On construction of non-weakly-normal bent functions

Sugata Gangopadhyay, Deepmala Sharma
Department of Mathematics
Indian Institute of Technology Roorkee - 247667 INDIA

Abstract

Given two non-weakly-normal bent functions on n-variables a new method is proposed to construct a non-weakly-normal bent function on $(n+2)$-variables.

1 Introduction

Let $n=2 m$ be an even positive integer. Any function from \mathbb{F}_{2}^{n} into \mathbb{F}_{2} is called a Boolean functions on n variables. A bent function on n variables is a function whose Hamming distance is maximum from the set of all affine functions. The Walsh Hadamard transform of f at at $\lambda \in \mathbb{F}_{2}^{n}$ is given by $W_{f}(\lambda)=\sum_{x \in \mathbb{F}_{2}^{n}}(-1)^{f(x)+\langle\lambda, x\rangle}$ where $\langle x, \lambda\rangle$ is an inner product of x and λ on \mathbb{F}_{2}^{n}. A Boolean function $f: \mathbb{F}_{2}^{n} \longrightarrow \mathbb{F}_{2}$ is bent if and only if $\left|W_{f}(\lambda)\right|=2^{m}$ for all $\lambda \in \mathbb{F}_{2}^{n}$. Bent functions were first constructed by Rothaus [8] and Dillon [4, 5].

Definition $1 A$ Boolean function $f: \mathbb{F}_{2}^{n} \longrightarrow \mathbb{F}_{2}$ is called normal (weakly-normal) if f is constant (affine) on an $\frac{n}{2}$-dimensional flat of \mathbb{F}_{2}.

Dobbertin [6] introduced the notion of normality and used normal bent functions to construct balanced functions with high nonlinearity. However for a long time no non-normal or non-weakly-normal bent function was known. Non-normal and non-weakly-normal bent functions for $n=10$ and $n=14$, respectively were first constructed by Canteaut, Daum, Dobbertin and Leander [1]. Further they proved that

Theorem 1 (Lemma 10, [1]) Let $f: \mathbb{F}_{2}^{n} \longrightarrow \mathbb{F}_{2}$ be a Boolean function. The following properties are equivalent:

1. f is (weakly) normal.
2. The function

$$
g: \mathbb{F}_{2}^{n} \times \mathbb{F}_{2} \times \mathbb{F}_{2} \longrightarrow \mathbb{F}_{2}
$$

defined by

$$
g(x, y, z)=f(x)+y z
$$

is (weakly) normal.

By using this result it is possible to construct non-(weakly)-normal bent functions on higher dimensional spaces starting from a non-(weakly)-normal function on \mathbb{F}_{n} for some n. Carlet, Dobbertin and Leander [2] proved that the direct sum of a non-(weakly)-normal bent function with any (weakly)-normal one is non-(weakly)-normal. Considering the difficulty of deciding non-(weak)-normality of bent functions any such secondary construction which guarantees non-(weak)-normality is extremely important.

2 Main Result

In this section we present our main result, a generalization of theorem 1.
Theorem 2 Let $f_{1}, f_{2}: \mathbb{F}_{2}^{n} \longrightarrow \mathbb{F}_{2}$ be two Boolean functions. The following statements are equivalent:

1. f_{1} or f_{2} is weakly-normal.
2. The function

$$
g: \mathbb{F}_{2}^{n} \times \mathbb{F}_{2} \times \mathbb{F}_{2} \longrightarrow \mathbb{F}_{2}
$$

defined by

$$
g(x, y, z)=f_{1}(x)+y z+(y+z)\left(f_{1}(x)+f_{2}(x)\right)
$$

is weakly-normal.
Proof : Suppose g is weakly-normal. Therefore there exists an $\frac{n+2}{2}$ dimensional flat E, $\gamma \in \mathbb{F}_{2}^{n}$ and $\alpha, \beta \in \mathbb{F}_{2}$ such that

$$
h(x, y, z)=g(x, y, z)+\alpha y+\beta z+\langle\gamma, x\rangle
$$

takes the same value, c, on E. We claim that either $f_{1}(x)$ of $f_{2}(x)$ is weakly normal.
For $a, b \in \mathbb{F}_{2}$ we define

$$
E_{a b}=\left\{x \in \mathbb{F}_{2}^{n} \mid(x, a, b) \in E\right\} .
$$

Suppose $x \in E_{a b}$, then

$$
c=h(x, a, b)=f_{1}(x)+a b+(a+b)\left(f_{1}(x)+f_{2}(x)\right)+\alpha a+\beta b+\langle\gamma, x\rangle
$$

i.e.,

$$
f_{1}(x)+(a+b)\left(f_{1}(x)+f_{2}(x)\right)=c+a b+\alpha a+\beta b+\langle\gamma, x\rangle .
$$

Note that

$$
f_{1}(x)+(a+b)\left(f_{1}(x)+f_{2}(x)\right)= \begin{cases}f_{1}(x) & \text { if } a+b=0 \\ f_{2}(x) & \text { if } a+b=1\end{cases}
$$

Therefore if $x \in E_{a b}$ then either $f_{1}(x)$ or $f_{2}(x)$ is affine on $E_{a b}$.
If one of the flats $E_{a b}$ has dimension $\geq \frac{n}{2}$ then we are done. If this is not true, all the flats $E_{a b}$ have dimension $\frac{n}{2}-1$. Furthermore since the union of all $E_{a b}$ is a flat, all $E_{a b}$ are
cosets of the same subspace U, we write $E_{a b}=x_{a b}+U$. Moreover, $x_{\alpha, \bar{\beta}} \neq x_{\bar{\beta}, \alpha}$. Otherwise for any element $(x, \bar{\alpha}, \beta) \in E$ the element $(x, \alpha, \bar{\beta}) \in E$. Then, if we consider two elements $(x, \bar{\alpha}, \beta)$ and $\left(x^{\prime}, \alpha, \beta\right)$ in E, we obtain that,

$$
(x, \bar{\alpha}, \beta)+(x, \alpha, \bar{\beta})+\left(x^{\prime}, \alpha, \beta\right)=\left(x^{\prime}, \bar{\alpha}, \bar{\beta}\right)
$$

belongs to E implying that $h\left(x^{\prime}, \alpha, \beta\right)=h\left(x^{\prime}, \bar{\alpha}, \bar{\beta}\right)$. But,

$$
\begin{aligned}
h\left(x^{\prime}, \bar{\alpha}, \bar{\beta}\right) & =f_{1}\left(x^{\prime}\right)+\bar{\alpha} \bar{\beta}+(\bar{\alpha}+\bar{\beta})\left(f_{1}\left(x^{\prime}\right)+f_{2}\left(x^{\prime}\right)\right)+\alpha \bar{\alpha}+\beta \bar{\beta}+\langle\gamma, x\rangle \\
& =f_{1}\left(x^{\prime}\right)+\alpha \beta+(\alpha+\beta)\left(f_{1}\left(x^{\prime}\right)+f_{2}\left(x^{\prime}\right)\right)+\alpha+\beta+\langle\gamma, x\rangle \\
& =h\left(x^{\prime}, \alpha, \beta\right)+1
\end{aligned}
$$

which leads to a contradiction. Therefore since $x_{\alpha, \bar{\beta}} \neq x_{\bar{\alpha}, \beta}$, the set $E_{\alpha, \bar{\beta}} \cup E_{\bar{\alpha}, \beta}$ is a flat of dimension $\frac{n}{2}$. Moreover we deduce the following:
For all $x \in E_{\alpha, \bar{\beta}}$
$c=h(x, \alpha, \bar{\beta})=f_{1}(x)+\alpha \bar{\beta}+(\alpha+\bar{\beta})\left(f_{1}(x)+f_{2}(x)\right)+\alpha \alpha+\beta \bar{\beta}+\langle\gamma, x\rangle$
i.e., $f_{1}(x)+(\alpha+\beta+1)\left(f_{1}(x)+f_{2}(x)\right)=c+\alpha \beta+\langle\gamma, x\rangle$.

Similarly for all $x \in E_{\bar{\alpha}, \beta}$
$c=h(x, \bar{\alpha}, \beta)=f_{1}(x)+\bar{\alpha} \beta+(\bar{\alpha}+\beta)\left(f_{1}(x)+f_{2}(x)\right)+\alpha \bar{\alpha}+\beta \beta+\langle\gamma, x\rangle$
i.e., $f_{1}(x)+(\alpha+\beta+1)\left(f_{1}(x)+f_{2}(x)\right)=c+\alpha \beta+\langle\gamma, x\rangle$.

Therefore when $x \in E_{\alpha, \bar{\beta}} \cup E_{\bar{\alpha}, \beta}$
$f_{1}(x)+(\alpha+\beta+1)\left(f_{1}(x)+f_{2}(x)\right)=c+\alpha \beta+\langle\gamma, x\rangle$.
Thus either $f_{1}(x)$ or $f_{2}(x)$ is weakly normal.
Conversely suppose $f_{1}(x)$ is weakly normal which implies that there exists an $\frac{n}{2}$ dimensional space E on which $f_{1}(x)$ is affine. Suppose $f_{1}(x)=\langle\gamma, x\rangle+c$ on E. Consider the $\frac{n+2}{2}$ dimensional subspace
$E^{\prime}=E \times\{0\} \times\{0\} \cup E \times\{1\} \times\{1\}$.
It can be checked that
$g(x, 0,0)=f_{1}(x)=\langle\gamma, x\rangle+c$
and
$g(x, 1,1)=f_{1}(x)+1=\langle\gamma, x\rangle+c+1$
Therefore we can write $g(x, y, z)=\langle\gamma, x\rangle+y+c$ for all $(x, y, z) \in E^{\prime}$. Thus g is weakly normal.

Thus if we start with two non-weakly-normal bent functions f_{1} and f_{2} on n variables then the function $g(x, y, z)$ is a non-weakly-normal function on $n+2$ variables. The construction given in 1 cannot increase the algebraic degree of the bent function on $n+2$ variables whereas our construction increases degree by 1 if algebraic degree of f_{1} and $f_{1}+f_{2}$ are same. Thus unlike the construction in [1] starting from two non-weakly-normal bent functions on n variables and algebraic degree $\frac{n}{2}$ with $\operatorname{deg}\left(f_{1}\right)=\operatorname{deg}\left(f_{1}+f_{2}\right)$ if is possible to construct a non-weakly-normal bent function of algebraic degree $\frac{n+2}{2}$, which is optimal.

References

[1] A. Canteaut, M. Daum, H. Dobbertin and G. Leander. Normal and Non Normal Bent Functions. Workshop on Coding and Cryptography '03, pages 91-100.
[2] C. Carlet, H. Dobbertin and G. Leander. Normal Extensions of Bent Functions. IEEE Trans. on Information Theory, number 11 pages 2880-2885, 2004.
[3] Pascale Charpin. Normal Boolean functions. Journal of Complexity, "Complexity Issue in Cryptography and Coding Theory", dedicated to Prof. Harald Niederreiter on the occasion of his 60th birthday.
[4] J. F. Dillon. Elementary Hadamard Difference sets. PhD Thesis, University of Maryland, 1974.
[5] J. F. Dillon. Elementary Hadamard difference sets. In Proceedings of 6th S. E. Conference of Combinatorics, Graph Theory, and Computing. Utility Mathematics, Winnipeg, Pages 237-249, 1975.
[6] H. Dobbertin. Construction of bent functions and balanced Boolean functions with high nonlinearity. In Fast Software Encryption - FSE'94, number 1008 in Lecture Notes in Computer Science, pages 61-74. Springer - Verlag, 1995.
[7] R. Lidl and H. Niederreiter. Introduction to finite fields and their applications. Cambridge University Press, 1994.
[8] O. S. Rothaus. On bent functions. Journal of Combinatorial Theory, Series A, 20:300305, 1976.

