
A New Construction of Time Capsule Signature

Miaomiao Zhang1, Gongliang Chen3, Jianhua Li1,3,
Licheng Wang2 and Haifeng Qian2

1Dept. of Electronic Engineering, Shanghai Jiao Tong University
2Dept. of Computer Science and Engineering, Shanghai Jiao Tong University

3Sch. of Infomation Security Engineering, Shanghai Jiao Tong University

mmzhang sjtu@sjtu.edu.cn

Abstract. In this paper we introduce a new approach of constructing
time capsule signature, which not only captures the basic requirements,
but also more straightforward and flexible in contrast to the scheme
given by Dodis et al [1]. The time capsule signature provides an elegant
way to produce a “future signature” that becomes valid from a specific
future time t, when a trusted third party (called Time Server) publishes
some trapdoor information associated with the time t. It also has many
other advantages. Our work includes a developed security model of time
capsule signature, a novel way of construction based on the bipartite
ring signature, which is proven secure in the random oracle model and a
concrete realization of the scheme.

1 Introduction

1.1 Motivation

The notion of a digital signature may prove to be one of the most fundamental
and useful inventions of modern cryptography. A signature scheme provides a
way for each user to sign messages so that the signatures can later be verified
by anyone else. More specifically, each user can create a matched pair of private
and public keys so that only he can create a signature for a message (using his
private key), but anyone can verify the signature for the message (using the
signer’s public key). The verifier can convince himself that the message contents
have not been altered since the message was signed. Also, the signer can not
later repudiate having signed the message, since no one but the signer possesses
his private key.

In an ordinary signature scheme, the validity of a signature value is deter-
mined at the point of signature generation and never changes unless the signer’s
public key is revoked. Users cannot generate the so-called “future signature”
which is not currently valid but becomes valid from a future time t. A possible
way to achieve this is signing with a statement like “the signature of message m
becomes valid from time t”. However, this has several drawbacks. The verifier
has to be aware of the current time. And more seriously, in this solution the

signer herself loses control over the validity of the “future signature”. Even the
real signer cannot make her signature valid until time t, which could be undesir-
able in certain situations. In another solution, the signer can issue a new but also
independent signature of m before time t. However, this may also cause some
problem in certain situations. For instance, the verifier can distinguish whether
the message m was signed in the “future” or “regular” way, which seems to be
unnecessary in most situations. And in case the message m carries some mon-
etary value, the signer needs to make sure that no “double spending” occurs,
that is the signer can revoke the original signature, so that it will not become
valid at time t.

Therefore, we need a solution where the signer can issue a future signature
which should satisfy the following properties:

– After the signature creation, the recipient can make sure that the signature
will become valid by time t, even if the signer refuses to cooperate after she
produces the future signature.

– The signer can make his future signature valid at any time after the initial
creation.

– The resulting signatures are indistinguishable. In other words, the verifier
cannot tell whether the signature is validated by the signer earlier, or it
became “automatically valid” at time t.

1.2 Related Work

It is crucial to specify the mechanism under which the signature can be “auto-
matically” completed at time t (which we call “hatching” as opposed to “pre-
hatching” which can be done by the signer at any time).

There are two main lines of work related to cryptographic time capsule,
depending on whether or not involve a trusted third party.

The first approach, which related to timed-release cryptography, is to ensure
that the encryption, commitment or signature can be opened in a brute force
way by solving some time-consuming, but computationally feasible problem. For
instance, Dwork and Naor [6] used such moderately hard functions in order to
deter abuse of resources such as spamming. Bellare and Goldwasser [7, 8] sug-
gested “verifiable time capsules” for key escrowing in order to deter widespread
wiretapping. Rivest, Shamir and Wagner [9] suggested “time-lock puzzle”, where
the goal is to design “inherently sequential puzzles” which are resistant to par-
allel attacks. This was formally addressed by Boneh and Naor [2], who defined
(verifiable) timed commitments. As one of their applications, they get an ana-
log of “timed signature” which is termed “time capsule signature” by Dodis et
al, where the future signature can either be opened by the signer, or by the
recipient-the latter if the recipient solves a moderately hard problem. Then[10,
11] made some advances in this work.

The second approach is based on the trusted third party(TTP). It has two
main flavors: optimistic fair exchange of digital signatures, and identity-based
future encryption. In the former case, the server needs to resolve all individual

signatures where the signer refused to validate the signature. Representative
examples include [3, 4, 13, 5]. In the case of future encryption [14, 15, 12], the
main problem addressed was that the sender wants to ensure that the message
would remain hidden before the Time Server would publish the corresponding
trapdoor.

Dodis et al introduced the notion of time capsule signatures[1], which is
is a “future signature” that becomes valid from a specific future time t, when
a trusted third party (the arbitrator which called the Time Server) publishes
some trapdoor information associated with the time t. In addition, time capsule
signature should satisfy the following properties:

– If the signer wants, she can make her time capsule signature effective before
the pre-defined time t.

– The recipient of ”future signature” can verify right away that the signature
will become valid no later than at time t.

– Time Server need not contact any user at any time, and in fact does not
need to know anything about the PKI employed by the users.

– Signatures completed by the signer before time t are indistinguishable from
the ones completed using the Time Server at time t.

More specifically, in a time capsule signature scheme, when Alice gives Bob
her time capsule signature σt for a future time t, Bob can verify that Alice’s
time capsule signature will become valid from the time t. In addition, if Alice
wishes, she can make her time capsule signature effective before the predefined
time t. The assumption on Time Server is minimal, for the Time Server only
publishes some information at the beginning of each time period and need not
contact any user at any time. They also mentioned that the concept of time
capsule signature can be generalized to event capsule signature, where Event
Server issues the notification information of specific events. The event capsule
signature becomes valid if a specific event happens or the signer makes valid
before the event occurs.

They also provide a generic construction based on a primitive called identity-
based trapdoor hard-to-invert relation (ID-THIR). In brief, ID-THIR is given by
a family R of relations Rid, where (1) it is easy to sample a random pair (c, d) ∈
Rid and verify if the pair (c, d) belongs to Rid; (2) for each identity id, there
exists a trapdoor tdid, which allows one to compute a random d corresponding
to any given c (The trapdoor tdid can be efficiently computed from a single
“master trapdoor” mtdR); (3) without the trapdoor, it is hard to find a matching
d corresponding to a randomly sampled c, even if one knows many trapdoors
corresponding to identities id′(= id).

A generic construction of time capsule signature from ID-THIR is given in
[1] and the security of that scheme is based on the properties of the ID-THIR
scheme. However, they just give constructions of THIR and do not give any
concrete realization of ID-THIR. We find that it is not trivial to concretely
construct a ID-THIR.

1.3 Our Contribution

Our contribution lies in developing the security notions of time capsule signature
and providing a novel way of construction from an original signature scheme and
a bipartite ring signature scheme. Our construction of time capsule signature is
very nature, plain and flexible and it is proven secure in the random oracle
model if the underlying building blocks(the ordinary signature scheme and the
ring signature scheme) are secure. Concrete time capsule signature scheme can
be easily realized from our generic construction.

The rest of this paper is organized as follows: In section 2, we recall the
components of digital signature scheme and ring signature scheme, and their
security definitions. In section 3, we first introduce the definitions of time capsule
signature and develop the underlying security model. Then we give our new
construction based on a bipartite ring signature and its security proof. Then in
section 4, we present a concrete and full time capsule signature scheme from our
generic construction and analyze its security. Finally, concluding remarks are
made in Section 5.

2 Preliminaries

2.1 Security Notions of Digital Signature

We first review the formal definition of a generic digital signature scheme[18],
which we denote by DS.

Definition 1 [Digital Signature Scheme] A digital signature scheme
DS = (G,S,V) is defined by the following algorithms:

– on input 1k, where k is the security parameter, the algorithm G produces a
pair (pk, sk) of matching public and secret keys. Algorithm G is probabilistic.

– Giving a message m and a pair of matching public and secret keys (pk, sk),
S can produce a signature σ. The signing algorithm might be probabilistic.

– Given a signature σ, a message m and a public key pk, V tests whether σ is a
valid signature of m with respect to pk. In general, the verification algorithm
need not be probabilistic.

Formally, Let OALG be an oracle simulating the algorithm ALG. Let the
attacker F on input the public parameter param have access to OALG, denoted
as FOALG(param). Query(F,OALG) is the set of queries F asked to the algorithm
ALG simulated by oracle O.

Definition 2 [UF-CMA] Let DS = (G,S,V) be a digital signature scheme,
and let A be an attacker assumed to be a probabilistic Turing machine taking
a security parameter k as input. Consider the following experiment of running
A in an attack on digital signature scheme DS as the following. Notice that the
public key is provided as an input to A.

Experiment ExpUF-CMA
DS, A

Let (pk, sk) R←− G(1k)

Let (m,σ)← AOS (pk)
If V(m,σ) = 1 and m /∈ Query(A,OS)
Then return 1 else return 0

We define SuccUF-CMA
DS, A be the probability that experiment ExpUF-CMA

DS, A re-
turns 1.

SuccUF-CMA
DS, A (k) = Pr[V(m,σ) = 1]

Then for any t, q let

SuccUF-CMA
DS (t, q) = max

A
{SuccUF-CMA

DS, A }

where the maximum is over all A such that the execution time of experiment
ExpUF-CMA

DS, A is at most t and the number of oracle queries made by A is at most
q. Note that the running time and the number of queries are all polynomial in
the security parameter k.

In practice, the queries correspond to messages signed by the legitimate
sender, and it would make sense that getting these examples is more expen-
sive than just computing on one’s own. That is, we would expect q to be smaller
than t.

The schemeDS is said to be UF-CMA secure if SuccUF-CMA
DS (t, q) is negligible

in k.

2.2 Security Notions of Ring Signature

The concept of ring signature was formalized by Rivest et al. in [17]. According
to [16, 20], we give a concise formalized definition of ring signature scheme as
follows.

Definition 3 [Ring Signature Scheme] A ring signature scheme, which
we denote by RS, is a triple of algorithms (G,S,V)

– (Si, Pi) ← G(1k) is a probabilistic polynomial time algorithm which takes
security parameter k and outputs private key Si and corresponding public
key Pi of a user i.

– σ ← S(m, 〈Pr〉, Ss) is a probabilistic polynomial time algorithm which takes
as inputs a message m, secret key Ss of signer s, and r possible signers’
public key set 〈Pr〉 which includes the one corresponding to Ss, produces a
signature σ.

– 1/0 ← V(〈Pr〉,m, σ) is a deterministic polynomial time algorithm which
takes a message m, a signature σ and a set of r public keys 〈Pr〉 as inputs,
returns 1 or 0 for accept or reject, respectively.

It is required that for any message m, any (Ss, Ps) generated by G(1k) and
any 〈Pr〉 that includes Ps, the equation V(〈Pr〉,m,S(1k, Ss)) = 1 satisfies.

The security of ring signature schemes has two aspects: unforgeability and
anonymity.

Definition 4 [Unforgeability of Ring Signature] Let RS = (G,S,V)
be a ring signature scheme, and let A be a PPT (probabilistic polynomial-time)
adversary taking a security parameter k as input. Consider an experiment of
running A in an attack on ring signature scheme RS as the following.

Experiment ExpUF
RS, A

Let (Pi, Si)
R←− G(1k)

Let (m,σ)← AOS (〈Pr〉)
If V(m,σ, 〈Pr〉) = 1 and m /∈ Query(A,OS)
Then return 1 else return 0

Define SuccUF
RS, A be the probability that experiment ExpUF

RS, A returns 1.

SuccUF
RS, A(k) = Pr[V(m,σ) = 1]

Then for any t, q let

SuccUF
RS(t, q) = max

A
{SuccUF

RS, A}

where the maximum is over all A such that the execution time of experiment
ExpUF

RS, A is at most t, the number of oracle queries made by A is at most q.
A ring signature scheme is unforgeable if for any PPT adversary A, SuccUF

RS(t, q)
is negligible. A function ε is negligible if for all polynomials π, ε(k) < 1/π(k)
holds for all sufficiently large k.

Definition 5 [Anonymity of Ring Signature] Let RS = (G,S,V) be a
ring signature scheme, and let A be a PPT adversary taking a security parameter
k as input. Consider the following experiment of running A in an attack on RS.

Experiment ExpANON
RS, A

Let (〈Pr〉,m)← AG(1k)
Let (i0, i1)← A, where i0, i1 are indices that Pi0 , Pi1 ∈ 〈Pr〉
b

R←− {0, 1}
Let σ ← S(Sib

, 〈Pr〉,m)
b̃← AOS (〈Pr〉, i0, i1)
If b̃ = b
Then return 1 else return 0

We define SuccANON
RS, A be the probability as follows

SuccANON
RS, A (k) = |Pr[b̃ = b]− 1/2|

Then for any t, q let

SuccANON
RS (t, q) = max

A
{SuccANON

RS, A}

where the maximum is over all A such that the execution time of experiment
ExpANON

RS, A is at most t, the number of oracle queries made by A is at most q.
A ring signature scheme is anonymous if for any PPT adversary A, SuccANON

RS (t, q)
is negligible.

3 Time Capsule Signature

3.1 Defination

Definition 6 [time capsule signature scheme] A time capsule signature
scheme is specified by an 8-tuple of PPT algorithms (SetupTS , SetupUser, TSign,
TV erify, TRelease, Hatch, PreHatch, V erify) such that:

– SetupTS : This setup algorithm is run by Time Server. It takes a secu-
rity parameter as input and returns a public/private time release key pair
(TPK, TSK).

– SetupUser: This setup algorithm is run by each user. It takes a security
parameter as input and returns the user’s public/private key pair (PK, SK).

– TSign: The time capsule signature generation algorithm TSign takes as
input (m,SK, TPK, t), where t is the specific time from which the signature
becomes valid. It outputs a time capsule signature σ′t.

– TV erify: The time capsule signature verification algorithm TV erify takes
as input (m,σ′t, PK, TPK, t) and outputs 1 (accept) or 0 (reject).

– TRelease: The time release algorithm TRelease is run by Time Server and
takes as input (t, TSK). At the beginning of each time period t, Time Server
publishes Zt = TRelease(t, TSK). Note that Time Server dose not contact
any user at any time and need not know anything about the users.

– Hatch: This algorithm is run by any party and is used to open a valid time
capsule signature which became mature. It takes as input (m,σ′t, PK, TPK, Zt)
and returns the hatched signature σt.

– PreHatch: This algorithm is run by the signer and used to open a valid time
capsule signature which is not mature yet. It takes as input (m,σ′t, SK, TPK, t)
and returns the pre-hatched signature σ̂t.

– V erify: This algorithm is used to verify a hatched (or pre-hatched) signa-
ture. V erify takes as input (m,σt/σ̂t, PK, TPK, t) and returns 1 (accept)
or 0 (reject).

Correctness property states that

– TV erify(m,Tsig(m,SK, TPK, t), PK, TPK, t)
– V erify(m,σt/σ̂t, PK, TPK, t), where σt = Hatch(m,σ′t, PK, TPK, Zt) or

σ̂t = PreHatch(m,σ′t, SK, TPK, t).

3.2 Security of Time Capsule Signature

In the time capsule signature scheme, the Time Server is assumed to be a trusted
third party, which implies that it’s unnecessary to consider any dishonest be-
havior of the Time Server. We define the security of time capsule signature as
follows.

Definition 7 [Security of Time Capsule Signature] The security of time
capsule signatures consists of four aspects:

– Unforgeability of the immature signature. We require that any PPT adversary
A succeeds with at most negligible probability in the following experiment.

Experiment ExpUF-imTCS
T CS, A

Let (TPK, TSK)← SetupTS(1k)
Let (PK, SK)← SetupUser(1k)
(m, t, σ′t)← AOT Sign(PK, TPK)
If TV erify(m,σ′t, PK, TPK, t) = 1

and (m, t̃) /∈ Query(A,OTSign) for all t̃
Then return 1 else return 0

where Query(A,OTsign) is the set of queries A asked to the time capsule
signature generation oracle OTSign. Define SuccUF-imTCS

T CS, A be the probability
that experiment ExpUF-imTCS

T CS, A returns 1.
In other words, no one can forge an immature signature of m.

– Un-Prehatchable by dishonest users We require that any PPT adversary B
succeeds with at most negligible probability in the following experiment.

Experiment ExpUPH-TCS
T CS, B

Let (TPK, TSK)← SetupTS(1k)
Let (PK, SK)← SetupUser(1k)
(m, t, σ′t)← Tsign(m,SK, TPK, t)
Let (m, t, σt)← BOT R,OP reH (PK, TPK)
If V erify(m,σt, PK, TPK, t) = 1 and

t /∈ Query(B,OTR) and (m, t, σ̃′t) /∈ Query(B,OPreH)
for ∀σ̃′t such that TV erify(m,σ′t, PK, TPK, t) = 1

Then return 1 else return 0

where Query(B,OTR) is the set of queries of B asked to the time release
oracle OTR, and Query(B,OPreH) is the set of valid queries B asked to the
oracle OPreH . In other words, no one should be able to open a pre-mature
time capsule signature without help of the signer or Time Server. Notice
that adversary B can make any time release query to OTR except the target
time t. Therefore, the above experiment requires strong security guaranteeing
both forward and backward secrecy.
Define SuccUPH-TCS

T CS, B be the probability that experiment ExpUPH-TCS
T CS, B re-

turns 1.
– Non-cheating of the signer. We require that any PPT adversary C succeeds

with at most negligible probability in the following experiment.

Experiment ExpNCH-TCS
T CS, C

Let (TPK, TSK)← SetupTS(1k)
(m, t, σ′t, PK)← COT R(TPK)
Let Zt ← TRelease(t, TSK)
Let σt ← Hatch(m,σ′t, PK, TPK, Zt)
If TV erify(m,σ′t, PK, TPK, t) = 1 and

V erify(m,σt, PK, TPK, t) = 0
Then return 1 else return 0

Define SuccNCH-TCS
T CS, C be the probability that experiment ExpNCH-TCS

T CS, C re-
turns 1.
In other words, adversary A should not be able to produce a time capsule
signature σ′t , where σ′t looks good to the verifier but cannot be hatched into
A’s full signature by the Time Server.

– Indistinguishability.
It is required that the hatched signature and the prehatched signature are
computationally indistinguishable. Let D be any PPT distinguisher. We re-
quire that the success probabilisty of D in the following experiment is neg-
ligibly close to 1/2.

Experiment ExpIND-TCS
T CS, D

Let (TPK, TSK)← SetupTS(1k)
Let (PK, SK)← SetupUser(1k)
Let (m, t, σ′t)← Tsign(m,SK, TPK, t)
Let d

R←− {0, 1}
If d = 0, σt ← Hatch(σ′t)
else σt ← PreHatch(σ′t)
Let d̃← DOT R,OHatch,OP reH (PK, TPK, σ′t)
If d̃ = d
Then Return 1 else reture 0

Define the success probability of D as

SuccIND-TCS
T CS, D = |Pr[ExpIND-TCS

T CS, D = 1]− 1/2|

For any t, q we define the success probability of distinguishing T CS signature
via

SuccIND-TCS
T CS (t, q) = max

D
{SuccIND-TCS

T CS, D }

Definition 8 [UF-TCS-CMA] A T CS scheme is sad to be UF-TCS-CMA
secure if the Unforgeability of the immature signature property and the Un-
Prehatchable by dishonest users property(mentioned in Definition 7) achieved.

It is obvious

SuccUF-TCS-CMA
T CS ≤ SuccUF-imTCS

T CS + SuccUPH-TCS
T CS (1)

Notice that the definination above is just an unforgeability notion for the
T CS. We give this defininition in order to generalize the unforgery aspect of the
time capsule signature, whereas the full description of security is proposed in
Definition 7.

3.3 Generic Construction Based on Ring Signature

In this part we give a generic construction of time capsule signature scheme
based on bipartite ring signature.

Let DS=(Set, Sig, V er) be an ordinary signature scheme.

– SetupTS : This Time Server takes a security parameter k as input and sets
a public/private time release key pair (TPK, TSK) = (SKTS , PKTS).

– SetupUser: Each user i sets his public/private key pair (PK, SK)=(SKi,PKi)
by running Set(1k).

– TSign: To generate a probabilistic time capsule signature on a message m
for time t, the signer s first gets the hash value h = H0(m||PKTS ||t) and
computes σ′t = SigSKs

(h) as a time capsule signature.
– TV erify: For a given signature σ′t, the verifier checks whether σ′t is a valid

signature on h = H0(m||PKTS ||t) by running V erPKs
(h, σ′t).

– TRelease: For a given time value t, Time Server computes a ring signature
relate to user s
– Determine the symmetric key: The Time Server first computes the hash

of his public key, the Signer’s ID and time t as the symmetric key k:
k = H1(PKTS , IDs, t)

– Pick a random glue value: The Time Server picks an initialization(glue)
value v uniformly at random from (0, 1)b.

– Pick random value for signer: The Time Server picks a random value xs

uniformly from (0, 1)b and computes ys = gs(xs), where gs is an extended
trapdoor permutation[17] corresponding to s.

– Solve for yTS : The Time Server solves the following ring equation for
yTS : Ck,v(ys, yTS) = v

– Invert the Time Server ’s trapdoor permutation: The Time Server uses
his trapdoor information in order to invert gTS on yTS to obtain xTS :
xTS = g−1

TS(yTS)
– publish the ring signature: The ring signature part is defined to be the

5-tuple: Zt = (PKs, PKTS ; v;xs, xTS) and the Time Server publishes
Zt.

– Hatch: To open an mature time capsule signature σ′t, a party combine σ′t
with Zt and returns the hatched signature σt = (σ′t, PKs, PKTS ; v;xs, xTS).

– PreHatch: To open a valid pre-mature time capsule signature σ′t, the signer
should computes a valid ring signature himself:
– computes the symmetric key: The Signer computes the symmetric key

k: k = H1(PKTS , IDs, t)
– Pick a random glue value: The Signer picks an initialization(glue) value

v̂ uniformly at random from (0, 1)b.
– Pick random value for the Time Server : The Signer picks a random value

ˆxTS uniformly from (0, 1)b and computes ˆyTS = gTS(ˆxTS)
– Solve for ŷs: The Signer solves the following ring equation for ŷs: Ck,v(ŷs, ˆyTS) =

v̂
– Invert the trapdoor permutation: The Signer uses his trapdoor informa-

tion in order to invert gs on ŷs to obtain x̂s: x̂s = g−1
s (ŷs)

– reture a pre-mature signature: The ring signature part generated by the
Signer is defined to be the 5-tuple: (PKs, PKTS ; v̂; x̂s, ˆxTS) and the pre-
mature signature is σ̂t = (σ′t, PKs, PKTS ; v̂; x̂s, ˆxTS)

– V erify: For a given hatched signature σt (or pre-hatched signature σ̂t). The
verifier first check the ring signature part:

– Apply the trapdoor permutation: the verifier computes yTS = gTS(xTS)
and ys = gs(xs).

– Obtain: the verifier hashes the public key of the Time Server and the
Signer’s ID to compute the symmetric encryption key k: k = H1(PKTS , IDs)

– Verify the ring equation: the verifier checks whether the following equa-
tion is satisfied: Ck,v(ys, yTS) = v.

If the ring equation is satisfied, then he verifies that σ′t is a valid time capsule
signature on h by running V erPKs(h, σ′t).

The correctness property of the scheme are obvious from the properties of the
basis digital signature scheme and the ring signature scheme. We now analyze
its security.

Lemma 1. The time capsule signature scheme presented above is unforgery if
the underlying ordinary signature scheme is UF-CMA secure and ring signature
scheme is unforgery. Concretely, we obtain the following bound:

SuccUF-TCS-CMA
T CS (tTCS, qTCS) ≤ SuccUF-CMA

DS (tDS, qDS) + SuccUF
RS(tRS, qRS)

(2)
where tDS+tRS = tTCS+TOSDS

+TOSRS
, and qDS+qRS = qTCS. Here, TOSDS

and
TOSRS

denote the running time of the signature generation algorithm simulated
by oracle OS in the attack games of DS scheme and RS scheme respectively.

Proof: Let B denote an attacker that defeats the unforgeability of the im-
mature signature in the T CS scheme. Let A denote an attacker that defeats the
UF-CMA security of the DS scheme.

We show how the view of B in the real attack game of UF-imTCS (Definition
7), which we denote by G0, can be simulated to obtain a new game G1 which
is related to the ability of the attacker A to defeat the UF-CMA security of the
DS scheme.

Game G0: As mentioned, this game is identical to the real attack game
ExpUF-imTCS

T CS, B described in Definition 7. We denote by E0 the event that B out-
puts a valid message and immature time capsule signature pair as a forgery. We
use a similar notation E1 for Game G1. Since Game G0 is the same as the real
attack game, we have

Pr[E0] = SuccUF-imTCS
T CS, B

Game G1: First, we replace B’s common parameter by A’s common para-
meter, denoted as cp1. Then we do the following. Whenever B issues a time
capsule signature(an immature signature) generation query m, we intercept it
and forward (m, ·) as A’s signature generation query to A’s Challenger to get a
corresponding signature σ. We then send this σ to B. If B outputs (m, t̃, σ̃t), we
intercept it and return it as A’s forgery. Note from the simulation that B’s view
in the real attack game is identical to it’s view in Game G1. Hence we have

Pr[E1] ≥ Pr[E0]

By definition of Pr[E1] and Pr[E0], we obtain

SuccUF-CMA
DS, A (k) ≥ SuccUF-imTCS

T CS, B (k)

Considering the running time and the number of queries, we obtain the following
bound

SuccUF-imTCS
T CS, B (timTCS, qimTCS) ≤ SuccUF-CMA

DS, A (tDS, qDS) (3)

where tDS = timTCS+TOSDS
, and qDS = qimTCS. Here, TOSDS

denotes the running
time of the signature generation algorithm simulating by oracle OS in the attack
game of DS scheme.

Then let D denote an attacker that defeats the Un-Prehatchable by dishonest
users in the T CS scheme. And C denote an attacker that defeats the unforge-
ability of the RS scheme.

We show how the view of D in the real attack game of UF-UPH (Definition
7), which we denote by G2, can be simulated to obtain another new game G3

related to the ability of the attacker C to defeat the unforgeability of the RS
scheme.

Game G2: As mentioned, this game is identical to the real attack game
ExpUPH

T CS, D described in Definition 7. We denote by E2 the event that D outputs
a valid (m, t, σt) triple as a forgery from the given time capsule signature triple
(m, t, σ′t). We use a similar notation E3 for Game G3. Since Game G2 is the
same as the real attack game and we have

Pr[E2] = SuccUPH
T CS, D

Game G3: We first replace D’s common parameter by C’s common parameter,
denoted as cp2. Then we do the following. Whenever D issues a time release
query t or a PreHatch query (m, t, σ′t), we intercept it and forward (t, σ′t) as C’s
ring signature generation query to C’s Challenger to get a corresponding ring
signature. Combine this ring signature with σ′t and get a signature σt. We then
send this σt to D. If D outputs (m, t, σ̃t), we intercept it and parse it to get the
ring signature part ˜σRS . Then return it as C’s forgery. Note from the simulation
that D’s view in the real attack game is identical to it’s view in Game G3. Hence
we have

Pr[E3] ≥ Pr[E2]

By definition of Pr[E3] and Pr[E2], we obtain

SuccUF
RS, C(k) ≥ SuccUPH

T CS, D(k)

Considering the running time and the number of queries, we obtain the following
bound

SuccUPH
T CS, D(tUPH, qUPH) ≤ SuccUF

RS, C(tRS, qRS) (4)

where tRS = tUPH + TOSRS
, and qRS = qUPH. Here, TOSRS

denotes the running
time of the ring signature generation algorithm simulating by oracle OS in the
ring signature attack game.

Let F be an attacker, which possesses the attack capability of both B and D,
defeats the UF-TCS-CMA security of the T CS scheme.

As we see Equation (1) in Definition 8, SuccUF-TCS-CMA
T CS ≤ SuccUF-imTCS

T CS +
SuccUPH-TCS

T CS . Combine with Equation (2) and (3), we obtain

SuccUF-TCS-CMA
T CS, F (k) ≤ SuccUF-CMA

DS, A (k) + SuccUF
RS, C(k)

Considering the running time and the number of queries, we can obtain the
bound. So Equation (2) in the theorem statement holds.

Lemma 2. The time capsule signature scheme presented above is indis-
tinguishable(ambiguous) if the underlying bipartite ring signature scheme RSbi

holds the anonymity. Concretely, we obtain the following equation:

SuccANON
RSbi, A(k) ≥ SuccIND-TCS

T CS, D (k) (5)

Proof: Let D denote an attacker that defeats the indistinguishability in the
T CS scheme and let A denote an attacker that defeats the anonymity of the
bipartite RSbi scheme.

We will show how the view of D in the real attack game of IND-TCS (Defi-
nition 7), which we denote by G0, can be simulated to obtain a new game G1

which is related to the ability of the attacker A to defeat the anonymity of the
bipartite RSbi scheme.

Game G0: this game is identical to the real attack game ExpIND-TCS
T CS, D de-

scribed in Definition 7. We denote by E0 the event that D’s output d̃ equals to
d.We use a similar notation E1 for Game G1. Since Game G0 is the same as the
real attack game, we have

|Pr[E0]− 1/2| = SuccIND-TCS
T CS, D

Game G1: As we know, in this game, adversary A will be provided an oracle
for a biparitie ring signature algorithm and the goal of adversary A is to suc-
cessfully guess b. To do so, A first output a pair of indices (i0, i1) where PKi0

and PKi1 are the public keys of the two parties in the bipartite ring, respec-
tively. Then A will run distinguisher D as a subroutine. We replace D’s common
parameters by A’s common parameter, denoted as cp. Then we do the follow-
ing. Whenever D issues a Hatch query σ′t to OHatch(notice that here the oracle
OHatch will run oracle OTR first interiorly), we intercept it and forward (σ′t, t)
as A’s signature generation query to A’s challenger and get a ring signature σRS0

corresponding to i0. We then concatenate σ′t and σRS0 as σt and send σt to D.
When D issue a PreHatch query of σ′t to OPreHatch, we intercept it and for-
ward (σ′t, t) as A’s signature generation query to A’s challenger and get a ring
signature σRS1 corresponding to i1. We then concatenate σ′t and σRS1 as σt and
send σt to D. If D output d̃, we intercept it and let b̃ = d̃ as A’s guess result.

From the simulation that D’s view in the real attack game is identical to it’s
view in Game G1. Hence we have

|Pr[E1]− 1/2| ≥ |Pr[E0]− 1/2|

By definition of Pr[E1] and Pr[E0], we obtain Equation (5)

SuccANON
RSbi, A(k) ≥ SuccIND-TCS

T CS, D (k)

So we can conclude that our time capsule signature scheme is indistinguishable
if the underlying bipartite ring signature scheme holds the anonymity.

Lemma 3. The cheating behavior of dishonest signer do not exist in our
construction.

Proof: Let’s recall the experiment ExpNCH-TCS
T CS, C given in Definition 7. The

adversary C(dishonest signer) wins the game means that he successfully pro-
duced a time capsule signature σ′t which looks good to the verifier but can not
be hatched into a full signature of C by any recipient using the information
released by Time Sever.

However, in our construction of T CS scheme, the security aspect non-cheating
of the signer follows unconditionally. If a time capsule signature σ′t satisfies that
TV erify(m,σ′t, PK, TPK, t) = 1. When Time Server releases Zt, any party
can obtain a signature σt related to σ′t. By the correctness property of ring
signature, the ring signature part of σt always holds the ring equation. Therefore,
the hatched signature σt can passes the verification algorithm V erify.

Theorem 1. Our generic construction of time capsule signature from bipar-
tite ring signature is secure.

Proof: According to the above three Lemmas and analysis, it is obvious that
those four security aspects mentioned in Definition 7 can be achieved. Therefore
our construction of time capsule signature is secure.

4 A Concrete Time Capsule Signature Scheme

4.1 Description of Our Proposed Scheme

Let Gen(1k) be the system parameter generation algorithm and Set(1k) be the
usual RSA key generation algorithm. In our scheme, each party Ai has an RSA
public key Pi = (Ni, ei) which specifies the trapdoor one-way permutation fi of
ZNi :

fi(x) = xei (mod Ni)

Assume that only Ai knows how to compute the inverse permutation f−1
i

efficiently, using trapdoor information di = e−1
i (mod φ(Ni)). This is the original

Diffie Hellman model[19] for public-key cryptography.
For the trap door permutation f over ZN , we define a extended trapdoor

permutation g over {0, 1}j in the following way. For any j-bit input m define
nonegative integers q and r so that m = qN + r, 0 < r < N . Then

g(m) =

{
qN + f(r), if (q + 1)N ≤ 2j

m, o.w.

The function g is clearly a permutation over {0, 1}j , and it is a one-way trapdoor
permutation since only someone who know how to invert f can invert g efficiently
on more than a negligible fraction of the possible inputs.

Let E be a publicly defined symmetric encryption algorithm such that for
any key k of length l, the function Ek is a permutation over j-bit strings.

Define a family of keyed combine functions:

Ck,v(y0, y1) = Ek(y1 ⊕ Ek(y0 ⊕ v)) = v

It takes as input a key k, an initialization value v, and arbitrary values y0, y1 in
{0, 1}j . Each such combine function uses Ek as a sub-procedure, and produces
as output a value z in {0, 1}j . We can see given any fixed values for k and v,
Ck,v has the following properties:

1. For any fixed value of yb, b ∈ {0, 1}, the function Ck,v is a one-to-one mapping
from yb̄ to the output z.

2. Given j-bit values z and yb, it is possible to efficiently find a j-bit value for
yb̄ such that Ck,v(yb, yb̄) = z.

3. Give k, v, z, it is infeasible for an adversary to solve the equation

Ck,v(g0(x0), g1(x1)) = z

for x0, x1 if the adversary can’t invert any of the trapdoor functions g0, g1.

We now describe the full time capsule signature scheme by specifying an 8-
tuple of PPT algorithms (SetupTS, SetupUser, TSign, TVerify, TRelease, Hatch,
PreHatch, Verify), corresponding to eight phases respectively. To make clear, we
list these eight algorithms in the table.

– Setup Phase of Time Server : In algorithm SetupTS(1k), k = k0 +k1 = |NTS |
with 2−k0 and 2−k1 being negligible quantities; H, H0, H3 are hash functions
satisfying

H0 : {0, 1}∗ 7→ {0, 1}k1 , H : {0, 1}k1 7→ {0, 1}k−k1−1, H3 : {0, 1}∗ 7→ {0, 1}l

The output bit string from H is split into two sub-bit-strings, one is denoted
by H1 and hash the first k0 bits, the other is denoted by H2 and hash the
remaining k − k1 − k0 − 1 bits. l is the key length of symmetric encryption
algorithm Ek.

– Setup Phase of User: Each user Ui with identity IDi in the system runs the
algorithm SetupUser(1k) during this phase.

– Time capsule signature generation: To make a future signature, the signer s
runs algorithm TSign(m, ds, Ns).

– Time capsule signature verification: To check the time capsule signature, the
algorithm TVerify(m,σ′t, es, Ns) is run by verifier.

– The time release phase: At the beginning of each time period t, the Time
Server runs algorithm TRelease(t, IDs, IDTS , PKs, PKTS) computes and
publishes the knowledge for hatching a valid time capsule signature of signer
s.

– Open a mature valid time capsule signature: The recipient runs algorithm
Hatch(σ′t, Zt).

– Open an immature valid time capsule signature: Before time t, the signer
can run algorithm PreHatch(t, IDs, IDTS , PKs, PKTS) to open a valid time
capsule signature which is not mature yet.

– Verify a hatched or prehatched signature: The verifier checks a mature sig-
nature by running algorithm Verify(m,σt, IDs, IDTS , PKs, PKTS , t).

Algorithm SetupTS(1k) Algorithm SetupUser(1k)
(NT S ,eT S ,dT S ,H,H0,H3,k0,k1)←Gen(1k) (Ni, ei, di)← Set(1k)
PKTS ← (NTS , eTS) PKi ← (Ni, ei)
SKTS ← dTS SKi ← di

Output (PKTS ,H, H0,H3, k0, k1) Return PKi

Algorithm TSign(m, ds, Ns) Algorithm TVerify(m,σ′t, es, Ns)
r

R←− {0, 1}k0 y ← (σ′t)
es (mod Ns)

w ← H0(m‖IDs‖t‖r) Parse y as b‖w‖r∗‖H2(w)
r∗ ← H1(w)⊕ r r ← r∗ ⊕H1(w)
y ← 0‖w‖r∗‖H2(w) If (H0(m‖IDs‖t‖r)=w∧H2(w)=r∧b=0)

σ′t ← yds (mod Ns) Return 1
Return σ′t else Return 0

Algorithm TRelease(t,IDs,IDT S ,PKs,PKT S) Algorithm PreHatch(t,IDs,IDT S ,PKs,PKT S)

k ← H3(IDTS , IDs, t) k ← H3(IDTS , IDs, t)
v

R←− {0, 1}j v
R←− {0, 1}j

xs
R←− {0, 1}j xTS

R←− {0, 1}j
ys ← gs(xs) yTS ← gTS(xTS)
solve equation Ck,v(ys, yTS) = v for yTS solve equation Ck,v(ys, yTS) = v for ys

xTS ← g−1
TS(yTS) xs ← g−1

s (ys)
Zt ← (PKs, PKTS , v, xs, xTS) σt ← (σ′t, PKs, PKTS , v, xs, xTS)

Return Zt Return σt

Algorithm Hatch(σ′t, Zt) Algorithm Verify(m,σt,IDs,IDT S ,PKs,PKT S ,t)

σt ← (σ′t, PKs, PKTS , v, xs, xTS) yTS ← gTS(xTS)
= (σ′t;Zt) ys ← gs(xs)

Return σt k ← H3(IDTS , IDs, t)
If Ck,v(ys,yT S)=v

Run TVerify(m,σ′t, PKs)
else Return 0

4.2 Security Analysis

Theorem 2. This concrete time capsule signature scheme given above is a secure
time capsule signature scheme.

Proof: As the underlying original digital signature scheme used in the con-
struction are UF-CMA secure and the bipartite ring signature scheme we utilize
is unforgeable and anonymous. According to the security analysis and theorems
given in the former section, our concrete construction of time capsule signature
scheme is secure.

5 Conclusion

Time capsule signature is a useful paradigm, applicable across cryptosystems and
cryptographic protocols. In this paper we first recall the concept of time capsule
signature and develop its security notions. Then we propose a new construction

of time capsule signature which is proven secure in the random oracle model
from bipartite ring signature. This construction removes the deficiencies in the
existing scheme based on ID-THIR. Secure and concrete time capsule signature
scheme can be easily achieved via our novel way of construction.

Acknowledgment

The author would like to thank Hongsheng Zhou and the anonymous reviewers
for their valuable comments on the earlier drafts of the paper.

References

1. Y. Dodis and D. Yum. Time Capsule Signature, Financial Cryptography and Data
Security Conference (FC), 2005. , LNCS 3570, pp.57-71, Springer-Verlag, 2005.

2. D. Boneh and M. Naor. Timed commitments. Advances in Cryptology-CRYPTO
2000, LNCS 1880, pp.236-254. Springer-Verlag, 2000.

3. N. Asokan, V. Shoup, and M. Waidner. Optimistic fair exchange of digital signa-
tures. In K. Nyberg, editor, Advances in CryptologyEUROCRYPT 1998, LNCS
1403, pp.591-606. Springer-Verlag, 1998.

4. N. Asokan, V. Shoup, and M. Waidner. Optimistic fair exchange of digital sig-
natures. IEEE Journal on Selected Areas in Communication, 18(4), pp.593-610,
2000.

5. Y. Dodis and L.Reyzin. Breaking and repairing optimistic fair exchange from
PODC 2003. In Proceedings of the ACM workshop on Digital Rights Management
2003, pp.47-54, 2003.

6. C. Dwork and M. Naor. Pricing via processing or combatting junk mail. In E. Brick-
ell , editor, Advances in CryptologyCRYPTO 1992, LNCS740, Springer-Verlag,
pp.139-147,2004.

7. M. Bellare and S. Goldwasser. Encapsulated key escrow. MIT Laborator for Com-
puter Science Technical Report 688, Apr. 1996.

8. M. Bellare and S. Goldwasser. Verifiable partial key escrow. In Proceedings of the
4th ACM Conference on Computer and Communications Security, pp.78-91. 1-4
Apr. 1997.

9. R. Rivest, A. Shamir, and D. Wagner. Time lock puzzles and and timed release
cryptography. Technical report, MIT/LCS/TR-684.

10. J. Garay and M. Jakobsson. Timed release of standard digital signatures. In Fi-
nancial Cryptography 2002, volume 2357 of Lecture Notes in Computer Science,
pages 168-182. Springer-Verlag, 11C14 Mar. 2002.

11. J. Garay and C. Pomerance. Timed fair exchange of standard signatures. In Fi-
nancial Cryptography 2003, volume 2742 of Lecture Notes in Computer Science,
pages 190-207. Springer-Verlag, 27C30 Jan. 2003.

12. I. Osipkov, Y. Kim and J. Cheon. New approaches to timed-release cryptography
IACR E-print Archive. Available from http://eprint.iacr.org/2004/231/, 2004.

13. D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate and verifiably en-
crypted signatures from bilinear maps. In Advances in Cryptology-EUROCRYPT
2003, LNCS 2656, pp416-432. Springer-Verlag, 2003.

14. I. Blake and A. Chan. Scalable, server-passive, user-anonymous timed release pub-
lic key encryption from bilinear pairing. IACR E-print Archive. Available from
http://eprint.iacr.org/2004/211/, 2004.

15. D. Boneh and M. Franklin. Identity based encryption from the Weil pairing. In J.
Kilian, editor, Advances in Cryptology-CRYPTO 2001, LNCS 2139, pp.213-229.
Springer-Verlag, 2001.

16. Joseph K. Liu and Duncan S. Wong2, On the security models of (threshold) ring
signature schemes, the 7th International Conference on Information Security and
Cryptology (ICISC 2004), LNCS 3506, Springer-Verlag, 2005, 204 - 217.

17. R. L. Rivest, A. Shamir and Y. Tauman, How to Leak a Secret, Advances in
Cryptology-Asiacrypt 2001, LNCS 2248, pp.552-565, Springer-Verlag, 2001.

18. Goldwasser, S. and Bellare, M. Lecture Notes on Cryptography. Summer course
on cryptography, MIT, 1996-2001.

19. W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Trans. Inform.
Theory, IT-22:644-654, November 1976.

20. Adam Bender, Jonathan Katz and Ruggero Morselli, Ring Signatures: Stronger
Definitions, and Constructions without Random Oracles, 3rd Theory of Cryptog-
raphy Conference(TCC06), LNCS 3876, pp.60-79, Springer-Verlag, 2006

21. Mihir Bellare and Phillip Rogaway. The exact security of digital signatures: How
to sign with RSA and Rabin. In Maurer [Mau96], pages 399-416. Revised version
appears in http://www-cse.ucsd.edu/users/mihir/papers/crypto-papers.html

