromer for valuable discussions on TWIRL and
Thorsten Kleinjung for helpful discussions on the NFS.

12

References

1. A. Oliver L. Atkin and François Morain. Finding suitable curves for the elliptic curve
method of factorization. Mathematics of Computation, 60(201):399–405, 1993.

2. Daniel J. Bernstein. Circuits for Integer Factorization: a Proposal. At the time of writing
available electronically at http://cr.yp.to/papers/nfscircuit.pdf, 2001.

3. Richard P. Brent. Factorization of the tenth and eleventh Fermat Numbers. Computer
Science Laboratory, Australian National Univ., Canberra, Report TR-CS-96-02:1–25, 1996.

4. Jens Franke, Thorsten Kleinjung, Christof Paar, Jan Pelzl, Christine Priplata, and Colin
Stahlke. SHARK: A Realizable Special Hardware Sieving Device for Factoring 1024-Bit
Integers. In Josyula R. Rao and Berk Sunar, editors, Cryptographic Hardware and Embedded
Systems; CHES 2005 Proceedings, volume 3659 of Lecture Notes in Computer Science, pages
119–130. Springer, 2005.

5. Willi Geiselmann, Hubert Köpfer, Rainer Steinwandt, and Eran Tromer. Improved Routing-
Based Linear Algebra for the Number Field Sieve. In Proceedings of ITCC ’05 – Track on
Embedded Cryptographic Systems. IEEE Computer Society, 2005.

6. Willi Geiselmann, Adi Shamir, Rainer Steinwandt, and Eran Tromer. Scalable Hardware
for Sparse Systems of Linear Equations, with Applications to Integer Factorization. In
Josyula R. Rao and Berk Sunar, editors, Cryptographic Hardware and Embedded Systems;
CHES 2005 Proceedings, volume 3659 of Lecture Notes in Computer Science, pages 131–146.
Springer, 2005.

7. Willi Geiselmann and Rainer Steinwandt. A Dedicated Sieving Hardware. In Yvo G.
Desmedt, editor, Public Key Cryptography — PKC 2003, volume 2567 of Lecture Notes in
Computer Science, pages 254–266. Springer, 2003.

8. Willi Geiselmann and Rainer Steinwandt. Hardware for Solving Sparse Systems of Linear
Equations over GF(2). In Colin D. Walter, Çetin K. Koç, and Christof Paar, editors,
Cryptographic Hardware and Embedded Systems; CHES 2003 Proceedings, volume 2779 of
Lecture Notes in Computer Science, pages 51–61. Springer, 2003.

9. Willi Geiselmann and Rainer Steinwandt. Yet Another Sieving Device. In Tatsuaki
Okamoto, editor, Topics in Cryptology — CT-RSA 2004, volume 2964 of Lecture Notes
in Computer Science, pages 278–291. Springer, 2004.

10. Tetsuya Izu, Noboru Kunihiro, Kazuo Ohta, and Takeshi Shimoyama. Analysis on the
Clockwise Transposition Routing for Dedicated Factoring Devices. In Jooseok Song, Taeky-
oung Kwon, and Moti Yung, editors, Information Security Applications: 6th International
Workshop, WISA 2005, volume 3786 of Lecture Notes in Computer Science, pages 232–242.
Springer, 2006.

11. Fabian Januszewski. Ein dedizierter Faktorisierungsalgorithmus auf Basis elliptischer Kur-
ven, 2005. Diplomarbeit, Universität Karlsruhe (Germany), Fakultät für Informatik, Insti-
tut für Algorithmen und Kognitive Systeme.

12. RSA Laboratories. The RSA Challenge Numbers. http://www.rsasecurity.com/rsalabs/
node.asp?id=2093.

13. Arjen K. Lenstra and Jr. Hendrik W. Lenstra, editors. The development of the number field
sieve, volume 1554 of Lecture Notes in Mathematics. Springer, 1993.

14. Arjen K. Lenstra, Adi Shamir, Jim Tomlinson, and Eran Tromer. Analysis of Bernstein’s
Factorization Circuit. In Yuliang Zheng, editor, Advances in Cryptology — ASIACRYPT
2002, volume 2501 of Lecture Notes in Computer Science, pages 1–26. Springer, 2002.

15. Arjen K. Lenstra, Eran Tromer, Adi Shamir, Wil Kortsmit, Bruce Dodson, James Hughes,
and Paul C. Leyland. Factoring Estimates for a 1024-Bit RSA Modulus. In Chi-Sung Laih,
editor, Advances in Cryptology — ASIACRYPT 2003, volume 2894 of Lecture Notes in
Computer Science, pages 55–74. Springer, 2003.

16. Hendrik W. Lenstra. Factoring Integers with Elliptic Curves. Annals of Mathematics,
126(2):649–673, 1987.

17. Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of Applied
Cryptography. CRC Press, Boca Raton, Florida, USA, 1997.

18. Peter L. Montgomery. Modular Multiplication without Trial Division. Mathematics of
Computation, 44(170):519–521, April 1985.

13

19. Peter L. Montgomery. Speeding up the Pollard and elliptic curve methods of factorization.
Mathematics of Computation, 48:243–264, 1987.

20. Jan Pelzl, Martin Šimka, Thorsten Kleinjung, Jens Franke, Christine Priplata, Colin
Stahlke, Miloš Drutarovský, Viktor Fischer, and Christof Paar. Area-Time Efficient Hard-
ware Architecture for Factoring Integers with the Elliptic Curve Method. IEE Proceedings
Information Security, 152(1):67–78, October 2005.

21. John M. Pollard. A Monte Carlo Method for Factorization. Nordisk Tidskrift for Informa-
tionsbehandlung (BIT), 15:331–334, 1975.

22. Carl Pomerance. A Tale of Two Sieves. Notices of the ACM, pages 1473–1485, December
1996.

23. Adi Shamir and Eran Tromer. Factoring Large Numbers with the TWIRL Device. In Dan
Boneh, editor, Advances in Cryptology — CRYPTO 2003, volume 2729 of Lecture Notes in
Computer Science, pages 1–26. Springer, 2003.

24. Alexandre F. Tenca and Çetin K. Koç. A Scalable Architecture for Modular Multiplication
Based on Montgomery’s Algorithm. IEEE Trans. Comput., 52(9):1215–1221, 2003.

A Detailed Cost Estimates

If possible, we provide the exact area and time complexity for the chosen algo-
rithms. However, some algorithms have a non-deterministic runtime and upper
bounds on the time complexity are assumed. Hence, the overall estimate should
be seen as an upper bound on the time and area complexity. In the sequel, let
m = dlog2 ne be the bitlength of the modulus and let e be the number of words
of size w, required to represent a number of size of m bit.

A.1 Complexity of the Basic Building Blocks

For each operation, the area and time complexity is given with respect to the
parameters m, e, and p. We will include Tinit = 2 cycles for initialization of the
ALU at the beginning of the actual computation.

Memory and Registers We will take the quite realistic area estimates for
an 0.13 µm CMOS process from [23]: The area of a single transistor for logic
is assumed to be 2.8 µm2. Due to the highly regular structure, DRAM requires
approximately 0.2 µm2 per bit, equivalent to 0.07 of the area of a transistor for
logic7. For our implementation, we also require SRAM cells which can be clocked
with higher frequencies than DRAM and do not need any refresh cycles. SRAM
requires less clock cycles for reading and writing but has the disadvantage of an
increased area demand for which we will assume 1.5 gate equivalent (NAND) or
6 transistors.

We assume an Arithmetic Logic Unit (ALU) with a certain amount of in-
ternal registers which are used frequently as input and output to the arithmetic
functions. For our estimate, we pick SRAM at the cost of 6 transistors per bit for
the implementation of such. For tables and larger memory blocks for which we
can tolerate a higher latency we choose simple DRAM. For the relatively large

7 This corresponds to the average area usage of a transistor of a Pentium 4 processor with
55 · 106 transistors on a silicon area of 147 mm2.

14

memory blocks, we take care of the additional area for address, row, and column
decoding by introducing some overhead.

Modular Addition and Subtraction: With the algorithms and architectures
specified in [20], subtraction requires in the worst case 2 · (e + 1) clock cycles,
addition 3 · (e + 1) clock cycles, where e = dm

w e is the number of words. Hence,
the maximum time for an addition or subtraction is bounded by

tadd/sub = 3 · (e + 1) + Tinit

clock cycles. A single full adder (FA) can be built of 3 NAND and 2 XOR gates,
summing up to 24 transistors in standard CMOS technology. With w being the
the required number of FAs, we can construct the CRA for approximately

Aadd/sub = 24 · w + 500

transistors with an assumed overhead of 500 transistors for the internal control
logic.

Modular Multiplication: The number of clock cycles per multiplication is
given by

tmul/squ =

⌈

m

p

⌉

· (e + 1) + 2p + Tinit,

where p is the pipelining depth of the design [24]. For standard CMOS technology,
the area consumption of the multiplier is

Amul/squ = 4 · (84wp + 25p − 22w)

transistors. Note that not all values for p are reasonable (see [24] for possible ker-
nel configurations). A word-width of w = 64 bit and a pipelining-depth of p = 4
processing elements seems to be a good trade-off for speed and area consumption
and is chosen in our context.

(Extended) GCD Computation: The binary gcd architecture for bitlength
m requires in the worst case 2m subtractions and some cycles for multiplexing
(shifting can be hard-wired). For the sake of simplicity, we leave out a detailed
analysis of the average runtime of the binary gcd and assume as upper bound

tgcd = 2m · ((e + 1) + Tinit)

clock cycles to finish. Prior each ECM iteration, the precomputation of the re-
quired curve parameters needs two modular inversions, which can be computed
with the binary extended gcd. The runtime for the algorithm in hardware is at
most

tinv = (4m + 4) · ((e + 1) + Tinit)

15

clock cycles [17]. We require no additional register since at the time of the ex-
tended gcd computation, all registers for ECM phase 2 are available.

Since we use the ALU for performing the gcd, no additional subtraction circuit
or additional registers are required. We assume 2000 transistors for the additional
control logic.

Trial Division Pipeline: The trial division by 9592 primes and 108 prime pow-
ers up to 100,000 can be realized by a pipelined structure of 10 division circuits.
For each division circuit we need two m-bit registers (for the input and the re-
sult), two 17-bit registers (for the intermediate result and for the operand), and
a 17-bit adder. For the actual division, a simple shift and subtract method is
applied, requiring at most m subtractions of 17-bit precision. Since subtractions
are performed by additions of the two’s complement (plus 1), we can directly
use additions by storing the two’s complements of the prime powers. The divi-
sion of a candidate of m bit by a prime power of 17 bit requires no more than
tdivision = 3 · m + 50 clock cycles, where the 50 clock cycles are an upper bound
on administrative cycles required to initialize the circuit prior computation and
to send the result to the central control unit.

Since the division circuit is ”too fast” for our purpose, we suggest to use a
single circuit for 1000 primes and prime powers by adding required control logic
and additional memory to the circuit. Hence, a pipeline of 10 units can handle all
divisors at a rate of approximately 330 (rational) and 210 (algebraic) numbers
per second at a clock rate of 240 MHz.

The estimated area consumption of the pipeline, including internal control
logic, registers, and memory amounts to approx. 60,000 (rational) and 75,000
(algebraic) equivalent logic transistors. Note that the absolute latency of up to
29 ms of the division pipeline is not relevant once the pipeline is filled and a
constant throughput is reached.

Reducing the Curve Parameters: The reduction of precomputed parame-
ters for the initialization of ECM requires additional circuitry. We propose to
group the ECM units in clusters of four, with a single reduction circuit per clus-
ter. The reduction circuit prepares the next parameters for ECM and operates
concurrently to the ECM units. It stores the four (fixed) input values and two
intermediate values of size of 68 kbit in DRAM. With a pipelined DRAM to
SRAM circuit for prefetching memory blocks and with a simple shift and add
circuit based on word-wise addition (word size w), we assume the total area of
such a reduction unit to be no more than Areduction = 15,000 transistors, includ-
ing memory, required logic for the computation and for the distribution of the
results. The required time per reduction is bounded by treduction = 1.2 ·106 cycles
for the largest input. Since the four inputs are of different size, we can reduce
four parameters during the computational phase of ECM.

16

A.2 Area and Time Complexity of a Single ECM Unit

The precomputation of the curve parameters d, x̃, z̃ and (t+2)/4 can be done with
the functionality discussed above, together with some of the registers available
from phase 2. The computation amounts to

tprecomp = 14 · tmul/squ + 7 · tadd/sub + 2 · tinv + tgcd

clock cycles.

Following [20], phase 1 requires a total of 12 registers. With t = 30, the pre-
computation of the table in phase 2 requires a total of 32 = 2·16 registers of length
of m bit for r · Q with r ∈ {1, 4, 6, 7, 9, 10, 12, 15, 16, 19, 21, 22, 24, 25, 27, 30}. We
need additional 15 registers for building the tree according to Section 3.2, amount-
ing to a total of 59 registers of SRAM, i. e.,

ASRAM = 59 · 6 · m

equivalent logic transistors. The precomputation time for the table amounts to
7 point duplications and 10 point additions:

ttable = 7 · tpoint dup + 10 · tpoint add = 95 · (tmul/squ + tadd/sub)

We can determine the runtime and area consumption of both phases on basis
of the underlying ring arithmetic and the corresponding upper bound of the
runtimes. A setting with mr = 216, ma = 350, w = 64, p = 4, er = 4, and ea = 6
yields tadd,r = 3(e+1) = 17, tadd,a = 23 and tsub,e = 2(e+1) = 12, and tsub,a = 16
clock cycles. For this configuration, a modular multiplication of full length takes
tmul,r = 280 and tmul,a = 626 clock cycles for the rational bit length mr = 216
and for the algebraic bit length ma = 350, respectively.

For a single gcd we require at most tgcd,r = 2160, tgcd,a = 4900 cycles. Hence,
the total cycle count for both phases and for a single curves is no more than

tECM = 5600 · tadd/sub + 8100 · tmul/squ + 5 · tgcd + tprecomp

clock cycles including the precomputation time for the table (cf. [11]). Exclud-
ing the time for pre- and post-processing, a single candidate on the rational and
algebraic side requires a total of tECM,r = 2.4 · 106 and tECM,a = 5.3 · 106 clock
cycles, respectively. If we assume a frequency of 240 MHz, checking a candidate
with one curve requires approximately 10 ms on the rational side and 22 ms on
the algebraic side. For reading values from the DRAM in phase 2, we assume an
efficient SRAM-based prefetch circuit.

For implementing a single ECM unit capable of testing a single curve at a
time, we need

AECM = Amul/squ + Aadd/sub + Agcd + ASRAM + ADRAM + Ak + Acontrol

17

equivalent logic transistors, where Acontrol is the additional logic required to
control both phases of ECM, the internal gcd, and fast DRAM to SRAM logic. We
assume the control logic to consume no more than Acontrol = 100,000 equivalent
logic transistors which is a fairly conservative estimate8. The ECM unit includes
a barrel shifter composed of D-flip-flops (48 transistors per bit) for the 589-bit
scalar k required for the point multiplication k · P in phase 1. Furthermore, a
DRAM memory block stores the (s′, r′) pairs for all primes between the last prime
of the scalar k and C = 9680 for phase 2. The pairs (r′, s′) are sequentially read
from memory and are used to control the second phase of ECM. Note that we can
compress the information of (r, s) to smaller values (r′, s′): The actual value of s
is stored in a small 7-bit counter and is simply increased when the 1-bit value s′ is
equal to ’1’, leading to a point addition of 2st ·Q in phase 2. Hence, only a single
bit of memory is required for s′. The value of r′ points to the corresponding table
entry for r ·Q. With t = 30, we require only 4 bit for r′. A total of 5120 bit DRAM
for a total of 1024 pairs (resulting from 1116 primes) is required. For the rational
and algebraic ECM unit, the overall transistor count amounts approximately to
290,000 and 340,000, respectively. Assuming a standard 0.13 µm CMOS process,
a single ECM processor requires no more than 0.81 mm2 (rational) and 0.95 mm2

(algebraic) area of silicon.

8 For comparison: A simple microcontroller such as an 8051 derivate can be realized with 40,000
transistors.

18

