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Abstract

An elliptic curve random number generator (ECRNG) has been proposed in ANSI and NIST
draft standards. This paper proves that, if three conjectures are true, then the ECRNG is secure.
The three conjectures are hardness of the elliptic curve decisional Diffie-Hellman problem and
the hardness of two newer problems, the x-logarithm problem and the truncated point problem.
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1 Introduction

Certain random number generator (RNG) algorithms, such as the Blum-Micali [BM84] and Kaliski
[Kal86] generators, have been proven secure — assuming the conjectured hardness of associated
number-theoretic problems. Recently, a new random number generator has been proposed (see
[BK05, Joh04]). In this paper, this new generator is called the Elliptic Curve Random Number Gen-
erator (ECRNG). Like Kaliski’s generator, the ECRNG is based on elliptic curves and is adapted
from the Blum-Micali generator. Compared to many other number-theoretic RNGs, the ECRNG
is considerably more efficient, because it outputs more bits per number-theoretic operation. This
paper proves that ECRNG is secure if the following problems are hard:

• the elliptic curve version of the well known decisional Diffie-Hellman problem (DDHP),

• the x-logarithm problem (XLP), a new problem, which is, given an elliptic curve point,
determine whether its discrete logarithm is congruent to the x-coordinate of an elliptic curve
point.

• the truncated point problem (TPP), a new problem, which is, given a bit string of a certain
length, determine whether it is obtain by truncating the x-coordinate of a random elliptic
curve point.

Hardness of the DDHP for certain elliptic curve groups is now widely accepted. The TPP concerns
extraction of pseudorandom bits from random elliptic curve points. El Mahassni and Shparlinski
[MS02] give some results about extraction of pseudorandom bits from elliptic curve points. Gürel
[Gür05] also gives some results, although with fewer bits extracted than in the ECRNG.

The ECRNG is different from the Kaliski RNG in two major respects:
∗Certicom Research
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• The ECRNG uses ordinary elliptic curves, not the supersingular elliptic curves of Kaliski
RNG. Supersingular curves can make the state transition function a permutation, which is
advantageous for making the Blum-Micali proof work, but is disadvantageous because of
the Menezes-Okamoto-Vanstone (MOV) attack, which requires a larger curve to make the
proof give a useful assurance1. For ordinary curves, the state transition function is many-
to-one, often two-to-one. This paper adapts the Blum-Micali proof by introducing the x-
logarithm problem to overcome the obstacle introduced by state transition function not being
a permutation.

• The ECRNG produces at each state update an output with almost as many bits as in the
x-coordinate of an elliptic curve point, whereas the Kaliski ECRNG outputs just a single bit.
Therefore the ECRNG is considerably more efficient than the Kaliski RNG if operated over
the same elliptic curve. The Kaliski RNG outputs a single bit that is a hardcore predicate
for the elliptic curve discrete logarithm problem (ECRNG). The ECRNG output function
essentially uses a conjectured hardcore function of the ECDLP. The basis of this conjecture
is the elliptic curve DDHP, and the TPP.

2 The Elliptic Curve Random Number Generator

Let Fq be a finite field with q elements. An elliptic curve E over Fq is defined by a nonsingular
cubic polynomial in two variables x and y with coefficients in Fq. This paper considers only cubics
in a specially reduced Weierstrass form

E(x, y) = y2 + cxy − (x3 + ax1+c + b) = 0 (1)

where c = 1− q + 2bq/2c, since these are most often used in cryptography, and particularly in the
ECRNG. We define the rational points of the curve to be

E(Fq) = {(x, y) ∈ F2
q : E(x, y) = 0} ∪ {0}. (2)

An addition law is defined on E(Fq) using the well-known chord-and-tangent law. For example,
(u, v)+(x, y) = (w, z) is computed as follows. Form a line through (u, v) and (x, y), which intersects
the curve E(x, y) = 0 in three points, namely (u, v), (x, y) and some third point (w,−z), which
defines the desired sum by negating the ordinate.

In the ECRNG, and in elliptic curve cryptography more generally, one defines some base point
P on the curve. One assumes that P has prime order n in the elliptic curve group, so that nP = 0.
Generally, the number of points in E(Fq) is hn, where the cofactor h is usually quite small, typically
with h ∈ {1, 2, 4}. We say that a point Q is valid if it is an additive multiple of P . We will generally
only consider valid points in this paper, so when we say a random point, we mean a random valid
point.

The ECRNG maintains a state, which is an integer si ∈ [0,max(q − 1, n − 1)]. The iteration
index i increments upon each each output point of the ECRNG. The ECRNG is intended to be
initialized by choosing the initial state as s0 uniformly at random from Z ∩ [0, n − 1].

For a point P = (x, y) ∈ E(Fq), we write x(P ) = x̄, where x̄ ∈ Z is obtained by taking the
bit representation of the x ∈ Fq and considering this is as the bit representation of an integer.
When q is prime, we essentially have x̄ = x, but when q is not a prime, the value of x̄ depends

1This is not to say that MOV attack could be applied against the Kaliski RNG for smaller sized curves.
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on the representation used for the finite field Fq. (We may arbitrarily define x(0) = 0, but we
will encounter this case negligibly often in our analysis.) Therefore, to fully specify the ECRNG,
one needs to define a field representation, because the function x(·) has an important rôle in the
ECRNG, as we see below.

The ECRNG has another initialization parameter, which is a point Q. The point should ideally
be chosen at random, preferably verifiably at random, such as by deriving it from the output of
secure hash function or block cipher.

When the state is si, the (raw) output point is defined as

Ri = siQ. (3)

The actual output of the ECRNG applies further processing to Ri. The final output is ri = t(x(Ri)),
where t is a function that truncates certain bits from the bit string representation of an elliptic
curve point. The purpose of t is to convert the x-coordinate of a pseudorandom EC point to a
pseudorandom bit string. This paper simply conjectures that the function t has the property that
for a pseudorandom point R and the output bit string r = t(x(R)) is pseudorandom. The main
contribution of this paper is to analyze the pseudorandomness of raw output points Ri of the
ECRNG.

After generating an output point Ri, the state is updated as

si+1 = x(siP ). (4)

It is convenient to adopt the following notation. We define the prestate at iteration i + 1 as
Si+1 = siP . Note that si+1 = x(Si+1). We may think of the prestate being updated as

Si+2 = x(Si+1)P. (5)

The following notation for the ECRNG will be convenient. Let s0 be the initial state. Then define
functions gm such that:

gm(Q, s0) = (R0, R1, . . . , Rm). (6)

These functions are both deterministic and efficient. They are related to each other as follows:

gm(Q, s0) = (s0Q, gm−1(Q, x(s0P ))), (7)

where this notation indicates the sequence output by gm−1 is prepended by a point to give the se-
quence output by gm. That is, this paper uses the convention that a comma indicates concatenation
of point sequences.

3 Lemmas on Indistinguishability

Random variables X and Y are computationally indistinguishable if an adversary that is given a
sample value u that has probability 1

2 of coming from X and 1
2 from Y , the adversary cannot dis-

tinguish2, with a feasible cost of computation and reasonable success rate, whether u comes from
X or from Y . Pseudorandomness is indistinguishability from a uniform (equiprobable) distribu-
tion. Indistinguishability is a well known notion in cryptology, but for completeness, this section

2One might, like the author did, first think that distinguishing between X and Y is the problem of being given two
values, one from X and one from Y and determining which is which. This kind of indistinguishability (left-or-right)
may be written as (X, Y ) ∼ (Y, X), and can easily be shown to be equivalent to X ∼ Y (real-or-fake).
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introduces some general notation and lemmas on indistinguishability that are convenient for the
proofs of the main theorems.

We write X ∼ Y to indicate that random variables X and Y are indistinguishable. Where
needed, we write X

σ∼ Y to quantify the indistinguishability by some parameters σ, such as success
rate or computational cost. We write X ∼= Y when random variables X and Y are identically
distributed. Obviously, X ∼= Y implies X ∼ Y .

Intuitively, one expects indistinguishability (∼) to be an equivalence relation. Certainly, ∼ is
reflexive and symmetric, and more interestingly, it is transitive ([Lub96, Ex. 27], for example).
This is such a fundamental point it is worth repeating here.
Lemma 1. If X ∼ Y and Y ∼ Z, then X ∼ Z.

Proof. Suppose that A is an algorithm that attempts to distinguish X and Z. That is, suppose
that A always outputs “X” or “Z”. Let x be the probability A outputs “X” when given input from
X, let z be the probability that A outputs “Z” when given input Z. Distinguisher A is successful
if x + z > 1.

Let x′ and z′ be the probabilities that A outputs “X” and “Z” respectively, when given input
from random variable Y . Note that x′ + z′ = 1. Let Ax be modification of A where output “Z” is
changed to “Y”. Because X ∼ Y , by definition it is true that Ax is not a successful distinguisher
between X and Y . Therefore x + z′ 6 1. Similarly, let Az be defined as A with output “X”
converted to “Y”. Because Y ∼ Z, we have x′ + z 6 1. Adding these two inequalities we get
x+ z′ +x′ + z 6 2. Subtracting z′ +x′ = 1 from this gives x+ z 6 1, which contradicts our original
assumption that A distinguishes between X and Z.

More generally, if we only know that x + z′ 6 1 + αxy and x′ + z 6 1 + αyz, where αxy and αyz

are the maximum possible advantage of distinguishing algorithms between X and Y , and between
Y and Z, respectively, then we get x + z 6 1 + αxy + αyz, so that αxz 6 αxy + αyz. In other words,
if X

α1∼ Y and Y
α2∼ Z, then X

α1+α2∼ Z.
When time, or over all computational cost of the distinguishers is also considered, then note

that A, Ax and Az all have essentially the same cost. Therefore the cost of distinguishing between
X and Z is at least the minimum of the costs of distinguishing between X and Y or between Y
and Z.

A second lemma, which one also intuitively expects, makes proofs cleaner through separating
complicated constructions from indistinguishability.
Lemma 2. If f is efficiently computable functions, and X ∼ Y , then f(X) ∼ f(Y ).

Proof. Suppose that f(X) and f(Y ) were distinguished by algorithm A. Then X and Y can be
distinguished by applying f to a challenge value u, then applying A to f(u). The advantage of
distinguishing is the same, but the computational cost is that of A plus that of f .

It is worth noting that the converse to this lemma does not necessarily hold: generally, f(X) ∼
f(Y ) may not imply X ∼ Y . Trivial counterexample include f a constant function. Nontrivial
counterexamples exist too, such as f being a bijection whose inverse is not efficiently computable.

A third lemma, which one again intuitively expects, allows one to build indistinguishable dis-
tributions with more variability and to analyze distributions into independent components.
Lemma 3. If X ∼ Y and W ∼ Z, and X and W are independent variables, as are Y and Z, and
that X and Z can be efficiently sampled, then (X, W ) ∼ (Y, Z).

4



Proof. We claim that if X ∼ Y , then (X, Z) ∼ (Y, Z). To see this, suppose that algorithm A
distinguishes (X, Z) from (Y, Z). Suppose that u is a sample of X or Y , and we wish to distinguish
which is its source, X or Y . Take a random sample z from Z and apply A to (u, z). If A says (u, z)
is from (X, Z), then we say that u is from X, and vice versa for Y . Similarly, we can show that
if W ∼ Z, then (X, W ) ∼ (X, Z) by using a sample from x. Therefore (X, W ) ∼ (X, Z) ∼ (Y, Z),
so transitivity gives (X, W ) ∼ (Y, Z). The advantages add, and the costs only change by the cost
sampling X and Z.

This lemma also applies under our notational convention that if X and Y are sequences, then
(X, Y ) is their concatenation.

4 The Decisional Diffie-Hellman Problem

The decisional Diffie-Hellman problem (DDHP) for a given elliptic curve E and a base point P
is to distinguish between a triple (Q,R, S) = (qP, rP, qrP ) and a triple (Q,R,Z) = (qP, rP, zP )
where q, r, z are integer random variables uniformly distributed in the interval [0, n− 1]. (Note this
q is not to be confused with the field order.) The triple (Q,R, S) is often called a Diffie-Hellman
triple. For certain elliptic curves, it is conjectured that DDHP is a hard problem.
Conjecture 1. If q, r and z are independent random integers uniformly distributed in [0, n − 1],
then (qP, rP, qrP ) ∼ (qP, rP, zP ).

This provides a nontrivial counterexample to the converse to Lemma 2 because random variables
X = (q, r, qr) and Y = (q, r, z) are distinguishable, but if one applies the function f defined by
f(x, y, z) = (xP, yP, zP ), then the conjecture says f(X) ∼ f(Y ).

The conjectured hardness of the DDHP, for certain groups, is widely believed among cryptolo-
gists. One should be aware that for certain elliptic curves, however, there exists a function, called
a pairing that potentially distinguishes Diffie-Hellman triples. Pairings exist for all elliptic curves,
but only for a very few are they known to be efficient. For most elliptic curves, one can verify
that the known pairings are extremely inefficient and infeasible to use in practice. This has been
confirmed for most of the NIST recommended elliptic curves.

5 The x-Logarithm Problem

The x-Logarithm Problem (XLP) for elliptic curve E(Fq) and base point P is to distinguish between
dP and xP where: d is an integer chosen uniformly at random in [0, n − 1]; and x = x(Z) for a
point Z chosen uniformly at random in E(Fq). We conjecture that the x-logarithm problem is hard
for most elliptic curves:
Conjecture 2. If d and z are random integer uniformly distributed in the interval [0, n− 1], then
dP ∼ x(zP )P .

Now d and x = x(zP ) are generally distinguishable. Firstly, known tests on x quickly determine
whether there exists a y ∈ Fq such that (x, y) ∈ E(Fq). Secondly, when the cofactor h > 1, we
have x > n for at least about half of the x-coordinates x of random points, which is not true for d.
Therefore, this conjecture gives another counterexample to the converse of Lemma 2.

An intuitive reason for the plausibility of the XLP conjecture is that given public key dP , one
expects that nothing substantial is leaked about the private key d. This intuition derives from the
conjectured hardness of the elliptic curve discrete logarithm problem (ECDLP). However, a formal
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argument that the ability to determine whether dP = x(zP )P for some z, implies an ability to find
d is not known to the author. In fact, conceivably, the ECDLP could be hard, even though certain
information about the discrete logarithm, such as whether it is congruent to an x-coordinate, is
easily discernible.

Certain bits in the binary representation of the d have been shown by Kaliski [Kal86] to be as
hard to find as the whole of d. A bit of information with such a property are known are hardcore
predicate for the ECDLP. Conjecture 2 is therefore that the bit of information whether or not the
discrete logarithm is congruent to an x-coordinate is a hardcore predicate for the ECDLP. Kaliski’s
proof that certain bits of the binary representation of the discrete logarithm are hardcore predicate
works with a reduction, as follows. Given Q = dP , determine from Q a bit of information about d.
Then transform Q to some Q′ = d′P in such a way that there is an known relation between d and
d′, and d′ has one less bit of freedom than d. Next determine a bit of information about d′, then d′′

and so on. The transformation is such that all bits of information learnt are independent and can be
easily be reconstituted to learn d in its entirety. What would be ideal to make Conjecture 2 into a
theorem, would be another transformation with comparable properties to Kaliski’s for determining
the discrete logarithm d using an oracle for solving the XLP.

6 Indistinguishability of the ECRNG Outputs Points

The traditional notion of security for an RNG is that its output is indistinguishable from random.
We prove below in Theorem 4 that the raw output points of the ECRNG are indistinguishable from
random points, that they are pseudorandom as points.

The following proof is not substantially different than the proof for the Blum-Micali generator
[BM84] or the Kaliski generator [Kal86]. However, unlike these generators, which used a hardcore
bit of the discrete logarithm, the ECRNG uses a hardcore function — as suggested, for example,
in [Gol01] — which yields greater efficiency provide that one accepts hardness of the corresponding
problem, the DDHP to ensure the function is hardcore. A second reason for providing the proof
anew here is that the state update transition function is not a permutation. This issue is addressed
via recourse to the hardness of the x-logarithm problem. Roughly speaking, hardness of the XLP
ensures that the state transition function is indistinguishable from a permutation.

A stronger security notion, forward secrecy, is now required in the ANSI and NIST draft RNG
standards. The forward secrecy of the ECRNG is proved in Theorem 5 in §7, and implies Theorem 4
below. In fact, the presentation of the proof Theorem 5 happens to be simpler than the proof below
of Theorem 4 for three reasons: the proof below is more explicit in notation and use of the previous
lemmas, the proof below works from left-to-right rather than from right-to-left, and the proof below
works directly on the stated claim rather than a stronger claim that makes the proof simpler but
is otherwise unmotivated. Therefore, the reader may wish to skip to the proof Theorem 5 in §7,
for a simpler proof presented a higher level with less explicit details.
Theorem 4. If the DDHP and XLP are hard, and Q,Z0, . . . , Zm are independent and uniformly
distributed random points, and s0 is a random integer uniformly distributed in [0, n − 1], and
gm(Q, s0) = (R0, . . . , Rm), then

(Q,R0, . . . , Rm) ∼ (Q,Z0, . . . , Zm). (8)

Proof. The basic idea is to first replace R0 by Z0, using assumed hardness of the DDHP, and
then proceed by induction on m for the remaining the points. The proof uses the lemmas about
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indistinguishability previously established. Again, the assumed hardness of the DDHP is invoked
to show that each output points is indistinguishable from a random points if the prestate points
are random points. The assumed hardness of the XLP is invoked to ensure the that when the state
is updated, the fact that it is now restricted to an x-coordinate is not of consequence.

Let q, s, z be independent random integers uniformly distributed in [0, n − 1]. Let (Q,R, S) =
(qP, qsP, sP ) and let (Q,R,Z) = (qP, qsP, zP ). Writing r = qs, and s = q/r, working modulo n,
we clearly have (Q,R, S) ∼ (Q,R,Z) by hardness of the DDHP. Define a function

fm(A,B, C) = (A,B, gm−1(A, x(C))). (9)

Because s ∼= s0, it follows that (Q,R0, R1, . . . , Rm) = (Q, gm(Q, s0)) ∼= (Q, gm(Q, s)). By definition,
we have (Q, gm(Q, s)) = (Q, sQ, gm−1(Q, x(sP ))) = fm(Q, sQ, sP ) = fm(Q,R, S) ∼ fm(Q,R,Z),
with the last step done by applying Lemma 2 to (Q,R, S) ∼ (Q,R,Z). Therefore, by transitivity

(Q,R0, . . . , Rm) ∼ fm(Q,R,Z). (10)

Continuing, fm(Q,R,Z) = (Q,R, gm−1(Q, x(Z))) ∼= (Q,Z0, gm−1(Q, x(Z))), because R ∼= Z0 and
R and Z0 are independent from Q and Z.

Having used the DDHP, we will next use the XLP to get an inductive step. By induction
we have, (Q, gm−1(Q, s0)) = (Q,R0, . . . , Rm−1) ∼ (Q,Z0, . . . , Zm−1), and therefore gm−1(Q, s0) ∼
(Z0, . . . , Zm−1). Clearly (Z0, . . . , Zm−1) ∼= (Z1, . . . , Zm), so for any u ∼= s0, we have gm−1(Q, u) ∼
(Z1, . . . , Zm). We claim that

gm−1(Q, u) ∼ gm−1(Q, x(Z)). (11)

Now (Q, gm−1(Q, u)) = fm−1(Q, uQ, uP ) and (Q, gm−1(Q, x(Z))) = fm−1(Q, x(Z)Q, x(Z)P ), so it
suffices to prove that (Q, uQ, uP ) ∼ (Q, x(Z)Q, x(Z)P ). Define a function h(a,B) = (aP, aB, B).
Then (Q, uQ, uP ) = h(q, uP ) and (Q, x(Z)Q, x(Z)P ) = h(q, x(Z)P ). Now uP ∼ x(Z)P by the
hardness of the XLP, so (q, uP ) ∼ (q, x(Z)P ), and thus h(q, uP ) ∼ h(q, x(Z)P ), which proves (11).

Therefore

(Q,R0, . . . , Rm) ∼ fm(Q,R,Z)
∼ (Q,Z0, gm−1(Q, x(Z)))
∼ (Q,Z0, gm−1(Q, u))
∼ (Q,Z0, Z1, . . . , Zm),

(12)

so transitivity gives the final result.

This proof makes essential use of Q being random. The reason for this is more than just to
make the proof work. If Q is not random, then it may be the case the adversary knows a d such
that dQ = P . Then dRi = dSi+1, so that such a distinguisher could immediately recover the secret
prestates from the output. Once the distinguisher gets the prestates, it can easily distinguish the
output from random. Therefore, it is generally preferable for Q to be chosen randomly, relative to
P .

Although Theorem 4 says that hardness of the DDHP is one of the sufficient conditions for
indistinguishability of the ECRNG output points, it is not at all clear whether or not hardness of
the DDHP is a necessary condition. It is clear that hardness of the computational Diffie-Hellman
problem (CDHP) is a necessary condition in that Si+1 is the Diffie-Hellman product of P and Ri to
the base Q. Therefore, one can reasonably hope to significantly strengthen Theorem 4 by proving
that hardness of the CDHP is one of a set of sufficient conditions.
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In contrast, hardness of the XLP is necessary for indistinguishability of the raw output points.
Output R1 = s1P = x(S1)Q, so distinguishing it from random Z1 is essentially the XLP. Distin-
guishing output Rj = x(Sj−1)P from random is almost the XLP except that Sj−1 is not necessarily
a random point. However, if distinguishing algorithm A is an XLP solver, then one heuristically
expects that A could distinguish Rj from a random point. Algorithm A would only fail if the Sj−1

were distributed with a bias such that A reports that x(Sj−1)P was not of the form x(Z)P for
some valid point Z. Therefore one cannot hope to strengthen Theorem 4 by replacing the hardness
of the XLP with a weaker yet still natural assumption. One could improve the result, however, by
proving the the XLP is as hard as some other problems, such as the DDHP or ECDLP.

Although hardness of the XLP is necessary for the raw output points to be pseudorandom, it
does not seem necessary for the full ECRNG output bit strings to be pseudorandom. Likewise,
hardness of the CDHP may not be necessary for security of the full ECRNG, even it is necessary
of the indistinguishability of the raw output points. Truncation of the raw output points may yield
bit strings are that unusable even by an XLP distinguisher or a CDHP solver to distinguish the
ECRNG outputs.

7 Forward Secrecy (Backtracking Resistance)

In cryptology, forward secrecy refers to the following property: present secrets remain secret into the
future, even from an adversary who acquires all future secrets. So, in forward secrecy, the secrecy
of present secrets extends forward into the future indefinitely and without depending on protection
of some future secrets. Incidentally, in ANSI X9.82 and NIST SP 800-90, forward secrecy has been
retermed3 backtracking resistance to convey the notion that an adversary cannot use future secret
to backtrack to present secrets.

Many key agreement schemes, and even some digital signature schemes, claim forward secrecy.
When implementing these schemes, however, one may need to ensure that the RNG used also has
forward secrecy, otherwise the forward secrecy of the key agreement scheme may be undermined
by the RNG.

Theorem 4 is now strengthened to provide forward secrecy. We let adversary see the latest
prestate, but still it cannot distinguish previous output points from random points.
Theorem 5. If the DDHP and XLP are hard, and Q,Z0, . . . , Zm, Zm+1 are independent and uni-
formly distributed random points, and s0 is a random integer uniformly distributed in [0, n − 1],
and gm(Q, s0) = (R0, . . . , Rm), with the next prestate of the ECRNG being Sm+1, then

(Q,R0, . . . , Rm, Sm+1) ∼ (Q,Z0, . . . , Zm, Zm+1). (13)

Proof. The case of m = 0 is to show (Q,R0, S1) ∼ (Q,Z0, Z1). This follows directly from hardness
of the DDHP. Assume by induction that

(Q,R0, . . . , Rm−1, Sm) ∼ (Q,Z0, . . . , Zm−1, Zm). (14)

The current outputs and prestate are given by

(Q,R0, . . . , Rm−1, Rm, Sm+1) = (Q,R0, . . . , Rm−1, x(Sm)Q, x(Sm)P ) (15)
3Breaking precedent not only with wider usage in cryptology but also with other ANSI standards such as X9.42

and X9.62, which use forward secrecy.
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Combining (14) and (15), we get

(Q,R0, . . . , Rm−1, Rm, Sm+1) ∼ (Q,Z0, . . . , Zm−1, x(Zm)Q, x(Zm)P ). (16)

Hardness of the XLP gives x(Zm)P ∼ Zm+1. Writing Q = qP , Lemma 2 gives

(Q,Z0, . . . , Zm−1, x(Zm)Q, x(Zm)P ) ∼ (qP, Z0, . . . , Zm−1, qZm+1, Zm+1). (17)

Hardness of the DDHP gives (qP, qZm+1, Zm+1) ∼ (Q,Zm, Zm+1) where Q = qP , so Lemma 3 gives

(qP, Z0, . . . , Zm−1, qZm+1, Zm+1) ∼ (Q,Z0, . . . , Zm−1, Zm, Zm+1). (18)

Lemma 1 on transitivity connects (16) to (17) to (18) to complete the inductive step, getting us
our desired result.

Recapping, an adversary who captures the current state cannot use it to distinguish previous
outputs from random, and consequently cannot determined any previous outputs. Conversely, the
an adversary cannot use the previous outputs to learn anything about the current state.

Theorem 5 immediately implies Theorem 4 just by dropping the last point. Therefore, The-
orem 4 has been proven twice. (The proofs are not quite equivalent, since the first proof does
induction by growing points at the beginning of the sequence, while the second does so by growing
points at the end.)

8 Truncated Point Problem and Security of the Full ECRNG

For appropriate choice of truncation function t(·), we conjecture the following.
Conjecture 3. Let R be a random point and b a random bit string of length matching the output
length of t(·). Then t(x(R)) ∼ b.

We call the problem of distinguishing between t(x(R)) and b, the Truncated Point Problem
(TTP). This paper does not substantially address this conjecture, but rather uses to prove some-
thing about the final output ECRNG, rather than just its raw output points.
Theorem 6. If DDHP, XLP and TTP are hard, then the ECRNG has forward secrecy.

Proof. Apply Theorem 5 to get that the raw outputs are indistinguishable. By the assumed hard-
ness of the TTP, each truncated point is indistinguishable from random bit strings. Apply the
lemmas as necessary and get that the ECRNG output bit strings are indistinguishable from ran-
dom bit strings, even from an adversary that gets to see the latest prestate.

The proposed truncation function drops some number of the leftmost bits of the bit represen-
tation of the x-coordinate. The number of bits dropped is at least 13 + log2(h), where h is the
cofactor. The number of bits dropped must also be such that resulting length is a multiple of
eight. Current draft standards currently allows any number of bits to be dropped that meets these
conditions.

It should be noted that for the NIST recommended curves defined over the binary field F2409 ,
valid elliptic curve points have a fixed rightmost bit in their canonical representation. Therefore,
for the curves B-409 and K-409, the truncation function should also drop the rightmost bit. The
explanation for this phenomenon is that one of the conditions for a point to have the correct order
can be characterized by the trace of the x-coordinate have a fixed value. The trace depends on
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the field representation. For trinomial and pentanomial field representations, the trace simplifies
to a sum of just a few of the bits, the trace bits, in the representation. In all fields, the rightmost
bit is a trace bit. For the 409-bit field, the rightmost bit is the only trace bit. For the other four
NIST recommended binary fields, there is at least one trace bit among the leftmost truncated bits.
Consequently, the constant trace condition does not leak any information after truncation in these
cases.

9 Initialization, Reseeding and Prediction Resistance

The ANSI and NIST draft standards specify further details of the ECRNG that have been omitted
from in this paper. These further details generally involve ensuring that the state value si is
initialized or refreshed with an adequate quantity of entropy. This paper has assumed, for simplicity,
that the initial state s0 is arranged to have a uniform distribution, which is secret to all adversaries.

This paper has not attempted to analyze the various issues surrounding entropy of the secret
state. Prediction resistance is the ability of RNG to add additional entropy into the secret state to
recover completely from a circumstance where an adversary knows information about the previous
state. Initialization and prediction resistance are general issues to any RNG, and indeed the draft
standards specifying the ECRNG do not treat the ECRNG especially different from other RNGs
with respect initialization and prediction resistance. This paper deliberately restricts itself to
ECRNG specific issues.

10 Conclusion

The ECRNG has both proven number-theoretic-based security and higher efficiency than many
other RNGs with similar security properties. Random numbers play such an essential in cryp-
tography, that implementers should always choose them to be as secure as possible. Therefore,
the ECRNG should be a serious consideration, and its high efficiency makes it suitable even for
constrained environments.
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A Unpredictability of the Next State from the Current Output

Unpredictability is a much weaker property than indistinguishability, but is also much more impor-
tant. If the ECRNG outputs are used as cryptographic keys, very little harm may come from them
being distinguishable. If they are predictable, however, then all may be lost. Indistinguishability
implies unpredictably, so in fact, we have already proven unpredictability.

The theorem below, however, proves a little bit of unpredictability under weaker, arguably more
accepted, conjectures, such as hardness of the CDHP instead of the hardness of the DDHP.
Theorem 7. If the CDHP and XLP are hard, and q and s0 are independent random integers
uniformly distributed in [0, n − 1], and gm(qP, s0) = (R0, . . . , Rm) and Q = qP , then an adversary
who gets to see only Q and Rm cannot compute the next prestate Sm+1.

Proof. Clearly S1 ∼ Z where Z = zP and z is a random integer uniformly distributed in [0, n− 1].
Indeed, s0

∼= z, so S1 = s0P ∼= zP = Z. Assume by induction that Sj−1 ∼ Z. Now Sj =
x(Sj−1)P ∼ x(Z)P ∼ Z, with the second indistinguishability flowing from the hardness of the
XLP. Therefore Sm+1 ∼ Z. Since q is independent of z, we have (Q,Sm+1) ∼ (Q,Z). Now
(Q,Rm) = (Q, qSm+1) ∼ (Q, qZ) ∼ (Q,Z), with the second indistinguishability flowing from Z
being able to absorb q by independence.

Suppose adversary A takes (Q,Rm) and outputs Sm+1 = q−1Rm. Then adversary can also take
(Q,Z) and output U = q−1Z, because otherwise A could distinguish (Q,Rm) from (Q,Z). Let
(X, Y ) = (xP, yP ) with x, y independent random integers uniformly distributed in [0, n − 1]. We
will use A to compute xyP . Pick a random integer u with the same distribution. Let U = uP .
Apply A to (X, U) to get V = x−1U = x−1uP . Let W = u−1V = x−1P = wP . Apply A to (W,Y )
to get w−1Y = (x−1)−1Y = xY = xyP , as desired. Because we assumed that CDHP is hard,
adversary A cannot find xyP , so we get a contradiction.

The simple proof techniques above do not seem to rule out an adversary who could use two
output points to find the next state, or one output point to find the next output point. The obstacle
in the first case seems to be that output points obey a relationship that needs to be simulated if we
wish to solve the CDHP. The obstacle in the second case is that the next output can be thought
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of as a one-way function of the Diffie-Hellman product of public values, and we seem to need to
invert it to solve the CDHP.
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