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Abstract
Previous de�nitions of designated con�rmer signatures in the literature are in-

complete, and the proposed security de�nitions fail to capture key security prop-
erties, such as unforgeability against malicious con�rmers and non-transferability.
We propose new de�nitions.

Previous schemes rely on the random oracle model or set-up assumptions, or
are secure with respect to relaxed security de�nitions. We construct a practical
scheme that is provably secure with respect to our security de�nition under the
strong RSA-assumption, the decision composite residuosity assumption, and the
decision Di�e-Hellman assumption.

To achieve our results we introduce several new relaxations of standard no-
tions. We expect these techniques to be useful in the construction and analysis
of other e�cient cryptographic schemes.

∗An extended abstract [28] of this paper appears in the proceedings of the Fourth Theory of
Cryptography Conference 2007.
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1 Introduction

In a digital signature scheme, as introduced by Di�e and Hellman [12], a signer com-
putes a signature of a message using its secret key, and then anybody holding the
public key can verify the signature. This means that the receiver of a signature can
show the signature to anybody. If the signer does not want the signer to transfer the
signature it can use undeniable signatures [6] or designated veri�er signatures [20],
but then the holder of the signature no longer holds any indisputable evidence of a
signature. Chaum [5] proposed designated con�rmer signatures (DC-signatures) as a
means to get the best of both worlds at the price of the introduction of a semi-trusted
third party called the con�rmer.

An example application for DC-signatures is a job o�er scenario. Alice is o�ered a
job by Bob and wishes to receive a formal signed o�er at some point, but Bob wants
to avoid that Alice shows this o�er to his competitor Eve. To solve the problem Carol
comes to the rescue. Bob computes a DC-signature using his own secret key and
Carols public key. Then he proves to Alice that he formed the signature in this way.
The DC-signature is special in that it can only be veri�ed directly by Carol, and its
distribution is indistinguishable from a distribution that can be computed using only
the public keys of Carol and Bob. Furthermore, given a valid/invalid DC-signature,
Carol can either convert it into a valid/invalid ordinary signature of Bob that can be
veri�ed by anybody, or she can prove that she has the ability to do this. Bob can
assume that nobody can forge a signature for his public key, and that as long as Carol
is honest nobody learns that he signed an o�er. Alice can safely assume that Bob can
not fool her, and that if Bob denies having signed an o�er and Carol is honest, then
Carol can prove to anybody that Bob is lying.

1.1 Previous Work

The �rst formal model of DC-signatures was given by Okamoto [23], but he did not
consider the problem of signer coercion. Thus, a signer could be coerced into con-
�rming/denying a signature without the randomness of the signature computation.
This problem was considered by Camenisch and Michels [3], who provided stronger
de�nitions. They also proposed both a scheme based on general primitives and more
practically oriented schemes, and sketched a security proof for the general construction.
In their work on veri�able encryption of discrete logarithms Camenisch and Shoup [4]
give a very brief sketch of a DC-signature scheme where most interactive protocols use
Schnorr-style techniques.

Goldwasser and Waisbard [19] proposed a relaxed security de�nition to allow the
proofs of knowledge to be strong witness hiding instead of zero-knowledge, and thus
allow concurrency. They give a transformation that converts an ordinary signature
scheme into a DC-signature scheme secure according to their relaxed de�nition. They
use no random oracles, but the disavowal protocol is based on general zero-knowledge
techniques, and the other protocols are based on cut-and-choose techniques.

Gentry, Molnar, and Ramzan [16] considered another relaxation based on an obser-
vation originally made by Michels and Stadler [22]. Instead of computing a signature
of the message directly, the signer computes a �con�rmer commitment� of the message,
and then sign the commitment. The constructions in [16] are e�cient and do not rely
on the random oracle model, but they require the existence of trusted RSA-parameters.
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1.2 Our Contributions

Firstly, we take a careful look at existing de�nitions of DC-signatures. It turns out
that two protocols that are not mentioned in previous works, are needed for successful
deployment: a proof of correct conversion of a signature, and a proof that a public key is
�well formed�. We also observe that the de�nitions of security proposed by Camenisch
and Michels [3], Goldwasser and Waisbard [19], and Gentry et al. [16] respectively do
not ensure unforgeability when the con�rmer is malicious. Furthermore, we note that
the relaxed de�nition in [19] does not prevent transferability, which is arguably a key
property of DC-signatures, and the de�nition in [3] is �awed and can not be satis�ed
at all. Thus, previous de�nitions do not capture the notion of DC-signatures correctly.
We propose new de�nitions that correct these de�ciencies.

Secondly, we consider how to construct a secure DC-signature scheme. We prove
the security of a generic construction with respect to the new security de�nition.
We then describe an instantiation of the generic construction that is secure under
the strong RSA-assumption, the decision composite residuosity assumption, and the
decision Di�e-Hellman assumption. In contrast to the scheme brie�y sketched by
Camenisch and Shoup [4] our scheme does not rely on the random oracle model, and
it satis�es stronger security requirements than the schemes proposed in [19] and [16].
Furthermore, the setting we consider is stricter in that we do not assume the existence
of a trusted key generator as is done in [4]. Despite this our scheme is practical.

Thirdly, our approach to the problem of constructing DC-signatures is di�erent
from previous in that instead of relaxing the security de�nitions of DC-signatures, we
relax the security de�nitions of the primitives used to construct them and prove that
weaker primitives su�ce. The relaxed notions we introduce and our techniques are
of general interest in the construction of e�cient and provably secure cryptographic
schemes.

1.3 Notation

We consider security with respect to uniform algorithms and our assumptions are also
uniform in nature, but our results are easily translated to their non-uniform analogs.
We use PT, PPT and EPPT to denote the set of uniform, uniform and probabilistic,
and uniform expected, polynomial time Turing machines respectively. We let κ be
the main security parameter. We say that a function ε(κ) is negligible if for every
constant c and su�ciently large κ it holds that ε(κ) < κ−c. We say that f(κ) is
overwhelming if 1 − f(κ) is negligible. For any two relations R1 and R2 we de�ne
R1 ∨ R2 as the set of pairs ((x1, x2), w) such that (x1, w) ∈ R1 or (x2, w) ∈ R2.
We write 〈V (x), P (y)〉(z) to denote the output of V with private input x when it
interacts with P with private input y on common input z. We write A[S(x)] to
denote that A has �oracle access� to an interactive Turing machine S with private
input x. Formally, we assume that A has a separate pair of communication tapes
over which it communicates with S. Whenever we write an expression of the form
〈V (x), A[S(y)](z)〉(w) it is assumed that communication takes place in two phases.
Before any message is communicated between V and A, A and S may communicate
freely. Then some messages are communicated between V and A. When some message
is again communicated between A and S, communication is no longer possible between
V and A. Finally, when A chooses part of the common input on which it interacts
with V , we write 〈V,A[S(x)](y)〉(z, ·). We abuse notation and say that an interactive
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proof is sound if it is overwhelmingly sound and we say that a protocol is a proof of
knowledge only if it is also an interactive proof.

We use 1 and 0, and logical true and false interchangeably. We denote the natural
numbers by N, the integers by Z, the integers modulo n by Zn, the multiplicative
group modulo n by Z∗n and the subgroup of squares modulo n by SQn. We call a
prime integer p safe if (p− 1)/2 is prime.

We use the variation of the strong RSA-assumption which says that given a product
N of two random safe primes of the same bit-size and a random g ∈ SQN , it is infeasible
to compute (b, η) such that bη = g mod N and η 6= ±1. We use the variation of the
decision composite residuosity assumption (DCR), which says that given a product n of
two random safe primes of the same bit-size, it is infeasible to distinguish the uniform
distribution on elements in Z∗n2 from the uniform distribution on nth residues in Z∗n2 .
We use the decision Di�e-Hellman assumption for the subgroup GQ of squares of Z∗P ,
where P = 2Q+1 is a safe prime. This says that if g generates GQ and α, β, γ ∈ ZQ are
random, then the distributions of (gα, gβ , gαβ) and (gα, gβ , gγ) are indistinguishable.

1.4 Organization

In Section 2 we propose a new de�nition of security of DC-signatures. In Section 3 we
introduce some theoretical notions needed for the result on the generic construction
of DC-signatures given in Section 4. The primitives we need to instantiate the generic
construction are introduced in Section 5. A detailed description of the instantiation
is then given in Section 6. In Appendix A we give a more detailed account of the
problems we have found with previous de�nitions of security of DC-signatures. Formal
de�nitions of the cryptographic assumptions we use are given in Appendix C, and some
standard de�nitions from the literature are given in Appendix D.

2 De�nition of Designated Con�rmer Signature Schemes

A DC-signature scheme consists of algorithms and interactive protocols. There are
two key generation algorithms Kgdc

s and Kgdc
c for the signer and con�rmer respectively.

There is a single signature algorithm Sigdc that given a secret signature key, a message,
and a con�rmer public key outputs a signature. The signature can not be veri�ed
directly, but the con�rmer can use a conversion algorithm Condc with his secret key
and the signer public key to transform it into a signature that can be veri�ed by
anybody holding the public key of the signer using the veri�cation algorithm Vfdc.
The protocols πwf and πc are used by the con�rmer to prove that it formed its key
correctly and the correctness of a conversion. The protocols πv and πe are used by
the signer and con�rmer respectively, to convince a veri�er that a given DC-signature
is valid and valid/invalid respectively. The protocols πwf and πc are not present in
previous formalizations.

De�nition 2.1 (DC Signature Scheme). A designated con�rmer signature scheme
DCS consists of algorithms Kgdc

s ,Kgdc
c ,Sigdc ∈ PPT and Condc,Vfdc ∈ PT, and interac-

tive protocols πwf = (Pwf , Vwf ), πc = (Pc , Vc), πv = (Pv , Vv ), and πe = (Pe , Ve) with
the following completeness properties. For every κ ∈ N, for every possible outputs
(ssk , spk) of Kgdc

s (1κ) and (sk , pk) of Kgdc
c (1κ) respectively, for every m ∈ {0, 1}∗, and

for every r, σ0 ∈ {0, 1}∗, and with σ1 = Sigdc
ssk ,r(m, pk)
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1. Vfdc
spk (m,Condc

sk (σ1, spk)) = 1,

2. Pr[〈Vwf , Pwf (sk)〉(pk) = 1] is overwhelming,

3. Pr[〈Vc , Pc(sk)〉(σ0,Condc
sk (σ0, spk), pk) = 1] is overwhelming,

4. Pr[〈Ve , Pe(sk)〉(m,σ0,Vfdc
spk (m,Condc

sk (σ0, spk)), pk , spk) = 1] is overwhelming,
and

5. Pr[〈Vv , Pv (ssk , r)〉(m,σ1, pk , spk) = 1] is overwhelming.

2.1 Well-Formed Keys and Signatures

We introduce the notion of well-formed con�rmer keys to formalize the set of strings
which behave as keys functionally, and we introduce the notion of well-formed signa-
tures as a generalization of the set of honestly generated signatures.

De�nition 2.2 (Well-Formed Keys). Let DCS be a DC-signature scheme. We say
that the tuple (Kgdc

c,1,Kgdc
c,2,Kgdc

c,3) splits Kgdc
c if

1. Kgdc
c,1 and Kgdc

c,2 are probabilistic and Kgdc
c,3 is a deterministic polynomial time (in

their �rst parameters) algorithms,

2. on input 1κ, Kgdc
c computes pk1 = Kgdc

c,1(1
κ), sk = Kgdc

c,2(pk1), and pk2 =
Kgdc

c,3(1
κ, pk1, sk), and outputs (pk , sk) = ((pk1, pk2), sk),

3. for every κ ∈ N and pk1, pk2 ∈ {0, 1}∗ there exists at most one sk ∈ {0, 1}∗ such
that pk2 = Kgdc

c,3(1
κ, pk1, sk), and

4. if pk2 = Kgdc
c,3(1

κ, pk1, sk), then for every output (spk , ssk) of Kgdc
s (1κ) and

m, r ∈ {0, 1}∗: Vfdc
spk (m,Condc

sk (Sigdc
ssk ,r(m, pk), spk)) = 1.

We say that (pk1, pk2) is well-formed with respect to the splitting if pk2 = Kgdc
c,3(pk1, sk)

for some sk . We say that ((pk1, pk2), sk) is well-formed for such a secret key sk .

If the signer or the con�rmer proves to the veri�er that a DC-signature is valid/invalid
relative a well-formed con�rmer public key, then the veri�er is con�dent that if con-
verted, the result is also valid/invalid in a consistent way. Every key generator can be
trivially split, but we are interested in splittings that given (pk1, pk2) allow a simple
proof of knowledge of sk such that ((pk1, pk2), sk) is well-formed.

We abuse notation and eliminate the input 1κ from Kgdc
c,3.

De�nition 2.3 (Well-Formed Signature). Let DCS be a DC-signature scheme and
let wf : {0, 1}∗ × {0, 1}∗ × {0, 1}∗ → {0, 1} be a polynomially computable function.
We say that wf is a well-formedness function with respect to DCS and a splitting of
Kgdc

c if for every well-formed (pk , sk), every output (spk , ssk) of Kgdc
s (1κ), and every

possible output s = Condc
sk (Sigdc

ssk (m, pk), spk), we have wf (s, pk , spk) = 1.

All honestly generated signatures are well formed, but some valid signatures may
not be. It is trivial to see that there exists a well-formedness function for every DC-
signature scheme, but we are interested in well-formedness functions that simplify the
construction of our protocols.
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2.2 De�nition of Security

Assume that some splitting and well-formedness functions are �xed and de�ne the
following relations.

De�nition 2.4 (Relations).

1. Well-Formed Confirmer Keys. Denote by Rwf the set of all well-formed
key pairs ((pk1, pk2), sk).

2. Correct Conversion. Denote by Rc the set of pairs ((σ, s, pk , spk), sk) such
that (pk , sk) ∈ Rwf and s = Condc

sk (σ, spk).

3. Correct Evaluation. Denote by Re the set of pairs ((m,σ, c, pk , spk), sk)
such that (pk , sk) ∈ Rwf , and s = Condc

sk (σ, spk) for some s such that Vfdc
spk (m, s) =

c and wf (s, pk , spk) = 1.

4. Proof of Validity. Denote by Rv the set of pairs ((m,σ, pk , spk), w), where
w is a witness that Vfdc

spk (m,Condc
sk (σ, spk)) = 1 for every sk such that (pk , sk) ∈

Rwf .

The relation Re only considers well-formed signatures. If a signature is not well-
formed, it was by de�nition computed by a corrupt signer. In this case the con�rmer
need not protect the signer and can simply convert the signature and prove that it did
so correctly. The relation Rv does not capture the set of valid signatures. It captures
the set of signatures that are valid given that the public con�rmer key is well-formed.

We now consider what each honest party or group of honest parties in a DC-
signature scheme might expect from a secure implementation.

Honest Veri�er. An honest veri�er naturally expects that it is infeasible to convince
it of a false statement. Furthermore, it seems reasonable that the veri�er only accepts
a proof of well-formedness of a public key if it shows that the prover knows the secret
key, since otherwise it can not be con�dent that the con�rmer actually is able to
convert a signature.

De�nition 2.5 (Soundness). A DC-signature scheme DCS is sound if πc , πe , and
πv are interactive proofs for the relations Rc , Re , and Rv respectively, and πwf is a
proof of knowledge for the relation Rwf .

Note that if a con�rmer public key pk is well-formed and σ is a candidate signature
for a signer public key spk , then well-formedness implies that a signature can be
converted in only one way. Thus, the con�rmer can not choose if a signature should
be considered valid or not. Well-formedness also implies that if a signer proves the
validity of σ, it can not be converted into an invalid one.

It may be dangerous for a signer to use a con�rmer public key that is not well-
formed. Thus, we assume that any signer (or somebody the signer trusts) executes
πwf with the con�rmer before using its public key.
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Honest Signer. It must be infeasible for the adversary to convince anybody that
the honest signer has signed a message m unless this is the case. This must hold
even when the adversary can ask arbitrary signature queries and execute the proof of
validity protocol πv . In other words we need a slight generalization of security against
chosen message attacks [18].

We formalize the honest signer S to be a probabilistic interactive Turing machine
that accepts as input a key pair (spk , ssk). Whenever it receives a message with pre�x
πwf , Sigdc, or πv on its communication tape it halts the execution of any executing
interactive protocol and proceeds as follows. Given a message (πwf , pk) it executes the
veri�er Vwf of the protocol πwf on common input pk . If Vwf accepts the proof, then S

stores pk . Given a message (Sigdc,m, pk) it checks if it has stored pk . If not, it returns
⊥, and otherwise it computes σ = Sigdc

ssk ,r(m, pk) and writes σ on the communication
tape. Given a message (πv ,m, σ, pk), where it previously computed σ = Sigdc

ssk ,r(m, pk)
it executes the prover of the protocol πv on common input (m,σ, pk , spk) and private
input some witness w that ((m,σ, pk , spk), w) ∈ Rv . When we use several copies of S
below we index them for easy reference.

Experiment 2.6 (CMA-Security, Expcma
DCS,A(κ)).

(spk , ssk) ← Kgdc
s (1κ)

(m, s) ← A[S(spk , ssk)](spk)

If Vfdc
spk (m, s) = 0 or if S signed m return 0 and otherwise 1.

De�nition 2.7 (CMA-Security). A DC-signature scheme DCS is secure against
chosen message attacks (CMA-secure) if for every A ∈ PPT: Pr[Expcma

DCS,A(κ) = 1] is
negligible.

In the de�nitions of Camenisch and Michels [3], Goldwasser and Waisbard [19],
and Gentry et al. [16] security hold only with respect to honestly generated con�rmer
keys, i.e., their de�nitions do not ensure any form of CMA-security for the signer when
the con�rmer is corrupted.

The de�nition does not explicitly prevent an adversary to form a bit-string σ and
then convince an honest veri�er using πv or πe that this is a valid designated signature
of some message m not signed by S, but this follows from the lemma below.

Lemma 2.8 (Indirect CMA-Security). Let DCS be a sound and CMA-secure DC-
signature scheme, and consider the following experiment for an adversary A.

(spk , ssk) ← Kgdc
s (1κ)

d1 ← 〈Ve , A[S1(spk , ssk)](spk)〉(·, ·, 1, ·, spk)
d2 ← 〈Vv , A[S2(spk , ssk)](spk)〉(·, ·, ·, spk)

Denote by (m1, σ1, 1, pk1, spk) and (m2, σ2, pk2, spk) the common inputs on which Ve

and Vv are invoked. If Si computed a signature of mi set e = 0. If Si did not store
pk i before the corresponding veri�er received its common input, then set e = 0, and
otherwise set e = d1∨d2. Then for every adversary A ∈ PPT the probability Pr[e = 1]
is negligible.

We require that Si stores pk i before the veri�er receives its input to model that no
veri�er is convinced when the con�rmer public key is not well-formed.
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Proof. Suppose that the lemma is false. Then there exists an adversary A such
that Pr[e = 1] is non-negligible. Denote by Ei the event that Si stored pk i before
the corresponding veri�er received its common input, and that Si did not compute a
signature of mi. Then the probability Pr[di = 1 ∧ Ei] is non-negligible for i = 1 or
i = 2.

Consider the �rst case. Denote by A′ the adversary in Experiment 2.6 that sim-
ulates the experiment of the lemma to A by simply forwarding requests except that
if the veri�er of the πwf protocol accepts when A hands (πwf , pk) to the simulated
honest signer S1, it invokes the knowledge extractor of πwf to extract sk such that
(pk , sk) ∈ Rwf . Then it continues the simulation until A decides on the common input
(m1, σ1, 1, pk1, spk), at which point it checks if pk1 is stored by S1. If this is the case
it has already extracted some secret key sk1 such that (pk1, sk1) ∈ Rwf , and then it
outputs (m1, s), where s = Condc

sk1
(σ1, spk), and otherwise it outputs ⊥. It follows from

the soundness of the interactive proof πe that conditioned on d1 = 1∧Ei, the probabil-
ity that ((m1, σ1, 1, pk1, spk), sk1) ∈ Re is overwhelming. Thus, the probability that
the output (m1, s) satis�es Vfdc

spk (m1, s) = 0 and d1 = 1 is negligible. This implies
that with non-negligible probability the adversary A′ outputs a pair (m1, s) such that
S1 never computed a signature of m1 and Vfdc

spk (m1, s) = 1. Thus, the CMA-security
of DCS is broken.

The second case follows mutatis mutandi. The only essential di�erence is that if
((m2, σ2, pk2, spk), w) ∈ Re , then Vfdc

spk (m2,Condc
sk ′2

(σ, spk)) for every sk2 such that
(pk2, sk2) ∈ Rwf . Thus, we can conclude directly that the output (m1, s) satis�es
Vfdc

spk (m1, s) = 0 and d1 = 1 is negligible. �

Honest Con�rmer. Nobody except the con�rmer should be able to play the role
of the prover in the protocols πwf , πc , and πe using the honest con�rmers public key
as common input, even after interacting with the real con�rmer.

We formalize the honest con�rmer C to be a probabilistic interactive Turing ma-
chine that accepts as input a key pair (pk , sk). Whenever it receives a message with
pre�x πwf , Condc, or πe on its input communication tape it halts the execution of any
interactive protocol it is executing and proceeds as follows. Given a message (πwf ) it
executes the prover of protocol πwf on common input pk and private input sk . Given
a message (Condc, σ, spk) it computes s = Condc

sk (σ, spk), writes s on its output commu-
nication tape, and executes the prover of protocol πc on common input (σ, s, pk , spk)
and private input sk . On input (πe ,m, σ, spk) it computes s = Condc

sk (σ, spk). If
wf (s, pk , spk) = 1, i.e., s is well-formed, then C computes c = Vfdc

spk (m, s), writes c
on its output communication tape, and executes the prover of protocol πe on common
input (m,σ, c, pk , spk) and private input sk . Otherwise C writes (malformed, s) on its
output communication tape and executes the prover of protocol πc on common input
(σ, s, pk , spk) and private input sk .

Experiment 2.9 (Impersonation-Resistance, Expimp−res
DCS,A (κ)).

(pk , sk)← Kgdc
c (1κ)

d1 ← 〈Vwf , A[C(pk , sk)](pk)〉(pk)
d2 ← 〈Vc , A[C(pk , sk)](pk)〉(·, ·, pk , ·)
d3 ← 〈Ve , A[C(pk , sk)](pk)〉(·, ·, ·, pk , ·)
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Return d1 ∨ d2 ∨ d3.

De�nition 2.10 (Impersonation Resistance). A designated con�rmer signature
scheme DCS is impersonation-resistant if for every A ∈ PPT: Pr[Expimp−res

DCS,A (κ) = 1] is
negligible.

Note that C never invokes Pe without executing Condc. This is without loss of
generality, since Condc is deterministic and the common input contains the extracted
signature anyway. Note that this di�ers from the signature case, where a signer could
potentially want to prove the correctness of a particular signature to several receivers.
Remark 2.11. A stronger de�nition would allow the adversary to interact with the con-
�rmer and the veri�er concurrently on other inputs. Unfortunately, such a de�nition
requires the protocols πc and πe to be non-malleable [13] with respect to each other
and themselves. General methods such as [25] can be used to construct non-malleable
zero-knowledge protocols, but currently these techniques are far from practical. Thus,
we do not follow this de�nitional path.

Honest Signer and Honest Con�rmer. To start with we observe that from the
point of view of an honest signer and honest veri�er, or from the point of view of an
honest veri�er and honest con�rmer, no additional requirements are natural to impose.

When the signer and the con�rmer are honest we require that knowledge that the
signer signed a particular message can not be transfered. Note that this is needed in
the job o�er scenario. Non-transferability can clearly only hold until a DC-signature
has been converted.

We formalize this as follows. Let SC be the machine that simulates both S and
C on inputs (pk , sk) and (spk , ssk) except for the following modi�cations. Given a
message (Sigdc,m, pk ′) with pk ′ = pk it waits for a message (m,σ), stores this, and
writes σ on its communication tape. If later invoked on (πv ,m, σ, pk) it returns ⊥
instead of invoking Pv . For pk ′ 6= pk it behaves as S. Given a message (Condc, σ, spk ′)
such that spk ′ = spk and (m,σ) is stored it checks if (m,σ, s) is stored for some s.
If not, then it computes s = Condc

sk (Sigdc
ssk (m, pk), spk) and stores (m,σ, s). Finally, it

writes s on its communication tape. It does not invoke the prover of πc . If spk ′ 6= spk
or (m,σ) is not stored it behaves as C. Finally, given a message (πe ,m, σ, spk), where
(m′, σ) is stored for some m′ it returns 0 if m 6= m′ and 1 otherwise. It does not
execute the prover of πe .

Intuitively, SC delays the computation of every DC-signature using the public key
pk until it is converted. We want to say that if there is an adversary A that interacts
with S and C, there is another adversary A′ that interacts with SC such that its
output is indistinguishable from that of A, despite that all its signature queries are
�delayed�. For this to make sense the order of messages sent to S, C, and SC must be
given to the distinguisher as well. We say that an adversary is scheduled if whenever it
writes a message with pre�x Sigdc, πv , πwf , Condc, and πe the message and any return
value (excluding the messages exchanged by the protocols that may be invoked) are
stored on a special write only scheduling tape. Furthermore, when the adversary halts
its output is pre�xed by its scheduling tape. The additional input pk to S below is
stored as a well-formed public key, and this is done in the simulation of SC as well.
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Experiment 2.12 (Non-Transferability, Expnon−trans−b
DCS,A,V (κ)).

((pk , sk), (spk , ssk))← (Kgdc
c (1κ),Kgdc

s (1κ))

d←
{

D(A(pk , spk , ssk)[SC(pk , sk , spk , ssk)]) if b=0
D(A(pk , spk , ssk)[S(pk , spk , ssk), C(pk , sk)]) if b=1

De�nition 2.13 (Non-Transferability). ADC-signature schemeDCS is non-transferable
if for every scheduled A1 ∈ EPPT there exists a scheduled A0 ∈ EPPT such that for
every distinguisher D ∈ EPPT: |Pr[Expnon−trans−1

DCS,A1,D (κ) = 1]−Pr[Expnon−trans−0
DCS,A0,D (κ) = 1]|

is negligible.

Remark 2.14. Our de�nition is similar to the �liberal� de�nition of zero-knowledge in
that the simulator is allowed to run in expected polynomial time.
Remark 2.15. Again, our experiment is not completely realistic. A stronger de�nition
would allow the adversary to interact concurrently with S and C on other common
inputs when trying to convince a veri�er. Unfortunately, such de�nitions imply that
the protocols πwf , πc , πe , and πv are non-malleable in a very strong sense. We are not
aware of any general methods to achieve this.

Informally, a DC-signature scheme is coercion-free if a signer can reveal its secret
signing key and still claim that it did not compute a particular DC-signature. Natu-
rally, this can only hold as long as the DC-signature is not converted, or proved to be
valid. Note that this is already captured in our de�nition of non-transferability.

The de�nition of non-transferability in Camenisch and Michels [3] can not be sat-
is�ed, since it requires the existence of a straight-line zero-knowledge simulator for
an interactive proof without set-up assumptions. The de�nition of Goldwasser and
Waisbard [19] only prevents the adversary from transferring con�dence of validity of
a signature using the con�rmation protocol of the scheme. It says nothing about the
possibility of using another con�rmation protocol. The relaxed de�nition of Gentry et
al. [16] explicitly allows some forms of transferability.

Most previous de�nitions require some form of indistinguishability of signatures
computed by di�erent signers, but this is unnecessarily strong. In any claim about a
signature, the holder of the signature would disclose the identity of the claimed signer
anyway, and our de�nition implies that anybody can generate something indistinguish-
able from a valid signature of any such signer.

De�nition of Security. We now de�ne security of a DC-signature scheme in the
natural way.

De�nition 2.16. A designated con�rmer signature scheme DCS is secure if it is sound,
CMA-secure, impersonation-resistant, and non-transferable.

On Concurrency. In our de�nitions the �oracle access� to the honest signer S and
the honest con�rmer C are sequential. Stronger de�nitions similar to those of Ca-
menisch and Michels [3], where the adversary is given concurrent �oracle access�, follow
by giving the adversary access to several copies of S and C, each executing on the same
input key pair.
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3 Theoretical Tools

In this section we introduce novel variations of zero-knowledge and CCA2-security and
de�ne what it means for a signature scheme to be collision-free.

3.1 A Relaxation of Zero-Knowledge

The de�nition of zero-knowledge is very strong in that the simulation property must
hold with respect to every veri�er and every instance (x,w) in the relation R under
consideration. As pointed out by Goldreich [17] it is quite natural to consider a uniform
de�nition that only requires that it is infeasible to �nd an instance on which a veri�er
can gain knowledge.

In many cryptographic settings the instance can not be chosen completely freely by
the adversary, e.g., the adversary may ask an honest party to prove that it performed
a decryption correctly, where the keys to the cryptosystem are generated honestly.
Furthermore, in some security proofs the simulator can be allowed an additional ad-
vice string dependent on the instance, e.g., if a decryption oracle is present in the
environment where the simulator is invoked we may give the simulator decryptions of
some ciphertexts. The following de�nition allows for both these settings.

Experiment 3.1 (Zero-Knowledge, Exp
(T,F )−zk−b
π,R,I,V ∗,D(κ)).

t ← T (1κ)
(i, z) ← I(1κ, t)

(x,w, a) ← F (t, i)

d ←
{

D(x, z, a, 〈V ∗(z), P (w)〉(x)) if b=0
D(x, z, a,M(z, a, x)) if b=1

Return 0 if R(x, w) = 0 and d otherwise.

De�nition 3.2. Let π = (P, V ) be an interactive protocol, let T ∈ PPT and F :
{0, 1}∗ → {0, 1}∗, and let R be a relation. We say that π is (T, F )-zero-knowledge
for R if for every veri�er V ∗ ∈ EPPT there exists a simulator M ∈ EPPT such
that for every instance chooser I ∈ EPPT and every distinguisher D ∈ EPPT:
|Pr[Exp

(T,F )−zk−0
π,R,I,V ∗,D (κ) = 1]− Pr[Exp

(T,F )−zk−1
π,R,I,V ∗,D (κ) = 1]| is negligible.

Remark 3.3. We do not require that F is polynomial time in the de�nition, but the
concrete protocols we present are (T, F )-zero-knowledge with e�ciently computable
functions F . This seems also essential to allow sequential composition as formalized
below.
Remark 3.4. The de�nition makes sense for non-uniform adversaries as well. Further-
more, the de�nition can be both generalized and relaxed. One natural relaxation is
to give only part of the sample t to the instance �nder. Note that a probabilistic F
is captured by this relaxation. A related de�nition gives the instance �nder access to
some speci�c oracle, i.e., we would talk about (T, F,O)-zero-knowledge for some spe-
ci�c oracle O. This seems to make most sense when the oracle is e�ciently computable
using the sample t (of which not all is given to the instance �nder).

Denote by T1‖T2 the algorithm that given 1κ outputs (T1(1κ), T2(1κ)). Denote
by F1‖F2 the algorithm that on input ((t1, t2), (i1, i2)) outputs (F1(t1, i1), F2(t2, i2)).
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Denote by T∅ the algorithm that gives ∅ as output. Denote by F∅ the algorithm such
that F∅(t, i) = t, and denote by Fid the algorithm such that Fid(t, i) = i. Choose
some canonical interpretation of strings such that the output of I is always of the
form ((x1, w1), z). Then when the output of T is always of the form t = (x2, w2), and
F (t, i) = ((x1, x2), (w1, w2), ∅), we simply say that the protocol is T -zero-knowledge.

Note that when T = T∅, F = Fid and all machines in the de�nition are strict
polynomial machines, (T, F )-zero-knowledge reduces to uniform zero-knowledge [17].

If a simulator satis�es the relaxed de�nition, then it can be plugged in instead
of a real protocol execution polynomially many times sequentially as long as F is
polynomial time. This extension is necessary in our analysis. More precisely we have
the following lemma.

Experiment 3.5 (Sequential Composition, Exp
µ(κ)−(T,F )−zk−b
π,R,I,V ∗,D (κ)).

t ← T (1κ) z′0 ← t

(ij , zj) ← I(1κ, z′j−1)
(xj , wj , aj) ← F (t, ij)

z′j ←
{
〈V ∗(zj), P (wj)〉(xj) if b=0
M(zj , aj , xj) if b=1

d ← D(z′µ(κ))

Return 0 if R(xj , wj) = 0 and d otherwise.

Lemma 3.6 (Sequential Composition). Let π = (P, V ) be a (T, F )-zero-knowledge
protocol with F ∈ PT for a relation R and let µ(κ) be bounded by a polynomial.
Then for every veri�er V ∗ ∈ EPPT the simulator M ∈ EPPT guaranteed to ex-
ist by the de�nition of (T, F )-zero-knowledge satis�es that for every instance chooser

I ∈ EPPT and every distinguisher D ∈ EPPT: |Pr[Exp
µ(κ)−(T,F )−zk−0
π,R,I,V ∗,D (κ) = 1] −

Pr[Exp
µ(κ)−(T,F )−zk−1
π,R,I,V ∗,D (κ) = 1]| is negligible.

Proof. Consider a veri�er V ∗, the corresponding simulator M guaranteed by the
zero-knowledge property, an instance chooser I, and a distinguisher D, and write Hb

for the algorithm that simulates the experiment Exp
µ(κ)−(T,F )−zk−b
π,R,I,V ∗,D (κ).

Denote by H0
l the machine H0, except that if j ≤ l, then the simulator behaves as

H1. Thus, H0
0 is identical to H0 and H0

µ is identical to H1. Denote by Il the instance
chooser that simulates H0

l−1 until (il, zl) is output in the simulation. Denote by Dl the
distinguisher that takes z′l+1 as input and computes zµ exactly as is done in the simula-
tion H0, by simulating the honest prover. It follows that H0

l−1 is identically distributed
to Exp

(T,F )−zk−0
π,R,Il,V ∗,Dl

(κ). and H0
l is identically distributed to Exp

(T,F )−zk−1
π,R,Il,V ∗,Dl

(κ).
Suppose that the lemma is false. Then there exists a veri�er V ∗, an instance chooser

I, and a distinguisher D such that |Pr[H0 = 1] − Pr[H1 = 1]| is non-negligible. A
hybrid argument shows that there exists a �xed l such that |Pr[H0

l−1 = 1]− Pr[H0
l =

1]| is non-negligible, but this contradicts the (T, F )-zero-knowledge property and the
lemma must be true. �

3.2 Cryptosystems With Labels and ∆-CCA2-Security

Our starting point is the generalization of CCA2-security for cryptosystems with labels
introduced by Shoup and Gennaro [26].
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This simply means that the input to the cryptosystem is not only a message, but
also a label, and similarly for the decryption algorithm. In other words we use the
following de�nition.

De�nition 3.7 (Public Key Cryptosystem With Labels). A public key cryp-
tosystem with labels CS = (CSKg,Enc,Dec) consists of three probabilistic polynomial-
time algorithms.

1. A key generation algorithm CSKg that on input 1κ outputs a public key pk and
a private key sk . The public key de�nes a plaintext spaceMpk .

2. An encryption algorithm Enc that on input a public key pk , a label L, and a
message m ∈Mpk outputs a ciphertext c.

3. A decryption algorithm Dec that on input a private key sk , a label L, and a
ciphertext c outputs a message m ∈Mpk or ⊥.

Furthermore, for every output (sk , pk) of CSKg(1κ), every label L ∈ {0, 1}∗, and every
m ∈Mpk it must hold that Decsk (L,Encpk (L,m)) = m.

The de�nition of CCA2-security is strict in that the indistinguishability property
of ciphertexts holds for any two messages. In our setting a weaker property su�ces,
namely that any two encrypted signatures from the same signer are indistinguishable.
Thus, we introduce the following relaxed de�nition.

Experiment 3.8 (∆-CCA2-Security, Exp∆−cca2−b
CS,A (κ)).

(pk , sk) ← CSKg(1κ)
(r, m0,m1, state) ← ADecsk (·,·)(choose, pk)

c ← Encpk (∆(r, mb))

d ← ADecsk (·,·)(guess, state, c)

Interpret ∆(r, mb) as a pair (L, m′
b). The experiment returns 0 if Decsk (·, ·) was queried

on (L, c), and otherwise d.

De�nition 3.9 (∆-CCA2-Security). Let ∆ ∈ PPT. A public key cryptosystem CS
with labels is said to be ∆-CCA2-secure if for every adversary A ∈ PPT:
|Pr[Exp∆−cca2−0

CS,A (κ) = 1]− Pr[Exp∆−cca2−1
CS,A (κ) = 1]| is negligible in κ.

Remark 3.10. It is easy to transform a CCA2-secure secure cryptosystem constructed
using hash-proofs [10] into a CCA2-secure cryptosystem with labels: simply let the
label be part of the input to the collision-free hash function.

3.3 Collision-Free Signature Schemes

We say that a signature scheme is collision-free if it is infeasible to �nd two distinct
messages and a signature such that the signature is a valid with respect to both
messages, even if the adversary is given the honestly generated secret key and the
public key.

Although this property does not follow from the CMA-security of a signature
scheme it is in fact not very demanding, e.g., we do not need to take any additional
precautions in the construction of our signature scheme to satisfy this property.
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De�nition 3.11 (Collision-Free). Let SS = (Kg,Sig,Vf) be a signature scheme, and
de�ne a random variable (spk , ssk) = Kg(1κ). Then SS is collision-free if for every
A ∈ PPT the probability Pr[A(spk , ssk) = (m0,m1, s) ∧ m0 6= m1 ∧ Vfspk (m0, s) =
Vfspk (m1, s) = 1] is negligible.

4 A Generic Construction of Designated Con�rmer

Signatures

It is natural to construct DC-signatures from a CMA-secure signature scheme and
a CCA2-secure cryptosystem. A signer holds a secret key for the signature scheme
and the con�rmer holds a secret key of the cryptosystem. A DC-signature is sim-
ply an ordinary signature encrypted with the cryptosystem, conversion corresponds to
decryption, and zero-knowledge proofs of knowledge are used to instantiate the pro-
tocols. The theorem below implies that this is secure, but for most signature schemes
and cryptosystems it is prohibitively ine�cient.

As a �rst step in the construction of an e�cient DC-signature scheme we prove
that weaker primitives su�ce to construct a secure DC-signature scheme, but the basic
idea is the same.

4.1 The Construction

Let CS = (CSKg,Enc,Dec) be a cryptosystem with labels and let SS = (Kg,Sig,Vf)
be a signature scheme with �xed size signatures (this is easy to ensure by padding)
that �t in the plaintext space of CS. De�ne Kgdc

s to compute (spk , ssk) = Kg(1κ) and
s⊥ = Sigssk (⊥), where ⊥ is a special symbol, and output ((spk , s⊥), ssk) (we drop
s⊥ from our notation when convenient). De�ne Kgdc

c (1κ) to output CSKg(1κ), and
de�ne Vfdc to be Vf except that Vfdc

spk (⊥, ·) = 0. On input ssk , m, and pk the DC-
signature algorithm Sigdc is de�ned to compute s = Sigssk (m) and σ = Encpk (spk , s),
and output σ. On input sk , σ, and spk the conversion algorithm Condc is de�ned
to output s = Decsk (spk , σ). In other words, the public signature key spk is used
as a label. Let (Kgdc

c,1,Kgdc
c,2,Kgdc

c,3) be a splitting of Kgdc
c and let wf be some well-

formedness function with respect to DCS. Let πwf , πc , πe , and πv be interactive
protocols, complete with respect to the relations Rwf , Rc , Re , and Rv . It is easy to
see that DCS = (Kgdc

s ,Kgdc
c ,Condc,Vfdc, πwf , πc , πe , πv ) is a DC-signature scheme.

The algorithm ∆(r, (r′,m)) �rst computes (spk , ssk) = Kgr(1κ) and s = Sigssk ,r′(m),
and then outputs (spk , s). De�ne Ths(1κ) = (Kgdc

c (1κ),Kgdc
s (1κ)). De�ne Fhs to take

as input the pair ((pk , sk , spk , ssk), (r, m,m′)), compute σ = Sigdc
ssk ,r(m), and output

((m′, σ, Vfdc
spk (m′,Condc

sk (σ)), pk , spk), sk , ∅). Let Tcs(1κ) simply output Kgdc
c (1κ). De-

�ne Fcs to take input ((pk , sk), (m,σ, c, spk)) and output the tuple
((m,σ, c, pk , spk), sk ,Condc

sk (σ, spk)).

Theorem 4.1. 1 Suppose that CS is ∆-CCA2-secure and that SS is CMA-secure and
collision-free, and that πwf , πc, πe , and πv are proofs of knowledge for the relations

Rwf , Rc, Re , and Rv . Suppose that πwf and πc are Kgdc
c -zero-knowledge for the

1Camenisch and Michels [3] claim a similar, but weaker, theorem according to their de�nition, but
as explained above their de�nition can not be satis�ed, and only a proof sketch is given.
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relations Rwf and Rc respectively. Suppose that πe is both (Ths, Fhs)-zero-knowledge
and (Tcs, Fcs)-zero-knowledge for the relation Re . Suppose πv is Kgdc

s -zero-knowledge
for the relation Rv . Then DCS is secure.

4.2 On the Use of Two Distinct Weak Simulators

Perhaps the most interesting of our techniques is the use of two simulators for the same
protocol, of which one requires additional advice. Consider the problem of constructing
a black box-reduction of a successful attacker A against non-transferability into a
successful attacker A′ against the ∆-CCA2-security of the underlying cryptosystem.
The ∆-CCA2-attacker A′ takes a public key pk as input and must simulate the non-
transferability experiment to the adversary without using the secret key sk . At some
point A′ outputs a random bit string r and two messages (r0,m0) and (r1,m1) to
the ∆-CCA2-experiment, and it is given a ciphertext σ = Encpk (spk ,Sigssk ,rb

(mb))
for a random b ∈ {0, 1}, where (spk , ssk) = Kgr(1κ). The ciphertext σ is used in the
simulation somehow, and �nally A′ outputs a bit. The simulation involves converting
signatures, but A′ may use its decryption oracle to answer such queries, as long as it
never asks for a decryption of σ.

We observe that when the protocol πe is simulated for some DC-signature σ′ 6= σ
computed by A, the simulator is free to invoke the decryption oracle on σ′, i.e., a
(Tcs, Fcs)-zero-knowledge simulator is su�cient. On the other hand, for the particular
signature σ we can not proceed in this way, since that would violate the rules of the ∆-
CCA2-experiment, but since σ is computed honestly using honestly formed signature
keys a (Ths, Fhs)-zero-knowledge simulator su�ces.

4.3 Analysis of the Construction

Proof (Theorem 4.1). Before we start we recall that if A is a probabilistic polynomial
algorithm running in expected polynomial time t(κ), then for every constant c it can
be turned into a strict polynomial time algorithm A′ running in time κct(κ) such that
the statistical distance between the output of A and the output of A′ is at most κ−c.
This follows immediately from the Markov inequality. Thus, it su�ces to exhibit an
expected polynomial machine that breaks a computational assumption.

The theorem now follows immediately from the following lemmas.

Lemma 4.2. The scheme is sound.

Proof. This follows by construction, since every proof of knowledge is a proof. �

Lemma 4.3. The scheme is CMA-secure.

Proof. Suppose that there is an adversary A that breaks the CMA-security of DCS,
i.e., Pr[Expcma

DCS,A(κ) = 1] is non-negligible.
Denote by Expcma∗

DCS,A(κ) experiment Expcma
DCS,A(κ) except that instead of executing

Pv the experiment invokes the Kgdc
s -zero-knowledge simulator of the protocol πv . It

follows from the zero-knowledge property and Lemma 3.6 that Pr[Expcma∗
DCS,A(κ) = 1] is

non-negligible.
Denote by A′ the adversary in the ordinary CMA-experiment (Experiment D.2)

with SS that on input spk simulates Expcma∗
DCS,A(κ) except that instead of computing
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Sigdc
ssk ,r(m, pk) on a query (m, pk) it requests a signature s of m from its Sigssk (·)-oracle

and computes σ = Encpk (spk , s). By de�nition of the ordinary CMA-experiment this
does not change the distribution of Expcma∗

DCS,A(κ). When A halts, A′ outputs the pair
(m, s) output by the adversary A in the simulation of Expcma∗

DCS,A(κ). The output of
the experiment Expcma∗

DCS,A(κ) only equal 1 if Vfdc
spk (m, s) = 1 and S never computed a

signature of m. Thus, A′ breaks the ordinary CMA-security of SS, since Vf = Vfdc. �

Lemma 4.4. The scheme is impersonation-resistant.

Proof. Suppose that there is an adversary A that breaks the impersonation-resistance
of DCS. To start with we describe a modi�cation to the experiment that only changes
its distribution negligibly. We denote by Expimp−res∗

DCS,A (κ), the original experiment,
that is Expimp−res

DCS,A (κ), except for the following modi�cations. Instead of executing the
prover of πwf and πc respectively, the experiment invokes the corresponding Kgdc

c -zero-
knowledge simulator. Instead of executing the prover of the protocol πe it invokes the
(Tcs, Fcs)-zero-knowledge simulator. Recall that this simulator requires an additional
advice string, namely the decryption of the DC-signature σ that is part of the common
input (m,σ, c, pk , spk) in an invokation. It follows from the zero-knowledge proper-
ties of these protocols and Lemma 3.6 that the probability Pr[Expimp−res∗

DCS,A (κ) = 1] is
non-negligible.

Denote by Abas the machine in the ∆-CCA2-experiment that accepts pk as in-
put and simulates the experiment Expimp−res∗

DCS,A (κ) except that instead of computing
Decsk (spk , σ) when necessary, either to output it or to give it as advice to a (Tcs, Fcs)-
zero-knowledge simulator, it requests the plaintext s of (spk , σ) from its Decsk (·, ·)
oracle. By de�nition we know that the distribution of Abas is identical to the distri-
bution of Expimp−res∗

DCS,A (κ).
Denote by d1, d2, and d3 the random variables in the simulation. Then either

Pr[d1 = 1], Pr[d2 = 1], or Pr[d3 = 1] is non-negligible. Suppose that Pr[d1 = 1] is
non-negligible. Denote by Aext the adversary in the ∆-CCA2-experiment that accepts
pk as input and simulates Abas, except that when A interacts with Vwf on common
input pk and the veri�er accepts, then Aext invokes the knowledge extractor of πwf . It
follows that Aext outputs the secret key sk corresponding to pk in expected polynomial
time. This clearly contradicts the ∆-CCA2-security of CS.

To see that Pr[d2 = 1] and Pr[d3 = 1] are negligible, apply the same argument
mutatis mutandi and note that every witness sk that ((σ, s, pk), sk) ∈ Rc or that
((m,σ, c, pk , spk), sk) ∈ Re satis�es (pk , sk) ∈ Rwf by de�nition. Thus, it follows in
each case that the ∆-CCA2-security of CS is broken, and the claim follows.

Note that in the argument above the (Tcs, Fcs)-simulator requires additional advice,
but the needed advice is present in the form of the decryption oracle. �

Lemma 4.5. The scheme is non-transferable.

Proof. Given an adversary A1 ∈ EPPT we de�ne another adversary A0 ∈ EPPT that
runs A1 as a black-box. It simulates A1 except that whenever A1 submits a message
(Sigdc,m, pk) to S it forwards it to SC. Then it computes σ = Encpk (spk , s⊥), stores
(m,σ), and sends it to SC. When SC returns σ it writes σ on the communication
tape of A1. Furthermore, any invokation of Pv is replaced by an invokation of the
Kgdc

s -zero-knowledge simulator of the protocol πv . Whenever A1 submits a message
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(Condc, σ, spk) such that (m,σ) is stored A0 checks if it has stored (m,σ, s). If not, it
submits (Condc, σ, spk) to SC and waits for and stores the reply s. Finally, it writes s
on the communication tape of A1, and invokes the Kgdc

c -zero-knowledge simulator of
πc . Whenever A1 submits a message (πe ,m

′, σ, spk) where (m,σ) is stored it sets c = 0
if m′ 6= m and c = 1 otherwise, and writes c on the communication tape of A1 and
invokes the (Ths, Fhs)-zero-knowledge simulator of πe . All other messages submitted
to S or C by A1 and the protocol executions they give rise to are simply forwarded to
SC. Note that all other executions involve either a σ not computed by A0 or a public
key spk ′ 6= spk .

The reader should note at this point that none of the zero-knowledge simulators
invoked by the adversary A0 require an additional advice string. We stress that there
are no apriori guarantees that the simulated proofs �look right�, since the simulators
are invoked for false statements. This is something that must be proved.

The adversary A0 clearly runs in expected polynomial time, since A1 does and the
zero-knowledge simulators do as well. We claim that the adversary A0 shows that the
DC-signature scheme is non-transferable.

Denote by Expnon−trans−1∗
DCS,A1,V (κ) the experiment Expnon−trans−1

DCS,A1,V (κ) except for the fol-
lowing modi�cations:

1. In the simulation of S the Kgdc
s -zero-knowledge simulator of πv is invoked instead

of the prover Pv .

2. In the simulation of C the Kgdc
c -zero-knowledge simulator of πc is invoked instead

of the prover Pc .

3. On input (πe ,m, σ, spk) such that σ was computed by S in the simulation of C,
the (Ths, Fhs)-zero-knowledge simulator of πe is invoked instead of the prover
Pe .

4. On other inputs of the form (πe ,m, σ, spk ′) in the simulation of C the (Tcs, Fcs)-
zero-knowledge simulator of πe is invoked instead of the prover Pe . Note that
spk ′ may equal spk if σ was not computed by S and that the simulator requires
an additional advice string.

De�ne Expnon−trans−0∗
DCS,A0,V (κ) correspondingly. Then the claim below follows from Lemma

3.6 and the zero-knowledge properties of the protocols πv , πc , and πe .
Claim 1. |Pr[Expnon−trans−b∗

DCS,Ab,V (κ) = 1]− Pr[Expnon−trans−b
DCS,Ab,V (κ) =]| is negligible.

Denote by T 0 the simulation of the experiment Expnon−trans−0∗
DCS,A0,V (κ). Denote by T 1

the simulation of the experiment Expnon−trans−1∗
DCS,A1,V (κ), except that whenever A1 submits

a message (Sigdc,m, pk) to S it stores the result (m,σ). Furthermore, whenever A1

submits (πe ,m, σ, spk) to C and (m′, σ) is stored for some m′, it sets c′ = 0 if m′ 6= m
and c′ = 1 otherwise, and replaces the answer c given by C, by c′.
Claim 2. |Pr[Expnon−trans−1∗

DCS,A1,V (κ) = 1]− Pr[T 1 = 1]| is negligible.

Proof. This follows from the collision-freeness of the signature scheme SS. Note
that the simulation T 1 can take the keys (spk , ssk) of S as input. The only way the
di�erence in the claim can be non-negligible is if the adversary A1 submits a message
(πe ,m, σ, spk) to C, where (m′, σ) is stored, s = Condc

sk (σ, spk), and Vfspk (m, s) =
Vfspk (m′, s) = 1. However, if this happens with non-negligible probability the collision-
freeness of SS is clearly broken. �
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Suppose now that |Pr[Expnon−trans−1
DCS,A1,V (κ) = 1] − Pr[Expnon−trans−0

DCS,A0,V (κ) = 1]| is non-
negligible. Then Claims 1 and 2 imply that |Pr[T 1 = 1]−Pr[T 0 = 1]| is non-negligible.
Assume without loss that A1 asks for at most t(κ) signatures from S, where t(κ) is
some polynomial. Denote by T 0

i the simulation of T 0 except that for l = 1, . . . , i,
the lth query of the form (Sigdc,m, pk) of A1 is treated exactly as it would have been
treated in the simulation of T 1. This implies that the distribution of T 0

t is identical
to the distribution of T 1. Note that here it is essential that the simulator uses its
oracle access in exactly the same way that A1 would, since otherwise the scheduling
tape would be di�erent and the above claim would not hold. A hybrid argument then
implies that there exists a �xed l such that |Pr[T 0

l−1 = 1]−Pr[T 0
l = 1]| is non-negligible,

since t(κ) is polynomial.
We are �nally ready to construct an adversary Acca to the ∆-CCA2-security of CS.

The adversary waits for a public key pk and then starts the simulation of T 0
l−1 using this

key. Whenever a message must be decrypted it invokes its Decsk (·, ·)-oracle. This holds
both when it must convert signatures and when it must provide a simulator with an
additional advice string. The simulation is continued until A1 submits its lth message
of the form (Sigdc,m, pk). Then the adversary Acca outputs (r, (r0,M0), (r1,M1)) with
M0 = ⊥ and M1 = m, where r is the randomness that was used to compute (spk , ssk) =
Kgr(1κ), r0 is the randomness used to compute s⊥, and r1 is fresh randomness. The
experiment returns a ciphertext σ = Encpk (∆(r, (rb,Mb))) for a random bit b (recall
that ∆(r, (rb,Mb)) = (spk ,Sigssk ,rb

(Mb))). The adversary Acca then continues the
simulation of T 0

l but uses σ instead of computing this, and it uses s = Sigdc
ssk ,r1

(m)
when A0 submits (Condc, σ, spk) to C. It follows that if b = 0, then the output of Acca

is distributed as T 0
l−1 and otherwise as T 0

l . This contradicts the ∆-CCA2-security of
CS, since by construction Acca never queries the Decsk (·, ·)-oracle on the input (spk , σ).

We conclude that the scheme is non-transferable. �

�

5 Concrete Tools

In this section we present the tools we need to instantiate the generic DC-signature
scheme with an e�cient concrete scheme under standard complexity assumptions.

5.1 A Twin-Moduli Signature Scheme

To prove the existence of the scheme presented below we must assume that an arbitrary
bit-string can be embedded into a prime in an e�cient way. We assume that there is
an e�cient algorithm Embf ′

f that given n ∈ [0, 2κ − 1] with overwhelming probability
�nds s ∈ [2f(κ)−1, 2f(κ)−1 + 2f(κ)−f ′(κ) − 1] such that e = 2f(κ)n + s is prime. We call
this assumption the (f, f ′)-Embedding Assumption. In practice this is not a problem
for reasonable f and f ′.

De�nition 5.1 ((f, f ′)-Embedding Assumption). The (f, f ′)-embedding assump-
tion, for functions f, f ′ : N → N, with f(κ) > f ′(κ), states that there exists Embf ′

f ∈
PPT that on input 1κ and n ∈ [0, 2κ − 1] with overwhelming probability outputs an
integer s ∈ [2f(κ)−1, 2f(κ)−1 + 2f(κ)−f ′(κ) − 1] such that e = 2f(κ)n + s is prime.

21



The Signature Scheme. The twin-moduli signature scheme, SS2 = (Kg2,Sig2,Vf2),
is based on using two sets of RSA-parameters and the embedding algorithm Embf ′

f .
Denote by κr a security parameter such that 2−κr is negligible in κ. On input 1κ

the key generator Kg2 chooses κ/2-bit safe primes p0, q0, p1, and q1 randomly, de�nes
N0 = p0q0 and N1 = p1q1, chooses g0 ∈ SQN0 and g1 ∈ SQN1 randomly, and outputs
((N0, g0, N1, g1), (p0, q0, g0, p1, q1, g1)). Set κp = f(2κr + κm + 1) and κ′p = f ′(2κr +
κm +1). The signature algorithm Sig2 takes as input a private key (p0, q0, g0, p1, q1, g1)
and a message m ∈ [0, 2κm − 1]. It chooses r ∈ [22κr+κm , 22κr+κm + 2κr+κm − 1] ran-
domly. Then it computes

s0 = Embf ′

f (r + m) e0 = 2κp(r + m) + s0 z0 = g
1/e0
0 mod N0

s1 = Embf ′

f (r) e1 = 2κpr + s1 z1 = g
1/e1
1 mod N1 .

Finally, it outputs (r, z0, s0, z1, s1). The veri�cation algorithm Vf2 takes as input
a public key (N0, g0, N1, g1), a message m ∈ {0, 1}κm , and a candidate signature
(r, z0, s0, z1, s1). It computes e0 = 2κp(r + m) + s0 and e1 = 2κpr + s1, and veri�es
that r ∈ [1, 22κr+κm+1 − 1], s0, s1 ∈ [0, 2κp − 1], that e0 and e1 are odd, and that
ze0
0 = g0 mod N0 and ze1

1 = g1 mod N1. The basic idea of the scheme is similar to an
idea of Cramer et al. [8], but the proposition below does not follow from their work.
Using a collision-free hash function H : {0, 1}∗ → [0, 2κm − 1] it can be used to sign
messages of any length.
Remark 5.2. If the signature scheme is used as a standalone scheme, one can choose
r ∈ [0, 2κm+κr−1] instead. This scheme is of independent interest, since the veri�cation
of a signature is more e�cient than [9, 15].

Proposition 5.3. The scheme exists under the (f, f ′)-Embedding assumption and is
CMA-secure and collision-free under the strong RSA-assumption.

There are two key observations in the analysis: the signature oracle can be simu-
lated without the factorization of both moduli, and the adversary can not anticipate
for which of the two moduli the factorization is known. Thus, if the adversary breaks
the scheme it can not avoid helping us to break the strong RSA-assumption.

Proof (Proposition 5.3). We �rst prove that the scheme is CMA-secure. Consider
an arbitrary adversary A taking part in Experiment D.2. We build a machine Ab for
b ∈ {0, 1} that simulates the CMA-experiment to A and show that Expcma

SS2,A(κ) must
be negligible under the strong RSA-assumption.

Let t = t(κ) be the number of queries asked by A. The adversary Ab accepts
as input a pair (N,h), where N = pq and h ∈ SQN as input. It chooses t random
values τ1, . . . , τt ∈ [22κr+κm , 22κr+κm + 2κr+κm − 1] and computes ζl = Embf ′

f (τl).
Then it de�nes ρl = 2κpτl + ζl and computes g = h

∏t
l=1 ρl mod N . Finally, it sets

(Nb, gb) = (N, g), de�nes ((N1−b, g1−b), (p1−b, q1−b, g1−b)) as in the key generation
algorithm, and hands (N0, g0, N1, g1) to A. Denote by pb and qb the factors of Nb

(that are unknown to Ab).
The machine Ab simulates the Sig(p0,q0,g0,p1,q1,g1)(·)-oracle to A as follows. The

adversary A asks at most t queries m1, . . . ,mt ∈ [0, 2κm − 1] due to its running time.
The ith query mi is answered by Ab as follows.
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• If b = 0, then Ab knows (p1, q1, g1) and computes ri = τi −mi and

si,0 = ζi , si,1 = Embf ′

f (ri) ,

ei,0 = ρi , ei,1 = 2κpri + si,1 ,

zi,0 = h
1

ρi

∏t
l=1 ρl mod N0 , zi,1 = g

1/ei,1
1 mod N1 .

• If b = 1, then Ab knows (p0, q0, g0) and computes ri = τi and

si,0 = Embf ′

f (mi + ri) , si,1 = ζi ,

ei,0 = 2κp(mi + ri) + si,0 , ei,1 = ρi ,

zi,0 = g
1/ei,0
0 mod N0 , zi,1 = h

1
ρi

∏t
l=1 ρl mod N1 .

The machine Ab continues the simulation until A outputs a message m and a candidate
signature (r, z0, s0, z1, s1) and this is also output by Ab.
Claim 3. The distribution of the output and queries of A in Experiment D.2 is statis-
tically close to the distribution of its output and queries in the simulation of A0, and
A1, respectively.

Proof. To see that the distribution of the output and queries of A in the simulation
of A1 is statistically close to the distribution of its output and queries in Experiment
D.2 it su�ces to note that in the simulation of A1 each prime ρi divides |SQN | with
negligible probability, and when this is not the case the public key (N0, g0, N1, g1) and
all answers from the Sig(p0,q0,g0,p1,q1,g1)(·)-oracle are identically distributed as in the
experiment.

The argument for the distribution of A0 is similar except that one must also note
that for every mi ∈ [0, 2κm−1] the distribution of ri = τi−mi with τi randomly chosen
in [22κr+κm , 22κr+κm + 2κr+κm − 1] is statistically close to the uniform distribution on
[22κr+κm , 22κr+κm + 2κr+κm − 1]. �

We denote the variables occurring in an execution of Experiment D.2 as follows.
The public keys are denoted by (N0, g0) and (N1, g1). The ith query to the signature
oracle is denoted by mi and the ith answer is denoted by σi = (ri, zi,0, si,0, zi,1, si,1).
For convenience we also de�ne ei,0 = 2κp(ri + mi) + si,0 and ei,1 = 2κpri + si,1. The
output of A is denoted by (m,σ) with σ = (r, z0, s0, z1, s1), and we de�ne e0 = 2κp(m+
r) + si and e1 = 2κpri + s1. The corresponding variables in the simulation carried out
by Ab are denoted by (N (b)

0 , g
(b)
0 ), (N (b)

1 , g
(b)
1 ), m

(b)
i , σ

(b)
i = (r(b)

i , z
(b)
i,0 , s

(b)
i,0 , z

(b)
i,1 , s

(b)
i,1),

e
(b)
i,0 , e

(b)
i,1 , (m(b), σ(b)), σ(b) = (r(b), z

(b)
0 , s

(b)
0 , z

(b)
1 , s

(b)
1 ), e

(b)
0 , e

(b)
1 . Let E be the event

that Vf(N0,g0,N1,g1)(m,σ) = 1 and m 6= mi for i = 1, . . . , t. In other words, if the
event occurs the experiment outputs 1 and otherwise 0. The event E(b) is de�ned
correspondingly for the simulations.
Claim 4. The probability Pr[E ∧ (∀i : ed 6= ei,d)] is negligible for d ∈ {0, 1} under the
strong RSA-assumption.

Proof. We only prove the case d = 0, since the other case is similar. First note, that
for any valid signature both e0 and e1 are positive. If the claim is false we have from
Claim 3 that

Pr[E(0) ∧ (∀i : e
(0)
0 6= e

(0)
i,0 )]
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is non-negligible. It may happen that the adversary A is not given all primes ρi as
part of answers to the signature oracle, but each prime takes on any speci�c value with
negligible probability. Thus, we conclude that

Pr[E(0) ∧ (∀i : e
(0)
0 6= ρi)]

is non-negligible. Denote by A′ the adversary de�ned as follows. It takes (N,h)
as input, computes (m(0), σ(0)) = A0(N,h), and computes integers a and a′ such
that c = a

∏t
i=1 ρi + a′e

(0)
0 , where c = gcd(

∏t
i=1 ρi, e

(0)
0 ). Then it outputs (b, η) =

((z(0)
0 )aha′ , e

(0)
0 /c). Note that if Vf

(N
(0)
0 ,g

(0)
0 ,N

(0)
1 ,g

(0)
1 )

(m(0), σ(0)) = 1 and e
(0)
0 -

∏t
i=1 ρi,

then e
(0)
0 /c 6= 1, and (z(0)

0 )e
(0)
0 = g0 = h

∏t
i=1 ρi which implies that

bη = ((z(0)
0 )aha′)e

(0)
0 /c = ((z(0)

0 )ae
(0)
0 ha′e

(0)
0 )1/c = (ha

∏t
i=1 ρiha′e

(0)
0 )1/c = h .

Thus, the strong RSA-assumption is broken.
We now show that e

(0)
0 -

∏t
i=1 ρi. If Vf

(N
(0)
0 ,g

(0)
0 ,N

(0)
1 ,g

(0)
1 )

(m(0), σ(0)) = 1, then

r(0) ∈ [1, 22κr+κm+1 − 1], which implies that |e(0)
0 | ≤ 2κp+2κr+κm . By construction

ρi = e
(0)
i,0 > 2κp+2κr+κm+1, so e

(0)
0 < ρiρj for i, j ∈ {1, . . . , t(κ)}. On the other hand

r(0) > 0, which implies that e
(0)
0 > 1. Thus, e

(0)
0 is bigger than one, smaller than any

product of two or more of the primes ρi, and it is distinct from each prime ρi, and the
claim follows. �

Claim 5. The probability Pr[E ∧ (∃i : zd 6= zi,d ∧ ed = ei,d)] is negligible for d ∈ {0, 1}.

Proof. Suppose the claim is false. Note that with overwhelming probability the
prime ei,d does not divide |SQNd

|. Thus, the probability

Pr[E ∧ (∃i : zd 6= zi,d ∧ ed = ei,d) ∧ ed - |SQNd
|]

is non-negligible. Consider an output such that Vf(N0,g0,N1,g1)(m,σ) = 1, zd 6= zi,d,
ed = ei,d, and ed - |SQNd

|. By de�nition zi,d ∈ SQNd
and ed = ei,d is odd. Thus, if

zed

d = zed

i,d, then zd ∈ SQNd
. Since ed is invertible modulo |SQNd

| we conclude that
zd = zi,d, which is a contradiction, and the claim holds. �

Claim 6. The probability Pr[E ∧ (∃i, j : i 6= j ∧ (e0, e1) = (ei,0, ej,1))] is negligible.

Proof. Consider the probability δ(i, j, m′) that the event E occurs, (e0, e1) = (ei,0, ej,1),
and m = m′, for �xed i, j ∈ {1, . . . , t(κ)} and m′ ∈ [0, 2κm − 1]. Recall that ei,0 and
ej,1 are on the form ei,0 = 2κp(ri + m) + si,0 and ej,1 = 2κprj + sj,1 respectively for
some si,0, sj,1 ∈ [0, 2κp − 1] and positive ri and rj . Thus, ri is uniquely de�ned by
ei,0 and m, and rj is uniquely de�ned by ej,1. The event E can only occur if ri = rj ,
which happen with probability δ(i, j, m′) < 2−(κr+κm). There are at most t22κm triples
(i, j, m′), so by the union bound the probability in the claim is bounded by t22−κr ,
which is negligible. �

Claim 7. There exists no m,m′ ∈ [0, 2κm − 1], s0, s1, s
′
0, s

′
1 ∈ [0, 2κp − 1], and integers

r and r′ such that m 6= m′,

2κp(r + m) + s0 = e0 = 2κp(r′ + m′) + s′0 , and
2κpr + s1 = e1 = 2κpr′ + s′1 .
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Proof. It follows from the second equation that r′ = r, since s1, s
′
1 ∈ [0, 2κp−1]. The

�rst equation now implies that m = m′, since s0, s
′
0 ∈ [0, 2κp − 1] and 2κp(r + m) −

2κp(r′ + m′) = 2κp(m−m′). �

We now summarize what we have proved above. Claim 4, Claim 5, and the union
bound show that the event

E ∧ [(∀i : ed 6= ei,d) ∨ (∃i : zd 6= zi,d ∧ ed = ei,d)]

occurs with negligible probability for d ∈ {0, 1}. Thus, if the adversary A outputs a
valid signature of a new message with non-negligible probability, then

Pr[E ∧ (∃i, j : (z0, z1) = (zi,0, zj,1) ∧ (e0, e1) = (ei,0, ej,1))]

is non-negligible. Claim 6 and the union bound then shows that

Pr[E ∧ (∃i : (z0, z1) = (zi,0, zi,1) ∧ (e0, e1) = (ei,0, ei,1))]

is non-negligible. By de�nition of the event E this implies that

Pr[E ∧ (∃i : m 6= mi ∧ (e0, e1) = (ei,0, ei,1))]

is non-negligible, but Claim 7 shows that this is impossible. Thus, we have reached a
contradiction and the scheme is CMA-secure.

Collision-freeness follows immediately from Claim 7. �

5.2 Proofs of Knowledge of Equality Relations

There are various protocols in the literature [14, 2, 11, 4] for proving equality of integer
exponents over groups of unknown order based on variations of Fujisaki-Okamoto
commitments, under the strong RSA-assumption. These protocols are strictly speaking
not proofs of knowledge, since extraction may fail with negligible probability over
the choice of commitment parameters, but they can be used as proofs of knowledge
provided that there are trusted commitment parameters present during their execution.
Furthermore, they are usually expressed as honest veri�er zero-knowledge protocols.
A useful feature of these protocols is that they bound the bit-size of the exponents.

A Fujisaki-Okamoto commitment scheme [14] is generated by choosing two safe
κ/2-bit primes p = 2p′ +1 and q = 2q′ +1, de�ning N = pq, and choosing g, h ∈ SQN

randomly. A commitment of an integer m is formed as grhm mod N for a random r ∈
[0, N2κr ]. De�ne R′srsa to be the relation consisting of pairs ((N, g, h), (b, η0, η1, η2))
such that bη0 = gη1hη2 and η0 does not divide both η1 and η2, where (η1, η2) 6= (0, 0).
De�ne F ′

srsa as the algorithm that on input (N, g, h) outputs (N, g, h) if h is in the
subgroup generated by g modulo N and (N, g, g) otherwise.

Denote by Req the set of pairs[(
k, (N, g, h), (n1, . . . , nk), (((κi,j,l)

sj

l=1)
ti
j=1)

k
i=1, (((gi,j,l)

sj

l=1)
ti
j=1)

k
i=1, ((ui,j)ti

j=1)
k
i=1

)
,

(((xi,j,l)
sj

l=1)
ti
j=1)

k
i=1

]
where g, h ∈ Z∗N , n1, . . . , nk ∈ Z, for all j, l it holds that gi,j,l, ui,j ∈ Z∗ni

, xi,j,l ∈
[−2κi,j,l+κr + 1, 2κi,j,l+κr − 1], and for all i, j it holds that ui,j =

∏lj
l=1 g

xi,j,l

i,j,l mod ni.
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Proposition 5.4. There exists a proof of knowledge for the relation Req ∨R′srsa which
is (T∅‖T∅, F ′

srsa‖Fid)-zero-knowledge for inputs with xi,j,l ∈ [−2κi,j,l +1, 2κi,j,l−1] such
that the number of exponentiations computed by the prover and veri�er is constant in
the number of exponentiations needed to compute all ui,j.

The protocol used is based on known techniques, but for completeness we include
it in Section B. Our e�ciency analysis is based on this protocol.

5.3 Veri�able Generation of Hiding Commitment Scheme

The problem with the proofs of equal integer exponents in a two party setting is that it
is di�cult to generate the Fujisaki-Okamoto commitment parameters e�ciently. Recall
that the commitment parameters consist of a random RSA-modulus N = pq, where p
and q are safe primes, a random g ∈ SQN , and h = gx for a random x ∈ [0, N2κr ]. A
commitment C of m ∈ Z is formed as C = grhm for an r ∈ [0, N2κr ]. The problem is
that if (N, g, h) are generated by the prover, then the commitments are not binding.
On the other hand, if they are generated by the veri�er, then h may not be of the form
gx, and then the commitments are not hiding. As far as we know there is no truly
e�cient solution to this problem.

We now sketch our solution to this problem. The prover generates a pair (Nr, gr),
where Nr is an RSA-modulus of two safe primes and gr ∈ SQNr

. This is done only once
and is part of the public key of the prover in our application. The veri�er then generates
(N, g, h) as above, except that it de�nes h = gx for a random x ∈ [0, NNr2κr ]. It then
computes a �commitment� hr = gx

r of x and executes a Schnorr-like zero-knowledge
�proof of knowledge� that the same integer x was used for both hr and h. Extraction
of x is possible with high probability provided that (Nr, gr) are chosen correctly. This
ensures that the parameters (N, g, h) can be used safely by a prover. On the other
hand, provided |SQNr | and |SQN | are relatively prime, hr is essentially independently
generated from h. This implies that the parameters (N, g, h) can be used safely by
the veri�er, since essentially no knowledge of x is leaked. To ensure that |SQNr

|
and |SQN | are relatively prime with overwhelming probability we assume that N is
generated independently from Nr. In practice this is very reasonable.

In Section 5.4 we show that the parameters (N, g, h) output by the protocol below
can be used to execute the proof of equal exponents that assumes trusted commitment
parameters. We call the two players in the proof the generator G and the receiver R to
distinguish them from their roles in a larger protocol. Denote by πpl = (Ppl , Vpl) the
zero-knowledge proof of knowledge of a logarithm for prime order groups described by
Cramer et al. [7].

Protocol 5.5 (Secure Generation of Integer Commitment Scheme).
Common Input: A κ-bit integer Nr and gr ∈ Z∗Nr

to both parties.

1. The receiver chooses a safe κ-bit prime P = 2Q + 1, and H ∈ GQ randomly,
where GQ is the unique subgroup of order Q. Then it chooses z ∈ ZQ randomly,
computes K = Hz mod P , hands (P,H, K) to the generator, and executes πpl

as the prover on common input (P,H, K) and private input z. If the veri�er
rejects, then the generator hands ⊥ to the receiver and halts.

2. The generator veri�es that P is a safe prime and that H,K ∈ GQ. Then it
chooses an RSA-modulus N , g ∈ SQN , and x ∈ [0, 22κ+κr − 1] randomly, and
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computes h = gx mod N and hr = gx
r mod Nr. Then it chooses cg ∈ [0, 2κc − 1],

rg ∈ Zq, and r ∈ [0, 22κ+2κr+κc − 1] randomly, de�nes w = HrgKcg , α =
gr mod N and αr = gr

r mod Nr, and hands (h, hr, w, α, αr) to the receiver.

3. The receiver chooses cr ∈ [0, 2κc − 1] randomly and hands cr to the generator.

4. The generator computes c = cg ⊕ cr and d = cx + r mod 22κ+2κr+κc , hands
(d, cg, rg) to the receiver, and outputs (N, g, h).

5. The receiver outputs (N, g, h) if HrgKcg = w, hcα = gd mod N and hc
rαr =

gd
r mod Nr. Otherwise it outputs ⊥.

We denote the above protocol by πtp = (G, R), where G is the generator and R
the receiver.
Remark 5.6. Although the receiver can use the same prime P in every protocol in-
stance, the generator must check that P is of the expected form to be con�dent that
it can run the protocol πpl , which is only sound if GQ has prime order.

Checking for primality is expensive, i.e., it requires O(κ) exponentiations. If one
assumes that it is infeasible to �nd a speci�c safe prime P such that the discrete
logarithm problem is feasible in GQ, then any party can choose a prime P that is
used in every protocol instance. Then each party performs the primality test only
once. This is a natural assumption in practice, where one can use a prime from a
cryptographic standard.

Proposition 5.7. For every pair (Nr, gr) with Nr ∈ N and gr ∈ Z∗Nr
the probability

Pr[〈R,G〉(Nr, gr) 6= ⊥] is overwhelming.

Proof. This follows from the completeness of the protocol πpl and the fact that the
receiver outputs (N, g, h) provided that there is no modular reduction in the compu-
tation of d. �

Proposition 5.8. Let (N, g, h) be randomly distributed Fujisaki-Okamoto parameters.
De�ne [R∗, G](Nr, gr) to be a pair consisting of the output of R∗ and G.

Then for every receiver R∗ ∈ EPPT there exists a simulator M ∈ EPPT such that
for every pair (Nr, gr) with Nr ∈ N and gr ∈ Z∗Nr

the distributions of [R∗, G](Nr, gr)
and M(Nr, gr, N, g, h) are statistically close and M(Nr, gr, N, g, h) is always on the
form (·, outG) with outG ∈ {(N, g, h),⊥}.

Informally, this simply means that we can simulate the protocol in such a way that
a particular set of parameters are used.
Remark 5.9. Since the generator does not have any secret input, it is not meaningful
to say that the protocol is zero-knowledge. However, one may view the proposition
as saying that the protocol leaks no knowledge to the receiver about the exponent
x that is chosen by the generator within the protocol. In this sense the protocol is
zero-knowledge.

Proof (Proposition 5.8). The simulator �rst simulates Step 1 of the protocol. If the
generator halts with output ⊥, it simply outputs ⊥ and halts. Otherwise it invokes the
extractor of the protocol πpl to get z such that K = Hz mod P . Then the simulator
simulates Step 2 of the protocol, with the following modi�cations. It uses the input
(N, g, h) of instead of generating these parameters. It chooses c ∈ [0, 2κc − 1] and d ∈
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[0, 22κ+2κr+κc − 1] randomly and de�nes α = gd/hc mod N and αr = gd
r/hc

r mod Nr.
Finally, it simulates Step 4 except that it de�nes c′g = cr ⊕ c and r′g = rg + (cg − c′g)z.

First we argue that the distribution of the resulting view is statistically close to the
distribution of the real view of the receiver. Consider the distribution of h and hr in
the real protocol. Denote by t the order of gr modulo Nr. Note that when the receiver
is malicious we have little control over t. However, when the generator is honest N is
chosen as a product of two random κ/2-bit safe primes p = 2p′+1 and q = 2q′+1, and
this is done independently of Nr. The probability that either p′ or q′ takes any speci�c
prime as value is of course negligible. This implies that the probability that either
p′ or q′ divides the order t of gr modulo Nr is negligible. Thus, with overwhelming
probability t and p′q′ are relatively prime.

This means that the group X = 〈gr〉×〈g〉, where multiplication is taken elementwise
modulo Nr and N respectively, is generated as a group by the pair (gr, g). Furthermore,
the order of the group X is tp′q′, which is an integer with less than 2κ bits. This
implies that the distribution of (gr, g)x = (gx

r mod Nr, g
x mod N) for a randomly

chosen x ∈ [0, 22κ+κr − 1] is statistically close to the distribution of a pair (h, hr),
where h ∈ 〈g〉 is randomly chosen and hr = gx

r with x distributed as before.
It follows from a standard argument that for every �xed h and hr de�ned as in the

protocol the distribution of the remainder of the simulated view is statistically close
to view of the real execution.

It remains to argue that the simulator runs in expected polynomial time. Consider
for any execution the probability p(P,H, K) that the output of the receiver is not ⊥,
conditioned on a �xed choice of (P,H, K). By de�nition the extractor guaranteed by
the proof of knowledge property of πpl runs in expected time T (κ)/(p(P,H, K)− ε(κ))
for some polynomial T (κ) and negligible function ε(κ). We conclude that the simulator
runs in expected polynomial time. �

Denote by Tsrsa the algorithm that on input 1κ outputs (Nr, gr), such that Nr is a
product of two random safe κ/2-bit safe primes and gr is randomly chosen in SQNr

.

Proposition 5.10. Suppose that (Nr, gr) = Tsrsa(1κ). Then the probability that the
receiver outputs (N, g, h), where h is not in the subgroup of Z∗N generated by g, is
negligible under the strong RSA-assumption and the discrete logarithm assumption.

Proof (Proposition 5.10). To start with we show that a malicious generator can not
open its Pedersen commitment in several ways.
Claim 8. Denote the list (P,H, K, h, hr, w) by T , and denote by Scoll(c) the set of
T such that there exists (c′g, r

′
g) 6= (c′′g , r′′g ) such that Pr[(cg, rg) = (c′g, r

′
g) | T ∈

Scoll(c)],Pr[(cg, rg) = (c′′g , r′′g ) | T ∈ Scoll(c)] ≥ κ−c. Then for every constant c and
every generator G∗ ∈ EPPT the probability Pr[T ∈ Scoll(c)] is negligible.

Proof. This follows from the binding property of Pedersen commitments. Suppose
the claim is false. Then there exists a constant c and a generator G∗ such that Pr[T ∈
Scoll(c)] is non-negligible. Denote by A the algorithm that accepts (P,H, K) as input
and simulates the receiver except that instead of executing the prover of the protocol
πpl it invokes the perfect zero-knowledge simulator. It continues the simulation until
G∗ outputs (cg, rg). Then it rewinds the simulation to the challenge step, Step 3,
and then continues the simulation again until G∗ outputs a new possibly di�erent
pair (c′g, r

′
g). If (cg, rg) 6= (c′g, r

′
g) and HrgKcg = w = Hr′gKc′g , then it outputs
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(r′g − rg)/(cg − c′g) mod Q, and otherwise ⊥. It follows that A outputs logH K with
non-negligible probability. This contradicts the discrete logarithm assumption and the
claim must be true. �

We say that an output of R, (N, g, h), is bad if h is not in the subgroup generated
by g, and denote this event by B. Suppose now that the proposition is false, i.e., there
exists a generator G∗, a constant c, and an in�nite index set N such that for κ ∈ N ,
the probability that the honest receiver R outputs a bad (N, g, h) is at least κ−c for
κ ∈ N .

Denote by A the algorithm that takes (Nr, gr) as input and simulates an interaction
between the honest receiver and the generator G∗. Then it rewinds back to Step 3 and
completes the simulation once again. If either simulation is rejecting then it outputs
⊥. Otherwise denote by (h, hr, w, α, αr, cr, d, cg, rg) and (h, hr, w, α, αr, c

′
r, d

′, c′g, r
′
g)

the relevant elements of the two simulations. This gives us hc−c′ = gd−d′ mod N and
hc−c′

r = gd−d′

r mod Nr. If (cg, rg) 6= (c′g, r
′
g) or if c − c′ divides d − d′ or if cr = c′r,

then it outputs ⊥. Otherwise it computes a and b such that e = a(c− c′) + b(d− d′)
and e = gcd(c − c′, d − d′), and outputs (b, η) = (hb

rg
a
r , (c − c′)/e). Note that bη =

h
b(c−c′)/e
r g

a(c−c′)/e
r = gr mod Nr with η 6= ±1.

Denote by E the event that the probability that R outputs a bad (N, g, h) is at
least 1

2κ−c conditioned on the simulation up to and including Step 2. Then it follows
that κ−c ≤ Pr[B ∧ E] + Pr[B ∧ Ē], which gives 1

2κ−c ≤ Pr[B ∧ E]. This implies
that Pr[E],Pr[B | E] ≥ 1

2κ−c. Note now that if (N, g, h) is bad, then for any two
lists (h, hr, w, α, αr, cr, d, cg, rg) and (h, hr, w, α, αr, c

′
r, d

′, c′g, r
′
g) we must have c = c′

or (c − c′) does not divide (d − d′). The �rst event may happen in two ways: either
(cg, rg) 6= (c′g, r

′
g), or (cg, rg) = (c′g, r

′
g) and cr = c′r. The probability of the �rst event

is negligible by the claim above, and the probability of the second event is negligible
as well since cr and c′r are chosen randomly from an exponentially large space. Thus,
using the union bound the adversary A outputs a non-trivial root of gr with probability
at least Pr[E](Pr[B | E] − ε(κ))2 for some negligible function ε(κ). This contradicts
the strong RSA-assumption and the proposition follows. �

Remark 5.11. Even with the modi�cation of Remark 5.6 the protocol requires a non-
constant number of exponentiations, since the generator may have to generate a new
RSA-modulus to ensure that its modulus is generated independently of Nr. If the
reader �nd this annoying, please note that if the generator chooses an RSA-modulus
N with at least 2κ+2 bits it can reuse the same modulus in any proof, since the orders
of g and gr are coprime. However, the size of the random exponents in the protocol
above, and in all protocols that use the modulus must then be doubled, and this gives
a far less e�cient protocol in practice. Thus, we choose to present the protocol above.

5.4 Special Composition

Let π = (P, V ) be a protocol that requires Fujisaki-Okamoto commitment parameters
as special input. Then we de�ne the special composition πc = (Pc, Vc) of πtp and π
to be the following protocol. The prover takes common input (Nr, gr) and x, private
input w, and then executes the receiver R on input (Nr, gr). If the result is of the form
(N, g, h) it then executes P on special input (N, g, h), common input x and private
input w. Otherwise the prover outputs ⊥. The veri�er takes common input (Nr, gr)
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and x, and then executes the generator G on input (Nr, gr). Then it executes V on
common input x, using the output of G, (N, g, h), as special input.

Lemma 5.12. Let π = (P, V ) be a (T∅‖T, F ′
srsa‖F )-zero-knowledge proof of knowl-

edge for a relation R′srsa ∨ R. Then the special composition πc of πtp and π is a
(Tsrsa‖T, F∅‖F )-zero-knowledge proof of knowledge for the relation R under the strong
RSA-assumption and the discrete logarithm assumption.

Proof. We prove the zero-knowledge property �rst. Consider some veri�er V ∗
c . We

de�ne G∗ to be the generator that simulates V ∗
c except that it outputs its entire state

when the receiver R of πtp is able to form its output. This is a well de�ned statement,
since it is de�ned only in terms of the number of messages read and written by V ∗

c .
We de�ne V ∗ to be the veri�er that takes the state of G∗ as auxiliary input and then
continues the simulation of V ∗

c . Let M be the simulator corresponding to V ∗ that is
guaranteed to exist by the (T∅‖T, F ′

srsa‖F )-zero-knowledge property of π. We de�ne
Mc to be the simulator that executes the honest receiver R and then executes M of
the output from R (and the common input of course). Suppose now that there exists
an instance chooser Ic and a distinguisher D such that

|Pr[Exp
(Tsrsa‖T,F∅‖F )−zk−0
πc,R,Ic,V ∗

c ,D (κ) = 1]− Pr[Exp
(Tsrsa‖T,F∅‖F )−zk−1
πc,R,Ic,V ∗

c ,D (κ) = 1]|

is non-negligible. Denote by I the instance chooser that accepts an input t, computes
(Nr, gr) = Tsrsa(1κ), and (i, z) = Ic((Nr, gr), t). Then it simulates an interaction
between G∗ and R on common input (Nr, gr) until R gives an output. We may
assume that the output of R is (N, g, h) and not ⊥, since given that the output is ⊥,
the simulation of Mc is perfect. Finally, I outputs (((N, g, h), t), z).

From Proposition 5.10 follows that the probability that h is not in the group gen-
erated by g is negligible. Thus, without loss we may assume that this is the case.
Thus, the distributions of Exp

(T∅‖T,F ′
srsa‖F )−zk−b

π,R,I,V ∗,D (κ) and Exp
(Tsrsa‖T,F∅‖F )−zk−b
πc,R,Ic,V ∗

c ,D (κ) are
statistically close. This means that

|Pr[Exp
(T∅‖T,F ′

srsa‖F )−zk−0
π,R,I,V ∗,D (κ) = 1]− Pr[Exp

(T∅‖T,F ′
srsa‖F )−zk−1

π,R,I,V ∗,D (κ) = 1]|

is non-negligible, which contradicts the (T∅‖T, F ′
srsa‖F )-zero-knowledge of π. We con-

clude that πc is (Tsrsa‖T, F∅‖F )-zero-knowledge.
Next we consider knowledge extraction. Denote by Xc the extractor that proceeds

as follows on common input x. It executes the generator G and then invokes the
extractor X of the protocol π. If X outputs a witness w such that R(x,w) = 1
then it outputs w. Otherwise it rewinds and executes G and the extractor X again.
Clearly, if the extractor Xc halts it outputs a witness. If the extractor does not run
in expected polynomial time, then by de�nition of a knowledge extractor this means
that the extractor X with non-negligible probability outputs a witness (b, η0, η1, η2)
such that ((N, g, h), (b, η0, η1, η2)) ∈ R′srsa . If this is the case we break the strong
RSA-assumption as follows. Denote by A the algorithm that takes (N, g, h) as input,
invokes the simulator guaranteed by Proposition 5.8, and then run the extractor X.
It follows that A outputs (b, η0, η1, η2) such that ((N, g, h), (b, η0, η1, η2)) ∈ R′srsa with
non-negligible probability. From Lemma C.3 we know that this contradicts the strong
RSA-assumption.

Note that for the above argument to go through it is necessary that the simulator
receives the RSA-parameters as an input. Intuitively, the reason is that otherwise we
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have no control over what the protocol that generates these parameters leak about the
secret exponent x. �

5.5 The Cramer-Shoup Version of the Paillier Cryptosystem

The Cramer-Shoup version [10, 4] of the Paillier [24] cryptosystem can be described as
follows. On input 1κ the key generator �rst chooses the description of a collision-free
hash function H. Then it chooses two random κ/2-bit safe primes p = 2p′ + 1 and
q = 2q′ + 1 and de�nes n = pq. All multiplications below are then performed modulo
n2. It chooses x, x0, x1 ∈ [0, 2κ+κr − 1] and λ ∈ Z∗n2 randomly, de�nes k = λ2n, and
computes y = kx, y0 = kx0 , and y1 = kx1 . Finally, it de�nes pk = (H,n, λ, y, y0, y1)
and sk = (H,n, x, x0, x1), and outputs the key pair (pk , sk) (we drop H and n from
our notation when convenient). On input a public key pk , a message m ∈ Zn, and
a label L ∈ {0, 1}∗ the encryption algorithm chooses t ∈ [0, 2κ+κr − 1] randomly and
computes u = kt and v = ηm/2(yn)t, where η = 1+n, and m/2 is computed modulo n.
Then it computes e = H(u2n, v2, L) and w = yt

0y
te
1 , and outputs (u, v, w). We consider

this to be one of many encodings of the ciphertext (u′, v′, w′) = (u2n, v2, w2n). Any
ciphertexts having the same decoding are considered identical. On input a secret key
sk and a decoded ciphertext (u′, v′, w′) the decryption algorithm �rst veri�es that
w′ = (u′)x0+x1H(u′,v′,L). If so it outputs v′(u′)−x and otherwise ⊥.

Our scheme di�ers slightly from the scheme in [4]: we use encodings to avoid
�benign malleability�, and we have abolished the veri�cation that v′(u′)−x is of the
form ηm for some m ∈ Zn. It is not hard to see from the proof in [4] that the following
proposition holds.

Proposition 5.13. The above public key encryption scheme with labels is CCA2-
secure under the decision composite residousity assumption.

6 An E�cient Designated Con�rmer Signature Scheme

We describe an e�cient instantiation of the generic construction using the twin-moduli
signature scheme and a variation of the Cramer-Shoup version of the Paillier cryp-
tosystem. Suppose we use the twin-moduli signature scheme with security parameter
κrsa = κ. To simplify the exposition we de�ne a function

Pack : N× [0, 2κp − 1]2 → N
Pack : (r, s0, s1) 7→ 22κpr + 2κps0 + s1 ,

where κp is de�ned as in the twin-moduli signature scheme, and note that the inverse
of this function is easy to compute.

6.1 The ∆-CCA2-Secure Cryptosystem

We de�ne a new cryptosystem (CSKg,Enc,Dec) with labels as follows. De�ne κpa =
κrsa +2κr +3. On input 1κ the key generator CSKg invokes the original key generator
on 1κpa to generate a key pair (pk∗, sk∗), computes (Nr, gr) = Tsrsa(1κrsa ) and outputs

(pk , sk) = ((Nr, gr, pk∗), sk∗) .

31



The encryption algorithm Enc takes as input pk , a label L interpreted as a twin-
moduli public key (N0, g0, N1, g1), and a twin-moduli signature (r, z0, s0, z1, s1). It
chooses ta, t0, t1 ∈ [0, 2κpa+κr − 1] and r0, r1 ∈ [0, 2κrsa+κr − 1] randomly and computes

a = Pack(r, s0, s1)

(ua, va) = (kta , ηa/2ynta) wa = yta
0 ytae

1

(u0, v0) = (kt0 , ηr0/2ynt0) w0 = yt0
0 yt0e

1

(u1, v1) = (kt1 , ηr1/2ynt1) w1 = yt1
0 yt1e

1

c′0 = gr0
0 z0 mod N0

c′1 = gr1
1 z1 mod N1

e = H(L, u2n
a , v2

a, u2n
0 , v2

0 , c′0, u
2n
1 , v2

1 , c′1)

Finally, it outputs the ciphertext ((ua, va, wa), (u0, v0, w0), c′0, (u1, v1, w1), c′1).
Decoding is done as when computing the hash value above, by squaring and taking

2nth powers. The decryption algorithm takes a secret key sk , a label L interpreted as
a twin-moduli public key (N0, g0, N1, g1), and a decoded ciphertext as input. Validity
is checked by verifying that

w′
a = (u′a)x0+x1e , w′

0 = (u′0)
x0+x1e , and w′

1 = (u′1)
x0+x1e ,

where e is the hash value above. It is also veri�ed that ua, va, wa, u0, v0, w0, u1, v1, w1 ∈
Z∗n2 and that c′0 ∈ Z∗N0

and c′1 ∈ Z∗N1
. Then the decryption algorithm computes

A = v′a(u′a)−x , R0 = v′0(u
′
0)
−x , and R1 = v′1(u

′
1)
−x .

If A = ηa, R0 = ηr0 and R1 = ηr1 , then it outputs

(Pack−1(a), c′0/gr0
0 mod N0, c

′
1/gr1

1 mod N1)

and otherwise it outputs (⊥, A, R0, R1, c
′
0, c

′
1).

A problem with computing over a composite modulus is that if the holder of a
public key is malicious there are no guarantees that the multiplicative group is of
the expected form. Thus, it may be possible to choose the modulus and compute
a ciphertext such that it can be decrypted both as valid and invalid, depending on
which exponents x, x0, x1 are used, since the public key does not commit its owner
to a �xed set of exponents. In our setting this means that a veri�er can be given
a DC-signature and a proof of validity, but when it hands the DC-signature to the
con�rmer, the con�rmer can prove that the signature is invalid. Intuitively, this is
clearly not acceptable, and formally it can not hold for a secure DC-signature scheme.

To solve this problem the con�rmer uses the El Gamal cryptosystem as an uncondi-
tionally committing and computationally hiding commitment scheme, i.e., we rede�ne
the key generator slightly. It de�nes κddh = κpa + 2κr + 3, chooses a κddh -bit safe
prime P = 2Q + 1 randomly, and random elements g, βx, βx0 , βx1 ∈ GQ, and then
chooses r ∈ ZQ randomly and computes

(µ, νx, νx0 , νx1) = (gr, βr
xgx, βr

x0
gx0 , βr

x1
gx1) .

The key generator CSKg is then rede�ned to output (P, g, βx, βx0 , βx1 , µ, νx, νx0 , νx1)
as part of the public key (we drop P from our notation when convenient).
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Corollary 6.1. Let ∆ be de�ned as in Section 4 and instantiated with the twin-moduli
signature scheme SS2. Then the encryption scheme above is ∆-CCA2-secure under the
decision composite residuosity assumption and the decision Di�e-Hellman assumption.

Proof. Consider �rst the cryptosystem where (µ, νx, νx0 , νx1) is replaced by a random
list of elements from GQ. Then security follows by a standard hybrid argument from
Proposition 5.13, since for each part of the ciphertext (ua, va, wa), (u0, v0, w0), and
(u1, v1, w1), we may view the the remainder of the ciphertext as a label. The problem
that there may be several labels if this is done and that the label is not always a pre�x
is easily solved by de�ning a new hash function that permutes its bits using a �xed
appropriate permutation. Then note that if using the original (µ, νx, νx0 , νx1) makes
the scheme insecure we can break the decision Di�e-Hellman assumption. �

6.2 Splitting the Con�rmer Key Generator

The key generator Kgdc
c can be split in the following way. De�ne Kgdc

c,1 to output
the tuple (H,n, λ, P, g, βx, βx0 , βx1), de�ne Kgdc

c,2 to output (x, x0, x1, r), and let Kgdc
c,3

on input (H,n, λ, P, g, βx, βx0 , βx1) and (x, x0, x1, r) output (y, y0, y1, µ, νx, νx0 , νx1)
as de�ned above if 2 ∈ Z∗n, P is a safe prime, g, βx, βx0 , βx1 ∈ GQ, and x, x0, x1 ∈
[−2κpa+2κr + 1, 2κpa+2κr − 1]. Otherwise it sets y = y0 = y1 = 1. The de�nition of
a well-formed key then follows. The following shows that for any well-formed �public
key� there exists a unique �secret key�.

Lemma 6.2. Let pk1 = (H,n, λ, P, g, βx, βx0 , βx1), where H is any string, n is a κpa -
bit integer, λ ∈ Z, P = 2Q+1 is a κddh -bit safe prime, and g, βx, βx0 , βx1 ∈ GQ. Then
there does not exist r, r′ ∈ Z and x, x0, x1, x

′, x′0, x
′
1 ∈ [−2κpa+2κr +1, 2κpa+2κr−1] such

that (x, x0, x1) 6= (x′, x′0, x
′
1) and Kgdc

c,3(pk1, (x, x0, x1, r)) = Kgdc
c,3(pk1, (x′, x′0, x

′
1, r

′)).

Proof. This follows from the fact that there exists a unique r ∈ ZQ such that µ = gr

and for that r there exists at most one set of x, x0, and x1 in [−2κpa+2κr +1, 2κpa+2κr−1]
such that βr

xgx = νx, βr
x0

gx0 = νx0 , and βr
x1

gx1 = νx1 , since Q is a (κpa + 2κr + 2)-bit
integer. �

6.3 The CMA-Secure and Collision-Free Signature Scheme

We use the twin-moduli signature scheme with security parameter κrsa = κ except
that we assume that the public key is augmented with a pair (Nr, gr) = Tsrsa(1κrsa ),
that is used in the protocols.

We need a particular form of the (f, f ′)-embedding assumption. We assume that
the (f, f ′)-embedding assumption holds for some f and f ′ such that

κ′p = f ′(2κr + κm + 1) ≥ κr + 2 , κm + 2κr + 2κp + 4 < κpa − κr , and (1)
κm + 2κr + κp + 2 < (κrsa − 1)/2 (2)

where κp = f(2κr +κm +1) as de�ned in the twin-moduli signature scheme. The �rst
requirement ensures that there is su�cient slack between the bit-size of s0 and s1 and
κp to allow a simple Schnorr-like protocol for proving knowledge of s0 and s1. The
second requirement essentially ensures that the result a of running Pack on (r, s0, s1)
can be uniquely encoded as an integer in [0, n] with some additional slack that allows a
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simple Schnorr-like protocol for proving knowledge of a. To fully appreciate the value
of our bit-�ddling, the reader may need to study our protocols and their analysis. The
third requirement ensures that any integer e0 or e1 induced by a well-formed signature
(r, z0, s0, z1, s1) is smaller than the order of any subgroup of SQN0 and SQN1 , when N0

and N1 are honestly generated. This is important in the construction of the (Ths, Fhs)-
zero-knowledge simulator.

6.4 A Well-Formedness Function

We instantiate the well-formedness function wf as follows. First of all we have already
de�ned a well-formed public key. We de�ne wf to output 0 when ⊥ is a pre�x of
its �rst input. We de�ne wf ((r, z0, s0, z1, s1), pk , spk) = 1 if pk is well-formed, r ∈
[22κr+κm , 22κr+κm + 2κr+κm − 1], s0, s1 ∈ [2κp−1, 2κp−1 + 2κp−κ′p − 1] are odd, z0, g0 ∈
Z∗N0

, z1, g1 ∈ Z∗N1
, and ze1

1 = g1 mod N1. Note that the well-formedness of pk can be
veri�ed by anyone and that for any honestly generated spk and honestly computed
signature this is always the case.

6.5 An Informal Description of Some Key Ideas

Our choice of cryptosystem and signature scheme allow e�cient protocols that are
described in detail in the next section. In this section we merely try to convey some
key ideas.

The idea of the twin-moduli signature scheme is loosely speaking that all that is
needed to verify a signature can be done �in the exponent�. Recall that a veri�cation
involves multiplication by constants, adding, checking for interval-membership and
oddity, and then checking the roots of the signature.

Let us write C(m) for a Fujisaki-Okamoto commitment of the form glhm mod N
for some random l, and simply write Encpa(m) for a pair of the form (kr, ηmyr), i.e.,
we ignore the encoding and the third component that guarantees CCA2-security.

Then the proof of validity of a signature can be explained as follows. A DC-
signature essentially consists of a tuple

(Ea, Er0 , c
′
0, Er1 , c

′
1) = (Encpa(Pack(r, s0, s1)),Encpa(r0), gr0

0 z0,Encpa(r1), gr1
1 z1) .

The prover forms commitments

C ′
r = C(r − 22κr+κm)

C ′
s0

= C((s0 − 2κp−1 − 1)/2)

C ′
s1

= C((s1 − 2κp−1 − 1)/2)

and proves knowledge of the committed values. The protocol used to do this also
implies that r − 22κr+κm ∈ [−22κr+κm + 1, 22κr+κm − 1] and (s0 − 2κp−1 − 1)/2, (s1 −
2κp−1 − 1)/2 ∈ [−2κp−2 + 1, 2κp−2 − 1]. Then the veri�er computes

Cr = C ′
rC(22κr+κm)

Cs0 = (C ′
s0

)2C(2κp−1 + 1)

Cs1 = (C ′
s1

)2C(2κp−1 + 1)

Ca = C22κp

r C2κp

s0
Cs1 ,
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and the prover proves that the value committed to in Ca equal the value encrypted in
Ea. Note that Cs0 and Cs1 are commitments to odd integers s0 and s1 in [0, 2κp − 1]
and Cr is a commitment to an integer r ∈ [1, 22κr+κm+1 − 1]. Thus, part of the
veri�cation has already been executed.

To complete the veri�cation the veri�er computes commitments of the integers e0

and e1 induced by the values r, s0, and s1 by forming

Ce0 = (CrC(m))2
κp

Cs0 and Ce1 = C2κp

r Cs1 .

All that then remains is to prove that if e0 and e1 are committed to in Ce0 and Ce1

and r0 and r1 are encrypted in Er0 and Er1 , then

(c′0)
e0 = ge0r0

0 g0 mod N0 and (c′1)
e1 = ge1r1

1 g1 mod N1 .

This shows that the encrypted signature is a valid twin-moduli signature of the message
m.

The proof of invalidity for well-formed signatures is similar, but more complicated
in that at some point the prover must show that ze0

0 /g0 6= 1 without revealing this
value. A standard trick to solve this problem is to randomize the result, i.e., revealing
(ze0

0 /g0)l for a randomly chosen l. However, in general it may happen that ze0
0 /g0 is

contained in some particular subgroup of Z∗N0
and the simulator clearly does not know

if this is the case.
When the public signature key is chosen honestly and the malicious veri�er does not

know the factorization of N0, it is infeasible to �nd any element that generates a non-
trivial subgroup of SQN0 . Thus, in this case the above idea works straightforwardly
and there is no problem. In other words we have a (Ths, Fhs)-zero-knowledge simulator.

For maliciously generated N0, g0, z0, and e0 the above approach does not work
at all, and it seems di�cult to come up with an e�cient approach that does work.
Fortunately, we know that it su�ces to have a simulator that is given the values z0

and e0 as an additional advice string, and given these it is obviously trivial to generate
(ze0

0 /g0)l with the right distribution. In other words we have a (Tcs, Fcs)-simulator.

6.6 The Protocols of the Construction

We are now ready to give the details of the protocols of our construction. It may
seem that the proof of correct decryption in Camenisch and Shoup [4] can be used
directly to construct the proof of correct conversion of a DC-signature, but this is not
the case, since (1) we have modi�ed the cryptosystem to allow encryption of twin-
moduli signatures, and (2) they assume that the keys of the cryptosystem are honestly
generated, whereas we do not. However, the reader will �nd no di�culty in recognizing
some of the ideas presented in their paper (as well as in older work on which it is based)
also in our proof of correct conversion.

Before we start we introduce some notational conventions. In each of the protocols
the prover and veri�er �rst decodes the signature input, but to simplify notation we
assume that this has already been done before each protocol is executed. Whenever we
for presentational convenience say that πeq is invoked multiple times as a subprotocol,
we assume that all these invocations are combined into a single invocation. We also
assume that a suitable instance of πeq is used. The protocols are not always strictly
speaking zero-knowledge for the relations as stated. The problem is that we have not
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put any bound on the size of the witnesses, whereas the protocols assume that this is
the case. Following common practice in the literature we ignore this, whenever it does
not play any essential role. We assume that the veri�er in each protocol performs all
the self-evident checking that can be done without any secret keys, e.g., that elements
that are expected to be invertible indeed are invertible and that elements are of the
right bit-size. To avoid cluttering our notation we do not state explicitly the group in
which computations take place.This follows from the groups in which the elements are
contained. Finally, we abuse the notations T1‖T2 and F1‖F2 in that we assume that
the concatenation puts the parameters in the right order.

6.6.1 Well-Formed Keys

Consider �rst the proof of a well-formed key πwf , and recall that we use the splitting of
CSKg above. Anybody can in fact verify that a public key is well-formed. However, a
well-formed public key may have no corresponding secret key. Thus, the con�rmer must
prove knowledge of an integer r and integers x, x0, x1 ∈ [−2κpa+2κr + 1, 2κpa+2κr − 1]
such that

(y, y0, y1) = (kx, kx0 , kx1) (3)
(µ, νx, νx0 , νx1) = (gr, βr

xgx, βr
x0

gx0 , βr
x1

gx1) . (4)

Note that for honest con�rmers we have x, x0, x1 ∈ [0, 2κpa+κr−1]. Lemma 5.12 implies
the following.

Corollary 6.3. The special composition πwf of πtp and πeq gives a Kgdc
c -zero-knowledge

proof of knowledge for the relation Rwf under the strong RSA-assumption and the dis-
crete logarithm assumption.

6.6.2 Correct Conversion

To prove that a label spk and ciphertext

((ua, va, wa), (u0, v0, w0), c′0, (u1, v1, w1), c′1)

are valid and decrypts to (A,R0, R1, c
′
0, c

′
1) ∈ SQ3

n2 × Z∗N0
× Z∗N1

, the con�rmer must
prove knowledge of an integer r and x, x0, x1 ∈ [−2κpa+2κr + 1, 2κpa+2κr − 1] such that
Equations (3)-(4) are satis�ed and

va = Aux
a wa = ux0

a (ue
a)x1

v0 = R0u
x
0 w0 = ux0

0 (ue
0)

x1

v1 = R1u
x
1 w1 = ux0

1 (ue
1)

x1

where e = H(spk , ua, va, u0, v0, c
′
0, u1, v1, c

′
1). To prove that the ciphertext is valid and

decrypts to (Pack−1(a), z0, z1) the equations on the left are replaced by

va = ηaux
a

v0 = ηr0ux
0 c′0 = gr0

0 z0

v1 = ηr1ux
1 c′1 = gr1

1 z1

and the prover proves knowledge also of r0, and r1. Note that for honest provers we
have x, x0, x1 ∈ [0, 2κpa+κr − 1], a ∈ [0, 2κm+2κr+2κp − 1] and r0, r1 ∈ [0, 2κrsa+κr − 1]
respectively. Again we have a corollary of Lemma 5.12.
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Corollary 6.4. The special composition πv
c of πtp and πeq gives a Kgdc

c -zero-knowledge

proof of knowledge for the relation Rc∩{((σ, s, pk , spk), sk) : Condc
sk (σ, spk) 6= ⊥} under

the strong RSA-assumption and the discrete logarithm assumption.

To prove that a ciphertext is invalid, the con�rmer need only prove knowledge of
an integer r and x0, x1 ∈ [−2κpa+2κr + 1, 2κpa+2κr − 1] such that Equations (3)-(4) are
satis�ed and that

wa 6= ux0
a (ue

a)x1 , w0 6= ux0
0 (ue

0)
x1 , or w1 6= ux0

1 (ue
1)

x1 .

Note that for an honest prover x0, x1 ∈ [0, 2κpa+κr−1]. This is done using the protocol
for trusted commitment parameters composed with the protocol below.

Protocol 6.5 (Invalid Ciphertext).
Common Input: An integer N and g, h ∈ SQN , a public key of the form
pk = (H,n, λ, y, y0, y1, P, g, βx, βx0 , βx1 , µ, νx, νx0 , νx1), and a label spk and ciphertext
of the form c = ((ua, va, wa), (u0, v0, w0), c′0, (u1, v1, w1), c′1).
Private Input: A private key sk = (x, x0, x1, r) corresponding to the public key pk .

1. The prover chooses ta, t0, t1, la, l0, l1 ∈ [0, 2κrsa+κr − 1] and sa, ka, s0, k0, s1, k1 ∈
[0, 2κpa+κr − 1] randomly and computes

w′ = (ux0+x1e
a /wa)ka(ux0+x1e

0 /w0)k0(ux0+x1e
1 /w1)k1

and

Ba = gtahsa B′
a = usa

a ux0
a (ue

a)x1 Ca = glaBka
a C ′

a = (B′
a/wa)ka (5)

B0 = gt0hs0 B′
0 = us0

0 ux0
0 (ue

0)
x1 C0 = gl0Bk0

0 C ′
0 = (B′

0/w0)k0 (6)

B1 = gt1hs1 B′
1 = us1

1 ux0
1 (ue

1)
x1 C1 = gl1Bk1

1 C ′
1 = (B′

1/w1)k1 (7)

and hands these values and w′ to the veri�er. Recall that wa, w0, w1 are invert-
ible, so this is always possible.

2. Then it proves knowledge of an integer r and x, x0, x1 ∈ [−2κpa+2κr +1, 2κpa+2κr−
1], and ta, t0, t1, la, l0, l1 ∈ [−2κrsa+2κr +1, 2κrsa+2κr−1] and sa, ka, s0, k0, s1, k1 ∈
[−2κpa+2κr + 1, 2κpa+2κr − 1] such that Equations (3)-(4) are satis�ed and such
that the above holds, and it proves knowledge of t′a, t′0, t

′
1 ∈ [−2κrsa+κpa+3κr +

1, 2κrsa+κpa+3κr − 1] and s′a, s′0, s
′
1 ∈ [−22κpa+3κr + 1, 22κpa+3κr − 1] such that

Ca = gt′ahs′a , C0 = gt′0hs′0 , C1 = gt′1hs′1 , and (8)

C ′
aC ′

0C
′
1 = u

s′a
a u

s′0
0 u

s′1
1 w′ . (9)

In addition to verifying the proofs of knowledge the veri�er checks that w′ 6= 1.

Proposition 6.6. Protocol 6.5 is a proof of knowledge for the relation R′srsa ∨ Rc ∩
{((σ, s, pk , spk), sk) : Condc

sk (σ, spk) = ⊥} under the discrete logarithm assumption.

Proof. We have from Proposition 5.4 that the subprotocol is a proof of knowledge
of the exponents or of a witness (b, η0, η1, η2) such that ((N, g, h), (b, η0, η1, η2)) ∈
R′srsa . Thus, we assume that the extractor outputs exponents r and x, x0, x1 ∈
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[−2κpa+2κr + 1, 2κpa+2κr − 1], and ta, t0, t1, la, l0, l1 ∈ [−2κrsa+2κr + 1, 2κrsa+2κr − 1],
sa, ka, s0, k0, s1, k1 ∈ [−2κpa+2κr + 1, 2κpa+2κr − 1], and t′a, t′0, t

′
1 ∈ [−2κrsa+κpa+3κr +

1, 2κrsa+κpa+3κr − 1] and s′a, s′0, s
′
1 ∈ [−22κpa+3κr +1, 22κpa+3κr − 1] such that Equations

(3)-(4), Equations (5)-(7), and Equations (8)-(9) are satis�ed. From this we conclude
that

Ca = gtaka+lahsaka C ′
a = usaka

a (ux0
a (ue

a)x1/wa)ka

C0 = gt0k0+l0hs0k0 C ′
0 = us0k0

0 (ux0
0 (ue

0)
x1/w0)k0

C1 = gt1k1+l1hs1k1 C ′
1 = us1k1

1 (ux0
1 (ue

1)
x1/w1)k1

If (t′a, s′a) 6= (taka + la, saka), (t′0, s
′
0) 6= (t0k0 + l0, s0k0), or (t′1, s

′
1) 6= (t1k1 +

l1, s1k1), then we have a non-trivial representation gη0hη1 = 1 with (η0, η1) equal to
(t′a−taka− la, s′a−saka) or similarly for the other exponents. In other words a witness
(1, 0, η1, η2) such that ((N, g, h), (1, 0, η1, η2)) ∈ R′srsa . Assume now that this is not
the case. Then we may conclude that

u
s′a
a u

s′0
0 u

s′1
1 w′ = C ′

aC ′
0C

′
1

= u
s′a
a u

s′0
0 u

s′1
1 ((ux0

a (ue
a)x1/wa)ka((ux0

0 (ue
0)

x1/w0)k0((ux0
1 (ue

1)
x1/w1)k1

and since w′ 6= 1 and ua, u0, and u1 are invertible modulo n2, we conclude that we
have a witness that the ciphertext is invalid. �

De�ne a function F by F ((pk , sk), (σ, spk)) = ((σ,⊥, pk , spk), sk), and denote by
(Kgdc

c )′ the algorithm Kgdc
c except that the pair (Nr, gr) is eliminated from the output.

Proposition 6.7. The protocol is (T∅‖(Kgdc
c )′, F ′

srsa‖F )-zero-knowledge for the rela-
tion R′srsa ∨ Rc ∩ {((σ, s, pk , spk), sk) : Condc

sk (σ, spk) = ⊥} under the strong RSA-
assumption.

Proof. The simulator chooses Ba, B0, B1 ∈ SQN , w′ ∈ SQn, B′
a ∈ 〈ua〉, B′

0 ∈ 〈u0〉,
B′

1 ∈ 〈u1〉, randomly and computes Ca, C0, C1, C ′
a, C ′

0, and C ′
1 honestly. Then it

invokes the zero-knowledge simulators of the subprotocol.
The commitments are statistically hiding by the de�nition of F ′

srsa , so we may
assume without loss that they are distributed as in a real view. The zero-knowledge
property then follows from the zero-knowledge property of the subprotocol, provided
that w′ is correctly distributed. Since the ciphertext is decoded we know that ua,
u0, u1, wa, w0, and w1 are all 2nth residues modulo n. The only way a real view
can di�er in distribution from the simulated view is if at least one of the elements
ux0

a (ue
a)x1/wa, ux0

0 (ue
0)

x1/w0, and ux0
1 (ue

1)
x1/w1 have order di�erent from p′q′ and 1,

where p = 2p′ + 1, q = 2q′ + 1 and n = pq. However, �nding any such element implies
that the factors p and q can be recovered (see for example Mao and Lee [21]), and this
clearly implies that the factoring assumption is broken, which implies that the strong
RSA-assumption is broken.

More precisely, if there exists an instance chooser I such that the elements are
anomalous as above with non-negligible probability, then we can de�ne A to be the
algorithm that takes n as input, and simulates (Kgdc

c )′ using this modulus. Then we
execute the zero-knowledge experiment and output the anomalous element if the in-
stance chooser outputs such an element. Note that it is essential that the factorization
of n is not used by the decryption algorithm. �
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Corollary 6.8. The special composition π⊥c of πtp and Protocol 6.5 is a Kgdc
c -zero-

knowledge proof of knowledge for the relation Rc∩{((σ, s, pk , spk), sk) : Condc
sk (σ, spk) =

⊥} under the strong RSA-assumption and the discrete logarithm assumption.

Corollary 6.9. The pair (πv
c , π⊥c ) gives a Kgdc

c -zero-knowledge proof of knowledge for
the relation Rc under the strong RSA-assumption and the discrete logarithm assump-
tion.

6.6.3 Validity/Invalidity of DC-signatures

Since the protocols πv and πc achieve similar results we de�ne a joint protocol that
behaves slightly di�erently depending on which type of input it is executed on. Below
we ignore the case where m = ⊥, since by de�nition no signature can be valid for this
message.

Protocol 6.10 (Validity/Invalidity of Well-Formed Signature).
Common Input: An integer N and g, h ∈ Z∗n, a public key of the form
pk = (H,n, λ, y, y0, y1, P, g, βx, βx0 , βx1 , µ, νx, νx0 , νx1), a public signature key of the
form spk = (N0, g0, N1, g1), a message m ∈ [0, 2κm − 1], a candidate signature of the
form
((ua, va, wa), (u0, v0, w0), c′0, (u1, v1, w1), c′1), and a bit b.
Private Input: r ∈ [22κr+κm , 22κr+κm + 2κr+κm − 1], odd s0, s1 ∈ [0, 2κp−κ′p − 1],
from which we de�ne

e = H(spk , ua, va, u0, v0, c
′
0, u1, v1, c

′
1)

a = Pack(r, s0, s1)

and either (1) r0, r1 ∈ [0, 2κrsa+κr − 1], ta, t0, t1 ∈ [0, 2κpa+κr − 1], and b = 1, such that

(ua, va, wa) = (kta , ηayta , (y0y
e
1)

ta) (10)
(u0, v0, w0) = (kt0 , ηr0yt0 , (y0y

e
1)

t0) (11)
(u1, v1, w1) = (kt1 , ηr1yt1 , (y0y

e
1)

t1) (12)

or (2) sk = (x, x1, x2, r) with x, x1, x2 ∈ [0, 2κpa+κr−1] and r ∈ ZQ such that Equations
(3)-(4) are satis�ed and

(va, wa) = (ηaux
a, ux0

a (ue
a)x1) (13)

(v0, w0) = (ηr0ux
0 , ux0

0 (ue
0)

x1) (14)
(v1, w1) = (ηr1ux

1 , ux0
1 (ue

1)
x1) . (15)

In both cases it also holds that

(c′0, c
′
1) = (gr0

0 z0, g
r1
1 z1)

wf ((r, z0, s0, z1, s1), pk , spk) = 1
Vfspk (m, (r, z0, s0, z1, s1)) = b .

1. The prover forms commitments holding the di�erent parts of the signature
(r, z0, s0, z1, s1). More precisely, the prover de�nes r′ = r − 22κr+κm , s′0 =
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(s0 − 2κp−1 − 1)/2 and s′1 = (s1 − 2κp−1 − 1)/2, chooses lr, ls0 , ls1 , lr0 , lr1 ∈
[0, 2κrsa+κr − 1] randomly, computes

(C ′
r, C

′
s0

, C ′
s1

, Cr0 , Cr1) = (glrhr′ , gls0 hs′0 , gls1 hs′1 , glr0 hr0 , glr1 hr1) , (16)

and hands (C ′
r, C

′
s0

, C ′
s1

, Cr0 , Cr1) to the veri�er.

2. The prover and veri�er compute

Cs0 = (C ′
s0

)2h2κp−1+1 (17)

Cs1 = (C ′
s1

)2h2κp−1+1 (18)

Cr = C ′
rh

22κr+κm (19)

Ca = C22κp

r C2κp

s0
Cs1 (20)

Ce0 = (Crh
m)2

κp
Cs0 (21)

Ce1 = C2κp

r Cs1 . (22)

The prover computes a = Pack(r, s0, s1), la = 22κp lr +2κp ls0 +2ls1 , e0 = 2κp(r+
m) + s0, le0 = 2κp+1lr + 2ls0 , e1 = 2κpr + s1, and le1 = 2κp+1lr + 2ls1 .
Note that Ca is a commitment of a, Ce0 is a commitment of e0, and Ce1 is a
commitment of e1.

3. For all types of inputs the prover proves knowledge of a and la such that

Ca = glaha . (23)

In case (1) the prover proves knowledge of exponents such that Equations (10)-
(12) and Equation (16) are satis�ed simultaneously, i.e., exponents are equal
when appropriate. In case (2) the prover proves knowledge of exponents such
that Equations (3)-(4), Equations (13)-(15), and Equation (16) are satis�ed si-
multaneously, i.e., exponents are equal when appropriate. The use of πeq im-
plies that the exponents satisfy r′ ∈ [−2κm+2κr + 1, 2κm+2κr − 1] and s′0, s

′
1 ∈

[−2κp−κ′p+κr + 1, 2κp−κ′p+κr − 1].
These proofs show that the committed values correspond to the encrypted signa-
ture.

4. The prover chooses l0, l
′
0, j0, l1, l

′
1, j1 ∈ [0, 2κrsa+κr − 1] randomly, computes

(C0, C
′
0, C

′′
0 ) = (gl0Ce0

r0
, gl′0hj0 , (c′0)

j0(c′0)
e0) (24)

(C1, C
′
1, C

′′
1 ) = (gl1Ce1

r1
, gl′1hj1 , (c′1)

j1(c′1)
e1) (25)

and hands (C0, C
′
0, C

′′
0 , C1, C

′
1, C

′′
1 ) to the veri�er. Then the prover proves knowl-

edge of exponents such that Equations (24)-(25) are satis�ed and

(Ce1 , C1, C
′′
1 /g1) = (gle1 he1 , gl′′1 hj′1 , (c′1)

j1g
j′1
1 ) (26)

for some l′′1 and j′1.
Recall that for well-formed signatures this can always be proved.
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5. If b = 1, i.e., the input was a valid signature, the prover also proves knowledge
of exponents such that

(Ce0 , C0, C
′′
0 /g0) = (gle0 he0 , gl′′0 hj′0 , (c′0)

j0g
j′0
0 ) , (27)

for some l′′0 and j′0.

6. If b = 0 then the prover chooses i0, i
′
0, i

′′
0 ∈ [0, 2κrsa+κr − 1] randomly, computes

(B0, B
′
0, B

′′
0 ) = (gi0C

i′′0
0 , gi′0(C ′

0)
i′′0 , (C ′′

0 /g0)i′′0 ) (28)

and proves in addition to knowledge of the above exponents also knowledge of
k0, k

′
0, f0, f

′
0 such that

(B0, B
′
0, B

′′
0 ) = (gk0hf0 , gk′0hf ′0 , (c′0)

f ′0gf0
0 d0) (29)

for some d0 6= 1 that is sent to the veri�er.

Proposition 6.11. Protocol 6.10 is a proof of knowledge for the relation R′srsa ∨
Rv and R′srsa ∨ Re for Case (1) and Case (2) inputs respectively under the discrete
logarithm assumption.

Proof. The extractor simply invokes the extractor of the subprotocol πeq . The propo-
sition allows us to assume that it outputs exponents lr, ls0 , ls1 , lr0 , lr1 , r0, r1, a, la,
r′ ∈ [−2κm+2κr + 1, 2κm+2κr − 1], and s′0, s

′
1 ∈ [−2κp−κ′p+κr + 1, 2κp−κ′p+κr − 1] such

that

• Case (1): Equations (10)-(12), Equation (16), and Equation (23) are satis�ed for
some exponents ta, t0, t1, or

• Case (2): Equations (13)-(15), Equation (16), and Equation (23) are satis�ed for
some exponents x, x0, x1 and r.

For the unique sk such that (pk , sk) is well-formed it also holds that

vau−x
a = ηa , v0u

−x
0 = ηr0 , and v1u

−x
1 = ηr1 .

In other words the committed values are equal to the encrypted values. In addition to
this we also have an exponent l∗a such that

Ca = gl∗ahPack(r,s0,s1) ,

where s0 = 2s′0 + 2κp−1 + 1 and s1 = 2s′1 + 2κp−1 + 1. We may assume that (a, la) =
(Pack(r, s0, s1), l∗a), since otherwise we can de�ne η1 = l∗a−la and η2 = Pack(r, s0, s1)−a
and have ((N, g, h), (1, 0, η1, η2)) ∈ R′srsa .

From Equations (19)-(22) we get exponents r = r′+22κr+κm , e0 = 2κp(r+m)+s0,
le0 , e1 = 2κpr + s1, and le1 such that

(Ce0 , Ce1) = (gle0 he0 , gle1 he1) .

Note that r ∈ [1, 22κr+κm+1 − 1] and the exponents s0 and s1 are odd by construction
and contained in [0, 2κp − 1], since κ′p ≥ κr + 2 by Equation (1). Furthermore, e0
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and e1 are formed from r, m, s0, and s1 as de�ned by the twin-moduli signature
scheme. Thus, all that remains of the veri�cation of the encrypted candidate twin-
moduli signature is to consider how e0 and e1 relate to z0 = c′0/gr0

0 and z1 = c′1/gr1
0 .

Recall that for any well-formed twin-moduli signature both g0 and g1 are invertible
and we have ze1

1 = g1.
From Equations (24) and (25) we have exponents e∗1, l∗e1

, l1, l′1, and j1 such that

(Ce0 , C0, C
′
0, C

′′
0 ) = (gl∗e0 he∗0 , gl0C

e∗0
r0 , gl′0hj0 , (c′0)

j0(c′0)
e∗0 )

(Ce1 , C1, C
′
1, C

′′
1 ) = (gl∗e1 he∗1 , gl1C

e∗1
r1 , gl′1hj1 , (c′1)

j1(c′1)
e∗1 ) .

Similarly to the above, we may assume that (l∗e0
, e∗0) = (le0 , e0) and (l∗e1

, e∗1) =
(le1 , e1). From Equation (26) we get additional exponents l′′1 and j′1 such that

(C1, C
′′
1 /g1) = (gl′′1 hj′1 , (c′1)

j1g
j′1
1 ) . (30)

Thus, we have glr1e1+l1hr1e1 = C1 = gj′′1 hj′1 , and similarly to the above we may
assume that j′1 = r1e1. This then implies that (c′1)

j1(c′1)
e1 = C ′′

1 = (c′1)
j1gr1e1

1 g1. By
assumption both c′1 and g1 are invertible modulo N1. Thus, we have (c′1/gr1

1 )e1 = g1

as expected.
If b = 1, i.e., we expect to extract a valid signature, then from Equation (27) we

get additional exponents l′′0 and j′0 such that

(C0, C
′′
0 /g0) = (gl′′0 hj′0 , (c′0)

j0g
j′0
0 ) . (31)

Similarly to the above it follows that (c′0/gr0
0 )e0 = g0 as expected. To summarize, the

ciphertext contains a valid, and well-formed, twin-moduli signature (r, z0, s0, z1, s1) of
the message m relative the public key spk .

If b = 0 we instead have exponents i0, i′0, i′′0 , k0, f0, k′0, and f ′0 such that

(B0, B
′
0, B

′′
0 ) = (gi0C

i′′0
0 , gi′0(C ′

0)
i′′0 , (C ′′

0 /g0)i′′0 ) , and

(B0, B
′
0, B

′′
0 ) = (gk0hf0 , gk′0hf ′0 , (c′0)

f ′0gf0
0 d0) .

Thus, we have gi0
0 C

i′′0
0 = glr0e0i′′0 +l0i′′0 +i0hr0e0i′′0 = B0 = gk0hf0 and gi′0(C ′

0)
i′′0 =

gl′0i′′0 +i′0hj0i′′0 = B′
0 = gk′0hf ′0 . We conclude that f0 = r0e0i

′′
0 and f ′0 = j0i

′′
0 . We

also have
(C ′′

0 /g0)i′′0 = (c′0)
j0i′′0 ((c′0)

e0/g0)i′′0 = B′′
0 = (c′0)

f ′0gf0
0 d0 .

Since both c′0 and g0 are invertible modulo N0, this implies that

((c′0)
e0/g0)i′′0 = g

r0e0i′′0
0 ((c′0/gr0

0 )e0/g0)i′′0 = gf0
0 d0 ,

i.e., ((c′0/gr0
0 )e0/g0)i′′0 = d0. Finally, we conclude that (c′0/gr0

0 )e0/g0 6= 1 as expected,
since d0 6= 1. To summarize, the ciphertext contains an invalid, but well-formed, twin-
moduli signature (r, z0, s0, z1, s1) of the message m relative the public key spk . �

Let T ′
hs be identical to Ths except that the parameters (Nr, gr) are excluded from

the output, and let F ′
hs be de�ned as Fhs except that (Nr, gr) is not in its input. De�ne

T ′
cs and F ′

cs correspondingly. We prove the following two propositions jointly.
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Proposition 6.12. Protocol 6.10 is (T∅‖T∅, F ′
srsa‖Kgdc

s )-zero-knowledge for Case (1)
inputs under the discrete logarithm assumption.

Proposition 6.13. Protocol 6.10 is (T∅‖T ′
hs, F

′
srsa‖F ′

hs)-zero-knowledge as well as
(T∅‖T ′

cs, F
′
srsa‖F ′

cs)-zero-knowledge for Case (2) inputs under the discrete logarithm
assumption.

Proof (Propositions 6.12 and 6.13). Consider �rst an input with b = 1, i.e., the DC-
signature is valid. The simulator chooses C ′

r, C
′
s0

, C ′
s1

, Cr0 , Cr1 , C0, C
′
0, C1, C

′
1 ∈ SQN ,

C ′′
0 ∈ 〈c′0〉 and C ′′

1 ∈ 〈c′1〉 randomly and then invokes the zero-knowledge simulator of
πeq . Since all commitments are statistically hiding it follows from the zero-knowledge
property of πeq that the resulting simulation is acceptable.

Consider now an input with b = 0, i.e., the DC-signature is invalid. In this case
the simulator chooses the commitments above as before, but also computes B0, B

′
0, B

′′
0

as in the protocol. Provided that the simulator can form a correctly distributed d0, it
can then invoke the zero-knowledge simulator of πeq , and we may conclude that the
protocol is zero-knowledge. Unfortunately, it seems di�cult to generate a correctly
distributed d0 for an arbitrary spk that may be maliciously generated. The problem
is that N0, z0, and e0 may be chosen maliciously, and if they are it may be the case
that ze0

0 /g0 generates some particular subgroup of Z∗N0
. The distinguisher could then

tell the di�erence between a simulation and a real execution using the factorization of
N0. Fortunately, we do not need a zero-knowledge simulator.

The (T ′
cs, F

′
cs)-zero-knowledge simulator can of course use its advice to compute

d0 exactly as is done in the protocol. Thus, the distribution of the simulated d0 is
identical to that in a real execution.

The (T ′
hs, F

′
hs)-zero-knowledge simulator simply chooses d0 ∈ SQN0 randomly.

This works, since for the instance the protocol is executed, the signature is constructed
honestly. More precisely, we know that z

e′0
0 = g0 for some e′0 6= e0. Thus, z0 generates

SQN0 and we may write ze0
0 /g0 = z

e0−e′0
0 . By construction e0 = 2κp(r + m) + s0 with

r ∈ [1, 2κm+2κr −1] and m ∈ [0, 2κm −1], so |e0− e′0| is smaller than the orders of both
non-trivial subgroups of SQN0 for every m ∈ [0, 2κm − 1] due to Equation (2). This
implies that z

e0−e′0
0 generates SQN0 .

Thus, we conclude that the proposition is true. �

We now have the following corollaries from Lemma 5.12.

Corollary 6.14. The special composition πv of πtp and Protocol 6.10 for Case (1) is

a Kgdc
s -zero-knowledge proof of knowledge for the relation Rv under the strong RSA-

assumption and the discrete logarithm assumption.

Corollary 6.15. The special composition πe of πtp and Protocol 6.10 for Case (2) is
a (Ths, Fhs)-zero-knowledge and (Tcs, Fcs)-zero-knowledge proof of knowledge for the
relation Rv under the strong RSA-assumption and the discrete logarithm assumption.

6.7 Complexity Analysis

For simplicity we estimate the e�ciency of the scheme without any non-trivial op-
timizations. For each composite modulus used in the protocols either the prover or
the veri�er knows the factorization and can exponentiate using Chinese remaindering.
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There are also a number of well known techniques to improve the e�ciency of schemes
such us ours, e.g., o�-line precomputation, combining commitments, and speeding up
computing multiple exponentiations and �xed based exponentiations. We expect these
techniques to reduce the complexity of our protocols substantially.

We use the following assumptions in our analysis. Exponentiation modulo a (κ +
κ′)-integer is computationally equivalent to (κ+κ′

κ )3 exponentiations modulo a κ-bit
integer. Exponentiation modulo a κ-bit integer, where the exponent has κ + κ′ bits is
equivalent to 1 + κ′

κ exponentiations modulo a κ-bit integer.
We assume that the (f, f ′)-embedding assumption holds with κp = f(κr+κm+1) =

2κr and f ′(κr+κm+1) = κr+2. For our estimates below we assume that on average the
embedding algorithm Embf ′

f requires the equivalent of 2κ′(κ′

κ )3 κ-bit exponentiations,
where κ′ = κp +κm +2κr to �nd an embedding. In other words we assume that given
r ∈ [0, 2κm+2κr − 1] the embedding algorithm tries random odd s until e = 2κpr + s
is prime, and we assume that each such odd integer is prime with probability roughly
δ = 2

κ′ ln 2 (this is reasonable since a random κ′-bit integer is prime with probability
roughly 1/κ ln 2). We also assume that in each iteration the Miller-Rabin test identi�es
a composite as such with probability 3/4, and that the output probable prime passes
κc iterations. Thus, our estimate follows from estimating the extected number of
exponentiations to

∑∞
i=0 δ(1− δ)i 4

3 i + κc ≤ 2κ′, for reasonable choices of κr and κc.
Recall that the Cramer et al. [7] protocol πpl for proving knowledge of a logarithm

requires 4 exponentiations for the prover and 6 exponentiations for the veri�er over
the prime order group in which the protocol is executed.

By tedious book-keeping we have written a program that computes the complexity
of all operations and protocols taking into account the various bit-sizes of moduli and
exponents. Table 1 summarizes the results for a set of practical parameters. We stress
that these values do not include the cost for checking primality and for generating
RSA-parameters, see Remark 5.6 and 5.11 for a discussion on this. The size of a
signature is 18κpa + 2κrsa bits, which for the choice of parameters in Table 1 amounts
to about 22kB.

Operation Alg./Prot. Signer Con�rmer Veri�er
Signing Sigdc 140
Converting Condc 66
Verifying Vfdc 1
Well-Formedness πwf 61 59
Correctness of conversion πc 327 227
Validity/Invalidity πe 189 169
Validity πv 166 151

Table 1: The estimated average complexity of the algorithms and the protocols in
terms of κ-bit exponentiations when κ = 1024, κr = κc = 50, and κm = 160.
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A Detailed Descriptions of ProblemsWith Some Pre-

vious De�nitions

In this section we describe problems we see with some previous de�nitions.

A.1 Camenisch and Michels [3]

For the discussion in this section we assume familiarity with [3]. Consider �Security
for the signer� on page 246 in [3]. First the key generators for the signer and con�rmer
are executed and the adversary is given the public key yS of the signer and the public
key yC and secret key xC of the con�rmer. Then the adversary is allowed oracle access
to the signer, and it must output a signature of a message it did not send as a query
to the signer. For every adversary its success probability should be negligible, where
the probability is taken over the key generators. The de�nition says nothing about
the success probability when the adversary can choose yC , i.e., unforgeability is not
guaranteed against malicious con�rmers.

Consider the de�nition of non-transferability on page 247 in [3]. The de�nition
states that there must exist a �simulator� such that Game 1 and Game 2 are indis-
tinguishable. The notion of a simulator is not de�ned, but we assume that it is an
expected or strict polynomial machine. Game 2 is de�ned in such a way that the
simulator must execute an interactive proof with the adversary without using a wit-
ness, and without rewinding. This is of course impossible, since the existence of such
a simulator contradicts the soundness of the interactive proof. Most likely the authors
meant to formalize an experiment such that the simulator can be rewound.
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A.2 Goldwasser and Waisbard [19]

For the discussion in this section we assume familiarity with [19]. Consider the def-
inition of unforgeability in [19], i.e., De�nition 1, point 6(a). The forging algorithm
is given the signers public key PKs and the con�rmers public key PKc and secret
key SKc. Then the forger is allowed to request signatures of arbitrary messages and
must come up with a valid signature of a new message. A scheme is unforgeable if no
adversary can do this with non-negligible probability, where the probability is taken
over the randomness of the keys PKs, PKc, and SKc. This means that the de�nition
says nothing about the probability of forging a valid signature of a new message when
the adversary is allowed to choose PKc, i.e., unforgeability is not guaranteed against
malicious con�rmers.

Goldwasser and Waisbard [19] claim that it su�ces to use witness hiding proto-
cols. However, De�nition 1 point 6(b) in [19], that deals with non-transferability only
requires that the adversary can not convince a third party using the con�rmation pro-
tocol ConfirmedSign of the designated signature scheme. It does not rule out the
existence of another protocol di�erent from the con�rmation protocol for proving the
validity of a signature. More precisely, there could exist a sound protocol that is not
a proof of knowledge, with which the adversary can convince a distrustful veri�er.
The witness-hiding property of the protocols does not rule out that the adversary by
interacting with the signer and con�rmer gains the ability to convince a distrustful
veri�er using such a protocol.

Going back to the job o�er scenario, this means that nothing prevents a candidate
from convincing a third party that it was given a job o�er from a certain employer.

Another problem with the de�nition in [19] is that the adversary is not given
access to a conversion oracle. Thus, the de�nition says nothing about the ability of
the adversary to forge signatures or transfer knowledge of the validity of signatures,
when it sees some converted signatures.

A.3 Gentry, Molnar, and Ramzan [16]

For the discussion in this section we assume familiarity with [16]. Consider the def-
inition of experiment �Exp-No-FoolVeri�er� on page 72 in [16]. It clearly states that
adversary is given the public key SGkS of the signer and secret key SkC of the con�rmer.
However, these keys are honestly generated. Thus, the de�nition says nothing about
the success probability of the adversary when it is allowed to choose the con�rmer key,
i.e., unforgeability is not ensured for malicious con�rmers.

As for transferability the authors of [16] admit (see page 72) that they do not even
aim for a solution that is non-transferable. Indeed, the holder of a DC-signature using
their de�nition can always prove that the signer was involved in the computation of
the signature.

B Proof of Equal Exponents

Denote by πpl = (Ppl , Vpl) the zero-knowledge proof of knowledge of a logarithm for
prime order groups described by Cramer et al. [7].

Protocol B.1 (General Equality Relations).
Common Input: An integer N , and g, h ∈ Z∗N . Positive integers n1, . . . , nk, positive
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integer bit-sizes (((κi,j,l)
sj

l=1)
ti
j=1)

k
i=1, elements (((gi,j,l)

sj

l=1)
ti
j=1)

k
i=1 and ((ui,j)ti

j=1)
k
i=1),

where for all j, l it holds that gi,j,l, ui,j ∈ Z∗ni
.

Private Input: Exponents (((xi,j,l)
sj

l=1)
ti
j=1)

k
i=1, in the intervals xi,j,l ∈ [−2κi,j,l +

1, 2κi,j,l − 1] such that for all i, j it holds that ui,j =
∏lj

l=1 g
xi,j,l

i,j,l mod ni.

1. The veri�er chooses a safe κ-bit prime P = 2Q + 1, and H ∈ GQ randomly.
Then it chooses x ∈ ZQ randomly, computes K = Hx, hands (P,H,K) to the
generator, and executes πpl as the prover on common input (P,H, K) and private
input x. If the veri�er of πpl rejects the prover hands ⊥ to the veri�er and halts.

2. The prover chooses r ∈ [0, 2κ+κr − 1], cp ∈ [0, 2κc−1 − 1], and zi,j,l ∈ [0, 2κ+κr −
1] randomly, computes w = KrHcp , vi,j,l = gzi,j,lhxi,j,l , and hands the tuple
(w, (((vi,j,l)

sj

l=1)
ti
j=1)

k
i=1) to the veri�er.

3. The prover checks that P is a safe prime. Then it chooses ri,j,l ∈ [0, 2κi,j,l+κc+κr−
1] and r′i,j,l ∈ [0, 2κ+κc+2κr − 1] randomly, computes αi,j =

∏sj

l=1 g
ri,j,l

i,j,l mod ni,
and βi,j,l = gr′i,j,lhri,j,l mod N , and hands ((αi,j , (βi,j,l, γi,j,l)

sj

l=1)
ti
j=1)

k
i=1) to the

veri�er.

4. The veri�er chooses cv ∈ [2κc−1, 2κ − 1] randomly and hands cv to the prover.

5. The prover computes c = cp ⊕ cv, di,j,l = xi,j,lc + ri,j,l mod 2κi,j,l+κc+κr , and
ei,j,l = zi,j,lc + r′i,j,l mod 2κ+κc+2κr and hands (r, cp, (((di,j,l, ei,j,l)

sj

l=1)
ti
j=1)

k
i=1)

to the veri�er.

6. The veri�er checks that cp ∈ [0, 2κc−1−1], w = HrKcp , uc
i,jαi,j =

∏sj

l=1 g
di,j,l

i,j,l mod
ni, and that vc

i,j,lβi,j,l = gei,j,lhdi,j,l mod N .

It is easy to see that a veri�er can reuse the same (P,H,K) in every invokation of
the protocol, and these parameters can be generated in advance. We state the protocol
as above to avoid unnecessary cluttering of our notation. We denote the protocol above
by πeq = (Peq , Veq).
Remark B.2. For exponents xi,j,1 and xi,j,2 such that ni = N and ui,j = gxi,j,1hxi,j,2

there is no need to construct separate commitments vi,j,1 and vi,j,2. We use this
observation in our complexity estimates.

C Cryptographic Assumptions

C.1 Safe Prime Assumption

Recall that a prime p is said to be safe if (p − 1)/2 is prime. It is not even known if
there are in�nitely many safe primes, but in practice the probability that a random
prime p is safe is roughly 1/ log p. Formally, we make an assumption.

De�nition C.1 (Safe Prime Assumption). There exists an integer c > 0 such that
a random κ-bit prime p is safe with probability at least κ−c.
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C.2 Strong RSA-Assumption

The strong RSA-assumption says that it is infeasible to compute any non-trivial root
of a random element in SQN where N is an RSA-modulus, even if allowed to select
which root to compute.

This assumption was �rst considered by Bari¢ and P�tzmann [1] and di�ers from
the standard RSA-assumption in that the root to compute is not predetermined. Cur-
rently the fastest known method to solve this problem is to factor N , but it is not
known if the strong RSA-assumption is equivalent to the factoring assumption.

De�nition C.2 (Strong RSA-Assumption). Let p and q be randomly chosen κ/2-
bit safe primes, de�ne N = pq, and let g ∈ SQN be randomly chosen. Then for every
A ∈ PPT the probability Pr[A(N, g) = (b, e) ∧ e 6= ±1 ∧ be = g mod N ] is negligible.

In contrast to the original assumption made in [1] we assume that the factors of N
are safe primes, but it is easy to see that our assumption is equivalent to the original
if the safe prime assumption holds.

To simplify our proofs use use the following lemma. A weak version of the lemma
can be found in Damgård and Fujisaki [11], but our lemma is slightly stronger. In
their analysis it is essential that the bit-size of η0 is smaller than κ/2. In [27] it is
shown that this restriction is not necessary.

Lemma C.3 (Variants of Strong RSA-Assumption). Assume that the strong
RSA-assumption is true. Let p and q be randomly chosen κ/2-bit safe primes, de�ne
N = pq, and let g, h ∈ SQN be random. Then for all adversaries A ∈ PPT the
probabilities

Pr[A(N, g, h) = (b, η0, η1, η2) ∧ η0 6= 0 ∧ (η0 - η1 ∨ η0 - η2)
∧ bη0 = gη1hη2 mod N ]

Pr[A(N, g, h) = (b, η1, η2) ∧ (η1, η2) 6= (0, 0) ∧ gη1 = hη2 mod N ]

are negligible.

C.2.1 A Simplifying Convention

Consider any computation involving an RSA-modulus N where the inverse of an ele-
ment a ∈ ZN must be computed. In principle, it could happen that a is not a unit in
ZN . However, if such an element is encountered with non-negligible probability in a
computation where the factorization of N is not known, we have of course found one
of the factors of N and the strong RSA-assumption is broken.

To simplify the exposition of the protocols and their analysis we assume, without
loss, that all elements in ZN that appear in the simulations in the security analyses
always can be inverted.

C.3 Composite Residuosity Class Assumptions

Assumptions about the hardness of computing and deciding composite residuosity
classes were �rst considered by Paillier [24] to prove the security of the Paillier cryp-
tosystem.
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Let p and q be distinct primes with the same number of bits and de�ne n = pq and
η = n + 1. De�ne also Eη : Zn×Z∗n → Z∗n2 , Eη : (m, r) 7→ ηmrn mod n2. Then Lemma
3 in [24] states that Eη is a bijection.

De�nition C.4 (Residue Class). The n-th residue class [u]η of u with respect to η
is the unique m ∈ Zn such that there exists an r ∈ Z∗n such that Eη(m, r) = u.

De�nition C.5 (Composite Residuosity Assumption). Let p and q be randomly
chosen κ/2-bit safe primes and de�ne n = pq. Let u ∈ Z∗n2 be randomly chosen. The
composite residuosity (CR) assumption states that for all adversaries A the probability
Pr[A(n, u) = [u]η] is negligible.

De�nition C.6 (Decision Composite Residuosity Assumption). Let p and q
be randomly chosen κ/2-bit safe primes and de�ne n = pq. Let u ∈ Z∗n2 be randomly
chosen. The decision composite residuosity (DCR) assumption states that for all
adversaries A ∈ PPT the absolute value |Pr[A(n, u) = 1] − Pr[A(n, un mod n2) = 1]|
is negligible.

In contrast to Paillier, we assume that the factors of n are safe primes, but it is easy
to see that our assumption follows from the original under the safe prime assumption.

C.4 Discrete Logarithm Assumption

There seems to be no consensus on a formal de�nition of a �standard discrete logarithm
assumption� in a subgroup of the multiplicative group modulo a prime. Thus, we
take the liberty to simply call the speci�c assumption we de�ne below �the discrete
logarithm assumption� without any quali�er.

De�nition C.7 (Discrete Logarithm Assumption). If P = 2Q + 1 is a random
safe prime, and g, β ∈ GQ are random, where GQ is the group of squares in Z∗P , then
for every adversary A ∈ PPT the probability Pr[A(P, g, β) = logg β] is negligible.

C.5 Decision Di�e-Hellman Assumption

Similarly to the discrete logarithm problem, the decision Di�e-Hellman problem can
be considered over many di�erent groups and there seems to be no consensus on a
standard group. Again we use no quali�er.

De�nition C.8 (Decision Di�e-Hellman Assumption). Let P = 2Q + 1 be a
random safe prime, let GQ be the group of squares of Z∗P , let g generate GQ, and let
a, b, c ∈ ZQ be randomly chosen. Then for every adversary A ∈ PPT the absolute
value |Pr[A(P, g, ga, gb, gab) = 1]− Pr[A(P, g, ga, gb, gc) = 1]| is negligible.

A hybrid argument shows that a more slightly more general statement holds.
Namely, if b′, b′′, c′, c′′ ∈ ZQ are chosen randomly as well, then the absolute value
above can be replaced by |Pr[A(P, g, ga, gb, gab, gb′ , gab′ , gb′′ , gab′′) = 1]
− Pr[A(P, g, ga, gb, gc, gb′ , gc′ , gb′′ , gc′′) = 1]|.
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D Standard De�nitions

De�nition D.1 (Signature Scheme). A signature scheme SS = (Kg,Sig,Vf) con-
sists of three polynomial-time algorithms

1. A probabilistic key generation algorithm Kg that on input 1κ outputs a public
key spk and a private key ssk .

2. A probabilistic signature algorithm Sig that on input a private key ssk and a
message m outputs a signature s.

3. A probabilistic veri�cation algorithm Vf that on input a public key spk , a message
m, and a signature s outputs a bit b ∈ {0, 1}.

Furthermore, for each output (ssk , spk) of Kg(1κ) and each m it must hold that
Vfspk (m,Sigssk (m)) = 1.

Experiment D.2 (CMA-Security, Expcma
SS,A(κ)).

(spk , ssk) ← Kg(1κ)
(m, s) ← ASigssk (·)(guess, spk)

If Vfspk (m, s) = 1 and A did not ask for a signature of m return 1, else return 0.

De�nition D.3 (CMA-Security). A signature scheme SS is CMA-secure if for
every adversary A ∈ PPT the probability Pr[Expcma

SS,A(κ) = 1] is negligible in κ.

E Program Used To Estimate the Complexity

; (load "efficiency.scm")

; (complexity 1024 50 50 160 50)

(define (complexity secpRSA secpR secpC secpM secpPPad)

(let ((secpDL secpRSA)

(secpPA (+ secpRSA (* 2 secpR) 3)))

(let ((secpDDH (+ secpPA (* 2 secpR) 3))

(secpP (+ secpR secpPPad)))

; The cost of various types of exponentiations.

(define (RSAexp secp) ; Our estimate is in terms of RSA-exponentiations.

(/ secp secpRSA))

(define (DLexp secp) ; DL-prime has same size as RSA-modulus.

(/ secp secpDL))

(define (PAexp secp) ; PA-modulus has same size as RSA-modulus,

(* 8 (/ secpPA secpRSA) (/ secpPA secpRSA) (/ secpPA secpRSA) ; but we compute modulo the square of the modulus.

(/ secp (* 2 secpPA))))

(define (DDHexp secp) ; DDH-prime is larger than RSA-modulus.

(* (/ secpDDH secpRSA) (/ secpDDH secpRSA) (/ secpDDH secpRSA)

(/ secp secpDDH)))

(define (OneExp secp) ; Cost of a single secp-bit exponentiation,

(* (/ secp secpRSA) (/ secp secpRSA) (/ secp secpRSA))) ; which is used in primality testing.

; Computing a twin-moduli signature.

(define (Sig)

(+ (* 4 (RSAexp secpRSA)) ; Inversion in exponent and exponentiation.

(* 4 (+ secpM secpR secpR secpP) ; Embedding string into prime.

(OneExp (+ secpM secpR secpR secpP)))))

; Computing a DC-signature.

(define (desSig)

(+ (Sig) ; compute signature

(* 9 (PAexp (+ secpPA secpR))) ; t_a

(* 2 (RSAexp (+ secpRSA secpR))) ; r_0, r_1

(* 3 (PAexp secpPA)) ; 2n decoding in hash

(PAexp secpRSA))) ; e

; Converting a signature.

(define (desConv)

(+ (* 3 (PAexp secpPA)) ; 2n decoding

(* 3 (PAexp (+ secpPA secpR secpRSA))) ; validity

(* 3 (PAexp (+ secpPA secpR))) ; x decryption
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(* 2 (RSAexp (+ secpRSA secpR))))) ; (r_0,r_1)-decoding

; Verifying a converted signature.

(define (desVf)

(* 2 (RSAexp (+ secpM secpR secpR secpP)))) ; e_0, e_1 exponentiations

; Cramer et al. zero-knowledge proof of knowledge of logarithm.

(define (PpiPL) (* 4 (DLexp secpDL))) ; Prover exponentiations

(define (VpiPL) (* 6 (DLexp secpDL))) ; Verifier exponentiations

; Protocol for generating Fujisaki-Okamoto parameters.

(define (GpiTP)

(+ (VpiPL) ; Cramer et al. PoK exponent, verifier

(* 2 (RSAexp (+ (* 2 secpRSA) secpR))) ; x exponentiations

(+ (DLexp secpC) ; c_g

(DLexp secpDL)) ; r_g

(* 2 (RSAexp (+ (* 2 (+ secpRSA secpR)) secpC))))) ; r exponentiations

(define (RpiTP)

(+ (PpiPL) ; Cramer et al. PoK exponent, prover

(+ (DLexp secpC) ; c_g

(DLexp secpDL)) ; r_g

(* 2 (+ (RSAexp (+ (* 2 (+ secpRSA secpR)) secpC)) ; d

(RSAexp secpC))))) ; c

; The overhead cost of the general equality protocol that is independent

; of the particular relation that is considered.

(define (PpiEQoverhead)

(+ (RpiTP) ; Generate commitment parameters

(VpiPL) ; Cramer et al. PoK exponent, verifier

(DLexp secpDL) ; r

(DLexp secpC))) ; c_p

(define (VpiEQoverhead)

(+ (GpiTP) ; Generate commitment parameters

(PpiPL) ; Cramer et al. PoK exponent, prover

(DLexp secpDL) ; r

(DLexp secpC))) ; c_p

; The overhead cost for forming a commitment of a secp-bit value

; that is not committed to otherwise.

(define (PpiEQ-form secp)

(+ (RSAexp secp) ; The value to be committed

(RSAexp (+ secpRSA secpR)))) ; Random value exponentiation

; The overhead cost in the general equality proof for each unique exponent

; that is not committed to otherwise.

(define (PpiEQ-comm secp)

(+ (RSAexp (+ secpRSA (* 2 secpR) secpC)) ; Proof about random value

(RSAexp (+ secp secpR secpC)))) ; Proof about committed value

(define (VpiEQ-comm secp)

(+ (RSAexp (+ secpRSA (* 2 secpR) secpC)) ; Reply exponentiations

(RSAexp (+ secp secpR secpC)) ;

(RSAexp secpC))) ; Challenge exponentiation

; The general equality proof for a single exponent with secp

; bits for various moduli.

;

; Provers

(define (PpiEQ-RSA secp) (RSAexp (+ secp secpR secpC)))

(define (PpiEQ-PA secp) (PAexp (+ secp secpR secpC)))

(define (PpiEQ-DDH secp) (DDHexp (+ secp secpR secpC)))

;

; Verifiers

(define (VpiEQ-RSA secp) (+ (RSAexp (+ secp secpR secpC))

(RSAexp secpC)))

(define (VpiEQ-PA secp) (+ (PAexp (+ secp secpR secpC))

(PAexp secpC)))

(define (VpiEQ-DDH secp) (+ (DDHexp (+ secp secpR secpC))

(DDHexp secpC)))

; Proof of knowledge of well-formedness.

(define (PpiVF)

(+ (PpiEQoverhead) ; EQ-prot overhead

(* 3 (PpiEQ-form (+ secpPA secpR))) ; Form commitments of x, x_0, x_1

(* 3 (PpiEQ-comm (+ secpPA secpR))) ; Proof overhead from these commitments

(* 3 (PpiEQ-PA (+ secpPA secpR))) ; Proofs about x, x_0, x_1

(* 3 (PpiEQ-DDH (+ secpPA secpR))) ; Proofs about x, x_0, x_1

(* 4 (DDHexp secpDDH)))) ; r

(define (VpiVF)

(+ (VpiEQoverhead) ; EQ-prot overhead

(* 3 (VpiEQ-comm (+ secpPA secpR))) ; Proof overhead from commitments of x, x_0, x_1

(* 3 (VpiEQ-PA (+ secpPA secpR))) ; Proofs about x, x_0, x_1

(* 3 (VpiEQ-DDH (+ secpPA secpR))) ; Proofs about x, x_0, x_1

(* 4 (DDHexp (+ secpDDH secpC))))) ; r

; Proof of knowledge of correct conversion of valid cryptotext.

(define (PpiXvalid)

(+ (PpiVF) ; The key is valid

(* 3 (PAexp secpRSA)) ; Exponentiation by e

(* 9 (PpiEQ-PA (+ secpPA secpR))) ; The x, x_0, x_1 exponents

(* 2 (+ (PpiEQ-form (+ secpRSA secpR)) ; Form commitments of r_0, r_1

(PpiEQ-comm (+ secpRSA secpR)))) ; Overhead for proofs about r_0, r_1

(* 4 (PpiEQ-PA secpPA)))) ; The r_0, r_1 exponents

(define (VpiXvalid)

(+ (VpiVF) ; The key is valid

(* 3 (PAexp secpRSA)) ; Exponentiation by e
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(* 9 (PpiEQ-PA (+ secpPA secpR))) ; The x, x_0, x_1 exponents

(* 2 (PpiEQ-comm (+ secpRSA secpR))) ; Overhead for proofs about r_0, r_1

(* 4 (PpiEQ-PA secpPA)))) ; The r_0, r_1 exponents

; Proof of knowledge of correct conversion of invalid cryptotext.

(define (PpiXinvalid)

(+ (PpiVF) ; The key is valid

(* 3 (PAexp (+ secpPA secpR))) ; Exponentiation by e

(* 3 (PAexp secpPA)) ; Inverting w_a,w_0,w_1

(* 3 (PAexp (+ secpPA secpR))) ; Form w', k_a, k_0, k_1

(* 3 (+ (* 2 (RSAexp (+ secpRSA secpR))) ; Form commitments, t_a, l_a

(* 2 (RSAexp (+ secpPA secpR))) ; s_a, k_a over RSA-modulus

(* 4 (PAexp (+ secpPA secpR))))) ; s_a, k_a, x_0, x_1 over PA-modulus

(* 3 (+ (PpiEQ-RSA (+ secpRSA secpR)) ; t_a

(PpiEQ-RSA (+ secpPA secpR)) ; s_a

(PpiEQ-PA (+ secpPA secpR)) ; s_a

(PpiEQ-PA (+ secpPA secpR)) ; x_0

(PpiEQ-PA (+ secpPA secpR)) ; x_1

(PpiEQ-RSA (+ secpRSA secpR)) ; l_a

(PpiEQ-RSA (+ secpPA secpR)) ; k_a

(PpiEQ-PA (+ secpPA secpR)))) ; k_a

(* 3 (+ (PpiEQ-RSA (+ secpRSA secpPA secpR secpR secpR)) ; t_a',t_0',t_1'

(PpiEQ-RSA (+ secpPA secpPA secpR secpR secpR)) ; s_a',s_0',s_1'

(PpiEQ-PA (+ secpPA secpPA secpR secpR secpR)))))) ; s_a'

(define (VpiXinvalid)

(+ (VpiVF) ; The key is valid

(* 3 (PAexp secpRSA)) ; Exponentiation by e

(* 3 (PAexp secpPA)) ; Inverting w_a,w_0,w_1

(* 3 (+ (PpiEQ-RSA (+ secpRSA secpR)) ; t_a

(PpiEQ-RSA (+ secpPA secpR)) ; s_a

(PpiEQ-PA (+ secpPA secpR)) ; s_a

(PpiEQ-PA (+ secpPA secpR)) ; x_0

(PpiEQ-PA (+ secpPA secpR)) ; x_1

(PpiEQ-RSA (+ secpRSA secpR)) ; l_a

(PpiEQ-RSA (+ secpPA secpR)) ; k_a

(PpiEQ-PA (+ secpPA secpR)))) ; k_a

(* 3 (+ (PpiEQ-RSA (+ secpRSA secpPA secpR secpR secpR)) ; t_a',t_0',t_1'

(PpiEQ-RSA (+ secpPA secpPA secpR secpR secpR)) ; s_a',s_0',s_1'

(PpiEQ-PA (+ secpPA secpPA secpR secpR secpR)))))) ; s_a'

; Proof of correct conversion.

(define (PpiX)

(max (PpiXvalid) (PpiXinvalid))) ; Worst case of valid/invalid

(define (VpiX)

(max (VpiXvalid) (VpiXinvalid))) ; Worst case of valid/invalid

; Proof of validity/invalidity (general method).

(define (PpiVIgeneral thebit thecase)

(+ (* 5 (RSAexp (+ secpRSA secpR))) ; Form commitments the l

(RSAexp (+ secpM secpR secpR)) ; r'

(* 2 (RSAexp (- secpP secpR))) ; s_0', s_1'

(* 2 (RSAexp (+ secpRSA secpR))) ; r_0, r_1

(RSAexp (+ secpP secpP secpP)) ; C_a

(RSAexp secpP) ; C_{e_0}

(RSAexp secpP) ; C_{e_1}

(* (- 1 thecase) ; Signer executes prover

(+ (PpiEQoverhead) ; Overhead of EQ-protocol

(RSAexp secpRSA) ; Exponentiation by e

(* 3 (+ (PpiEQ-form (+ secpPA secpR)) ; Form commitments of t_a,t_0,t_1

(* 3 (PpiEQ-comm (+ secpPA secpR))) ; Proof about t_a,t_0,t_1

(* 3 (PpiEQ-PA (+ secpPA secpR))))) ; Proof about t_a,t_0,t_1

(* 2 (PpiEQ-PA (+ secpRSA secpR))) ; Proof about r_0 and r_1 (RSA-part below)

(PpiEQ-PA (+ secpM secpR secpR secpP secpP)))) ; a in the input

(* thecase

(+ (PpiVF) ; this includes EQoverhead

(* 9 (PpiEQ-PA (+ secpPA secpR))) ; Proofs about x,x_0,x_1

(* 3 (PpiEQ-RSA (+ secpRSA secpR))))) ; Proofs about a,r_0,r_1

(* 7 (PpiEQ-RSA (+ secpRSA secpR))) ; all l and r_0 r_1

(PpiEQ-RSA (+ secpM secpR secpR)) ; r

(* 2 (PpiEQ-RSA (- secpP secpR))) ; s_0', s_1'

(* 2 (+ (* 2 (RSAexp (+ secpRSA secpR))) ; Form commitments, l_0,l_0'

(RSAexp (+ secpM secpR secpR secpP)) ; e_0

(RSAexp (+ secpM secpR secpR secpP)) ; e_0

(RSAexp (+ secpRSA secpR)) ; j_0

(RSAexp (+ secpRSA secpR)))) ; j_0

(* 2 (+ (PpiEQ-RSA (+ secpRSA secpR)) ; Proofs, l_0

(PpiEQ-RSA (+ secpM secpR secpR secpP)) ; e_0

(PpiEQ-RSA (+ secpRSA secpR)) ; l_0'

(PpiEQ-RSA (+ secpRSA secpR)) ; j_0

(PpiEQ-RSA (+ secpRSA secpR)) ; j_0

(PpiEQ-RSA (+ secpM secpR secpR secpP)))) ; e_0

(PpiEQ-RSA (+ secpRSA secpR secpP)) ; Proofs, l_{e_1}

(PpiEQ-RSA (+ secpM secpR secpR secpP)) ; e_1

(PpiEQ-RSA (+ secpRSA secpR secpM secpR secpR secpP)) ; l_1''

(PpiEQ-RSA (+ secpRSA secpR secpM secpR secpR secpP)) ; j_1'

(PpiEQ-RSA (+ secpRSA secpR)) ; j_1

(PpiEQ-RSA (+ secpRSA secpR secpM secpR secpR secpP)) ; j_1'

(* thebit

(+ (PpiEQ-RSA (+ secpRSA secpR secpP)) ; Proofs, l_{e_0}

(PpiEQ-RSA (+ secpM secpR secpR secpP)) ; e_0

(PpiEQ-RSA (+ secpRSA secpR secpM secpR secpR secpP)) ; l_0''

(PpiEQ-RSA (+ secpRSA secpR secpM secpR secpR secpP)) ; j_0'

(PpiEQ-RSA (+ secpRSA secpR)) ; j_0

(PpiEQ-RSA (+ secpRSA secpR secpM secpR secpR secpP)))) ; j_0'

(* (- 1 thebit)
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(+ (* 5 (RSAexp (+ secpRSA secpR))) ; Form commitments, i_0,i_0',i_0''

(* 5 (PpiEQ-RSA (+ secpRSA secpR))) ; Proofs, i_0,i_0',i_0''

(PpiEQ-RSA (+ secpRSA secpR secpM secpR ; Proofs

secpR secpP secpRSA secpR)) ; k_0

(PpiEQ-RSA (+ secpRSA secpR secpM secpR

secpR secpP secpRSA secpR)) ; f_0

(PpiEQ-RSA (* 2 (+ secpRSA secpR))) ; k_0'

(PpiEQ-RSA (* 2 (+ secpRSA secpR))) ; f_0'

(PpiEQ-RSA (* 2 (+ secpRSA secpR))) ; f_0'

(PpiEQ-RSA (+ secpRSA secpR secpM secpR

secpR secpP secpRSA secpR)))) ; f_0

))

(define (VpiVIgeneral thebit thecase)

(+ (RSAexp (+ secpP secpP secpP)) ; C_a

(RSAexp secpP) ; C_{e_0}

(RSAexp secpP) ; C_{e_1}

(* (- 1 thecase) ; Signer executes prover

(+ (VpiEQoverhead) ; Overhead of EQ-protocol

(RSAexp secpRSA) ; Exponentiation by e

(* 3 (+ (* 3 (VpiEQ-comm (+ secpPA secpR))) ; Proof about t_a,t_0,t_1

(* 3 (VpiEQ-PA (+ secpPA secpR))))) ; Proof about t_a,t_0,t_1

(* 2 (VpiEQ-PA (+ secpRSA secpR))) ; Proof about r_0 and r_1 (RSA-part below)

(VpiEQ-PA (+ secpM secpR secpR secpP secpP)))) ; a in the input

(* thecase

(+ (VpiVF) ; this includes EQoverhead

(* 9 (VpiEQ-PA (+ secpPA secpR))) ; Proofs about x,x_0,x_1

(* 3 (VpiEQ-RSA (+ secpRSA secpR))))) ; Proofs about a,r_0,r_1

(* 7 (VpiEQ-RSA (+ secpRSA secpR))) ; all l and r_0 r_1

(VpiEQ-RSA (+ secpM secpR secpR)) ; r

(* 2 (VpiEQ-RSA (- secpP secpR))) ; s_0', s_1'

(* 2 (+ (VpiEQ-RSA (+ secpRSA secpR)) ; Proofs, l_0

(VpiEQ-RSA (+ secpM secpR secpR secpP)) ; e_0

(VpiEQ-RSA (+ secpRSA secpR)) ; l_0'

(VpiEQ-RSA (+ secpRSA secpR)) ; j_0

(VpiEQ-RSA (+ secpRSA secpR)) ; j_0

(VpiEQ-RSA (+ secpM secpR secpR secpP)))) ; e_0

(VpiEQ-RSA (+ secpRSA secpR secpP)) ; Proofs, l_{e_1}

(VpiEQ-RSA (+ secpM secpR secpR secpP)) ; e_1

(VpiEQ-RSA (+ secpRSA secpR secpM secpR secpR secpP)) ; l_1''

(VpiEQ-RSA (+ secpRSA secpR secpM secpR secpR secpP)) ; j_1'

(VpiEQ-RSA (+ secpRSA secpR)) ; j_1

(VpiEQ-RSA (+ secpRSA secpR secpM secpR secpR secpP)) ; j_1'

(* thebit

(+ (VpiEQ-RSA (+ secpRSA secpR secpP)) ; Proofs, l_{e_0}

(VpiEQ-RSA (+ secpM secpR secpR secpP)) ; e_0

(VpiEQ-RSA (+ secpRSA secpR secpM secpR secpR secpP)) ; l_0''

(VpiEQ-RSA (+ secpRSA secpR secpM secpR secpR secpP)) ; j_0'

(VpiEQ-RSA (+ secpRSA secpR)) ; j_0

(VpiEQ-RSA (+ secpRSA secpR secpM secpR secpR secpP)))) ; j_0'

(* (- 1 thebit)

(+ (* 5 (VpiEQ-RSA (+ secpRSA secpR))) ; Proofs, i_0,i_0',i_0''

(VpiEQ-RSA (+ secpRSA secpR secpM secpR ; Proofs

secpR secpP secpRSA secpR)) ; k_0

(VpiEQ-RSA (+ secpRSA secpR secpM secpR

secpR secpP secpRSA secpR)) ; f_0

(VpiEQ-RSA (* 2 (+ secpRSA secpR))) ; k_0'

(VpiEQ-RSA (* 2 (+ secpRSA secpR))) ; f_0'

(VpiEQ-RSA (* 2 (+ secpRSA secpR))) ; f_0'

(VpiEQ-RSA (+ secpRSA secpR secpM secpR

secpR secpP secpRSA secpR)))) ; f_0

))

; Proof of validity/invalidity of confirmer.

(define (PpiDE)

(max (PpiVIgeneral 0 1) (PpiVIgeneral 1 1))) ; Worst case

(define (VpiDE)

(max (VpiVIgeneral 0 1) (VpiVIgeneral 1 1))) ; Worst case

; Proof of validity signer.

(define (PpiEE) (PpiVIgeneral 1 0))

(define (VpiEE) (VpiVIgeneral 1 0))

; Utility function.

(define (spacepad value)

(cond ((< value 10)

(display " ")

(display value))

((and (< value 100) (> value 9))

(display " ")

(display value))

(else (display value))))

; Pretty print all complexities.

(define (all)

(newline)

(newline)

(display " Signer Confirmer Verifier")

(newline)

(display "Signing ")

(spacepad (round (desSig)))

(newline)

(display "Converting ")

(spacepad (round (desConv)))

(newline)

(display "Verifying ")
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(spacepad (round (desVf)))

(newline)

(display "Well-Formedness ")

(spacepad (round (PpiVF)))

(display " ")

(spacepad (round (VpiVF)))

(newline)

(display "Correctness of conversion ")

(spacepad (round (PpiX)))

(display " ")

(spacepad (round (VpiX)))

(newline)

(display "Validity/Invalidity ")

(spacepad (round (PpiDE)))

(display " ")

(spacepad (round (VpiDE)))

(newline)

(display "Validity ")

(spacepad (round (PpiEE)))

(display " ")

(spacepad (round (VpiEE)))

(newline)

(newline))

(all))))
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