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Abstract

Given two non-weakly-normal bent functions on n-variables a new method is
proposed to construct a non-weakly-normal bent function on (n + 2)-variables.

1 Introduction

Let n = 2m be an even positive integer. Any function from [} into [F, is called a Boolean
functions on n variables. A bent function on n variables is a function whose Hamming
distance is maximum from the set of all affine functions. The Walsh Hadamard transform
of f at at A € F3 is given by Wy (\) = ZIGFS(—l)f("““)JrO"r> where (z, A) is an inner product
of z and A on F3. A Boolean function f : Fy — Fy is bent if and only if [W;(\)| = 2™
for all A € 3. Bent functions were first constructed by Rothaus [8] and Dillon [4, 5].

Definition 1 A Boolean function f : Fy — Fy is called normal (weakly-normal) if f is
constant (affine) on an §-dimensional flat of Fs.

Dobbertin [6] introduced the notion of normality and used normal bent functions to con-
struct balanced functions with high nonlinearity. However for a long time no non-normal
or non-weakly-normal bent function was known. Non-normal and non-weakly-normal bent
functions for n = 10 and n = 14, respectively were first constructed by Canteaut, Daum,
Dobbertin and Leander [1]. Further they proved that

Theorem 1 (Lemma 10, [1]) Let f : Fy — Fy be a Boolean function. The following
properties are equivalent:

1. f is (weakly) normal.

2. The function
g:FgXFQXFQ%IFQ
defined by
9(z,y,2) = f(z) +yz

is (weakly) normal.



By using this result it is possible to construct non-(weakly)-normal bent functions on higher
dimensional spaces starting from a non-(weakly)-normal function on F,, for some n. Carlet,
Dobbertin and Leander [2] proved that the direct sum of a non-(weakly)-normal bent
function with any (weakly)-normal one is non-(weakly)-normal. Considering the difficulty
of deciding non-(weak)-normality of bent functions any such secondary construction which
guarantees non-(weak)-normality is extremely important.

2 Main Result

In this section we present our main result, a generalization of theorem 1.

Theorem 2 Let f1, fo : Fy — Fy be two Boolean functions. The following statements
are equivalent:

1. f1 or fy is weakly-normal.

2. The function
g:Fg’XFQXFQ—)IFQ

defined by
9(x,y,2) = fi(®) +yz + (y + 2)([1(z) + f2(2))

18 weakly-normal.

Proof : Suppose g is weakly-normal. Therefore there exists an ”T“ dimensional flat F,
v € F} and «, B € Fy such that

h(z,y,2) = g(x,y,2) + ay + Bz + (v, z)

takes the same value, ¢, on E. We claim that either fi(x) of fy(z) is weakly normal.
For a,b € Fy we define

Eu = {z € F3|(z,a,b) € E}.
Suppose x € E,, then
¢=h(x,a,b) = fi(x) +ab+ (a+0)(f1(x) + fo(x)) + ca + b+ (v, )
ie.,
filz)+ (a+0)(fi(z) + fo(z)) = ¢+ ab+ aa + Bb+ (v, x).
Note that

A+ a0 + fuo) = { 10 et

Therefore if © € E,, then either fi(x) or fo(x) is affine on .
If one of the flats £, has dimension > 7 then we are done. If this is not true, all the

flats Fy, have dimension § — 1. Furthermore since the union of all Egy, is a flat, all £y, are
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cosets of the same subspace U, we write E, = x4, + U. Moreover, T,5 #* TF 0 Otherwise

for any element (z,@, 3) € E the element (z, a, 3) € E. Then, if we consider two elements
(x,@, () and (2’,a, B) in E, we obtain that,

(z,@,8) + (z,0,3) + (', v, B) = (2', @, 3)

belongs to E implying that h(z', a, 3) = h(z',@, 3). But,

hz'\@,3) = f@)+aB+ @+ B)(fi(z) + fo(a') + aa + BB + (v, x)
= f@) +aB+ (a+B)(fi(x) + fol2) +a+ B+ (v, 2)
= h(2,a,0) +1

which leads to a contradiction. Therefore since z, 3 # x5, the set £, 53U Eg 5 is a flat of
dimension 7. Moreover we deduce the following:
Forallz € E, 3

c=hz,a,p) = filz) +af+ (a+ B)(fi(z) + fo(z)) + aa + B6 + (7, x)
Le., fi(x)+ (a+ 8+ D) (filz) + fo(z)) = c+ af + (v, ).

Similarly for all z € E5 3
c=Nhz,a,p) = fi(z) +aB + (@+ B)(fi(z) + fo(x)) + aa + BB + (v, z)
Le., filx)+ (a+ 8+ 1D (filx) + fo(z)) = c+ af + (v,z).

Therefore when z € EaB U Ea

file) + (a+ B+ 1) (fi(z) + folz)) = c+af + (v, 2).
Thus either fi(x) or fy(x) is weakly normal.

Conversely suppose fi(z) is weakly normal which implies that there exists an § dimen-
sional space F on which f;(z) is affine. Suppose fi(x) = (v,z) + c on E. Consider the "T”
dimensional subspace

E'=FE x {0} x{0}UE x {1} x {1}.

It can be checked that

9(2,0,0) = filw) = (7,2) + ¢
and

g(z,1,1) = fi(z) + 1= (y,2) +c+1
Therefore we can write g(z,y,2) = (v,x) +y + ¢ for all (z,y,z) € E'. Thus g is weakly
normal. ]

Thus if we start with two non-weakly-normal bent functions f; and f, on n variables
then the function g(z,y, z) is a non-weakly-normal function on n + 2 variables. The con-
struction given in 1 cannot increase the algebraic degree of the bent function on n + 2
variables whereas our construction increases degree by 1 if algebraic degree of f; and
f1+ fo are same. Thus unlike the construction in [1] starting from two non-weakly-normal
bent functions on n variables and algebraic degree § with deg(f1) = deg(fi + f2) if is
possible to construct a non-weakly-normal bent function of algebraic degree ”T”, which is
optimal.
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