Designated Confirmer Signatures Revisited*

Douglas Wikström
ETH Zürich, Department of Computer Science
douglas@inf.ethz.ch

15th January 2007

Abstract

Previous definitions of designated confirmer signatures in the literature are incomplete, and the proposed security definitions fail to capture key security properties, such as unforgeability against malicious confirmers and non-transferability. We propose new definitions.

Previous schemes rely on the random oracle model or set-up assumptions, or are secure with respect to relaxed security definitions. We construct a practical scheme that is provably secure with respect to our security definition under the strong RSA-assumption, the decision composite residuosity assumption, and the decision Diffie-Hellman assumption.

To achieve our results we introduce several new relaxations of standard notions. We expect these techniques to be useful in the construction and analysis of other efficient cryptographic schemes.

[^0]
Contents

1 Introduction 5
1.1 Previous Work 5
1.2 Our Contributions 6
1.3 Notation 6
1.4 Organization 7
2 Definition of Designated Confirmer Signature Schemes 7
2.1 Well-Formed Keys and Signatures 8
2.2 Definition of Security 9
3 Theoretical Tools 14
3.1 A Relaxation of Zero-Knowledge 14
3.2 Cryptosystems With Labels and Δ-CCA2-Security 15
3.3 Collision-Free Signature Schemes 16
4 A Generic Construction of Designated Confirmer Signatures 17
4.1 The Construction 17
4.2 On the Use of Two Distinct Weak Simulators 18
4.3 Analysis of the Construction 18
5 Concrete Tools 21
5.1 A Twin-Moduli Signature Scheme 21
5.2 Proofs of Knowledge of Equality Relations 25
5.3 Verifiable Generation of Hiding Commitment Scheme 26
5.4 Special Composition 29
5.5 The Cramer-Shoup Version of the Paillier Cryptosystem 31
6 An Efficient Designated Confirmer Signature Scheme 31
6.1 The Δ-CCA2-Secure Cryptosystem 31
6.2 Splitting the Confirmer Key Generator 33
6.3 The CMA-Secure and Collision-Free Signature Scheme 33
6.4 A Well-Formedness Function 34
6.5 An Informal Description of Some Key Ideas 34
6.6 The Protocols of the Construction 35
6.6.1 Well-Formed Keys 36
6.6.2 Correct Conversion 36
6.6.3 Validity/Invalidity of DC-signatures 39
6.7 Complexity Analysis 43
7 Acknowledgments 45
A Detailed Descriptions of Problems With Some Previous Definitions 47
A. 1 Camenisch and Michels [3] 47
A. 2 Goldwasser and Waisbard [19] 48
A. 3 Gentry, Molnar, and Ramzan [16] 48
B Proof of Equal Exponents 48
C Cryptographic Assumptions 49
C. 1 Safe Prime Assumption 49
C. 2 Strong RSA-Assumption 50
C.2.1 A Simplifying Convention 50
C. 3 Composite Residuosity Class Assumptions 50
C. 4 Discrete Logarithm Assumption 51
C. 5 Decision Diffie-Hellman Assumption 51
D Standard Definitions 52
E Program Used To Estimate the Complexity 52

1 Introduction

In a digital signature scheme, as introduced by Diffie and Hellman [12], a signer computes a signature of a message using its secret key, and then anybody holding the public key can verify the signature. This means that the receiver of a signature can show the signature to anybody. If the signer does not want the signer to transfer the signature it can use undeniable signatures [6] or designated verifier signatures [20], but then the holder of the signature no longer holds any indisputable evidence of a signature. Chaum [5] proposed designated confirmer signatures (DC-signatures) as a means to get the best of both worlds at the price of the introduction of a semi-trusted third party called the confirmer.

An example application for DC-signatures is a job offer scenario. Alice is offered a job by Bob and wishes to receive a formal signed offer at some point, but Bob wants to avoid that Alice shows this offer to his competitor Eve. To solve the problem Carol comes to the rescue. Bob computes a DC-signature using his own secret key and Carols public key. Then he proves to Alice that he formed the signature in this way. The DC-signature is special in that it can only be verified directly by Carol, and its distribution is indistinguishable from a distribution that can be computed using only the public keys of Carol and Bob. Furthermore, given a valid/invalid DC-signature, Carol can either convert it into a valid/invalid ordinary signature of Bob that can be verified by anybody, or she can prove that she has the ability to do this. Bob can assume that nobody can forge a signature for his public key, and that as long as Carol is honest nobody learns that he signed an offer. Alice can safely assume that Bob can not fool her, and that if Bob denies having signed an offer and Carol is honest, then Carol can prove to anybody that Bob is lying.

1.1 Previous Work

The first formal model of DC-signatures was given by Okamoto [23], but he did not consider the problem of signer coercion. Thus, a signer could be coerced into confirming/denying a signature without the randomness of the signature computation. This problem was considered by Camenisch and Michels [3], who provided stronger definitions. They also proposed both a scheme based on general primitives and more practically oriented schemes, and sketched a security proof for the general construction. In their work on verifiable encryption of discrete logarithms Camenisch and Shoup [4] give a very brief sketch of a DC-signature scheme where most interactive protocols use Schnorr-style techniques.

Goldwasser and Waisbard [19] proposed a relaxed security definition to allow the proofs of knowledge to be strong witness hiding instead of zero-knowledge, and thus allow concurrency. They give a transformation that converts an ordinary signature scheme into a DC-signature scheme secure according to their relaxed definition. They use no random oracles, but the disavowal protocol is based on general zero-knowledge techniques, and the other protocols are based on cut-and-choose techniques.

Gentry, Molnar, and Ramzan [16] considered another relaxation based on an observation originally made by Michels and Stadler [22]. Instead of computing a signature of the message directly, the signer computes a "confirmer commitment" of the message, and then sign the commitment. The constructions in [16] are efficient and do not rely on the random oracle model, but they require the existence of trusted RSA-parameters.

1.2 Our Contributions

Firstly, we take a careful look at existing definitions of DC-signatures. It turns out that two protocols that are not mentioned in previous works, are needed for successful deployment: a proof of correct conversion of a signature, and a proof that a public key is "well formed". We also observe that the definitions of security proposed by Camenisch and Michels [3], Goldwasser and Waisbard [19], and Gentry et al. [16] respectively do not ensure unforgeability when the confirmer is malicious. Furthermore, we note that the relaxed definition in [19] does not prevent transferability, which is arguably a key property of DC-signatures, and the definition in [3] is flawed and can not be satisfied at all. Thus, previous definitions do not capture the notion of DC-signatures correctly. We propose new definitions that correct these deficiencies.

Secondly, we consider how to construct a secure DC-signature scheme. We prove the security of a generic construction with respect to the new security definition. We then describe an instantiation of the generic construction that is secure under the strong RSA-assumption, the decision composite residuosity assumption, and the decision Diffie-Hellman assumption. In contrast to the scheme briefly sketched by Camenisch and Shoup [4] our scheme does not rely on the random oracle model, and it satisfies stronger security requirements than the schemes proposed in [19] and [16]. Furthermore, the setting we consider is stricter in that we do not assume the existence of a trusted key generator as is done in [4]. Despite this our scheme is practical.

Thirdly, our approach to the problem of constructing DC-signatures is different from previous in that instead of relaxing the security definitions of DC-signatures, we relax the security definitions of the primitives used to construct them and prove that weaker primitives suffice. The relaxed notions we introduce and our techniques are of general interest in the construction of efficient and provably secure cryptographic schemes.

1.3 Notation

We consider security with respect to uniform algorithms and our assumptions are also uniform in nature, but our results are easily translated to their non-uniform analogs. We use PT, PPT and EPPT to denote the set of uniform, uniform and probabilistic, and uniform expected, polynomial time Turing machines respectively. We let κ be the main security parameter. We say that a function $\epsilon(\kappa)$ is negligible if for every constant c and sufficiently large κ it holds that $\epsilon(\kappa)<\kappa^{-c}$. We say that $f(\kappa)$ is overwhelming if $1-f(\kappa)$ is negligible. For any two relations \mathcal{R}_{1} and \mathcal{R}_{2} we define $\mathcal{R}_{1} \vee \mathcal{R}_{2}$ as the set of pairs $\left(\left(x_{1}, x_{2}\right), w\right)$ such that $\left(x_{1}, w\right) \in \mathcal{R}_{1}$ or $\left(x_{2}, w\right) \in \mathcal{R}_{2}$. We write $\langle V(x), P(y)\rangle(z)$ to denote the output of V with private input x when it interacts with P with private input y on common input z. We write $A[S(x)]$ to denote that A has "oracle access" to an interactive Turing machine S with private input x. Formally, we assume that A has a separate pair of communication tapes over which it communicates with S. Whenever we write an expression of the form $\langle V(x), A[S(y)](z)\rangle(w)$ it is assumed that communication takes place in two phases. Before any message is communicated between V and A, A and S may communicate freely. Then some messages are communicated between V and A. When some message is again communicated between A and S, communication is no longer possible between V and A. Finally, when A chooses part of the common input on which it interacts with V, we write $\langle V, A[S(x)](y)\rangle(z, \cdot)$. We abuse notation and say that an interactive
proof is sound if it is overwhelmingly sound and we say that a protocol is a proof of knowledge only if it is also an interactive proof.

We use 1 and 0 , and logical true and false interchangeably. We denote the natural numbers by \mathbb{N}, the integers by \mathbb{Z}, the integers modulo n by \mathbb{Z}_{n}, the multiplicative group modulo n by \mathbb{Z}_{n}^{*} and the subgroup of squares modulo n by $S Q_{n}$. We call a prime integer p safe if $(p-1) / 2$ is prime.

We use the variation of the strong RSA-assumption which says that given a product N of two random safe primes of the same bit-size and a random $g \in S Q_{N}$, it is infeasible to compute (b, η) such that $b^{\eta}=g \bmod N$ and $\eta \neq \pm 1$. We use the variation of the decision composite residuosity assumption (DCR), which says that given a product n of two random safe primes of the same bit-size, it is infeasible to distinguish the uniform distribution on elements in $\mathbb{Z}_{n^{2}}^{*}$ from the uniform distribution on nth residues in $\mathbb{Z}_{n^{2}}^{*}$. We use the decision Diffie-Hellman assumption for the subgroup G_{Q} of squares of \mathbb{Z}_{P}^{*}, where $P=2 Q+1$ is a safe prime. This says that if g generates G_{Q} and $\alpha, \beta, \gamma \in \mathbb{Z}_{Q}$ are random, then the distributions of $\left(g^{\alpha}, g^{\beta}, g^{\alpha \beta}\right)$ and $\left(g^{\alpha}, g^{\beta}, g^{\gamma}\right)$ are indistinguishable.

1.4 Organization

In Section 2 we propose a new definition of security of DC-signatures. In Section 3 we introduce some theoretical notions needed for the result on the generic construction of DC-signatures given in Section 4. The primitives we need to instantiate the generic construction are introduced in Section 5. A detailed description of the instantiation is then given in Section 6. In Appendix A we give a more detailed account of the problems we have found with previous definitions of security of DC-signatures. Formal definitions of the cryptographic assumptions we use are given in Appendix C, and some standard definitions from the literature are given in Appendix D.

2 Definition of Designated Confirmer Signature Schemes

A DC-signature scheme consists of algorithms and interactive protocols. There are two key generation algorithms $\mathrm{Kg}_{s}^{\text {dc }}$ and $\mathrm{Kg}_{c}^{\text {dc }}$ for the signer and confirmer respectively. There is a single signature algorithm $\mathrm{Sig}^{\mathrm{dc}}$ that given a secret signature key, a message, and a confirmer public key outputs a signature. The signature can not be verified directly, but the confirmer can use a conversion algorithm Con ${ }^{\text {dc }}$ with his secret key and the signer public key to transform it into a signature that can be verified by anybody holding the public key of the signer using the verification algorithm $\mathrm{Vf}^{\mathrm{dc}}$. The protocols $\pi_{w f}$ and π_{c} are used by the confirmer to prove that it formed its key correctly and the correctness of a conversion. The protocols π_{v} and π_{e} are used by the signer and confirmer respectively, to convince a verifier that a given DC-signature is valid and valid/invalid respectively. The protocols $\pi_{w f}$ and π_{c} are not present in previous formalizations.

Definition 2.1 (DC Signature Scheme). A designated confirmer signature scheme $\mathcal{D C S}$ consists of algorithms $\mathrm{Kg}_{\mathrm{s}}^{\mathrm{dc}}, \mathrm{Kg}_{\mathrm{c}}^{\mathrm{dc}}, \mathrm{Sig}^{\mathrm{dc}} \in \mathrm{PPT}$ and $\mathrm{Con}^{\mathrm{dc}}, \mathrm{Vf}^{\mathrm{dc}} \in \mathrm{PT}$, and interactive protocols $\pi_{w f}=\left(P_{w f}, V_{w f}\right), \pi_{c}=\left(P_{c}, V_{c}\right), \pi_{v}=\left(P_{v}, V_{v}\right)$, and $\pi_{e}=\left(P_{e}, V_{e}\right)$ with the following completeness properties. For every $\kappa \in \mathbb{N}$, for every possible outputs ($s s k, s p k$) of $\mathrm{Kg}_{\mathrm{s}}^{\mathrm{dc}}\left(1^{\kappa}\right)$ and $(s k, p k)$ of $\mathrm{Kg}_{\mathrm{c}}^{\mathrm{dc}}\left(1^{\kappa}\right)$ respectively, for every $m \in\{0,1\}^{*}$, and for every $r, \sigma_{0} \in\{0,1\}^{*}$, and with $\sigma_{1}=\operatorname{Sig}_{s s k, r}^{\mathrm{dc}}(m, p k)$

1. $\mathrm{Vf}_{s p k}^{\mathrm{dc}}\left(m, \operatorname{Con}_{s k}^{\mathrm{dc}}\left(\sigma_{1}, s p k\right)\right)=1$,
2. $\operatorname{Pr}\left[\left\langle V_{w f}, P_{w f}(s k)\right\rangle(p k)=1\right]$ is overwhelming,
3. $\operatorname{Pr}\left[\left\langle V_{c}, P_{c}(s k)\right\rangle\left(\sigma_{0}, \operatorname{Con}_{s k}^{\mathrm{dc}}\left(\sigma_{0}, s p k\right), p k\right)=1\right]$ is overwhelming,
4. $\operatorname{Pr}\left[\left\langle V_{e}, P_{e}(s k)\right\rangle\left(m, \sigma_{0}, \mathrm{Vf}_{s p k}^{\mathrm{dc}}\left(m, \operatorname{Con}_{s k}^{\mathrm{dc}}\left(\sigma_{0}, s p k\right)\right), p k, s p k\right)=1\right]$ is overwhelming, and
5. $\operatorname{Pr}\left[\left\langle V_{v}, P_{v}(s s k, r)\right\rangle\left(m, \sigma_{1}, p k, s p k\right)=1\right]$ is overwhelming.

2.1 Well-Formed Keys and Signatures

We introduce the notion of well-formed confirmer keys to formalize the set of strings which behave as keys functionally, and we introduce the notion of well-formed signatures as a generalization of the set of honestly generated signatures.

Definition 2.2 (Well-Formed Keys). Let $\mathcal{D C S}$ be a DC-signature scheme. We say that the tuple $\left(\mathrm{Kg}_{\mathrm{c}, 1}^{\mathrm{dc}}, \mathrm{Kg}_{\mathrm{c}, 2}^{\mathrm{dc}}, \mathrm{Kg}_{\mathrm{c}, 3}^{\mathrm{dc}}\right)$ splits $\mathrm{Kg}_{\mathrm{c}}^{\mathrm{dc}}$ if

1. $\mathrm{Kg}_{c, 1}^{\mathrm{dc}}$ and $\mathrm{Kg}_{c, 2}^{\mathrm{dc}}$ are probabilistic and $\mathrm{Kg}_{c, 3}^{\mathrm{dc}}$ is a deterministic polynomial time (in their first parameters) algorithms,
2. on input 1^{κ}, $\mathrm{Kg}_{c}^{\mathrm{dc}}$ computes $p k_{1}=\mathrm{Kg}_{\mathrm{c}, 1}^{\mathrm{dc}}\left(1^{\kappa}\right)$, $s k=\mathrm{Kg}_{\mathrm{c}, 2}^{\mathrm{dc}}\left(p k_{1}\right)$, and $p k_{2}=$ $\mathrm{Kg}_{\mathrm{c}, 3}^{\mathrm{dc}}\left(1^{\kappa}, p k_{1}, s k\right)$, and outputs $(p k, s k)=\left(\left(p k_{1}, p k_{2}\right), s k\right)$,
3. for every $\kappa \in \mathbb{N}$ and $p k_{1}, p k_{2} \in\{0,1\}^{*}$ there exists at most one $s k \in\{0,1\}^{*}$ such that $p k_{2}=\mathrm{Kg}_{\mathrm{c}, 3}^{\mathrm{dc}}\left(1^{\kappa}, p k_{1}, s k\right)$, and
4. if $p k_{2}=\mathrm{Kg}_{\mathrm{c}, 3}^{\mathrm{dc}}\left(1^{\kappa}, p k_{1}, s k\right)$, then for every output $(s p k, s s k)$ of $\mathrm{Kg}_{\mathrm{s}}^{\mathrm{dc}}\left(1^{\kappa}\right)$ and $m, r \in\{0,1\}^{*}: \operatorname{Vf}_{s p k}^{\mathrm{dc}}\left(m, \operatorname{Con}_{s k}^{\mathrm{dc}}\left(\operatorname{Sig}_{s s k, r}^{\mathrm{dc}}(m, p k), s p k\right)\right)=1$.

We say that $\left(p k_{1}, p k_{2}\right)$ is well-formed with respect to the splitting if $p k_{2}=\mathrm{Kg}_{\mathrm{c}, 3}^{\mathrm{dc}}\left(p k_{1}, s k\right)$ for some $s k$. We say that $\left(\left(p k_{1}, p k_{2}\right), s k\right)$ is well-formed for such a secret key $s k$.

If the signer or the confirmer proves to the verifier that a DC-signature is valid/invalid relative a well-formed confirmer public key, then the verifier is confident that if converted, the result is also valid/invalid in a consistent way. Every key generator can be trivially split, but we are interested in splittings that given $\left(p k_{1}, p k_{2}\right)$ allow a simple proof of knowledge of $s k$ such that $\left(\left(p k_{1}, p k_{2}\right), s k\right)$ is well-formed.

We abuse notation and eliminate the input 1^{κ} from $\mathrm{Kg}_{c, 3}^{\mathrm{dc}}$.
Definition 2.3 (Well-Formed Signature). Let $\mathcal{D C S}$ be a DC-signature scheme and let $w f:\{0,1\}^{*} \times\{0,1\}^{*} \times\{0,1\}^{*} \rightarrow\{0,1\}$ be a polynomially computable function. We say that $w f$ is a well-formedness function with respect to $\mathcal{D C S}$ and a splitting of $\mathrm{Kg}_{c}^{\mathrm{dc}}$ if for every well-formed $(p k, s k)$, every output $(s p k, s s k)$ of $\mathrm{Kg}_{\mathrm{s}}^{\mathrm{dc}}\left(1^{\kappa}\right)$, and every possible output $s=\operatorname{Con}_{s k}^{\mathrm{dc}}\left(\operatorname{Sig}_{s s k}^{\mathrm{dc}}(m, p k), s p k\right)$, we have $w f(s, p k, s p k)=1$.

All honestly generated signatures are well formed, but some valid signatures may not be. It is trivial to see that there exists a well-formedness function for every DCsignature scheme, but we are interested in well-formedness functions that simplify the construction of our protocols.

2.2 Definition of Security

Assume that some splitting and well-formedness functions are fixed and define the following relations.

Definition 2.4 (Relations).

1. Well-Formed Confirmer Keys. Denote by $\mathcal{R}_{w f}$ the set of all well-formed key pairs $\left(\left(p k_{1}, p k_{2}\right), s k\right)$.
2. Correct Conversion. Denote by \mathcal{R}_{c} the set of pairs $((\sigma, s, p k, s p k), s k)$ such that $(p k, s k) \in \mathcal{R}_{w f}$ and $s=\operatorname{Con}_{s k}^{\mathrm{dc}}(\sigma, s p k)$.
3. Correct Evaluation. Denote by \mathcal{R}_{e} the set of pairs ($\left.(m, \sigma, c, p k, s p k), s k\right)$ such that $(p k, s k) \in \mathcal{R}_{w f}$, and $s=\operatorname{Con}_{s k}^{\mathrm{dc}}(\sigma, s p k)$ for some s such that $\mathrm{Vf}_{s p k}^{\mathrm{dc}}(m, s)=$ c and $w f(s, p k, s p k)=1$.
4. Proof of Validity. Denote by \mathcal{R}_{v} the set of pairs $((m, \sigma, p k, s p k)$, $w)$, where w is a witness that $\mathrm{Vf}_{s p k}^{\mathrm{dc}}\left(m, \operatorname{Con}_{s k}^{\mathrm{dc}}(\sigma, s p k)\right)=1$ for every $s k$ such that $(p k, s k) \in$ $\mathcal{R}_{w f}$.

The relation \mathcal{R}_{e} only considers well-formed signatures. If a signature is not wellformed, it was by definition computed by a corrupt signer. In this case the confirmer need not protect the signer and can simply convert the signature and prove that it did so correctly. The relation \mathcal{R}_{v} does not capture the set of valid signatures. It captures the set of signatures that are valid given that the public confirmer key is well-formed.

We now consider what each honest party or group of honest parties in a DCsignature scheme might expect from a secure implementation.

Honest Verifier. An honest verifier naturally expects that it is infeasible to convince it of a false statement. Furthermore, it seems reasonable that the verifier only accepts a proof of well-formedness of a public key if it shows that the prover knows the secret key, since otherwise it can not be confident that the confirmer actually is able to convert a signature.

Definition 2.5 (Soundness). A DC-signature scheme $\mathcal{D C S}$ is sound if π_{c}, π_{e}, and π_{v} are interactive proofs for the relations $\mathcal{R}_{c}, \mathcal{R}_{e}$, and \mathcal{R}_{v} respectively, and $\pi_{w f}$ is a proof of knowledge for the relation $\mathcal{R}_{w f}$.

Note that if a confirmer public key $p k$ is well-formed and σ is a candidate signature for a signer public key $s p k$, then well-formedness implies that a signature can be converted in only one way. Thus, the confirmer can not choose if a signature should be considered valid or not. Well-formedness also implies that if a signer proves the validity of σ, it can not be converted into an invalid one.

It may be dangerous for a signer to use a confirmer public key that is not wellformed. Thus, we assume that any signer (or somebody the signer trusts) executes $\pi_{w f}$ with the confirmer before using its public key.

Honest Signer. It must be infeasible for the adversary to convince anybody that the honest signer has signed a message m unless this is the case. This must hold even when the adversary can ask arbitrary signature queries and execute the proof of validity protocol π_{v}. In other words we need a slight generalization of security against chosen message attacks [18].

We formalize the honest signer S to be a probabilistic interactive Turing machine that accepts as input a key pair ($s p k, s s k$). Whenever it receives a message with prefix $\pi_{w f}, \mathrm{Sig}^{\mathrm{dc}}$, or π_{v} on its communication tape it halts the execution of any executing interactive protocol and proceeds as follows. Given a message $\left(\pi_{w f}, p k\right)$ it executes the verifier $V_{w f}$ of the protocol $\pi_{w f}$ on common input $p k$. If $V_{w f}$ accepts the proof, then S stores $p k$. Given a message ($\mathrm{Sig}^{\mathrm{dc}}, m, p k$) it checks if it has stored $p k$. If not, it returns \perp, and otherwise it computes $\sigma=\operatorname{Sig}_{s s k, r}^{\mathrm{dc}}(m, p k)$ and writes σ on the communication tape. Given a message $\left(\pi_{v}, m, \sigma, p k\right)$, where it previously computed $\sigma=\operatorname{Sig}_{s s k, r}^{\mathrm{dc}}(m, p k)$ it executes the prover of the protocol π_{v} on common input ($m, \sigma, p k, s p k$) and private input some witness w that $((m, \sigma, p k, s p k), w) \in \mathcal{R}_{v}$. When we use several copies of S below we index them for easy reference.
Experiment 2.6 (CMA-Security, $\operatorname{Exp}_{\mathcal{D C} \mathcal{S}, A}^{\mathrm{cma}}(\kappa)$).

$$
\begin{aligned}
(s p k, s s k) & \leftarrow \mathrm{Kg}_{\mathrm{s}}^{\mathrm{dc}}\left(1^{\kappa}\right) \\
(m, s) & \leftarrow A[S(s p k, s s k)](s p k)
\end{aligned}
$$

If $\bigvee_{s p k}^{\mathrm{dc}}(m, s)=0$ or if S signed m return 0 and otherwise 1 .
Definition 2.7 (CMA-Security). A DC-signature scheme $\mathcal{D C S}$ is secure against chosen message attacks (CMA-secure) if for every $A \in \operatorname{PPT}: \operatorname{Pr}\left[\operatorname{Exp}_{\mathcal{D C S}, A}^{\mathrm{cma}}(\kappa)=1\right]$ is negligible.

In the definitions of Camenisch and Michels [3], Goldwasser and Waisbard [19], and Gentry et al. [16] security hold only with respect to honestly generated confirmer keys, i.e., their definitions do not ensure any form of CMA-security for the signer when the confirmer is corrupted.

The definition does not explicitly prevent an adversary to form a bit-string σ and then convince an honest verifier using π_{v} or π_{e} that this is a valid designated signature of some message m not signed by S, but this follows from the lemma below.

Lemma 2.8 (Indirect CMA-Security). Let $\mathcal{D C S}$ be a sound and CMA-secure DCsignature scheme, and consider the following experiment for an adversary A.

$$
\begin{aligned}
(s p k, s s k) & \leftarrow \mathrm{Kg}_{\mathrm{s}}^{\mathrm{dc}}\left(1^{\kappa}\right) \\
d_{1} & \leftarrow\left\langle V_{e}, A\left[S_{1}(s p k, s s k)\right](s p k)\right\rangle(\cdot, \cdot, 1, \cdot, s p k) \\
d_{2} & \leftarrow\left\langle V_{v}, A\left[S_{2}(s p k, s s k)\right](s p k)\right\rangle(\cdot, \cdot, \cdot, s p k)
\end{aligned}
$$

Denote by $\left(m_{1}, \sigma_{1}, 1, p k_{1}, s p k\right)$ and $\left(m_{2}, \sigma_{2}, p k_{2}, s p k\right)$ the common inputs on which V_{e} and V_{v} are invoked. If S_{i} computed a signature of m_{i} set $e=0$. If S_{i} did not store $p k_{i}$ before the corresponding verifier received its common input, then set $e=0$, and otherwise set $e=d_{1} \vee d_{2}$. Then for every adversary $A \in \mathrm{PPT}$ the probability $\operatorname{Pr}[e=1]$ is negligible.

We require that S_{i} stores $p k_{i}$ before the verifier receives its input to model that no verifier is convinced when the confirmer public key is not well-formed.

Proof. Suppose that the lemma is false. Then there exists an adversary A such that $\operatorname{Pr}[e=1]$ is non-negligible. Denote by E_{i} the event that S_{i} stored $p k_{i}$ before the corresponding verifier received its common input, and that S_{i} did not compute a signature of m_{i}. Then the probability $\operatorname{Pr}\left[d_{i}=1 \wedge E_{i}\right]$ is non-negligible for $i=1$ or $i=2$.

Consider the first case. Denote by A^{\prime} the adversary in Experiment 2.6 that simulates the experiment of the lemma to A by simply forwarding requests except that if the verifier of the $\pi_{w f}$ protocol accepts when A hands $\left(\pi_{w f}, p k\right)$ to the simulated honest signer S_{1}, it invokes the knowledge extractor of $\pi_{w f}$ to extract $s k$ such that $(p k, s k) \in \mathcal{R}_{w f}$. Then it continues the simulation until A decides on the common input ($m_{1}, \sigma_{1}, 1, p k_{1}, s p k$), at which point it checks if $p k_{1}$ is stored by S_{1}. If this is the case it has already extracted some secret key $s k_{1}$ such that $\left(p k_{1}, s k_{1}\right) \in \mathcal{R}_{w f}$, and then it outputs $\left(m_{1}, s\right)$, where $s=\operatorname{Con}_{s k_{1}}^{\mathrm{dc}}\left(\sigma_{1}, s p k\right)$, and otherwise it outputs \perp. It follows from the soundness of the interactive proof π_{e} that conditioned on $d_{1}=1 \wedge E_{i}$, the probability that $\left(\left(m_{1}, \sigma_{1}, 1, p k_{1}, s p k\right), s k_{1}\right) \in \mathcal{R}_{e}$ is overwhelming. Thus, the probability that the output $\left(m_{1}, s\right)$ satisfies $\mathrm{Vf}_{s p k}^{\mathrm{dc}}\left(m_{1}, s\right)=0$ and $d_{1}=1$ is negligible. This implies that with non-negligible probability the adversary A^{\prime} outputs a pair $\left(m_{1}, s\right)$ such that S_{1} never computed a signature of m_{1} and $\mathrm{Vf}_{s p k}^{\mathrm{dc}}\left(m_{1}, s\right)=1$. Thus, the CMA-security of $\mathcal{D C S}$ is broken.

The second case follows mutatis mutandi. The only essential difference is that if $\left(\left(m_{2}, \sigma_{2}, p k_{2}, s p k\right), w\right) \in \mathcal{R}_{e}$, then $\mathrm{Vf}_{s p k}^{\mathrm{dc}}\left(m_{2}, \operatorname{Con}_{s k_{2}^{\prime}}^{\mathrm{dc}}(\sigma, s p k)\right)$ for every $s k_{2}$ such that $\left(p k_{2}, s k_{2}\right) \in \mathcal{R}_{w f}$. Thus, we can conclude directly that the output $\left(m_{1}, s\right)$ satisfies $\mathrm{Vf}_{s p k}^{\mathrm{dc}}\left(m_{1}, s\right)=0$ and $d_{1}=1$ is negligible.

Honest Confirmer. Nobody except the confirmer should be able to play the role of the prover in the protocols $\pi_{w f}, \pi_{c}$, and π_{e} using the honest confirmers public key as common input, even after interacting with the real confirmer.

We formalize the honest confirmer C to be a probabilistic interactive Turing machine that accepts as input a key pair $(p k, s k)$. Whenever it receives a message with prefix $\pi_{w f}$, Con ${ }^{\text {dc }}$, or π_{e} on its input communication tape it halts the execution of any interactive protocol it is executing and proceeds as follows. Given a message $\left(\pi_{w f}\right)$ it executes the prover of protocol $\pi_{w f}$ on common input $p k$ and private input $s k$. Given a message ($\left.\operatorname{Con}^{\mathrm{dc}}, \sigma, s p k\right)$ it computes $s=\operatorname{Con}_{s k}^{\mathrm{dc}}(\sigma, s p k)$, writes s on its output communication tape, and executes the prover of protocol π_{c} on common input ($\sigma, s, p k, s p k$) and private input $s k$. On input $\left(\pi_{e}, m, \sigma, s p k\right)$ it computes $s=\operatorname{Con}_{s k}^{\mathrm{dc}}(\sigma, s p k)$. If $w f(s, p k, s p k)=1$, i.e., s is well-formed, then C computes $c=\mathrm{Vf}_{s p k}^{\mathrm{dc}}(m, s)$, writes c on its output communication tape, and executes the prover of protocol π_{e} on common input ($m, \sigma, c, p k, s p k$) and private input $s k$. Otherwise C writes (malformed, s) on its output communication tape and executes the prover of protocol π_{c} on common input $(\sigma, s, p k, s p k)$ and private input $s k$.

Experiment 2.9 (Impersonation-Resistance, $\operatorname{Exp}_{\mathcal{D} \mathcal{C S}, A}^{\mathrm{mp}-\mathrm{res}}(\kappa)$).

$$
\begin{aligned}
(p k, s k) & \leftarrow \mathrm{Kg}_{c}^{\mathrm{dc}}\left(1^{\kappa}\right) \\
d_{1} & \leftarrow\left\langle V_{w f}, A[C(p k, s k)](p k)\right\rangle(p k) \\
d_{2} & \leftarrow\left\langle V_{c}, A[C(p k, s k)](p k)\right\rangle(\cdot, \cdot, p k, \cdot) \\
d_{3} & \leftarrow\left\langle V_{e}, A[C(p k, s k)](p k)\right\rangle(\cdot, \cdot, \cdot, p k, \cdot)
\end{aligned}
$$

Return $d_{1} \vee d_{2} \vee d_{3}$.
Definition 2.10 (Impersonation Resistance). A designated confirmer signature scheme $\mathcal{D C S}$ is impersonation-resistant if for every $A \in \operatorname{PPT}: \operatorname{Pr}[\operatorname{Exp} \underset{\mathcal{D C S}, A}{\text { imp-res }}(\kappa)=1]$ is negligible.

Note that C never invokes P_{e} without executing Con ${ }^{\text {dc }}$. This is without loss of generality, since Con ${ }^{\mathrm{dc}}$ is deterministic and the common input contains the extracted signature anyway. Note that this differs from the signature case, where a signer could potentially want to prove the correctness of a particular signature to several receivers.
Remark 2.11. A stronger definition would allow the adversary to interact with the confirmer and the verifier concurrently on other inputs. Unfortunately, such a definition requires the protocols π_{c} and π_{e} to be non-malleable [13] with respect to each other and themselves. General methods such as [25] can be used to construct non-malleable zero-knowledge protocols, but currently these techniques are far from practical. Thus, we do not follow this definitional path.

Honest Signer and Honest Confirmer. To start with we observe that from the point of view of an honest signer and honest verifier, or from the point of view of an honest verifier and honest confirmer, no additional requirements are natural to impose.

When the signer and the confirmer are honest we require that knowledge that the signer signed a particular message can not be transfered. Note that this is needed in the job offer scenario. Non-transferability can clearly only hold until a DC-signature has been converted.

We formalize this as follows. Let $S C$ be the machine that simulates both S and C on inputs $(p k, s k)$ and $(s p k, s s k)$ except for the following modifications. Given a message ($\mathrm{Sig}^{\mathrm{dc}}, m, p k^{\prime}$) with $p k^{\prime}=p k$ it waits for a message (m, σ), stores this, and writes σ on its communication tape. If later invoked on ($\pi_{v}, m, \sigma, p k$) it returns \perp instead of invoking P_{v}. For $p k^{\prime} \neq p k$ it behaves as S. Given a message (Con ${ }^{\mathrm{dc}}, \sigma, s p k^{\prime}$) such that $s p k^{\prime}=s p k$ and (m, σ) is stored it checks if (m, σ, s) is stored for some s. If not, then it computes $s=\operatorname{Con}_{s k}^{\mathrm{dc}}\left(\operatorname{Sig}_{s s k}^{\mathrm{dc}}(m, p k), s p k\right)$ and stores (m, σ, s). Finally, it writes s on its communication tape. It does not invoke the prover of π_{c}. If $s p k^{\prime} \neq s p k$ or (m, σ) is not stored it behaves as C. Finally, given a message $\left(\pi_{e}, m, \sigma, s p k\right)$, where (m^{\prime}, σ) is stored for some m^{\prime} it returns 0 if $m \neq m^{\prime}$ and 1 otherwise. It does not execute the prover of π_{e}.

Intuitively, $S C$ delays the computation of every DC-signature using the public key $p k$ until it is converted. We want to say that if there is an adversary A that interacts with S and C, there is another adversary A^{\prime} that interacts with $S C$ such that its output is indistinguishable from that of A, despite that all its signature queries are "delayed". For this to make sense the order of messages sent to S, C, and $S C$ must be given to the distinguisher as well. We say that an adversary is scheduled if whenever it writes a message with prefix $\mathrm{Sig}^{\mathrm{dc}}, \pi_{v}, \pi_{w f}$, Con ${ }^{\mathrm{dc}}$, and π_{e} the message and any return value (excluding the messages exchanged by the protocols that may be invoked) are stored on a special write only scheduling tape. Furthermore, when the adversary halts its output is prefixed by its scheduling tape. The additional input $p k$ to S below is stored as a well-formed public key, and this is done in the simulation of $S C$ as well.

Experiment 2.12 (Non-Transferability, $\operatorname{Exp}_{\mathcal{D} \mathcal{C} \mathcal{S}, A, V}^{\text {non } \text { trans }-b}(\kappa)$).

$$
\begin{aligned}
& ((p k, s k),(s p k, s s k)) \leftarrow\left(\mathrm{Kg}_{\mathrm{c}}^{\mathrm{dc}}\left(1^{\kappa}\right), \mathrm{Kg}_{\mathrm{s}}^{\mathrm{dc}}\left(1^{\kappa}\right)\right) \\
& d \leftarrow \begin{cases}D(A(p k, s p k, s s k)[S C(p k, s k, s p k, s s k)]) & \text { if } b=0 \\
D(A(p k, s p k, s s k)[S(p k, s p k, s s k), C(p k, s k)]) & \text { if } b=1\end{cases}
\end{aligned}
$$

Definition 2.13 (Non-Transferability). A DC-signature scheme $\mathcal{D C S}$ is non-transferable if for every scheduled $A_{1} \in$ EPPT there exists a scheduled $A_{0} \in$ EPPT such that for every distinguisher $D \in \operatorname{EPPT}: \mid \operatorname{Pr}\left[\operatorname{Exp}_{\mathcal{D} \mathcal{C} \mathcal{S}, A_{1}, D}^{\text {non }}\right.$ trans-1 $\left.(\kappa)=1\right]-\operatorname{Pr}\left[\operatorname{Exp}_{\mathcal{D} \mathcal{C S}, A_{0}, D}^{\text {non }- \text { trans-0 }}(\kappa)=1\right] \mid$ is negligible.

Remark 2.14. Our definition is similar to the "liberal" definition of zero-knowledge in that the simulator is allowed to run in expected polynomial time.
Remark 2.15. Again, our experiment is not completely realistic. A stronger definition would allow the adversary to interact concurrently with S and C on other common inputs when trying to convince a verifier. Unfortunately, such definitions imply that the protocols $\pi_{w f}, \pi_{c}, \pi_{e}$, and π_{v} are non-malleable in a very strong sense. We are not aware of any general methods to achieve this.

Informally, a DC-signature scheme is coercion-free if a signer can reveal its secret signing key and still claim that it did not compute a particular DC-signature. Naturally, this can only hold as long as the DC-signature is not converted, or proved to be valid. Note that this is already captured in our definition of non-transferability.

The definition of non-transferability in Camenisch and Michels [3] can not be satisfied, since it requires the existence of a straight-line zero-knowledge simulator for an interactive proof without set-up assumptions. The definition of Goldwasser and Waisbard [19] only prevents the adversary from transferring confidence of validity of a signature using the confirmation protocol of the scheme. It says nothing about the possibility of using another confirmation protocol. The relaxed definition of Gentry et al. [16] explicitly allows some forms of transferability.

Most previous definitions require some form of indistinguishability of signatures computed by different signers, but this is unnecessarily strong. In any claim about a signature, the holder of the signature would disclose the identity of the claimed signer anyway, and our definition implies that anybody can generate something indistinguishable from a valid signature of any such signer.

Definition of Security. We now define security of a DC-signature scheme in the natural way.

Definition 2.16. A designated confirmer signature scheme $\mathcal{D C S}$ is secure if it is sound, CMA-secure, impersonation-resistant, and non-transferable.

On Concurrency. In our definitions the "oracle access" to the honest signer S and the honest confirmer C are sequential. Stronger definitions similar to those of Camenisch and Michels [3], where the adversary is given concurrent "oracle access", follow by giving the adversary access to several copies of S and C, each executing on the same input key pair.

3 Theoretical Tools

In this section we introduce novel variations of zero-knowledge and CCA2-security and define what it means for a signature scheme to be collision-free.

3.1 A Relaxation of Zero-Knowledge

The definition of zero-knowledge is very strong in that the simulation property must hold with respect to every verifier and every instance (x, w) in the relation \mathcal{R} under consideration. As pointed out by Goldreich [17] it is quite natural to consider a uniform definition that only requires that it is infeasible to find an instance on which a verifier can gain knowledge.

In many cryptographic settings the instance can not be chosen completely freely by the adversary, e.g., the adversary may ask an honest party to prove that it performed a decryption correctly, where the keys to the cryptosystem are generated honestly. Furthermore, in some security proofs the simulator can be allowed an additional advice string dependent on the instance, e.g., if a decryption oracle is present in the environment where the simulator is invoked we may give the simulator decryptions of some ciphertexts. The following definition allows for both these settings.

Experiment 3.1 (Zero-Knowledge, $\operatorname{Exp}_{\pi, \mathcal{R}, I, V^{*}, D}^{(T, F)-z-b}(\kappa)$).

$$
\begin{aligned}
t & \leftarrow T\left(1^{\kappa}\right) \\
(i, z) & \leftarrow I\left(1^{\kappa}, t\right) \\
(x, w, a) & \leftarrow F(t, i) \\
d & \leftarrow \begin{cases}D\left(x, z, a,\left\langle V^{*}(z), P(w)\right\rangle(x)\right) & \text { if } b=0 \\
D(x, z, a, M(z, a, x)) & \text { if } b=1\end{cases}
\end{aligned}
$$

Return 0 if $\mathcal{R}(x, w)=0$ and d otherwise.
Definition 3.2. Let $\pi=(P, V)$ be an interactive protocol, let $T \in \mathrm{PPT}$ and F : $\{0,1\}^{*} \rightarrow\{0,1\}^{*}$, and let \mathcal{R} be a relation. We say that π is (T, F)-zero-knowledge for \mathcal{R} if for every verifier $V^{*} \in$ EPPT there exists a simulator $M \in$ EPPT such that for every instance chooser $I \in$ EPPT and every distinguisher $D \in$ EPPT: $\left|\operatorname{Pr}\left[\operatorname{Exp}_{\pi, \mathcal{R}, I, V^{*}, D}^{(T, F)-\mathrm{zk}-0}(\kappa)=1\right]-\operatorname{Pr}\left[\operatorname{Exp}_{\pi, \mathcal{R}, I, V^{*}, D}^{(T, T)-z \mathrm{k}-1}(\kappa)=1\right]\right|$ is negligible.
Remark 3.3. We do not require that F is polynomial time in the definition, but the concrete protocols we present are (T, F)-zero-knowledge with efficiently computable functions F. This seems also essential to allow sequential composition as formalized below.
Remark 3.4. The definition makes sense for non-uniform adversaries as well. Furthermore, the definition can be both generalized and relaxed. One natural relaxation is to give only part of the sample t to the instance finder. Note that a probabilistic F is captured by this relaxation. A related definition gives the instance finder access to some specific oracle, i.e., we would talk about (T, F, O)-zero-knowledge for some specific oracle O. This seems to make most sense when the oracle is efficiently computable using the sample t (of which not all is given to the instance finder).

Denote by $T_{1} \| T_{2}$ the algorithm that given 1^{κ} outputs $\left(T_{1}\left(1^{\kappa}\right), T_{2}\left(1^{\kappa}\right)\right)$. Denote by $F_{1} \| F_{2}$ the algorithm that on input $\left(\left(t_{1}, t_{2}\right),\left(i_{1}, i_{2}\right)\right)$ outputs $\left(F_{1}\left(t_{1}, i_{1}\right), F_{2}\left(t_{2}, i_{2}\right)\right)$.

Denote by T_{\emptyset} the algorithm that gives \emptyset as output. Denote by F_{\emptyset} the algorithm such that $F_{\emptyset}(t, i)=t$, and denote by $F_{i d}$ the algorithm such that $F_{i d}(t, i)=i$. Choose some canonical interpretation of strings such that the output of I is always of the form $\left(\left(x_{1}, w_{1}\right), z\right)$. Then when the output of T is always of the form $t=\left(x_{2}, w_{2}\right)$, and $F(t, i)=\left(\left(x_{1}, x_{2}\right),\left(w_{1}, w_{2}\right), \emptyset\right)$, we simply say that the protocol is T-zero-knowledge.

Note that when $T=T_{\emptyset}, F=F_{i d}$ and all machines in the definition are strict polynomial machines, (T, F)-zero-knowledge reduces to uniform zero-knowledge [17].

If a simulator satisfies the relaxed definition, then it can be plugged in instead of a real protocol execution polynomially many times sequentially as long as F is polynomial time. This extension is necessary in our analysis. More precisely we have the following lemma.
Experiment 3.5 (Sequential Composition, $\left.\operatorname{Exp}_{\pi, \mathcal{R}, I, V^{*}, D}^{\mu(\kappa)-(T, F)-z k-b}(\kappa)\right)$.

$$
\begin{aligned}
t & \leftarrow T\left(1^{\kappa}\right) \quad z_{0}^{\prime} \leftarrow t \\
\left(i_{j}, z_{j}\right) & \leftarrow I\left(1^{\kappa}, z_{j-1}^{\prime}\right) \\
\left(x_{j}, w_{j}, a_{j}\right) & \leftarrow F\left(t, i_{j}\right) \\
z_{j}^{\prime} & \leftarrow \begin{cases}\left\langle V^{*}\left(z_{j}\right), P\left(w_{j}\right)\right\rangle\left(x_{j}\right) & \text { if } b=0 \\
M\left(z_{j}, a_{j}, x_{j}\right) & \text { if } b=1\end{cases} \\
d & \leftarrow D\left(z_{\mu(\kappa)}^{\prime}\right)
\end{aligned}
$$

Return 0 if $\mathcal{R}\left(x_{j}, w_{j}\right)=0$ and d otherwise.
Lemma 3.6 (Sequential Composition). Let $\pi=(P, V)$ be a (T, F)-zero-knowledge protocol with $F \in \mathrm{PT}$ for a relation \mathcal{R} and let $\mu(\kappa)$ be bounded by a polynomial. Then for every verifier $V^{*} \in \mathrm{EPPT}$ the simulator $M \in \mathrm{EPPT}$ guaranteed to exist by the definition of (T, F)-zero-knowledge satisfies that for every instance chooser $I \in \mathrm{EPPT}$ and every distinguisher $D \in \mathrm{EPPT}: \mid \operatorname{Pr}\left[\operatorname{Exp}_{\pi, \mathcal{R}, I, V^{*}, D}^{\mu(\kappa)-(T, F)-\mathrm{zk}-0}(\kappa)=1\right]-$ $\operatorname{Pr}\left[\operatorname{Exp}_{\pi, \mathcal{R}, I, V^{*}, D}^{\mu(\kappa)-(T, F)-z \mathrm{k}-1}(\kappa)=1\right] \mid$ is negligible.
Proof. Consider a verifier V^{*}, the corresponding simulator M guaranteed by the zero-knowledge property, an instance chooser I, and a distinguisher D, and write H^{b} for the algorithm that simulates the experiment $\operatorname{Exp}_{\pi, \mathcal{R}, I, V^{*}, D}^{\mu(\kappa)-\left(T, F^{*}\right)-z \mathrm{k}-b}(\kappa)$.

Denote by H_{l}^{0} the machine H^{0}, except that if $j \leq l$, then the simulator behaves as H^{1}. Thus, H_{0}^{0} is identical to H^{0} and H_{μ}^{0} is identical to H^{1}. Denote by I_{l} the instance chooser that simulates H_{l-1}^{0} until $\left(i_{l}, z_{l}\right)$ is output in the simulation. Denote by D_{l} the distinguisher that takes z_{l+1}^{\prime} as input and computes z_{μ} exactly as is done in the simulation H^{0}, by simulating the honest prover. It follows that H_{l-1}^{0} is identically distributed to $\operatorname{Exp}_{\pi, \mathcal{R}, I_{l}, V^{*}, D_{l}}^{(T, F)-z \mathrm{c}-0}(\kappa)$. and H_{l}^{0} is identically distributed to $\operatorname{Exp}_{\pi, \mathcal{R}, I_{l}, V^{*}, D_{l}}^{(T, F)-\mathrm{k}-1}(\kappa)$.

Suppose that the lemma is false. Then there exists a verifier V^{*}, an instance chooser I, and a distinguisher D such that $\left|\operatorname{Pr}\left[H^{0}=1\right]-\operatorname{Pr}\left[H^{1}=1\right]\right|$ is non-negligible. A hybrid argument shows that there exists a fixed l such that $\mid \operatorname{Pr}\left[H_{l-1}^{0}=1\right]-\operatorname{Pr}\left[H_{l}^{0}=\right.$ $1] \mid$ is non-negligible, but this contradicts the (T, F)-zero-knowledge property and the lemma must be true.

3.2 Cryptosystems With Labels and Δ-CCA2-Security

Our starting point is the generalization of CCA2-security for cryptosystems with labels introduced by Shoup and Gennaro [26].

This simply means that the input to the cryptosystem is not only a message, but also a label, and similarly for the decryption algorithm. In other words we use the following definition.
Definition 3.7 (Public Key Cryptosystem With Labels). A public key cryptosystem with labels $\mathcal{C S}=($ CSKg, Enc, Dec $)$ consists of three probabilistic polynomialtime algorithms.

1. A key generation algorithm CSKg that on input 1^{κ} outputs a public key $p k$ and a private key $s k$. The public key defines a plaintext space $\mathcal{M}_{p k}$.
2. An encryption algorithm Enc that on input a public key $p k$, a label L, and a message $m \in \mathcal{M}_{p k}$ outputs a ciphertext c.
3. A decryption algorithm Dec that on input a private key $s k$, a label L, and a ciphertext c outputs a message $m \in \mathcal{M}_{p k}$ or \perp.

Furthermore, for every output $(s k, p k)$ of $\operatorname{CSKg}\left(1^{\kappa}\right)$, every label $L \in\{0,1\}^{*}$, and every $m \in \mathcal{M}_{p k}$ it must hold that $\operatorname{Dec}_{s k}\left(L, \operatorname{Enc}_{p k}(L, m)\right)=m$.

The definition of CCA2-security is strict in that the indistinguishability property of ciphertexts holds for any two messages. In our setting a weaker property suffices, namely that any two encrypted signatures from the same signer are indistinguishable. Thus, we introduce the following relaxed definition.

Experiment 3.8 (Δ-CCA2-Security, $\left.\operatorname{Exp}_{\mathcal{C} \mathcal{S}, A}^{\Delta-\mathrm{cca} 2-b}(\kappa)\right)$.

$$
\begin{aligned}
(p k, s k) & \leftarrow \operatorname{CSKg}^{\left(1^{\kappa}\right)} \\
\left(r, m_{0}, m_{1}, \text { state }\right) & \leftarrow A^{\operatorname{Dec}_{s k}(\cdot, \cdot)}(\text { choose }, p k) \\
c & \leftarrow \operatorname{Enc}_{p k}\left(\Delta\left(r, m_{b}\right)\right) \\
d & \leftarrow A^{\operatorname{Dec}_{s k}(\cdot, \cdot)}(\text { guess }, \text { state }, c)
\end{aligned}
$$

Interpret $\Delta\left(r, m_{b}\right)$ as a pair $\left(L, m_{b}^{\prime}\right)$. The experiment returns 0 if $\operatorname{Dec}_{s k}(\cdot, \cdot)$ was queried on (L, c), and otherwise d.

Definition 3.9 (Δ-CCA2-Security). Let $\Delta \in$ PPT. A public key cryptosystem $\mathcal{C S}$ with labels is said to be Δ-CCA2-secure if for every adversary $A \in \mathrm{PPT}$: $\left|\operatorname{Pr}\left[\operatorname{Exp}_{\mathcal{C} \mathcal{S}, A}^{\Delta-\mathrm{cca2}-0}(\kappa)=1\right]-\operatorname{Pr}\left[\operatorname{Exp}_{\mathcal{C S}}^{\Delta-\mathrm{cca} 2-1}(\kappa)=1\right]\right|$ is negligible in κ.
Remark 3.10. It is easy to transform a CCA2-secure secure cryptosystem constructed using hash-proofs [10] into a CCA2-secure cryptosystem with labels: simply let the label be part of the input to the collision-free hash function.

3.3 Collision-Free Signature Schemes

We say that a signature scheme is collision-free if it is infeasible to find two distinct messages and a signature such that the signature is a valid with respect to both messages, even if the adversary is given the honestly generated secret key and the public key.

Although this property does not follow from the CMA-security of a signature scheme it is in fact not very demanding, e.g., we do not need to take any additional precautions in the construction of our signature scheme to satisfy this property.

Definition 3.11 (Collision-Free). Let $\mathcal{S S}=(\mathrm{Kg}, \mathrm{Sig}, \mathrm{Vf})$ be a signature scheme, and define a random variable $(s p k, s s k)=\operatorname{Kg}\left(1^{\kappa}\right)$. Then $\mathcal{S S}$ is collision-free if for every $A \in \mathrm{PPT}$ the probability $\operatorname{Pr}\left[A(s p k, s s k)=\left(m_{0}, m_{1}, s\right) \wedge m_{0} \neq m_{1} \wedge \mathrm{Vf}_{s p k}\left(m_{0}, s\right)=\right.$ $\left.\mathrm{Vf}_{s p k}\left(m_{1}, s\right)=1\right]$ is negligible.

4 A Generic Construction of Designated Confirmer Signatures

It is natural to construct DC-signatures from a CMA-secure signature scheme and a CCA2-secure cryptosystem. A signer holds a secret key for the signature scheme and the confirmer holds a secret key of the cryptosystem. A DC-signature is simply an ordinary signature encrypted with the cryptosystem, conversion corresponds to decryption, and zero-knowledge proofs of knowledge are used to instantiate the protocols. The theorem below implies that this is secure, but for most signature schemes and cryptosystems it is prohibitively inefficient.

As a first step in the construction of an efficient DC-signature scheme we prove that weaker primitives suffice to construct a secure DC-signature scheme, but the basic idea is the same.

4.1 The Construction

Let $\mathcal{C S}=(\mathrm{CSKg}, \mathrm{Enc}, \mathrm{Dec})$ be a cryptosystem with labels and let $\mathcal{S S}=(\mathrm{Kg}, \mathrm{Sig}, \mathrm{Vf})$ be a signature scheme with fixed size signatures (this is easy to ensure by padding) that fit in the plaintext space of $\mathcal{C S}$. Define $\mathrm{Kg}_{\mathrm{s}}^{\mathrm{dc}}$ to compute $(s p k, s s k)=\mathrm{Kg}\left(1^{\kappa}\right)$ and $s_{\perp}=\operatorname{Sig}_{s s k}(\perp)$, where \perp is a special symbol, and output ($\left.s p k, s_{\perp}\right)$, ssk) (we drop s_{\perp} from our notation when convenient). Define $\operatorname{Kg}_{c}^{\mathrm{dc}}\left(1^{\kappa}\right)$ to output $\operatorname{CSKg}\left(1^{\kappa}\right)$, and define $\mathrm{Vf}{ }^{\mathrm{dc}}$ to be Vf except that $\mathrm{Vf}_{s p k}^{\mathrm{dc}}(\perp, \cdot)=0$. On input $s s k$, m, and $p k$ the DC signature algorithm $\operatorname{Sig}^{\text {dc }}$ is defined to compute $s=\operatorname{Sig}_{s s k}(m)$ and $\sigma=\operatorname{Enc}_{p k}(s p k, s)$, and output σ. On input $s k, \sigma$, and $s p k$ the conversion algorithm Con ${ }^{\text {dc }}$ is defined to output $s=\operatorname{Dec}_{s k}(s p k, \sigma)$. In other words, the public signature key $s p k$ is used as a label. Let $\left(\mathrm{Kg}_{c, 1}^{\mathrm{dc}}, \mathrm{Kg}_{c, 2}^{\mathrm{dc}}, \mathrm{Kg}_{c, 3}^{\mathrm{dc}}\right)$ be a splitting of $\mathrm{Kg}_{c}^{\mathrm{dc}}$ and let $w f$ be some wellformedness function with respect to $\mathcal{D C S}$. Let $\pi_{w f}, \pi_{c}, \pi_{e}$, and π_{v} be interactive protocols, complete with respect to the relations $\mathcal{R}_{w f}, \mathcal{R}_{c}, \mathcal{R}_{e}$, and \mathcal{R}_{v}. It is easy to see that $\mathcal{D C S}=\left(\mathrm{Kg}_{\mathrm{s}}^{\mathrm{dc}}, \mathrm{Kg}_{c}^{\mathrm{dc}}, \operatorname{Con}^{\mathrm{dc}}, \mathrm{Vf}^{\mathrm{dc}}, \pi_{w f}, \pi_{c}, \pi_{e}, \pi_{v}\right)$ is a DC-signature scheme.

The algorithm $\Delta\left(r,\left(r^{\prime}, m\right)\right)$ first computes $(s p k, s s k)=\operatorname{Kg}_{r}\left(1^{\kappa}\right)$ and $s=\operatorname{Sig}_{s s k, r^{\prime}}(m)$, and then outputs $(s p k, s)$. Define $T_{h s}\left(1^{\kappa}\right)=\left(\mathrm{Kg}_{c}^{\mathrm{dc}}\left(1^{\kappa}\right), \mathrm{Kg}_{\mathrm{s}}^{\mathrm{dc}}\left(1^{\kappa}\right)\right)$. Define $F_{h s}$ to take as input the pair $\left((p k, s k, s p k, s s k),\left(r, m, m^{\prime}\right)\right)$, compute $\sigma=\operatorname{Sig}_{s s k, r}^{\mathrm{dc}}(m)$, and output $\left(\left(m^{\prime}, \sigma, \mathrm{Vf}_{s p k}^{\mathrm{dc}}\left(m^{\prime}, \operatorname{Con}_{s k}^{\mathrm{dc}}(\sigma)\right), p k, s p k\right), s k, \emptyset\right)$. Let $T_{c s}\left(1^{\kappa}\right)$ simply output $\mathrm{Kg}_{c}^{\mathrm{dc}}\left(1^{\kappa}\right)$. Define $F_{c s}$ to take input $((p k, s k),(m, \sigma, c, s p k))$ and output the tuple $\left((m, \sigma, c, p k, s p k), s k, \operatorname{Con}_{s k}^{\mathrm{dc}}(\sigma, s p k)\right)$.

Theorem 4.1. ${ }^{1}$ Suppose that $\mathcal{C S}$ is Δ-CCA2-secure and that $\mathcal{S S}$ is $C M A$-secure and collision-free, and that $\pi_{w f}, \pi_{c}, \pi_{e}$, and π_{v} are proofs of knowledge for the relations $\mathcal{R}_{w f}, \mathcal{R}_{c}, \mathcal{R}_{e}$, and \mathcal{R}_{v}. Suppose that $\pi_{w f}$ and π_{c} are $\mathrm{Kg}_{c}^{\mathrm{dc}}$-zero-knowledge for the

[^1]relations $\mathcal{R}_{w f}$ and \mathcal{R}_{c} respectively. Suppose that π_{e} is both $\left(T_{h s}, F_{h s}\right)$-zero-knowledge and $\left(T_{c s}, F_{c s}\right)$-zero-knowledge for the relation \mathcal{R}_{e}. Suppose π_{v} is $\mathrm{Kg}_{\mathrm{s}}^{\mathrm{dc}}$-zero-knowledge for the relation \mathcal{R}_{v}. Then $\mathcal{D C S}$ is secure.

4.2 On the Use of Two Distinct Weak Simulators

Perhaps the most interesting of our techniques is the use of two simulators for the same protocol, of which one requires additional advice. Consider the problem of constructing a black box-reduction of a successful attacker A against non-transferability into a successful attacker A^{\prime} against the Δ-CCA2-security of the underlying cryptosystem. The Δ-CCA2-attacker A^{\prime} takes a public key $p k$ as input and must simulate the nontransferability experiment to the adversary without using the secret key $s k$. At some point A^{\prime} outputs a random bit string r and two messages (r_{0}, m_{0}) and (r_{1}, m_{1}) to the Δ-CCA2-experiment, and it is given a ciphertext $\sigma=\operatorname{Enc}_{p k}\left(s p k, \operatorname{Sig}_{s s k, r_{b}}\left(m_{b}\right)\right)$ for a random $b \in\{0,1\}$, where $(s p k, s s k)=\operatorname{Kg}_{r}\left(1^{\kappa}\right)$. The ciphertext σ is used in the simulation somehow, and finally A^{\prime} outputs a bit. The simulation involves converting signatures, but A^{\prime} may use its decryption oracle to answer such queries, as long as it never asks for a decryption of σ.

We observe that when the protocol π_{e} is simulated for some DC-signature $\sigma^{\prime} \neq \sigma$ computed by A, the simulator is free to invoke the decryption oracle on σ^{\prime}, i.e., a $\left(T_{c s}, F_{c s}\right)$-zero-knowledge simulator is sufficient. On the other hand, for the particular signature σ we can not proceed in this way, since that would violate the rules of the Δ -CCA2-experiment, but since σ is computed honestly using honestly formed signature keys a $\left(T_{h s}, F_{h s}\right)$-zero-knowledge simulator suffices.

4.3 Analysis of the Construction

Proof (Theorem 4.1). Before we start we recall that if A is a probabilistic polynomial algorithm running in expected polynomial time $t(\kappa)$, then for every constant c it can be turned into a strict polynomial time algorithm A^{\prime} running in time $\kappa^{c} t(\kappa)$ such that the statistical distance between the output of A and the output of A^{\prime} is at most κ^{-c}. This follows immediately from the Markov inequality. Thus, it suffices to exhibit an expected polynomial machine that breaks a computational assumption.

The theorem now follows immediately from the following lemmas.
Lemma 4.2. The scheme is sound.
Proof. This follows by construction, since every proof of knowledge is a proof.
Lemma 4.3. The scheme is CMA-secure.
Proof. Suppose that there is an adversary A that breaks the CMA-security of $\mathcal{D C S}$, i.e., $\operatorname{Pr}\left[\operatorname{Exp}_{\mathcal{D} \mathcal{C} \mathcal{S}, A}^{\mathrm{cma}}(\kappa)=1\right]$ is non-negligible.

Denote by $\operatorname{Exp}_{\mathcal{D} \mathcal{C} \mathcal{S}, A}^{\text {cma }}(\kappa) \operatorname{experiment} \operatorname{Exp}_{\mathcal{D C} \mathcal{S}, A}^{\mathrm{cma}}(\kappa)$ except that instead of executing P_{v} the experiment invokes the $\mathrm{Kg}_{\mathrm{s}}^{\mathrm{dc}}$-zero-knowledge simulator of the protocol π_{v}. It follows from the zero-knowledge property and Lemma 3.6 that $\operatorname{Pr}[\operatorname{Exp} \underset{\mathcal{D C S}, A}{\mathrm{cma}}(\kappa)=1]$ is non-negligible.

Denote by A^{\prime} the adversary in the ordinary CMA-experiment (Experiment D.2) with $\mathcal{S S}$ that on input $s p k$ simulates $\operatorname{Exp}_{\mathcal{D C S}, A}^{\text {cma* }}(\kappa)$ except that instead of computing
$\operatorname{Sig}_{s s k, r}^{\mathrm{dc}}(m, p k)$ on a query $(m, p k)$ it requests a signature s of m from its $\mathrm{Sig}_{s s k}(\cdot)$-oracle and computes $\sigma=\operatorname{Enc}_{p k}(s p k, s)$. By definition of the ordinary CMA-experiment this does not change the distribution of $\operatorname{Exp}_{\mathcal{D C S}, A}^{\mathrm{cma*}}(\kappa)$. When A halts, A^{\prime} outputs the pair (m, s) output by the adversary A in the simulation of $\operatorname{Exp}_{\mathcal{D C S}, A}^{\mathrm{cma*}}(\kappa)$. The output of the experiment $\operatorname{Exp}_{\mathcal{D C S}, A}^{\mathrm{cma}}(\kappa)$ only equal 1 if $\mathrm{Vf}_{s p k}^{\mathrm{dc}}(m, s)=1$ and S never computed a signature of m. Thus, A^{\prime} breaks the ordinary CMA-security of $\mathcal{S} \mathcal{S}$, since $\mathrm{Vf}=\mathrm{Vf}^{\mathrm{dc}}$.

Lemma 4.4. The scheme is impersonation-resistant.
Proof. Suppose that there is an adversary A that breaks the impersonation-resistance of $\mathcal{D C S}$. To start with we describe a modification to the experiment that only changes its distribution negligibly. We denote by $\operatorname{Exp}_{\mathcal{D} \mathcal{C} \mathcal{S}, A}^{\mathrm{imp}-\text { res* }}(\kappa)$, the original experiment, that is $\operatorname{Exp}_{\mathcal{D} \mathcal{C S}, A}^{\mathrm{imp}-\mathrm{res}}(\kappa)$, except for the following modifications. Instead of executing the prover of $\pi_{w f}$ and π_{c} respectively, the experiment invokes the corresponding $\mathrm{Kg}_{c}^{\mathrm{dc}}$-zeroknowledge simulator. Instead of executing the prover of the protocol π_{e} it invokes the $\left(T_{c s}, F_{c s}\right)$-zero-knowledge simulator. Recall that this simulator requires an additional advice string, namely the decryption of the DC-signature σ that is part of the common input ($m, \sigma, c, p k, s p k$) in an invokation. It follows from the zero-knowledge properties of these protocols and Lemma 3.6 that the probability $\operatorname{Pr}[\operatorname{Exp} \underset{\mathcal{D C S}, A}{\mathrm{imp}-\text { res* }}(\kappa)=1]$ is non-negligible.

Denote by $A_{b a s}$ the machine in the Δ-CCA2-experiment that accepts $p k$ as input and simulates the experiment $\operatorname{Exp}_{\mathcal{D} \mathcal{C} \mathcal{S}, A}^{\text {imp-res* }}(\kappa)$ except that instead of computing $\operatorname{Dec}_{s k}(s p k, \sigma)$ when necessary, either to output it or to give it as advice to a $\left(T_{c s}, F_{c s}\right)$ -zero-knowledge simulator, it requests the plaintext s of $(s p k, \sigma)$ from its $\operatorname{Dec}_{s k}(\cdot, \cdot)$ oracle. By definition we know that the distribution of $A_{b a s}$ is identical to the distribution of $\operatorname{Exp}_{\mathcal{D} \mathcal{C S}, A}^{\text {imp-res* }}(\kappa)$.

Denote by d_{1}, d_{2}, and d_{3} the random variables in the simulation. Then either $\operatorname{Pr}\left[d_{1}=1\right], \operatorname{Pr}\left[d_{2}=1\right]$, or $\operatorname{Pr}\left[d_{3}=1\right]$ is non-negligible. Suppose that $\operatorname{Pr}\left[d_{1}=1\right]$ is non-negligible. Denote by $A_{\text {ext }}$ the adversary in the Δ-CCA2-experiment that accepts $p k$ as input and simulates $A_{b a s}$, except that when A interacts with $V_{w f}$ on common input $p k$ and the verifier accepts, then $A_{\text {ext }}$ invokes the knowledge extractor of $\pi_{w f}$. It follows that $A_{\text {ext }}$ outputs the secret key $s k$ corresponding to $p k$ in expected polynomial time. This clearly contradicts the Δ-CCA2-security of $\mathcal{C S}$.

To see that $\operatorname{Pr}\left[d_{2}=1\right]$ and $\operatorname{Pr}\left[d_{3}=1\right]$ are negligible, apply the same argument mutatis mutandi and note that every witness $s k$ that $((\sigma, s, p k), s k) \in \mathcal{R}_{c}$ or that $((m, \sigma, c, p k, s p k), s k) \in \mathcal{R}_{e}$ satisfies $(p k, s k) \in \mathcal{R}_{w f}$ by definition. Thus, it follows in each case that the Δ-CCA2-security of $\mathcal{C S}$ is broken, and the claim follows.

Note that in the argument above the $\left(T_{c s}, F_{c s}\right)$-simulator requires additional advice, but the needed advice is present in the form of the decryption oracle.

Lemma 4.5. The scheme is non-transferable.
Proof. Given an adversary $A_{1} \in$ EPPT we define another adversary $A_{0} \in$ EPPT that runs A_{1} as a black-box. It simulates A_{1} except that whenever A_{1} submits a message ($\mathrm{Sig}^{\mathrm{dc}}, m, p k$) to S it forwards it to $S C$. Then it computes $\sigma=\operatorname{Enc}_{p k}\left(s p k, s_{\perp}\right)$, stores (m, σ), and sends it to $S C$. When $S C$ returns σ it writes σ on the communication tape of A_{1}. Furthermore, any invokation of P_{v} is replaced by an invokation of the $\mathrm{Kg}_{\mathrm{s}}^{\mathrm{dc}}$-zero-knowledge simulator of the protocol π_{v}. Whenever A_{1} submits a message
(Con ${ }^{\mathrm{dc}}, \sigma, s p k$) such that (m, σ) is stored A_{0} checks if it has stored (m, σ, s). If not, it submits (Con ${ }^{\mathrm{dc}}, \sigma, s p k$) to $S C$ and waits for and stores the reply s. Finally, it writes s on the communication tape of A_{1}, and invokes the $\mathrm{Kg}_{c}^{\text {dc }}$-zero-knowledge simulator of π_{c}. Whenever A_{1} submits a message $\left(\pi_{e}, m^{\prime}, \sigma, s p k\right)$ where (m, σ) is stored it sets $c=0$ if $m^{\prime} \neq m$ and $c=1$ otherwise, and writes c on the communication tape of A_{1} and invokes the $\left(T_{h s}, F_{h s}\right)$-zero-knowledge simulator of π_{e}. All other messages submitted to S or C by A_{1} and the protocol executions they give rise to are simply forwarded to $S C$. Note that all other executions involve either a σ not computed by A_{0} or a public key $s p k^{\prime} \neq s p k$.

The reader should note at this point that none of the zero-knowledge simulators invoked by the adversary A_{0} require an additional advice string. We stress that there are no apriori guarantees that the simulated proofs "look right", since the simulators are invoked for false statements. This is something that must be proved.

The adversary A_{0} clearly runs in expected polynomial time, since A_{1} does and the zero-knowledge simulators do as well. We claim that the adversary A_{0} shows that the DC-signature scheme is non-transferable.

Denote by $\operatorname{Exp}_{\mathcal{D} \mathcal{C}, A_{1}, V}^{\text {non-trans }-1 *}(\kappa)$ the experiment $\operatorname{Exp}_{\mathcal{D C S}, A_{1}, V}^{\text {non }- \text { trans }-1}(\kappa)$ except for the following modifications:

1. In the simulation of S the $\mathrm{Kg}_{\mathrm{s}}^{\mathrm{dc}}$-zero-knowledge simulator of π_{v} is invoked instead of the prover P_{v}.
2. In the simulation of C the $\mathrm{Kg}_{c}^{\mathrm{dc}}$-zero-knowledge simulator of π_{c} is invoked instead of the prover P_{c}.
3. On input $\left(\pi_{e}, m, \sigma, s p k\right)$ such that σ was computed by S in the simulation of C, the $\left(T_{h s}, F_{h s}\right)$-zero-knowledge simulator of π_{e} is invoked instead of the prover P_{e}.
4. On other inputs of the form $\left(\pi_{e}, m, \sigma, s p k^{\prime}\right)$ in the simulation of C the $\left(T_{c s}, F_{c s}\right)$ -zero-knowledge simulator of π_{e} is invoked instead of the prover P_{e}. Note that $s p k^{\prime}$ may equal $s p k$ if σ was not computed by S and that the simulator requires an additional advice string.
Define $\operatorname{Exp}_{\mathcal{D} \mathcal{C} \mathcal{S}, A_{0}, V}^{\text {non-trans }-0 *}(\kappa)$ correspondingly. Then the claim below follows from Lemma 3.6 and the zero-knowledge properties of the protocols π_{v}, π_{c}, and π_{e}.

Claim 1. $\left|\operatorname{Pr}\left[\operatorname{Exp}_{\mathcal{D} \mathcal{C} \mathcal{S}, A_{b}, V}^{\text {non }- \text { trans }-b *}(\kappa)=1\right]-\operatorname{Pr}\left[\operatorname{Exp}_{\mathcal{D} \mathcal{S} \mathcal{S}, A_{b}, V}^{\text {non-trans-b }}(\kappa)=\right]\right|$ is negligible.
Denote by T^{0} the simulation of the experiment $\operatorname{Exp}_{\mathcal{D} \mathcal{C}}^{\text {son }, A_{0}, V}$ trans $-0 *(\kappa)$. Denote by T^{1} the simulation of the experiment $\operatorname{Exp}_{\mathcal{D} \mathcal{C}}^{\text {non }, A_{1}, V}$-trans $-1 *(\kappa)$, except that whenever A_{1} submits a message $\left(\mathrm{Sig}^{\mathrm{dc}}, m, p k\right)$ to S it stores the result (m, σ). Furthermore, whenever A_{1} submits $\left(\pi_{e}, m, \sigma, s p k\right)$ to C and (m^{\prime}, σ) is stored for some m^{\prime}, it sets $c^{\prime}=0$ if $m^{\prime} \neq m$ and $c^{\prime}=1$ otherwise, and replaces the answer c given by C, by c^{\prime}.
Claim 2. $\mid \operatorname{Pr}\left[\operatorname{Exp}_{\mathcal{D C S},}^{\text {non }-A_{1}, V}\right.$ trans $\left.-1 *(\kappa)=1\right]-\operatorname{Pr}\left[T^{1}=1\right] \mid$ is negligible.
Proof. This follows from the collision-freeness of the signature scheme $\mathcal{S S}$. Note that the simulation T^{1} can take the keys $(s p k, s s k)$ of S as input. The only way the difference in the claim can be non-negligible is if the adversary A_{1} submits a message $\left(\pi_{e}, m, \sigma, s p k\right)$ to C, where $\left(m^{\prime}, \sigma\right)$ is stored, $s=\operatorname{Con}_{s k}^{\mathrm{dc}}(\sigma, s p k)$, and $\mathrm{Vf}_{s p k}(m, s)=$ $\mathrm{Vf}_{s p k}\left(m^{\prime}, s\right)=1$. However, if this happens with non-negligible probability the collisionfreeness of $\mathcal{S S}$ is clearly broken.

Suppose now that $\left|\operatorname{Pr}\left[\operatorname{Exp}{\mathcal{D C \mathcal { S }}, A_{1}, V}_{\text {non }- \text { trans }-1}(\kappa)=1\right]-\operatorname{Pr}\left[\operatorname{Exp}{\mathcal{D C \mathcal { S }}, A_{0}, V}_{\text {non }- \text { trans }-0}(\kappa)=1\right]\right|$ is nonnegligible. Then Claims 1 and 2 imply that $\left|\operatorname{Pr}\left[T^{1}=1\right]-\operatorname{Pr}\left[T^{0}=1\right]\right|$ is non-negligible. Assume without loss that A_{1} asks for at most $t(\kappa)$ signatures from S, where $t(\kappa)$ is some polynomial. Denote by T_{i}^{0} the simulation of T^{0} except that for $l=1, \ldots, i$, the l th query of the form $\left(\mathrm{Sig}^{\mathrm{dc}}, m, p k\right)$ of A_{1} is treated exactly as it would have been treated in the simulation of T^{1}. This implies that the distribution of T_{t}^{0} is identical to the distribution of T^{1}. Note that here it is essential that the simulator uses its oracle access in exactly the same way that A_{1} would, since otherwise the scheduling tape would be different and the above claim would not hold. A hybrid argument then implies that there exists a fixed l such that $\left|\operatorname{Pr}\left[T_{l-1}^{0}=1\right]-\operatorname{Pr}\left[T_{l}^{0}=1\right]\right|$ is non-negligible, since $t(\kappa)$ is polynomial.

We are finally ready to construct an adversary $A_{c c a}$ to the Δ-CCA2-security of $\mathcal{C S}$. The adversary waits for a public key $p k$ and then starts the simulation of T_{l-1}^{0} using this key. Whenever a message must be decrypted it invokes its $\operatorname{Dec}_{s k}(\cdot, \cdot)$-oracle. This holds both when it must convert signatures and when it must provide a simulator with an additional advice string. The simulation is continued until A_{1} submits its l th message of the form ($\left.\mathrm{Sig}^{\mathrm{dc}}, m, p k\right)$. Then the adversary $A_{c c a}$ outputs $\left(r,\left(r_{0}, M_{0}\right),\left(r_{1}, M_{1}\right)\right)$ with $M_{0}=\perp$ and $M_{1}=m$, where r is the randomness that was used to compute $(s p k, s s k)=$ $\mathrm{Kg}_{r}\left(1^{\kappa}\right), r_{0}$ is the randomness used to compute s_{\perp}, and r_{1} is fresh randomness. The experiment returns a ciphertext $\sigma=\operatorname{Enc}_{p k}\left(\Delta\left(r,\left(r_{b}, M_{b}\right)\right)\right)$ for a random bit b (recall that $\left.\Delta\left(r,\left(r_{b}, M_{b}\right)\right)=\left(s p k, \operatorname{Sig}_{s s k, r_{b}}\left(M_{b}\right)\right)\right)$. The adversary $A_{c c a}$ then continues the simulation of T_{l}^{0} but uses σ instead of computing this, and it uses $s=\operatorname{Sig}_{s s k, r_{1}}^{\mathrm{dc}}(m)$ when A_{0} submits (Con ${ }^{\mathrm{dc}}, \sigma, s p k$) to C. It follows that if $b=0$, then the output of $A_{c c a}$ is distributed as T_{l-1}^{0} and otherwise as T_{l}^{0}. This contradicts the Δ-CCA2-security of $\mathcal{C S}$, since by construction $A_{c c a}$ never queries the $\operatorname{Dec}_{s k}(\cdot, \cdot)$-oracle on the input $(s p k, \sigma)$.

We conclude that the scheme is non-transferable.

5 Concrete Tools

In this section we present the tools we need to instantiate the generic DC-signature scheme with an efficient concrete scheme under standard complexity assumptions.

5.1 A Twin-Moduli Signature Scheme

To prove the existence of the scheme presented below we must assume that an arbitrary bit-string can be embedded into a prime in an efficient way. We assume that there is an efficient algorithm $\mathrm{Emb}_{f}^{f^{\prime}}$ that given $n \in\left[0,2^{\kappa}-1\right]$ with overwhelming probability finds $s \in\left[2^{f(\kappa)-1}, 2^{f(\kappa)-1}+2^{f(\kappa)-f^{\prime}(\kappa)}-1\right]$ such that $e=2^{f(\kappa)} n+s$ is prime. We call this assumption the $\left(f, f^{\prime}\right)$-Embedding Assumption. In practice this is not a problem for reasonable f and f^{\prime}.

Definition 5.1 ($\left(f, f^{\prime}\right)$-Embedding Assumption). The $\left(f, f^{\prime}\right)$-embedding assumption, for functions $f, f^{\prime}: \mathbb{N} \rightarrow \mathbb{N}$, with $f(\kappa)>f^{\prime}(\kappa)$, states that there exists $\mathrm{Emb}_{f}^{f^{\prime}} \in$ PPT that on input 1^{κ} and $n \in\left[0,2^{\kappa}-1\right]$ with overwhelming probability outputs an integer $s \in\left[2^{f(\kappa)-1}, 2^{f(\kappa)-1}+2^{f(\kappa)-f^{\prime}(\kappa)}-1\right]$ such that $e=2^{f(\kappa)} n+s$ is prime.

The Signature Scheme. The twin-moduli signature scheme, $\mathcal{S S}^{2}=\left(\mathrm{Kg}^{2}, \mathrm{Sig}^{2}, \mathrm{Vf}^{2}\right)$, is based on using two sets of RSA-parameters and the embedding algorithm Emb $f_{f}^{f^{\prime}}$. Denote by κ_{r} a security parameter such that $2^{-\kappa_{r}}$ is negligible in κ. On input 1^{κ} the key generator Kg^{2} chooses $\kappa / 2$-bit safe primes p_{0}, q_{0}, p_{1}, and q_{1} randomly, defines $N_{0}=p_{0} q_{0}$ and $N_{1}=p_{1} q_{1}$, chooses $g_{0} \in S Q_{N_{0}}$ and $g_{1} \in S Q_{N_{1}}$ randomly, and outputs $\left(\left(N_{0}, g_{0}, N_{1}, g_{1}\right),\left(p_{0}, q_{0}, g_{0}, p_{1}, q_{1}, g_{1}\right)\right)$. Set $\kappa_{p}=f\left(2 \kappa_{r}+\kappa_{m}+1\right)$ and $\kappa_{p}^{\prime}=f^{\prime}\left(2 \kappa_{r}+\right.$ $\left.\kappa_{m}+1\right)$. The signature algorithm Sig^{2} takes as input a private key ($p_{0}, q_{0}, g_{0}, p_{1}, q_{1}, g_{1}$) and a message $m \in\left[0,2^{\kappa_{m}}-1\right]$. It chooses $r \in\left[2^{2 \kappa_{r}+\kappa_{m}}, 2^{2 \kappa_{r}+\kappa_{m}}+2^{\kappa_{r}+\kappa_{m}}-1\right]$ randomly. Then it computes

$$
\begin{array}{lll}
s_{0}=\operatorname{Emb}_{f}^{f^{\prime}}(r+m) & e_{0}=2^{\kappa_{p}}(r+m)+s_{0} & z_{0}=g_{0}^{1 / e_{0}} \bmod N_{0} \\
s_{1}=\operatorname{Emb}_{f}^{f^{\prime}}(r) & e_{1}=2^{\kappa_{p}} r+s_{1} & z_{1}=g_{1}^{1 / e_{1}} \bmod N_{1} .
\end{array}
$$

Finally, it outputs $\left(r, z_{0}, s_{0}, z_{1}, s_{1}\right)$. The verification algorithm Vf^{2} takes as input a public key $\left(N_{0}, g_{0}, N_{1}, g_{1}\right)$, a message $m \in\{0,1\}^{\kappa_{m}}$, and a candidate signature $\left(r, z_{0}, s_{0}, z_{1}, s_{1}\right)$. It computes $e_{0}=2^{\kappa_{p}}(r+m)+s_{0}$ and $e_{1}=2^{\kappa_{p}} r+s_{1}$, and verifies that $r \in\left[1,2^{2 \kappa_{r}+\kappa_{m}+1}-1\right], s_{0}, s_{1} \in\left[0,2^{\kappa_{p}}-1\right]$, that e_{0} and e_{1} are odd, and that $z_{0}^{e_{0}}=g_{0} \bmod N_{0}$ and $z_{1}^{e_{1}}=g_{1} \bmod N_{1}$. The basic idea of the scheme is similar to an idea of Cramer et al. [8], but the proposition below does not follow from their work. Using a collision-free hash function $H:\{0,1\}^{*} \rightarrow\left[0,2^{\kappa_{m}}-1\right]$ it can be used to sign messages of any length.
Remark 5.2. If the signature scheme is used as a standalone scheme, one can choose $r \in\left[0,2^{\kappa_{m}+\kappa_{r}}-1\right]$ instead. This scheme is of independent interest, since the verification of a signature is more efficient than $[9,15]$.

Proposition 5.3. The scheme exists under the $\left(f, f^{\prime}\right)$-Embedding assumption and is CMA-secure and collision-free under the strong RSA-assumption.

There are two key observations in the analysis: the signature oracle can be simulated without the factorization of both moduli, and the adversary can not anticipate for which of the two moduli the factorization is known. Thus, if the adversary breaks the scheme it can not avoid helping us to break the strong RSA-assumption.

Proof (Proposition 5.3). We first prove that the scheme is CMA-secure. Consider an arbitrary adversary A taking part in Experiment D.2. We build a machine A_{b} for $b \in\{0,1\}$ that simulates the CMA-experiment to A and show that $\operatorname{Exp}_{\mathcal{S S}^{2}, A}^{\mathrm{cma}}(\kappa)$ must be negligible under the strong RSA-assumption.

Let $t=t(\kappa)$ be the number of queries asked by A. The adversary A_{b} accepts as input a pair (N, h), where $N=p q$ and $h \in S Q_{N}$ as input. It chooses t random values $\tau_{1}, \ldots, \tau_{t} \in\left[2^{2 \kappa_{r}+\kappa_{m}}, 2^{2 \kappa_{r}+\kappa_{m}}+2^{\kappa_{r}+\kappa_{m}}-1\right]$ and computes $\zeta_{l}=\operatorname{Emb}_{f}^{f^{\prime}}\left(\tau_{l}\right)$. Then it defines $\rho_{l}=2^{\kappa_{p}} \tau_{l}+\zeta_{l}$ and computes $g=h \Pi_{l=1}^{t} \rho_{l} \bmod N$. Finally, it sets $\left(N_{b}, g_{b}\right)=(N, g)$, defines $\left(\left(N_{1-b}, g_{1-b}\right),\left(p_{1-b}, q_{1-b}, g_{1-b}\right)\right)$ as in the key generation algorithm, and hands $\left(N_{0}, g_{0}, N_{1}, g_{1}\right)$ to A. Denote by p_{b} and q_{b} the factors of N_{b} (that are unknown to A_{b}).

The machine A_{b} simulates the $\operatorname{Sig}_{\left(p_{0}, q_{0}, g_{0}, p_{1}, q_{1}, g_{1}\right)}(\cdot)$-oracle to A as follows. The adversary A asks at most t queries $m_{1}, \ldots, m_{t} \in\left[0,2^{\kappa_{m}}-1\right]$ due to its running time. The i th query m_{i} is answered by A_{b} as follows.

- If $b=0$, then A_{b} knows $\left(p_{1}, q_{1}, g_{1}\right)$ and computes $r_{i}=\tau_{i}-m_{i}$ and

$$
\begin{array}{ll}
s_{i, 0}=\zeta_{i}, & s_{i, 1}=\mathrm{Emb}_{f}^{f^{\prime}}\left(r_{i}\right), \\
e_{i, 0}=\rho_{i}, & e_{i, 1}=2^{\kappa_{p}} r_{i}+s_{i, 1}, \\
z_{i, 0}=h^{\frac{1}{\rho_{i}}} \Pi_{l=1}^{t} \rho_{l} & \bmod N_{0}, \\
z_{i, 1}=g_{1}^{1 / e_{i, 1}} \bmod N_{1} .
\end{array}
$$

- If $b=1$, then A_{b} knows $\left(p_{0}, q_{0}, g_{0}\right)$ and computes $r_{i}=\tau_{i}$ and

$$
\begin{array}{ll}
s_{i, 0}=\operatorname{Emb}_{f}^{f^{\prime}}\left(m_{i}+r_{i}\right), & s_{i, 1}=\zeta_{i}, \\
e_{i, 0}=2^{\kappa_{p}}\left(m_{i}+r_{i}\right)+s_{i, 0}, & e_{i, 1}=\rho_{i}, \\
z_{i, 0}=g_{0}^{1 / e_{i, 0}} \bmod N_{0}, & z_{i, 1}=h^{\frac{1}{\rho_{i}}} \Pi_{l=1}^{t} \rho_{l} \\
\bmod N_{1}
\end{array}
$$

The machine A_{b} continues the simulation until A outputs a message m and a candidate signature $\left(r, z_{0}, s_{0}, z_{1}, s_{1}\right)$ and this is also output by A_{b}.
Claim 3. The distribution of the output and queries of A in Experiment D. 2 is statistically close to the distribution of its output and queries in the simulation of A_{0}, and A_{1}, respectively.

Proof. To see that the distribution of the output and queries of A in the simulation of A_{1} is statistically close to the distribution of its output and queries in Experiment D. 2 it suffices to note that in the simulation of A_{1} each prime ρ_{i} divides $\left|S Q_{N}\right|$ with negligible probability, and when this is not the case the public key $\left(N_{0}, g_{0}, N_{1}, g_{1}\right)$ and all answers from the $\operatorname{Sig}_{\left(p_{0}, q_{0}, g_{0}, p_{1}, q_{1}, g_{1}\right)}(\cdot)$-oracle are identically distributed as in the experiment.

The argument for the distribution of A_{0} is similar except that one must also note that for every $m_{i} \in\left[0,2^{\kappa_{m}}-1\right]$ the distribution of $r_{i}=\tau_{i}-m_{i}$ with τ_{i} randomly chosen in $\left[2^{2 \kappa_{r}+\kappa_{m}}, 2^{2 \kappa_{r}+\kappa_{m}}+2^{\kappa_{r}+\kappa_{m}}-1\right]$ is statistically close to the uniform distribution on $\left[2^{2 \kappa_{r}+\kappa_{m}}, 2^{2 \kappa_{r}+\kappa_{m}}+2^{\kappa_{r}+\kappa_{m}}-1\right]$.

We denote the variables occurring in an execution of Experiment D. 2 as follows. The public keys are denoted by $\left(N_{0}, g_{0}\right)$ and $\left(N_{1}, g_{1}\right)$. The i th query to the signature oracle is denoted by m_{i} and the i th answer is denoted by $\sigma_{i}=\left(r_{i}, z_{i, 0}, s_{i, 0}, z_{i, 1}, s_{i, 1}\right)$. For convenience we also define $e_{i, 0}=2^{\kappa_{p}}\left(r_{i}+m_{i}\right)+s_{i, 0}$ and $e_{i, 1}=2^{\kappa_{p}} r_{i}+s_{i, 1}$. The output of A is denoted by (m, σ) with $\sigma=\left(r, z_{0}, s_{0}, z_{1}, s_{1}\right)$, and we define $e_{0}=2^{\kappa_{p}}(m+$ $r)+s_{i}$ and $e_{1}=2^{\kappa_{p}} r_{i}+s_{1}$. The corresponding variables in the simulation carried out by A_{b} are denoted by $\left(N_{0}^{(b)}, g_{0}^{(b)}\right),\left(N_{1}^{(b)}, g_{1}^{(b)}\right), m_{i}^{(b)}, \sigma_{i}^{(b)}=\left(r_{i}^{(b)}, z_{i, 0}^{(b)}, s_{i, 0}^{(b)}, z_{i, 1}^{(b)}, s_{i, 1}^{(b)}\right)$, $e_{i, 0}^{(b)}, e_{i, 1}^{(b)},\left(m^{(b)}, \sigma^{(b)}\right), \sigma^{(b)}=\left(r^{(b)}, z_{0}^{(b)}, s_{0}^{(b)}, z_{1}^{(b)}, s_{1}^{(b)}\right), e_{0}^{(b)}, e_{1}^{(b)}$. Let E be the event that $\mathrm{Vf}_{\left(N_{0}, g_{0}, N_{1}, g_{1}\right)}(m, \sigma)=1$ and $m \neq m_{i}$ for $i=1, \ldots, t$. In other words, if the event occurs the experiment outputs 1 and otherwise 0 . The event $E^{(b)}$ is defined correspondingly for the simulations.
Claim 4. The probability $\operatorname{Pr}\left[E \wedge\left(\forall i: e_{d} \neq e_{i, d}\right)\right]$ is negligible for $d \in\{0,1\}$ under the strong RSA-assumption.

Proof. We only prove the case $d=0$, since the other case is similar. First note, that for any valid signature both e_{0} and e_{1} are positive. If the claim is false we have from Claim 3 that

$$
\operatorname{Pr}\left[E^{(0)} \wedge\left(\forall i: e_{0}^{(0)} \neq e_{i, 0}^{(0)}\right)\right]
$$

is non-negligible. It may happen that the adversary A is not given all primes ρ_{i} as part of answers to the signature oracle, but each prime takes on any specific value with negligible probability. Thus, we conclude that

$$
\operatorname{Pr}\left[E^{(0)} \wedge\left(\forall i: e_{0}^{(0)} \neq \rho_{i}\right)\right]
$$

is non-negligible. Denote by A^{\prime} the adversary defined as follows. It takes (N, h) as input, computes $\left(m^{(0)}, \sigma^{(0)}\right)=A_{0}(N, h)$, and computes integers a and a^{\prime} such that $c=a \prod_{i=1}^{t} \rho_{i}+a^{\prime} e_{0}^{(0)}$, where $c=\operatorname{gcd}\left(\prod_{i=1}^{t} \rho_{i}, e_{0}^{(0)}\right)$. Then it outputs $(b, \eta)=$ $\left(\left(z_{0}^{(0)}\right)^{a} h^{a^{\prime}}, e_{0}^{(0)} / c\right)$. Note that if $\mathrm{Vf}_{\left(N_{0}^{(0)}, g_{0}^{(0)}, N_{1}^{(0)}, g_{1}^{(0)}\right)}\left(m^{(0)}, \sigma^{(0)}\right)=1$ and $e_{0}^{(0)} \nmid \prod_{i=1}^{t} \rho_{i}$, then $e_{0}^{(0)} / c \neq 1$, and $\left(z_{0}^{(0)}\right)^{e_{0}^{(0)}}=g_{0}=h^{\Pi_{i=1}^{t} \rho_{i}}$ which implies that

$$
b^{\eta}=\left(\left(z_{0}^{(0)}\right)^{a} h^{a^{\prime}}\right)^{e_{0}^{(0)} / c}=\left(\left(z_{0}^{(0)}\right)^{a e_{0}^{(0)}} h^{a^{\prime} e_{0}^{(0)}}\right)^{1 / c}=\left(h^{a \prod_{i=1}^{t} \rho_{i}} h^{a^{\prime} e_{0}^{(0)}}\right)^{1 / c}=h .
$$

Thus, the strong RSA-assumption is broken.
We now show that $e_{0}^{(0)} \nmid \prod_{i=1}^{t} \rho_{i}$. If $\mathrm{Vf}_{\left(N_{0}^{(0)}, g_{0}^{(0)}, N_{1}^{(0)}, g_{1}^{(0)}\right)}\left(m^{(0)}, \sigma^{(0)}\right)=1$, then $r^{(0)} \in\left[1,2^{2 \kappa_{r}+\kappa_{m}+1}-1\right]$, which implies that $\left|e_{0}^{(0)}\right| \leq 2^{\kappa_{p}+2 \kappa_{r}+\kappa_{m}}$. By construction $\rho_{i}=e_{i, 0}^{(0)}>2^{\kappa_{p}+2 \kappa_{r}+\kappa_{m}+1}$, so $e_{0}^{(0)}<\rho_{i} \rho_{j}$ for $i, j \in\{1, \ldots, t(\kappa)\}$. On the other hand $r^{(0)}>0$, which implies that $e_{0}^{(0)}>1$. Thus, $e_{0}^{(0)}$ is bigger than one, smaller than any product of two or more of the primes ρ_{i}, and it is distinct from each prime ρ_{i}, and the claim follows.

Claim 5. The probability $\operatorname{Pr}\left[E \wedge\left(\exists i: z_{d} \neq z_{i, d} \wedge e_{d}=e_{i, d}\right)\right]$ is negligible for $d \in\{0,1\}$.
Proof. Suppose the claim is false. Note that with overwhelming probability the prime $e_{i, d}$ does not divide $\left|S Q_{N_{d}}\right|$. Thus, the probability

$$
\operatorname{Pr}\left[E \wedge\left(\exists i: z_{d} \neq z_{i, d} \wedge e_{d}=e_{i, d}\right) \wedge e_{d} \nmid\left|S Q_{N_{d}}\right|\right]
$$

is non-negligible. Consider an output such that $\mathrm{Vf}_{\left(N_{0}, g_{0}, N_{1}, g_{1}\right)}(m, \sigma)=1, z_{d} \neq z_{i, d}$, $e_{d}=e_{i, d}$, and $e_{d} \nmid\left|S Q_{N_{d}}\right|$. By definition $z_{i, d} \in S Q_{N_{d}}$ and $e_{d}=e_{i, d}$ is odd. Thus, if $z_{d}^{e_{d}}=z_{i, d}^{e_{d}}$, then $z_{d} \in S Q_{N_{d}}$. Since e_{d} is invertible modulo $\left|S Q_{N_{d}}\right|$ we conclude that $z_{d}=z_{i, d}$, which is a contradiction, and the claim holds.

Claim 6. The probability $\operatorname{Pr}\left[E \wedge\left(\exists i, j: i \neq j \wedge\left(e_{0}, e_{1}\right)=\left(e_{i, 0}, e_{j, 1}\right)\right)\right]$ is negligible.
Proof. Consider the probability $\delta\left(i, j, m^{\prime}\right)$ that the event E occurs, $\left(e_{0}, e_{1}\right)=\left(e_{i, 0}, e_{j, 1}\right)$, and $m=m^{\prime}$, for fixed $i, j \in\{1, \ldots, t(\kappa)\}$ and $m^{\prime} \in\left[0,2^{\kappa_{m}}-1\right]$. Recall that $e_{i, 0}$ and $e_{j, 1}$ are on the form $e_{i, 0}=2^{\kappa_{p}}\left(r_{i}+m\right)+s_{i, 0}$ and $e_{j, 1}=2^{\kappa_{p}} r_{j}+s_{j, 1}$ respectively for some $s_{i, 0}, s_{j, 1} \in\left[0,2^{\kappa_{p}}-1\right]$ and positive r_{i} and r_{j}. Thus, r_{i} is uniquely defined by $e_{i, 0}$ and m, and r_{j} is uniquely defined by $e_{j, 1}$. The event E can only occur if $r_{i}=r_{j}$, which happen with probability $\delta\left(i, j, m^{\prime}\right)<2^{-\left(\kappa_{r}+\kappa_{m}\right)}$. There are at most $t^{2} 2^{\kappa_{m}}$ triples $\left(i, j, m^{\prime}\right)$, so by the union bound the probability in the claim is bounded by $t^{2} 2^{-\kappa_{r}}$, which is negligible.

Claim 7. There exists no $m, m^{\prime} \in\left[0,2^{\kappa_{m}}-1\right], s_{0}, s_{1}, s_{0}^{\prime}, s_{1}^{\prime} \in\left[0,2^{\kappa_{p}}-1\right]$, and integers r and r^{\prime} such that $m \neq m^{\prime}$,

$$
\begin{aligned}
2^{\kappa_{p}}(r+m)+s_{0} & =e_{0}
\end{aligned}=2^{\kappa_{p}}\left(r^{\prime}+m^{\prime}\right)+s_{0}^{\prime}, \text { and }, ~=s^{\kappa_{p}} r+s_{1}=e_{1}=2^{\kappa_{p}} r^{\prime}+s_{1}^{\prime} . ~ \$
$$

Proof. It follows from the second equation that $r^{\prime}=r$, since $s_{1}, s_{1}^{\prime} \in\left[0,2^{\kappa_{p}}-1\right]$. The first equation now implies that $m=m^{\prime}$, since $s_{0}, s_{0}^{\prime} \in\left[0,2^{\kappa_{p}}-1\right]$ and $2^{\kappa_{p}}(r+m)-$ $2^{\kappa_{p}}\left(r^{\prime}+m^{\prime}\right)=2^{\kappa_{p}}\left(m-m^{\prime}\right)$.

We now summarize what we have proved above. Claim 4, Claim 5, and the union bound show that the event

$$
E \wedge\left[\left(\forall i: e_{d} \neq e_{i, d}\right) \vee\left(\exists i: z_{d} \neq z_{i, d} \wedge e_{d}=e_{i, d}\right)\right]
$$

occurs with negligible probability for $d \in\{0,1\}$. Thus, if the adversary A outputs a valid signature of a new message with non-negligible probability, then

$$
\operatorname{Pr}\left[E \wedge\left(\exists i, j:\left(z_{0}, z_{1}\right)=\left(z_{i, 0}, z_{j, 1}\right) \wedge\left(e_{0}, e_{1}\right)=\left(e_{i, 0}, e_{j, 1}\right)\right)\right]
$$

is non-negligible. Claim 6 and the union bound then shows that

$$
\operatorname{Pr}\left[E \wedge\left(\exists i:\left(z_{0}, z_{1}\right)=\left(z_{i, 0}, z_{i, 1}\right) \wedge\left(e_{0}, e_{1}\right)=\left(e_{i, 0}, e_{i, 1}\right)\right)\right]
$$

is non-negligible. By definition of the event E this implies that

$$
\operatorname{Pr}\left[E \wedge\left(\exists i: m \neq m_{i} \wedge\left(e_{0}, e_{1}\right)=\left(e_{i, 0}, e_{i, 1}\right)\right)\right]
$$

is non-negligible, but Claim 7 shows that this is impossible. Thus, we have reached a contradiction and the scheme is CMA-secure.

Collision-freeness follows immediately from Claim 7.

5.2 Proofs of Knowledge of Equality Relations

There are various protocols in the literature [14, 2, 11, 4] for proving equality of integer exponents over groups of unknown order based on variations of Fujisaki-Okamoto commitments, under the strong RSA-assumption. These protocols are strictly speaking not proofs of knowledge, since extraction may fail with negligible probability over the choice of commitment parameters, but they can be used as proofs of knowledge provided that there are trusted commitment parameters present during their execution. Furthermore, they are usually expressed as honest verifier zero-knowledge protocols. A useful feature of these protocols is that they bound the bit-size of the exponents.

A Fujisaki-Okamoto commitment scheme [14] is generated by choosing two safe $\kappa / 2$-bit primes $p=2 p^{\prime}+1$ and $q=2 q^{\prime}+1$, defining $N=p q$, and choosing $g, h \in S Q_{N}$ randomly. A commitment of an integer m is formed as $g^{r} h^{m} \bmod N$ for a random $r \in$ $\left[0, N 2^{\kappa_{r}}\right]$. Define $\mathcal{R}_{\text {srsa }}^{\prime}$ to be the relation consisting of pairs $\left((N, g, h),\left(b, \eta_{0}, \eta_{1}, \eta_{2}\right)\right)$ such that $b^{\eta_{0}}=g^{\eta_{1}} h^{\eta_{2}}$ and η_{0} does not divide both η_{1} and η_{2}, where $\left(\eta_{1}, \eta_{2}\right) \neq(0,0)$. Define $F_{s r s a}^{\prime}$ as the algorithm that on input (N, g, h) outputs (N, g, h) if h is in the subgroup generated by g modulo N and (N, g, g) otherwise.

Denote by $\mathcal{R}_{e q}$ the set of pairs

$$
\begin{aligned}
& {\left[\left(k, \quad(N, g, h),\left(n_{1}, \ldots, n_{k}\right),\left(\left(\left(\kappa_{i, j, l}\right)_{l=1}^{s_{j}}\right)_{j=1}^{t_{i}}\right)_{i=1}^{k},\left(\left(\left(g_{i, j, l}\right)_{l=1}^{s_{j}}\right)_{j=1}^{t_{i}}\right)_{i=1}^{k},\left(\left(u_{i, j}\right)_{j=1}^{t_{i}}\right)_{i=1}^{k}\right),\right.} \\
& \left.\left(\left(\left(x_{i, j, l}\right)_{l=1}^{s_{j}}\right)_{j=1}^{t_{i}}\right)_{i=1}^{k}\right]
\end{aligned}
$$

where $g, h \in \mathbb{Z}_{N}^{*}, n_{1}, \ldots, n_{k} \in \mathbb{Z}$, for all j, l it holds that $g_{i, j, l}, u_{i, j} \in \mathbb{Z}_{n_{i}}^{*}, x_{i, j, l} \in$ $\left[-2^{\kappa_{i, j, l}+\kappa_{r}}+1,2^{\kappa_{i, j, l}+\kappa_{r}}-1\right]$, and for all i, j it holds that $u_{i, j}=\prod_{l=1}^{l_{j}} g_{i, j, l}^{x_{i, j}, l} \bmod n_{i}$.

Proposition 5.4. There exists a proof of knowledge for the relation $\mathcal{R}_{\text {eq }} \vee \mathcal{R}_{\text {srsa }}^{\prime}$ which is $\left(T_{\emptyset}\left\|T_{\emptyset}, F_{\text {srsa }}^{\prime}\right\| F_{i d}\right)$-zero-knowledge for inputs with $x_{i, j, l} \in\left[-2^{\kappa_{i, j, l}}+1,2^{\kappa_{i, j, l}}-1\right]$ such that the number of exponentiations computed by the prover and verifier is constant in the number of exponentiations needed to compute all $u_{i, j}$.

The protocol used is based on known techniques, but for completeness we include it in Section B. Our efficiency analysis is based on this protocol.

5.3 Verifiable Generation of Hiding Commitment Scheme

The problem with the proofs of equal integer exponents in a two party setting is that it is difficult to generate the Fujisaki-Okamoto commitment parameters efficiently. Recall that the commitment parameters consist of a random RSA-modulus $N=p q$, where p and q are safe primes, a random $g \in S Q_{N}$, and $h=g^{x}$ for a random $x \in\left[0, N 2^{\kappa_{r}}\right]$. A commitment C of $m \in \mathbb{Z}$ is formed as $C=g^{r} h^{m}$ for an $r \in\left[0, N 2^{\kappa_{r}}\right]$. The problem is that if (N, g, h) are generated by the prover, then the commitments are not binding. On the other hand, if they are generated by the verifier, then h may not be of the form g^{x}, and then the commitments are not hiding. As far as we know there is no truly efficient solution to this problem.

We now sketch our solution to this problem. The prover generates a pair $\left(N_{r}, g_{r}\right)$, where N_{r} is an RSA-modulus of two safe primes and $g_{r} \in S Q_{N_{r}}$. This is done only once and is part of the public key of the prover in our application. The verifier then generates (N, g, h) as above, except that it defines $h=g^{x}$ for a random $x \in\left[0, N N_{r} 2^{\kappa_{r}}\right]$. It then computes a "commitment" $h_{r}=g_{r}^{x}$ of x and executes a Schnorr-like zero-knowledge "proof of knowledge" that the same integer x was used for both h_{r} and h. Extraction of x is possible with high probability provided that $\left(N_{r}, g_{r}\right)$ are chosen correctly. This ensures that the parameters (N, g, h) can be used safely by a prover. On the other hand, provided $\left|S Q_{N_{r}}\right|$ and $\left|S Q_{N}\right|$ are relatively prime, h_{r} is essentially independently generated from h. This implies that the parameters (N, g, h) can be used safely by the verifier, since essentially no knowledge of x is leaked. To ensure that $\left|S Q_{N_{r}}\right|$ and $\left|S Q_{N}\right|$ are relatively prime with overwhelming probability we assume that N is generated independently from N_{r}. In practice this is very reasonable.

In Section 5.4 we show that the parameters (N, g, h) output by the protocol below can be used to execute the proof of equal exponents that assumes trusted commitment parameters. We call the two players in the proof the generator G and the receiver R to distinguish them from their roles in a larger protocol. Denote by $\pi_{p l}=\left(P_{p l}, V_{p l}\right)$ the zero-knowledge proof of knowledge of a logarithm for prime order groups described by Cramer et al. [7].

Protocol 5.5 (Secure Generation of Integer Commitment Scheme).

Common Input: A κ-bit integer N_{r} and $g_{r} \in \mathbb{Z}_{N_{r}}^{*}$ to both parties.

1. The receiver chooses a safe κ-bit prime $P=2 Q+1$, and $H \in G_{Q}$ randomly, where G_{Q} is the unique subgroup of order Q. Then it chooses $z \in \mathbb{Z}_{Q}$ randomly, computes $K=H^{z} \bmod P$, hands (P, H, K) to the generator, and executes $\pi_{p l}$ as the prover on common input (P, H, K) and private input z. If the verifier rejects, then the generator hands \perp to the receiver and halts.
2. The generator verifies that P is a safe prime and that $H, K \in G_{Q}$. Then it chooses an RSA-modulus $N, g \in S Q_{N}$, and $x \in\left[0,2^{2 \kappa+\kappa_{r}}-1\right]$ randomly, and
computes $h=g^{x} \bmod N$ and $h_{r}=g_{r}^{x} \bmod N_{r}$. Then it chooses $c_{g} \in\left[0,2^{\kappa_{c}}-1\right]$, $r_{g} \in \mathbb{Z}_{q}$, and $r \in\left[0,2^{2 \kappa+2 \kappa_{r}+\kappa_{c}}-1\right]$ randomly, defines $w=H^{r_{g}} K^{c_{g}}, \alpha=$ $g^{r} \bmod N$ and $\alpha_{r}=g_{r}^{r} \bmod N_{r}$, and hands $\left(h, h_{r}, w, \alpha, \alpha_{r}\right)$ to the receiver.
3. The receiver chooses $c_{r} \in\left[0,2^{\kappa_{c}}-1\right]$ randomly and hands c_{r} to the generator.
4. The generator computes $c=c_{g} \oplus c_{r}$ and $d=c x+r \bmod 2^{2 \kappa+2 \kappa_{r}+\kappa_{c}}$, hands $\left(d, c_{g}, r_{g}\right)$ to the receiver, and outputs (N, g, h).
5. The receiver outputs (N, g, h) if $H^{r_{g}} K^{c_{g}}=w, h^{c} \alpha=g^{d} \bmod N$ and $h_{r}^{c} \alpha_{r}=$ $g_{r}^{d} \bmod N_{r}$. Otherwise it outputs \perp.

We denote the above protocol by $\pi_{t p}=(G, R)$, where G is the generator and R the receiver.
Remark 5.6. Although the receiver can use the same prime P in every protocol instance, the generator must check that P is of the expected form to be confident that it can run the protocol $\pi_{p l}$, which is only sound if G_{Q} has prime order.

Checking for primality is expensive, i.e., it requires $O(\kappa)$ exponentiations. If one assumes that it is infeasible to find a specific safe prime P such that the discrete logarithm problem is feasible in G_{Q}, then any party can choose a prime P that is used in every protocol instance. Then each party performs the primality test only once. This is a natural assumption in practice, where one can use a prime from a cryptographic standard.

Proposition 5.7. For every pair $\left(N_{r}, g_{r}\right)$ with $N_{r} \in \mathbb{N}$ and $g_{r} \in \mathbb{Z}_{N_{r}}^{*}$ the probability $\operatorname{Pr}\left[\langle R, G\rangle\left(N_{r}, g_{r}\right) \neq \perp\right]$ is overwhelming.
Proof. This follows from the completeness of the protocol $\pi_{p l}$ and the fact that the receiver outputs (N, g, h) provided that there is no modular reduction in the computation of d.

Proposition 5.8. Let (N, g, h) be randomly distributed Fujisaki-Okamoto parameters. Define $\left[R^{*}, G\right]\left(N_{r}, g_{r}\right)$ to be a pair consisting of the output of R^{*} and G.

Then for every receiver $R^{*} \in \mathrm{EPPT}$ there exists a simulator $M \in \mathrm{EPPT}$ such that for every pair $\left(N_{r}, g_{r}\right)$ with $N_{r} \in \mathbb{N}$ and $g_{r} \in \mathbb{Z}_{N_{r}}^{*}$ the distributions of $\left[R^{*}, G\right]\left(N_{r}, g_{r}\right)$ and $M\left(N_{r}, g_{r}, N, g, h\right)$ are statistically close and $M\left(N_{r}, g_{r}, N, g, h\right)$ is always on the form $\left(\cdot\right.$, out $\left._{G}\right)$ with out ${ }_{G} \in\{(N, g, h), \perp\}$.

Informally, this simply means that we can simulate the protocol in such a way that a particular set of parameters are used.
Remark 5.9. Since the generator does not have any secret input, it is not meaningful to say that the protocol is zero-knowledge. However, one may view the proposition as saying that the protocol leaks no knowledge to the receiver about the exponent x that is chosen by the generator within the protocol. In this sense the protocol is zero-knowledge.

Proof (Proposition 5.8). The simulator first simulates Step 1 of the protocol. If the generator halts with output \perp, it simply outputs \perp and halts. Otherwise it invokes the extractor of the protocol $\pi_{p l}$ to get z such that $K=H^{z} \bmod P$. Then the simulator simulates Step 2 of the protocol, with the following modifications. It uses the input (N, g, h) of instead of generating these parameters. It chooses $c \in\left[0,2^{\kappa_{c}}-1\right]$ and $d \in$
$\left[0,2^{2 \kappa+2 \kappa_{r}+\kappa_{c}}-1\right]$ randomly and defines $\alpha=g^{d} / h^{c} \bmod N$ and $\alpha_{r}=g_{r}^{d} / h_{r}^{c} \bmod N_{r}$. Finally, it simulates Step 4 except that it defines $c_{g}^{\prime}=c_{r} \oplus c$ and $r_{g}^{\prime}=r_{g}+\left(c_{g}-c_{g}^{\prime}\right) z$.

First we argue that the distribution of the resulting view is statistically close to the distribution of the real view of the receiver. Consider the distribution of h and h_{r} in the real protocol. Denote by t the order of g_{r} modulo N_{r}. Note that when the receiver is malicious we have little control over t. However, when the generator is honest N is chosen as a product of two random $\kappa / 2$-bit safe primes $p=2 p^{\prime}+1$ and $q=2 q^{\prime}+1$, and this is done independently of N_{r}. The probability that either p^{\prime} or q^{\prime} takes any specific prime as value is of course negligible. This implies that the probability that either p^{\prime} or q^{\prime} divides the order t of g_{r} modulo N_{r} is negligible. Thus, with overwhelming probability t and $p^{\prime} q^{\prime}$ are relatively prime.

This means that the group $X=\left\langle g_{r}\right\rangle \times\langle g\rangle$, where multiplication is taken elementwise modulo N_{r} and N respectively, is generated as a group by the pair $\left(g_{r}, g\right)$. Furthermore, the order of the group X is $t p^{\prime} q^{\prime}$, which is an integer with less than 2κ bits. This implies that the distribution of $\left(g_{r}, g\right)^{x}=\left(g_{r}^{x} \bmod N_{r}, g^{x} \bmod N\right)$ for a randomly chosen $x \in\left[0,2^{2 \kappa+\kappa_{r}}-1\right]$ is statistically close to the distribution of a pair $\left(h, h_{r}\right)$, where $h \in\langle g\rangle$ is randomly chosen and $h_{r}=g_{r}^{x}$ with x distributed as before.

It follows from a standard argument that for every fixed h and h_{r} defined as in the protocol the distribution of the remainder of the simulated view is statistically close to view of the real execution.

It remains to argue that the simulator runs in expected polynomial time. Consider for any execution the probability $p(P, H, K)$ that the output of the receiver is not \perp, conditioned on a fixed choice of (P, H, K). By definition the extractor guaranteed by the proof of knowledge property of $\pi_{p l}$ runs in expected time $T(\kappa) /(p(P, H, K)-\epsilon(\kappa))$ for some polynomial $T(\kappa)$ and negligible function $\epsilon(\kappa)$. We conclude that the simulator runs in expected polynomial time.

Denote by $T_{\text {srsa }}$ the algorithm that on input 1^{κ} outputs $\left(N_{r}, g_{r}\right)$, such that N_{r} is a product of two random safe $\kappa / 2$-bit safe primes and g_{r} is randomly chosen in $S Q_{N_{r}}$.

Proposition 5.10. Suppose that $\left(N_{r}, g_{r}\right)=T_{\text {srsa }}\left(1^{\kappa}\right)$. Then the probability that the receiver outputs (N, g, h), where h is not in the subgroup of \mathbb{Z}_{N}^{*} generated by g, is negligible under the strong RSA-assumption and the discrete logarithm assumption.

Proof (Proposition 5.10). To start with we show that a malicious generator can not open its Pedersen commitment in several ways.
Claim 8. Denote the list $\left(P, H, K, h, h_{r}, w\right)$ by T, and denote by $S_{\text {coll }}(c)$ the set of T such that there exists $\left(c_{g}^{\prime}, r_{g}^{\prime}\right) \neq\left(c_{g}^{\prime \prime}, r_{g}^{\prime \prime}\right)$ such that $\operatorname{Pr}\left[\left(c_{g}, r_{g}\right)=\left(c_{g}^{\prime}, r_{g}^{\prime}\right) \mid T \in\right.$ $\left.S_{\text {coll }}(c)\right], \operatorname{Pr}\left[\left(c_{g}, r_{g}\right)=\left(c_{g}^{\prime \prime}, r_{g}^{\prime \prime}\right) \mid T \in S_{\text {coll }}(c)\right] \geq \kappa^{-c}$. Then for every constant c and every generator $G^{*} \in$ EPPT the probability $\operatorname{Pr}\left[T \in S_{\text {coll }}(c)\right]$ is negligible.

Proof. This follows from the binding property of Pedersen commitments. Suppose the claim is false. Then there exists a constant c and a generator G^{*} such that $\operatorname{Pr}[T \in$ $\left.S_{\text {coll }}(c)\right]$ is non-negligible. Denote by A the algorithm that accepts (P, H, K) as input and simulates the receiver except that instead of executing the prover of the protocol $\pi_{p l}$ it invokes the perfect zero-knowledge simulator. It continues the simulation until G^{*} outputs $\left(c_{g}, r_{g}\right)$. Then it rewinds the simulation to the challenge step, Step 3, and then continues the simulation again until G^{*} outputs a new possibly different pair $\left(c_{g}^{\prime}, r_{g}^{\prime}\right)$. If $\left(c_{g}, r_{g}\right) \neq\left(c_{g}^{\prime}, r_{g}^{\prime}\right)$ and $H^{r_{g}} K^{c_{g}}=w=H^{r_{g}^{\prime}} K^{c_{g}^{\prime}}$, then it outputs
$\left(r_{g}^{\prime}-r_{g}\right) /\left(c_{g}-c_{g}^{\prime}\right) \bmod Q$, and otherwise \perp. It follows that A outputs $\log _{H} K$ with non-negligible probability. This contradicts the discrete logarithm assumption and the claim must be true.

We say that an output of $R,(N, g, h)$, is bad if h is not in the subgroup generated by g, and denote this event by B. Suppose now that the proposition is false, i.e., there exists a generator G^{*}, a constant c, and an infinite index set \mathcal{N} such that for $\kappa \in \mathcal{N}$, the probability that the honest receiver R outputs a $\operatorname{bad}(N, g, h)$ is at least κ^{-c} for $\kappa \in \mathcal{N}$.

Denote by A the algorithm that takes $\left(N_{r}, g_{r}\right)$ as input and simulates an interaction between the honest receiver and the generator G^{*}. Then it rewinds back to Step 3 and completes the simulation once again. If either simulation is rejecting then it outputs \perp. Otherwise denote by $\left(h, h_{r}, w, \alpha, \alpha_{r}, c_{r}, d, c_{g}, r_{g}\right)$ and ($\left.h, h_{r}, w, \alpha, \alpha_{r}, c_{r}^{\prime}, d^{\prime}, c_{g}^{\prime}, r_{g}^{\prime}\right)$ the relevant elements of the two simulations. This gives us $h^{c-c^{\prime}}=g^{d-d^{\prime}} \bmod N$ and $h_{r}^{c-c^{\prime}}=g_{r}^{d-d^{\prime}} \bmod N_{r}$. If $\left(c_{g}, r_{g}\right) \neq\left(c_{g}^{\prime}, r_{g}^{\prime}\right)$ or if $c-c^{\prime}$ divides $d-d^{\prime}$ or if $c_{r}=c_{r}^{\prime}$, then it outputs \perp. Otherwise it computes a and b such that $e=a\left(c-c^{\prime}\right)+b\left(d-d^{\prime}\right)$ and $e=\operatorname{gcd}\left(c-c^{\prime}, d-d^{\prime}\right)$, and outputs $(b, \eta)=\left(h_{r}^{b} g_{r}^{a},\left(c-c^{\prime}\right) / e\right)$. Note that $b^{\eta}=$ $h_{r}^{b\left(c-c^{\prime}\right) / e} g_{r}^{a\left(c-c^{\prime}\right) / e}=g_{r} \bmod N_{r}$ with $\eta \neq \pm 1$.

Denote by E the event that the probability that R outputs a bad (N, g, h) is at least $\frac{1}{2} \kappa^{-c}$ conditioned on the simulation up to and including Step 2. Then it follows that $\kappa^{-c} \leq \operatorname{Pr}[B \wedge E]+\operatorname{Pr}[B \wedge \bar{E}]$, which gives $\frac{1}{2} \kappa^{-c} \leq \operatorname{Pr}[B \wedge E]$. This implies that $\operatorname{Pr}[E], \operatorname{Pr}[B \mid E] \geq \frac{1}{2} \kappa^{-c}$. Note now that if (N, g, h) is bad, then for any two lists $\left(h, h_{r}, w, \alpha, \alpha_{r}, c_{r}, d, c_{g}, r_{g}\right)$ and ($h, h_{r}, w, \alpha, \alpha_{r}, c_{r}^{\prime}, d^{\prime}, c_{g}^{\prime}, r_{g}^{\prime}$) we must have $c=c^{\prime}$ or ($c-c^{\prime}$) does not divide $\left(d-d^{\prime}\right)$. The first event may happen in two ways: either $\left(c_{g}, r_{g}\right) \neq\left(c_{g}^{\prime}, r_{g}^{\prime}\right)$, or $\left(c_{g}, r_{g}\right)=\left(c_{g}^{\prime}, r_{g}^{\prime}\right)$ and $c_{r}=c_{r}^{\prime}$. The probability of the first event is negligible by the claim above, and the probability of the second event is negligible as well since c_{r} and c_{r}^{\prime} are chosen randomly from an exponentially large space. Thus, using the union bound the adversary A outputs a non-trivial root of g_{r} with probability at least $\operatorname{Pr}[E](\operatorname{Pr}[B \mid E]-\epsilon(\kappa))^{2}$ for some negligible function $\epsilon(\kappa)$. This contradicts the strong RSA-assumption and the proposition follows.

Remark 5.11. Even with the modification of Remark 5.6 the protocol requires a nonconstant number of exponentiations, since the generator may have to generate a new RSA-modulus to ensure that its modulus is generated independently of N_{r}. If the reader find this annoying, please note that if the generator chooses an RSA-modulus N with at least $2 \kappa+2$ bits it can reuse the same modulus in any proof, since the orders of g and g_{r} are coprime. However, the size of the random exponents in the protocol above, and in all protocols that use the modulus must then be doubled, and this gives a far less efficient protocol in practice. Thus, we choose to present the protocol above.

5.4 Special Composition

Let $\pi=(P, V)$ be a protocol that requires Fujisaki-Okamoto commitment parameters as special input. Then we define the special composition $\pi_{c}=\left(P_{c}, V_{c}\right)$ of $\pi_{t p}$ and π to be the following protocol. The prover takes common input (N_{r}, g_{r}) and x, private input w, and then executes the receiver R on input $\left(N_{r}, g_{r}\right)$. If the result is of the form (N, g, h) it then executes P on special input (N, g, h), common input x and private input w. Otherwise the prover outputs \perp. The verifier takes common input (N_{r}, g_{r})
and x, and then executes the generator G on input $\left(N_{r}, g_{r}\right)$. Then it executes V on common input x, using the output of $G,(N, g, h)$, as special input.
Lemma 5.12. Let $\pi=(P, V)$ be a $\left(T_{\emptyset}\left\|T, F_{\text {srsa }}^{\prime}\right\| F\right)$-zero-knowledge proof of knowledge for a relation $\mathcal{R}_{\text {srsa }}^{\prime} \vee \mathcal{R}$. Then the special composition π_{c} of $\pi_{t p}$ and π is a $\left(T_{\text {srsa }}\left\|T, F_{\emptyset}\right\| F\right)$-zero-knowledge proof of knowledge for the relation \mathcal{R} under the strong RSA-assumption and the discrete logarithm assumption.

Proof. We prove the zero-knowledge property first. Consider some verifier V_{c}^{*}. We define G^{*} to be the generator that simulates V_{c}^{*} except that it outputs its entire state when the receiver R of $\pi_{t p}$ is able to form its output. This is a well defined statement, since it is defined only in terms of the number of messages read and written by V_{c}^{*}. We define V^{*} to be the verifier that takes the state of G^{*} as auxiliary input and then continues the simulation of V_{c}^{*}. Let M be the simulator corresponding to V^{*} that is guaranteed to exist by the $\left(T_{\emptyset}\left\|T, F_{\text {srsa }}^{\prime}\right\| F\right)$-zero-knowledge property of π. We define M_{c} to be the simulator that executes the honest receiver R and then executes M of the output from R (and the common input of course). Suppose now that there exists an instance chooser I_{c} and a distinguisher D such that

$$
\left|\operatorname{Pr}\left[\operatorname{Exp}_{\pi_{c}, \mathcal{R}, I_{c}, V_{c}^{*}, D}^{\left(T_{s r s a}\left\|T, F_{\bullet}\right\| F\right)-\mathrm{zk}-0}(\kappa)=1\right]-\operatorname{Pr}\left[\operatorname{Exp}_{\pi_{c}, \mathcal{R}, I_{c}, V_{c}^{*}, D}^{\left(T_{s r a d}\left\|T, F_{0}\right\| F\right)-\mathrm{zk}-1}(\kappa)=1\right]\right|
$$

is non-negligible. Denote by I the instance chooser that accepts an input t, computes $\left(N_{r}, g_{r}\right)=T_{\text {srsa }}\left(1^{\kappa}\right)$, and $(i, z)=I_{c}\left(\left(N_{r}, g_{r}\right), t\right)$. Then it simulates an interaction between G^{*} and R on common input $\left(N_{r}, g_{r}\right)$ until R gives an output. We may assume that the output of R is (N, g, h) and not \perp, since given that the output is \perp, the simulation of M_{c} is perfect. Finally, I outputs $(((N, g, h), t), z)$.

From Proposition 5.10 follows that the probability that h is not in the group generated by g is negligible. Thus, without loss we may assume that this is the case. Thus, the distributions of $\operatorname{Exp}_{\pi, \mathcal{R}, I,{ }_{*}^{*}, D}^{\left(T_{\Delta}\left\|T, F_{s, ~}^{\prime}\right\| F\right)-\mathrm{zk}-b}(\kappa)$ and $\operatorname{Exp}_{\pi_{c}, \mathcal{R}, I_{c}, V_{c}^{*}, D}^{\left(T_{s \text { ssa }}\left\|T, F_{\|}\right\| F\right)-z \mathrm{k}-b}(\kappa)$ are statistically close. This means that

$$
\left|\operatorname{Pr}\left[\operatorname{Exp}_{\pi, \mathcal{R}, I, V^{*}, D}^{\left(T_{\emptyset}\left\|T, F_{s r a s a}^{\prime}\right\| F\right)-\mathrm{zk}-0}(\kappa)=1\right]-\operatorname{Pr}\left[\operatorname{Exp}_{\pi, \mathcal{R}, I, V^{*}, D}^{\left(T_{0}\left\|T, F_{s s, ~}^{\prime}\right\| F\right)-\mathrm{zk}-1}(\kappa)=1\right]\right|
$$

is non-negligible, which contradicts the $\left(T_{\emptyset}\left\|T, F_{s r s a}^{\prime}\right\| F\right)$-zero-knowledge of π. We conclude that π_{c} is $\left(T_{\text {srsa }}\left\|T, F_{\emptyset}\right\| F\right)$-zero-knowledge.

Next we consider knowledge extraction. Denote by X_{c} the extractor that proceeds as follows on common input x. It executes the generator G and then invokes the extractor X of the protocol π. If X outputs a witness w such that $\mathcal{R}(x, w)=1$ then it outputs w. Otherwise it rewinds and executes G and the extractor X again. Clearly, if the extractor X_{c} halts it outputs a witness. If the extractor does not run in expected polynomial time, then by definition of a knowledge extractor this means that the extractor X with non-negligible probability outputs a witness $\left(b, \eta_{0}, \eta_{1}, \eta_{2}\right)$ such that $\left((N, g, h),\left(b, \eta_{0}, \eta_{1}, \eta_{2}\right)\right) \in \mathcal{R}_{\text {srsa }}^{\prime}$. If this is the case we break the strong RSA-assumption as follows. Denote by A the algorithm that takes (N, g, h) as input, invokes the simulator guaranteed by Proposition 5.8, and then run the extractor X. It follows that A outputs $\left(b, \eta_{0}, \eta_{1}, \eta_{2}\right)$ such that $\left((N, g, h),\left(b, \eta_{0}, \eta_{1}, \eta_{2}\right)\right) \in \mathcal{R}_{\text {srsa }}^{\prime}$ with non-negligible probability. From Lemma C. 3 we know that this contradicts the strong RSA-assumption.

Note that for the above argument to go through it is necessary that the simulator receives the RSA-parameters as an input. Intuitively, the reason is that otherwise we
have no control over what the protocol that generates these parameters leak about the secret exponent x.

5.5 The Cramer-Shoup Version of the Paillier Cryptosystem

The Cramer-Shoup version [10, 4] of the Paillier [24] cryptosystem can be described as follows. On input 1^{κ} the key generator first chooses the description of a collision-free hash function H. Then it chooses two random $\kappa / 2$-bit safe primes $p=2 p^{\prime}+1$ and $q=2 q^{\prime}+1$ and defines $n=p q$. All multiplications below are then performed modulo n^{2}. It chooses $x, x_{0}, x_{1} \in\left[0,2^{\kappa+\kappa_{r}}-1\right]$ and $\lambda \in \mathbb{Z}_{n^{2}}^{*}$ randomly, defines $k=\lambda^{2 n}$, and computes $y=k^{x}, y_{0}=k^{x_{0}}$, and $y_{1}=k^{x_{1}}$. Finally, it defines $p k=\left(H, n, \lambda, y, y_{0}, y_{1}\right)$ and $s k=\left(H, n, x, x_{0}, x_{1}\right)$, and outputs the key pair ($p k, s k$) (we drop H and n from our notation when convenient). On input a public key $p k$, a message $m \in \mathbb{Z}_{n}$, and a label $L \in\{0,1\}^{*}$ the encryption algorithm chooses $t \in\left[0,2^{\kappa+\kappa_{r}}-1\right]$ randomly and computes $u=k^{t}$ and $v=\eta^{m / 2}\left(y^{n}\right)^{t}$, where $\eta=1+n$, and $m / 2$ is computed modulo n. Then it computes $e=H\left(u^{2 n}, v^{2}, L\right)$ and $w=y_{0}^{t} y_{1}^{t e}$, and outputs (u, v, w). We consider this to be one of many encodings of the ciphertext $\left(u^{\prime}, v^{\prime}, w^{\prime}\right)=\left(u^{2 n}, v^{2}, w^{2 n}\right)$. Any ciphertexts having the same decoding are considered identical. On input a secret key $s k$ and a decoded ciphertext $\left(u^{\prime}, v^{\prime}, w^{\prime}\right)$ the decryption algorithm first verifies that $w^{\prime}=\left(u^{\prime}\right)^{x_{0}+x_{1} H\left(u^{\prime}, v^{\prime}, L\right)}$. If so it outputs $v^{\prime}\left(u^{\prime}\right)^{-x}$ and otherwise \perp.

Our scheme differs slightly from the scheme in [4]: we use encodings to avoid "benign malleability", and we have abolished the verification that $v^{\prime}\left(u^{\prime}\right)^{-x}$ is of the form η^{m} for some $m \in \mathbb{Z}_{n}$. It is not hard to see from the proof in [4] that the following proposition holds.
Proposition 5.13. The above public key encryption scheme with labels is CCA2secure under the decision composite residousity assumption.

6 An Efficient Designated Confirmer Signature Scheme

We describe an efficient instantiation of the generic construction using the twin-moduli signature scheme and a variation of the Cramer-Shoup version of the Paillier cryptosystem. Suppose we use the twin-moduli signature scheme with security parameter $\kappa_{r s a}=\kappa$. To simplify the exposition we define a function

$$
\begin{aligned}
& \text { Pack : } \mathbb{N} \times\left[0,2^{\kappa_{p}}-1\right]^{2} \rightarrow \mathbb{N} \\
& \text { Pack : }\left(r, s_{0}, s_{1}\right) \mapsto 2^{2 \kappa_{p}} r+2^{\kappa_{p}} s_{0}+s_{1}
\end{aligned}
$$

where κ_{p} is defined as in the twin-moduli signature scheme, and note that the inverse of this function is easy to compute.

6.1 The Δ-CCA2-Secure Cryptosystem

We define a new cryptosystem (CSKg, Enc, Dec) with labels as follows. Define $\kappa_{p a}=$ $\kappa_{r s a}+2 \kappa_{r}+3$. On input 1^{κ} the key generator CSKg invokes the original key generator on $1^{\kappa_{p a}}$ to generate a key pair $\left(p k_{*}, s k_{*}\right)$, computes $\left(N_{r}, g_{r}\right)=T_{s r s a}\left(1^{\kappa_{r s a}}\right)$ and outputs

$$
(p k, s k)=\left(\left(N_{r}, g_{r}, p k_{*}\right), s k_{*}\right)
$$

The encryption algorithm Enc takes as input $p k$, a label L interpreted as a twinmoduli public key $\left(N_{0}, g_{0}, N_{1}, g_{1}\right)$, and a twin-moduli signature $\left(r, z_{0}, s_{0}, z_{1}, s_{1}\right)$. It chooses $t_{a}, t_{0}, t_{1} \in\left[0,2^{\kappa_{p a}+\kappa_{r}}-1\right]$ and $r_{0}, r_{1} \in\left[0,2^{\kappa_{\text {rsa }}+\kappa_{r}}-1\right]$ randomly and computes

$$
\begin{array}{rlrl}
a & =\operatorname{Pack}\left(r, s_{0}, s_{1}\right) & \\
\left(u_{a}, v_{a}\right) & =\left(k^{t_{a}}, \eta^{a / 2} y^{n t_{a}}\right) & w_{a}=y_{0}^{t_{a}} y_{1}^{t_{a} e} \\
\left(u_{0}, v_{0}\right) & =\left(k^{t_{0}}, \eta^{r_{0} / 2} y^{n t_{0}}\right) & w_{0}=y_{0}^{t_{0}} y_{1}^{t_{0} e} \\
\left(u_{1}, v_{1}\right) & =\left(k^{t_{1}}, \eta^{r_{1} / 2} y^{n t_{1}}\right) & w_{1}=y_{0}^{t_{1}} y_{1}^{t_{1} e} \\
c_{0}^{\prime} & =g_{0}^{r_{0}} z_{0} \bmod N_{0} & & \\
c_{1}^{\prime} & =g_{1}^{r_{1}} z_{1} \bmod N_{1} & & \\
e & =H\left(L, u_{a}^{2 n}, v_{a}^{2}, u_{0}^{2 n}, v_{0}^{2}, c_{0}^{\prime}, u_{1}^{2 n}, v_{1}^{2}, c_{1}^{\prime}\right) & &
\end{array}
$$

Finally, it outputs the ciphertext $\left(\left(u_{a}, v_{a}, w_{a}\right),\left(u_{0}, v_{0}, w_{0}\right), c_{0}^{\prime},\left(u_{1}, v_{1}, w_{1}\right), c_{1}^{\prime}\right)$.
Decoding is done as when computing the hash value above, by squaring and taking $2 n$th powers. The decryption algorithm takes a secret key $s k$, a label L interpreted as a twin-moduli public key $\left(N_{0}, g_{0}, N_{1}, g_{1}\right)$, and a decoded ciphertext as input. Validity is checked by verifying that

$$
w_{a}^{\prime}=\left(u_{a}^{\prime}\right)^{x_{0}+x_{1} e}, \quad w_{0}^{\prime}=\left(u_{0}^{\prime}\right)^{x_{0}+x_{1} e}, \quad \text { and } \quad w_{1}^{\prime}=\left(u_{1}^{\prime}\right)^{x_{0}+x_{1} e},
$$

where e is the hash value above. It is also verified that $u_{a}, v_{a}, w_{a}, u_{0}, v_{0}, w_{0}, u_{1}, v_{1}, w_{1} \in$ $\mathbb{Z}_{n^{2}}^{*}$ and that $c_{0}^{\prime} \in \mathbb{Z}_{N_{0}}^{*}$ and $c_{1}^{\prime} \in \mathbb{Z}_{N_{1}}^{*}$. Then the decryption algorithm computes

$$
A=v_{a}^{\prime}\left(u_{a}^{\prime}\right)^{-x}, \quad R_{0}=v_{0}^{\prime}\left(u_{0}^{\prime}\right)^{-x}, \quad \text { and } \quad R_{1}=v_{1}^{\prime}\left(u_{1}^{\prime}\right)^{-x}
$$

If $A=\eta^{a}, R_{0}=\eta^{r_{0}}$ and $R_{1}=\eta^{r_{1}}$, then it outputs

$$
\left(\operatorname{Pack}^{-1}(a), c_{0}^{\prime} / g_{0}^{r_{0}} \bmod N_{0}, c_{1}^{\prime} / g_{1}^{r_{1}} \bmod N_{1}\right)
$$

and otherwise it outputs $\left(\perp, A, R_{0}, R_{1}, c_{0}^{\prime}, c_{1}^{\prime}\right)$.
A problem with computing over a composite modulus is that if the holder of a public key is malicious there are no guarantees that the multiplicative group is of the expected form. Thus, it may be possible to choose the modulus and compute a ciphertext such that it can be decrypted both as valid and invalid, depending on which exponents x, x_{0}, x_{1} are used, since the public key does not commit its owner to a fixed set of exponents. In our setting this means that a verifier can be given a DC-signature and a proof of validity, but when it hands the DC-signature to the confirmer, the confirmer can prove that the signature is invalid. Intuitively, this is clearly not acceptable, and formally it can not hold for a secure DC-signature scheme.

To solve this problem the confirmer uses the El Gamal cryptosystem as an unconditionally committing and computationally hiding commitment scheme, i.e., we redefine the key generator slightly. It defines $\kappa_{d d h}=\kappa_{p a}+2 \kappa_{r}+3$, chooses a $\kappa_{d d h}$-bit safe prime $P=2 Q+1$ randomly, and random elements $g, \beta_{x}, \beta_{x_{0}}, \beta_{x_{1}} \in G_{Q}$, and then chooses $r \in \mathbb{Z}_{Q}$ randomly and computes

$$
\left(\mu, \nu_{x}, \nu_{x_{0}}, \nu_{x_{1}}\right)=\left(g^{r}, \beta_{x}^{r} g^{x}, \beta_{x_{0}}^{r} g^{x_{0}}, \beta_{x_{1}}^{r} g^{x_{1}}\right) .
$$

The key generator CSKg is then redefined to output ($P, g, \beta_{x}, \beta_{x_{0}}, \beta_{x_{1}}, \mu, \nu_{x}, \nu_{x_{0}}, \nu_{x_{1}}$) as part of the public key (we drop P from our notation when convenient).

Corollary 6.1. Let Δ be defined as in Section 4 and instantiated with the twin-moduli signature scheme $\mathcal{S S}^{2}$. Then the encryption scheme above is Δ-CCA2-secure under the decision composite residuosity assumption and the decision Diffie-Hellman assumption.

Proof. Consider first the cryptosystem where ($\mu, \nu_{x}, \nu_{x_{0}}, \nu_{x_{1}}$) is replaced by a random list of elements from G_{Q}. Then security follows by a standard hybrid argument from Proposition 5.13, since for each part of the ciphertext $\left(u_{a}, v_{a}, w_{a}\right),\left(u_{0}, v_{0}, w_{0}\right)$, and $\left(u_{1}, v_{1}, w_{1}\right)$, we may view the the remainder of the ciphertext as a label. The problem that there may be several labels if this is done and that the label is not always a prefix is easily solved by defining a new hash function that permutes its bits using a fixed appropriate permutation. Then note that if using the original ($\mu, \nu_{x}, \nu_{x_{0}}, \nu_{x_{1}}$) makes the scheme insecure we can break the decision Diffie-Hellman assumption.

6.2 Splitting the Confirmer Key Generator

The key generator $\mathrm{Kg}_{c}^{\mathrm{dc}}$ can be split in the following way. Define $\mathrm{Kg}_{\mathrm{c}, 1}^{\mathrm{dc}}$ to output the tuple $\left(H, n, \lambda, P, g, \beta_{x}, \beta_{x_{0}}, \beta_{x_{1}}\right)$, define $\mathrm{Kg}_{\mathrm{c}, 2}^{\mathrm{dc}}$ to output $\left(x, x_{0}, x_{1}, r\right)$, and let $\mathrm{Kg}_{\mathrm{c}, 3}^{\mathrm{dc}}$ on input $\left(H, n, \lambda, P, g, \beta_{x}, \beta_{x_{0}}, \beta_{x_{1}}\right)$ and (x, x_{0}, x_{1}, r) output ($y, y_{0}, y_{1}, \mu, \nu_{x}, \nu_{x_{0}}, \nu_{x_{1}}$) as defined above if $2 \in \mathbb{Z}_{n}^{*}, P$ is a safe prime, $g, \beta_{x}, \beta_{x_{0}}, \beta_{x_{1}} \in G_{Q}$, and $x, x_{0}, x_{1} \in$ $\left[-2^{\kappa_{p a}+2 \kappa_{r}}+1,2^{\kappa_{p a}+2 \kappa_{r}}-1\right]$. Otherwise it sets $y=y_{0}=y_{1}=1$. The definition of a well-formed key then follows. The following shows that for any well-formed "public key" there exists a unique "secret key".

Lemma 6.2. Let $p k_{1}=\left(H, n, \lambda, P, g, \beta_{x}, \beta_{x_{0}}, \beta_{x_{1}}\right)$, where H is any string, n is a $\kappa_{p a}$ bit integer, $\lambda \in \mathbb{Z}, P=2 Q+1$ is a $\kappa_{d d h}$-bit safe prime, and $g, \beta_{x}, \beta_{x_{0}}, \beta_{x_{1}} \in G_{Q}$. Then there does not exist $r, r^{\prime} \in \mathbb{Z}$ and $x, x_{0}, x_{1}, x^{\prime}, x_{0}^{\prime}, x_{1}^{\prime} \in\left[-2^{\kappa_{p a}+2 \kappa_{r}}+1,2^{\kappa_{p a}+2 \kappa_{r}}-1\right]$ such that $\left(x, x_{0}, x_{1}\right) \neq\left(x^{\prime}, x_{0}^{\prime}, x_{1}^{\prime}\right)$ and $\mathrm{Kg}_{\mathrm{c}, 3}^{\mathrm{dc}}\left(p k_{1},\left(x, x_{0}, x_{1}, r\right)\right)=\mathrm{Kg}_{\mathrm{c}, 3}^{\mathrm{dc}}\left(p k_{1},\left(x^{\prime}, x_{0}^{\prime}, x_{1}^{\prime}, r^{\prime}\right)\right)$.

Proof. This follows from the fact that there exists a unique $r \in \mathbb{Z}_{Q}$ such that $\mu=g^{r}$ and for that r there exists at most one set of x, x_{0}, and x_{1} in $\left[-2^{\kappa_{p a}+2 \kappa_{r}}+1,2^{\kappa_{p a}+2 \kappa_{r}}-1\right]$ such that $\beta_{x}^{r} g^{x}=\nu_{x}, \beta_{x_{0}}^{r} g^{x_{0}}=\nu_{x_{0}}$, and $\beta_{x_{1}}^{r} g^{x_{1}}=\nu_{x_{1}}$, since Q is a $\left(\kappa_{p a}+2 \kappa_{r}+2\right)$-bit integer.

6.3 The CMA-Secure and Collision-Free Signature Scheme

We use the twin-moduli signature scheme with security parameter $\kappa_{r s a}=\kappa$ except that we assume that the public key is augmented with a pair $\left(N_{r}, g_{r}\right)=T_{\text {srsa }}\left(1^{\kappa_{\text {rsa }}}\right)$, that is used in the protocols.

We need a particular form of the $\left(f, f^{\prime}\right)$-embedding assumption. We assume that the $\left(f, f^{\prime}\right)$-embedding assumption holds for some f and f^{\prime} such that

$$
\begin{align*}
& \kappa_{p}^{\prime}=f^{\prime}\left(2 \kappa_{r}+\kappa_{m}+1\right) \geq \kappa_{r}+2, \quad \kappa_{m}+2 \kappa_{r}+2 \kappa_{p}+4<\kappa_{p a}-\kappa_{r}, \quad \text { and } \tag{1}\\
& \kappa_{m}+2 \kappa_{r}+\kappa_{p}+2<\left(\kappa_{r s a}-1\right) / 2 \tag{2}
\end{align*}
$$

where $\kappa_{p}=f\left(2 \kappa_{r}+\kappa_{m}+1\right)$ as defined in the twin-moduli signature scheme. The first requirement ensures that there is sufficient slack between the bit-size of s_{0} and s_{1} and κ_{p} to allow a simple Schnorr-like protocol for proving knowledge of s_{0} and s_{1}. The second requirement essentially ensures that the result a of running Pack on (r, s_{0}, s_{1}) can be uniquely encoded as an integer in $[0, n]$ with some additional slack that allows a
simple Schnorr-like protocol for proving knowledge of a. To fully appreciate the value of our bit-fiddling, the reader may need to study our protocols and their analysis. The third requirement ensures that any integer e_{0} or e_{1} induced by a well-formed signature $\left(r, z_{0}, s_{0}, z_{1}, s_{1}\right)$ is smaller than the order of any subgroup of $S Q_{N_{0}}$ and $S Q_{N_{1}}$, when N_{0} and N_{1} are honestly generated. This is important in the construction of the $\left(T_{h s}, F_{h s}\right)$ -zero-knowledge simulator.

6.4 A Well-Formedness Function

We instantiate the well-formedness function $w f$ as follows. First of all we have already defined a well-formed public key. We define $w f$ to output 0 when \perp is a prefix of its first input. We define $w f\left(\left(r, z_{0}, s_{0}, z_{1}, s_{1}\right), p k, s p k\right)=1$ if $p k$ is well-formed, $r \in$ $\left[2^{2 \kappa_{r}+\kappa_{m}}, 2^{2 \kappa_{r}+\kappa_{m}}+2^{\kappa_{r}+\kappa_{m}}-1\right], s_{0}, s_{1} \in\left[2^{\kappa_{p}-1}, 2^{\kappa_{p}-1}+2^{\kappa_{p}-\kappa_{p}^{\prime}}-1\right]$ are odd, $z_{0}, g_{0} \in$ $\mathbb{Z}_{N_{0}}^{*}, z_{1}, g_{1} \in \mathbb{Z}_{N_{1}}^{*}$, and $z_{1}^{e_{1}}=g_{1} \bmod N_{1}$. Note that the well-formedness of $p k$ can be verified by anyone and that for any honestly generated $s p k$ and honestly computed signature this is always the case.

6.5 An Informal Description of Some Key Ideas

Our choice of cryptosystem and signature scheme allow efficient protocols that are described in detail in the next section. In this section we merely try to convey some key ideas.

The idea of the twin-moduli signature scheme is loosely speaking that all that is needed to verify a signature can be done "in the exponent". Recall that a verification involves multiplication by constants, adding, checking for interval-membership and oddity, and then checking the roots of the signature.

Let us write $C(m)$ for a Fujisaki-Okamoto commitment of the form $g^{l} h^{m} \bmod N$ for some random l, and simply write $\mathrm{Enc}^{\mathrm{pa}}(m)$ for a pair of the form $\left(k^{r}, \eta^{m} y^{r}\right)$, i.e., we ignore the encoding and the third component that guarantees CCA2-security.

Then the proof of validity of a signature can be explained as follows. A DCsignature essentially consists of a tuple

$$
\left(E_{a}, E_{r_{0}}, c_{0}^{\prime}, E_{r_{1}}, c_{1}^{\prime}\right)=\left(\operatorname{Enc}^{\mathrm{pa}}\left(\operatorname{Pack}\left(r, s_{0}, s_{1}\right)\right), \operatorname{Enc}^{\mathrm{pa}}\left(r_{0}\right), g_{0}^{r_{0}} z_{0}, \operatorname{Enc}^{\mathrm{pa}}\left(r_{1}\right), g_{1}^{r_{1}} z_{1}\right) .
$$

The prover forms commitments

$$
\begin{aligned}
C_{r}^{\prime} & =C\left(r-2^{2 \kappa_{r}+\kappa_{m}}\right) \\
C_{s_{0}}^{\prime} & =C\left(\left(s_{0}-2^{\kappa_{p}-1}-1\right) / 2\right) \\
C_{s_{1}}^{\prime} & =C\left(\left(s_{1}-2^{\kappa_{p}-1}-1\right) / 2\right)
\end{aligned}
$$

and proves knowledge of the committed values. The protocol used to do this also implies that $r-2^{2 \kappa_{r}+\kappa_{m}} \in\left[-2^{2 \kappa_{r}+\kappa_{m}}+1,2^{2 \kappa_{r}+\kappa_{m}}-1\right]$ and $\left(s_{0}-2^{\kappa_{p}-1}-1\right) / 2,\left(s_{1}-\right.$ $\left.2^{\kappa_{p}-1}-1\right) / 2 \in\left[-2^{\kappa_{p}-2}+1,2^{\kappa_{p}-2}-1\right]$. Then the verifier computes

$$
\begin{aligned}
C_{r} & =C_{r}^{\prime} C\left(2^{2 \kappa_{r}+\kappa_{m}}\right) \\
C_{s_{0}} & =\left(C_{s_{0}}^{\prime}\right)^{2} C\left(2^{\kappa_{p}-1}+1\right) \\
C_{s_{1}} & =\left(C_{s_{1}}^{\prime}\right)^{2} C\left(2^{\kappa_{p}-1}+1\right) \\
C_{a} & =C_{r}^{22^{2 \kappa_{p}}} C_{s_{0}}^{2^{\kappa_{p}}} C_{s_{1}},
\end{aligned}
$$

and the prover proves that the value committed to in C_{a} equal the value encrypted in E_{a}. Note that $C_{s_{0}}$ and $C_{s_{1}}$ are commitments to odd integers s_{0} and s_{1} in $\left[0,2^{\kappa_{p}}-1\right]$ and C_{r} is a commitment to an integer $r \in\left[1,2^{2 \kappa_{r}+\kappa_{m}+1}-1\right]$. Thus, part of the verification has already been executed.

To complete the verification the verifier computes commitments of the integers e_{0} and e_{1} induced by the values r, s_{0}, and s_{1} by forming

$$
C_{e_{0}}=\left(C_{r} C(m)\right)^{2^{\kappa p} p} C_{s_{0}} \quad \text { and } \quad C_{e_{1}}=C_{r}^{2^{\kappa p}} C_{s_{1}}
$$

All that then remains is to prove that if e_{0} and e_{1} are committed to in $C_{e_{0}}$ and $C_{e_{1}}$ and r_{0} and r_{1} are encrypted in $E_{r_{0}}$ and $E_{r_{1}}$, then

$$
\left(c_{0}^{\prime}\right)^{e_{0}}=g_{0}^{e_{0} r_{0}} g_{0} \bmod N_{0} \quad \text { and } \quad\left(c_{1}^{\prime}\right)^{e_{1}}=g_{1}^{e_{1} r_{1}} g_{1} \bmod N_{1} .
$$

This shows that the encrypted signature is a valid twin-moduli signature of the message m.

The proof of invalidity for well-formed signatures is similar, but more complicated in that at some point the prover must show that $z_{0}^{e_{0}} / g_{0} \neq 1$ without revealing this value. A standard trick to solve this problem is to randomize the result, i.e., revealing $\left(z_{0}^{e_{0}} / g_{0}\right)^{l}$ for a randomly chosen l. However, in general it may happen that $z_{0}^{e_{0}} / g_{0}$ is contained in some particular subgroup of $\mathbb{Z}_{N_{0}}^{*}$ and the simulator clearly does not know if this is the case.

When the public signature key is chosen honestly and the malicious verifier does not know the factorization of N_{0}, it is infeasible to find any element that generates a nontrivial subgroup of $S Q_{N_{0}}$. Thus, in this case the above idea works straightforwardly and there is no problem. In other words we have a $\left(T_{h s}, F_{h s}\right)$-zero-knowledge simulator.

For maliciously generated N_{0}, g_{0}, z_{0}, and e_{0} the above approach does not work at all, and it seems difficult to come up with an efficient approach that does work. Fortunately, we know that it suffices to have a simulator that is given the values z_{0} and e_{0} as an additional advice string, and given these it is obviously trivial to generate $\left(z_{0}^{e_{0}} / g_{0}\right)^{l}$ with the right distribution. In other words we have a $\left(T_{c s}, F_{c s}\right)$-simulator.

6.6 The Protocols of the Construction

We are now ready to give the details of the protocols of our construction. It may seem that the proof of correct decryption in Camenisch and Shoup [4] can be used directly to construct the proof of correct conversion of a DC-signature, but this is not the case, since (1) we have modified the cryptosystem to allow encryption of twinmoduli signatures, and (2) they assume that the keys of the cryptosystem are honestly generated, whereas we do not. However, the reader will find no difficulty in recognizing some of the ideas presented in their paper (as well as in older work on which it is based) also in our proof of correct conversion.

Before we start we introduce some notational conventions. In each of the protocols the prover and verifier first decodes the signature input, but to simplify notation we assume that this has already been done before each protocol is executed. Whenever we for presentational convenience say that $\pi_{e q}$ is invoked multiple times as a subprotocol, we assume that all these invocations are combined into a single invocation. We also assume that a suitable instance of $\pi_{e q}$ is used. The protocols are not always strictly speaking zero-knowledge for the relations as stated. The problem is that we have not
put any bound on the size of the witnesses, whereas the protocols assume that this is the case. Following common practice in the literature we ignore this, whenever it does not play any essential role. We assume that the verifier in each protocol performs all the self-evident checking that can be done without any secret keys, e.g., that elements that are expected to be invertible indeed are invertible and that elements are of the right bit-size. To avoid cluttering our notation we do not state explicitly the group in which computations take place.This follows from the groups in which the elements are contained. Finally, we abuse the notations $T_{1} \| T_{2}$ and $F_{1} \| F_{2}$ in that we assume that the concatenation puts the parameters in the right order.

6.6.1 Well-Formed Keys

Consider first the proof of a well-formed key $\pi_{w f}$, and recall that we use the splitting of CSKg above. Anybody can in fact verify that a public key is well-formed. However, a well-formed public key may have no corresponding secret key. Thus, the confirmer must prove knowledge of an integer r and integers $x, x_{0}, x_{1} \in\left[-2^{\kappa_{p a}+2 \kappa_{r}}+1,2^{\kappa_{p a}+2 \kappa_{r}}-1\right]$ such that

$$
\begin{align*}
\left(y, y_{0}, y_{1}\right) & =\left(k^{x}, k^{x_{0}}, k^{x_{1}}\right) \tag{3}\\
\left(\mu, \nu_{x}, \nu_{x_{0}}, \nu_{x_{1}}\right) & =\left(g^{r}, \beta_{x}^{r} g^{x}, \beta_{x_{0}}^{r} g^{x_{0}}, \beta_{x_{1}}^{r} g^{x_{1}}\right) . \tag{4}
\end{align*}
$$

Note that for honest confirmers we have $x, x_{0}, x_{1} \in\left[0,2^{\kappa_{p a}+\kappa_{r}}-1\right]$. Lemma 5.12 implies the following.

Corollary 6.3. The special composition $\pi_{w f}$ of $\pi_{t p}$ and $\pi_{e q}$ gives a $\mathrm{Kg}_{c}^{\mathrm{dc}}-z e r o-k n o w l e d g e$ proof of knowledge for the relation $\mathcal{R}_{w f}$ under the strong RSA-assumption and the discrete logarithm assumption.

6.6.2 Correct Conversion

To prove that a label $s p k$ and ciphertext

$$
\left(\left(u_{a}, v_{a}, w_{a}\right),\left(u_{0}, v_{0}, w_{0}\right), c_{0}^{\prime},\left(u_{1}, v_{1}, w_{1}\right), c_{1}^{\prime}\right)
$$

are valid and decrypts to $\left(A, R_{0}, R_{1}, c_{0}^{\prime}, c_{1}^{\prime}\right) \in S Q_{n^{2}}^{3} \times \mathbb{Z}_{N_{0}}^{*} \times \mathbb{Z}_{N_{1}}^{*}$, the confirmer must prove knowledge of an integer r and $x, x_{0}, x_{1} \in\left[-2^{\kappa_{p a}+2 \kappa_{r}}+1,2^{\kappa_{p a}+2 \kappa_{r}}-1\right]$ such that Equations (3)-(4) are satisfied and

$$
\begin{array}{ll}
v_{a}=A u_{a}^{x} & w_{a}=u_{a}^{x_{0}}\left(u_{a}^{e}\right)^{x_{1}} \\
v_{0}=R_{0} u_{0}^{x} & w_{0}=u_{0}^{x_{0}}\left(u_{0}^{e}\right)^{x_{1}} \\
v_{1}=R_{1} u_{1}^{x} & w_{1}=u_{1}^{x_{0}}\left(u_{1}^{e}\right)^{x_{1}}
\end{array}
$$

where $e=H\left(s p k, u_{a}, v_{a}, u_{0}, v_{0}, c_{0}^{\prime}, u_{1}, v_{1}, c_{1}^{\prime}\right)$. To prove that the ciphertext is valid and decrypts to $\left(\operatorname{Pack}^{-1}(a), z_{0}, z_{1}\right)$ the equations on the left are replaced by

$$
\begin{array}{ll}
v_{a}=\eta^{a} u_{a}^{x} & \\
v_{0}=\eta^{r_{0}} u_{0}^{x} & c_{0}^{\prime}=g_{0}^{r_{0}} z_{0} \\
v_{1}=\eta^{r_{1}} u_{1}^{x} & c_{1}^{\prime}=g_{1}^{r_{1}} z_{1}
\end{array}
$$

and the prover proves knowledge also of r_{0}, and r_{1}. Note that for honest provers we have $x, x_{0}, x_{1} \in\left[0,2^{\kappa_{p a}+\kappa_{r}}-1\right], a \in\left[0,2^{\kappa_{m}+2 \kappa_{r}+2 \kappa_{p}}-1\right]$ and $r_{0}, r_{1} \in\left[0,2^{\kappa_{r s a}+\kappa_{r}}-1\right]$ respectively. Again we have a corollary of Lemma 5.12.

Corollary 6.4. The special composition π_{c}^{v} of $\pi_{t p}$ and $\pi_{e q}$ gives a $\mathrm{Kg}_{c}^{\mathrm{dc}}$-zero-knowledge proof of knowledge for the relation $\mathcal{R}_{c} \cap\left\{((\sigma, s, p k, s p k), s k): \operatorname{Con}_{s k}^{\mathrm{dc}}(\sigma, s p k) \neq \perp\right\}$ under the strong RSA-assumption and the discrete logarithm assumption.

To prove that a ciphertext is invalid, the confirmer need only prove knowledge of an integer r and $x_{0}, x_{1} \in\left[-2^{\kappa_{p a}+2 \kappa_{r}}+1,2^{\kappa_{p a}+2 \kappa_{r}}-1\right]$ such that Equations (3)-(4) are satisfied and that

$$
w_{a} \neq u_{a}^{x_{0}}\left(u_{a}^{e}\right)^{x_{1}} \quad, \quad w_{0} \neq u_{0}^{x_{0}}\left(u_{0}^{e}\right)^{x_{1}} \quad, \quad \text { or } \quad w_{1} \neq u_{1}^{x_{0}}\left(u_{1}^{e}\right)^{x_{1}}
$$

Note that for an honest prover $x_{0}, x_{1} \in\left[0,2^{\kappa_{p a}+\kappa_{r}}-1\right]$. This is done using the protocol for trusted commitment parameters composed with the protocol below.

Protocol 6.5 (Invalid Ciphertext).

Common Input: An integer N and $g, h \in S Q_{N}$, a public key of the form $p k=\left(H, n, \lambda, y, y_{0}, y_{1}, P, g, \beta_{x}, \beta_{x_{0}}, \beta_{x_{1}}, \mu, \nu_{x}, \nu_{x_{0}}, \nu_{x_{1}}\right)$, and a label $s p k$ and ciphertext of the form $c=\left(\left(u_{a}, v_{a}, w_{a}\right),\left(u_{0}, v_{0}, w_{0}\right), c_{0}^{\prime},\left(u_{1}, v_{1}, w_{1}\right), c_{1}^{\prime}\right)$.
Private Input: A private key $s k=\left(x, x_{0}, x_{1}, r\right)$ corresponding to the public key $p k$.

1. The prover chooses $t_{a}, t_{0}, t_{1}, l_{a}, l_{0}, l_{1} \in\left[0,2^{\kappa_{\text {rsa }}+\kappa_{r}}-1\right]$ and $s_{a}, k_{a}, s_{0}, k_{0}, s_{1}, k_{1} \in$ $\left[0,2^{\kappa_{p a}+\kappa_{r}}-1\right]$ randomly and computes

$$
w^{\prime}=\left(u_{a}^{x_{0}+x_{1} e} / w_{a}\right)^{k_{a}}\left(u_{0}^{x_{0}+x_{1} e} / w_{0}\right)^{k_{0}}\left(u_{1}^{x_{0}+x_{1} e} / w_{1}\right)^{k_{1}}
$$

and

$$
\begin{array}{cccc}
B_{a}=g^{t_{a}} h^{s_{a}} & B_{a}^{\prime}=u_{a}^{s_{a}} u_{a}^{x_{0}}\left(u_{a}^{e}\right)^{x_{1}} & C_{a}=g^{l_{a}} B_{a}^{k_{a}} & C_{a}^{\prime}=\left(B_{a}^{\prime} / w_{a}\right)^{k_{a}} \\
B_{0}=g^{t_{0}} h^{s_{0}} & B_{0}^{\prime}=u_{0}^{s_{0}} u_{0}^{x_{0}}\left(u_{0}^{e}\right)^{x_{1}} & C_{0}=g^{k_{0}} & C_{0}^{\prime}=\left(B_{0}^{\prime} / w_{0}\right)^{k_{0}} \\
B_{1}=g^{t_{1}} h^{s_{1}} & B_{1}^{\prime}=u_{1}^{s_{1}} u_{1}^{x_{0}}\left(u_{1}^{e}\right)^{x_{1}} & C_{1}=g^{k_{1}} B_{1}^{k_{1}} & C_{1}^{\prime}=\left(B_{1}^{\prime} / w_{1}\right)^{k_{1}} \tag{7}
\end{array}
$$

and hands these values and w^{\prime} to the verifier. Recall that w_{a}, w_{0}, w_{1} are invertible, so this is always possible.
2. Then it proves knowledge of an integer r and $x, x_{0}, x_{1} \in\left[-2^{\kappa_{p a}+2 \kappa_{r}}+1,2^{\kappa_{p a}+2 \kappa_{r}}-\right.$ $1]$, and $t_{a}, t_{0}, t_{1}, l_{a}, l_{0}, l_{1} \in\left[-2^{\kappa_{r s a}+2 \kappa_{r}}+1,2^{\kappa_{r s a}+2 \kappa_{r}}-1\right]$ and $s_{a}, k_{a}, s_{0}, k_{0}, s_{1}, k_{1} \in$ $\left[-2^{\kappa_{p a}+2 \kappa_{r}}+1,2^{\kappa_{p a}+2 \kappa_{r}}-1\right]$ such that Equations (3)-(4) are satisfied and such that the above holds, and it proves knowledge of $t_{a}^{\prime}, t_{0}^{\prime}, t_{1}^{\prime} \in\left[-2^{\kappa_{r s a}+\kappa_{p a}+3 \kappa_{r}}+\right.$ $\left.1,2^{\kappa_{r s a}+\kappa_{p a}+3 \kappa_{r}}-1\right]$ and $s_{a}^{\prime}, s_{0}^{\prime}, s_{1}^{\prime} \in\left[-2^{2 \kappa_{p a}+3 \kappa_{r}}+1,2^{2 \kappa_{p a}+3 \kappa_{r}}-1\right]$ such that

$$
\begin{align*}
& C_{a}=g^{t_{a}^{\prime}} h^{s_{a}^{\prime}}, \quad C_{0}=g^{t_{0}^{\prime}} h^{s_{0}^{\prime}}, \quad C_{1}=g^{t_{1}^{\prime}} h^{s_{1}^{\prime}}, \quad \text { and } \tag{8}\\
& C_{a}^{\prime} C_{0}^{\prime} C_{1}^{\prime}=u_{a}^{s_{a}^{\prime}} u_{0}^{s_{0}^{\prime}} u_{1}^{s_{1}^{\prime}} w^{\prime} . \tag{9}
\end{align*}
$$

In addition to verifying the proofs of knowledge the verifier checks that $w^{\prime} \neq 1$.
Proposition 6.6. Protocol 6.5 is a proof of knowledge for the relation $\mathcal{R}_{\text {srsa }}^{\prime} \vee \mathcal{R}_{c} \cap$ $\left\{((\sigma, s, p k, s p k), s k): \operatorname{Con}_{s k}^{\mathrm{dc}}(\sigma, s p k)=\perp\right\}$ under the discrete logarithm assumption.

Proof. We have from Proposition 5.4 that the subprotocol is a proof of knowledge of the exponents or of a witness $\left(b, \eta_{0}, \eta_{1}, \eta_{2}\right)$ such that $\left((N, g, h),\left(b, \eta_{0}, \eta_{1}, \eta_{2}\right)\right) \in$ $\mathcal{R}_{\text {srsa }}^{\prime}$. Thus, we assume that the extractor outputs exponents r and $x, x_{0}, x_{1} \in$
$\left[-2^{\kappa_{p a}+2 \kappa_{r}}+1,2^{\kappa_{p a}+2 \kappa_{r}}-1\right]$, and $t_{a}, t_{0}, t_{1}, l_{a}, l_{0}, l_{1} \in\left[-2^{\kappa_{r s a}+2 \kappa_{r}}+1,2^{\kappa_{r s a}+2 \kappa_{r}}-1\right]$, $s_{a}, k_{a}, s_{0}, k_{0}, s_{1}, k_{1} \in\left[-2^{\kappa_{p a}+2 \kappa_{r}}+1,2^{\kappa_{p a}+2 \kappa_{r}}-1\right]$, and $t_{a}^{\prime}, t_{0}^{\prime}, t_{1}^{\prime} \in\left[-2^{\kappa_{r s a}+\kappa_{p a}+3 \kappa_{r}}+\right.$ $\left.1,2^{\kappa_{r s a}+\kappa_{p a}+3 \kappa_{r}}-1\right]$ and $s_{a}^{\prime}, s_{0}^{\prime}, s_{1}^{\prime} \in\left[-2^{2 \kappa_{p a}+3 \kappa_{r}}+1,2^{2 \kappa_{p a}+3 \kappa_{r}}-1\right]$ such that Equations (3)-(4), Equations (5)-(7), and Equations (8)-(9) are satisfied. From this we conclude that

$$
\begin{array}{ll}
C_{a}=g^{t_{a} k_{a}+l_{a}} h^{s_{a} k_{a}} & C_{a}^{\prime}=u_{a}^{s_{a} k_{a}}\left(u_{a}^{x_{0}}\left(u_{a}^{e}\right)^{x_{1}} / w_{a}\right)^{k_{a}} \\
C_{0}=g^{t_{0} k_{0}+l_{0}} h^{s_{0} k_{0}} & C_{0}^{\prime}=u_{0}^{s_{0} k_{0}}\left(u_{0}^{x_{0}}\left(u_{0}^{e}\right)^{x_{1}} / w_{0}\right)^{k_{0}} \\
C_{1}=g^{t_{1} k_{1}+l_{1}} h^{s_{1} k_{1}} & C_{1}^{\prime}=u_{1}^{s_{1} k_{1}}\left(u_{1}^{x_{0}}\left(u_{1}^{e}\right)^{x_{1}} / w_{1}\right)^{k_{1}}
\end{array}
$$

If $\left(t_{a}^{\prime}, s_{a}^{\prime}\right) \neq\left(t_{a} k_{a}+l_{a}, s_{a} k_{a}\right),\left(t_{0}^{\prime}, s_{0}^{\prime}\right) \neq\left(t_{0} k_{0}+l_{0}, s_{0} k_{0}\right)$, or $\left(t_{1}^{\prime}, s_{1}^{\prime}\right) \neq\left(t_{1} k_{1}+\right.$ $l_{1}, s_{1} k_{1}$), then we have a non-trivial representation $g^{\eta_{0}} h^{\eta_{1}}=1$ with (η_{0}, η_{1}) equal to $\left(t_{a}^{\prime}-t_{a} k_{a}-l_{a}, s_{a}^{\prime}-s_{a} k_{a}\right)$ or similarly for the other exponents. In other words a witness $\left(1,0, \eta_{1}, \eta_{2}\right)$ such that $\left((N, g, h),\left(1,0, \eta_{1}, \eta_{2}\right)\right) \in \mathcal{R}_{\text {srsa }}^{\prime}$. Assume now that this is not the case. Then we may conclude that

$$
\begin{aligned}
u_{a}^{s_{a}^{\prime}} u_{0}^{s_{0}^{\prime}} u_{1}^{s_{1}^{\prime}} w^{\prime} & =C_{a}^{\prime} C_{0}^{\prime} C_{1}^{\prime} \\
& =u_{a}^{s_{a}^{\prime}} u_{0}^{s_{0}^{\prime}} u_{1}^{s_{1}^{\prime}}\left((u _ { a } ^ { x _ { 0 } } (u _ { a } ^ { e }) ^ { x _ { 1 } } / w _ { a }) ^ { k _ { a } } \left((u _ { 0 } ^ { x _ { 0 } } (u _ { 0 } ^ { e }) ^ { x _ { 1 } } / w _ { 0 }) ^ { k _ { 0 } } \left(\left(u_{1}^{x_{0}}\left(u_{1}^{e}\right)^{x_{1}} / w_{1}\right)^{k_{1}}\right.\right.\right.
\end{aligned}
$$

and since $w^{\prime} \neq 1$ and u_{a}, u_{0}, and u_{1} are invertible modulo n^{2}, we conclude that we have a witness that the ciphertext is invalid.

Define a function F by $F((p k, s k),(\sigma, s p k))=((\sigma, \perp, p k, s p k), s k)$, and denote by $\left(\mathrm{Kg}_{c}^{\mathrm{dc}}\right)^{\prime}$ the algorithm $\mathrm{Kg}_{c}^{\mathrm{dc}}$ except that the pair $\left(N_{r}, g_{r}\right)$ is eliminated from the output.

Proposition 6.7. The protocol is $\left(T_{\emptyset}\left\|\left(\mathrm{Kg}_{c}^{\mathrm{dc}}\right)^{\prime}, F_{\text {srsa }}^{\prime}\right\| F\right)$-zero-knowledge for the relation $\mathcal{R}_{\text {srsa }}^{\prime} \vee \mathcal{R}_{c} \cap\left\{((\sigma, s, p k, s p k), s k): \operatorname{Con}_{s k}^{\mathrm{dc}}(\sigma, s p k)=\perp\right\}$ under the strong $R S A$ assumption.

Proof. The simulator chooses $B_{a}, B_{0}, B_{1} \in S Q_{N}, w^{\prime} \in S Q_{n}, B_{a}^{\prime} \in\left\langle u_{a}\right\rangle, B_{0}^{\prime} \in\left\langle u_{0}\right\rangle$, $B_{1}^{\prime} \in\left\langle u_{1}\right\rangle$, randomly and computes $C_{a}, C_{0}, C_{1}, C_{a}^{\prime}, C_{0}^{\prime}$, and C_{1}^{\prime} honestly. Then it invokes the zero-knowledge simulators of the subprotocol.

The commitments are statistically hiding by the definition of $F_{s r s a}^{\prime}$, so we may assume without loss that they are distributed as in a real view. The zero-knowledge property then follows from the zero-knowledge property of the subprotocol, provided that w^{\prime} is correctly distributed. Since the ciphertext is decoded we know that u_{a}, $u_{0}, u_{1}, w_{a}, w_{0}$, and w_{1} are all $2 n$th residues modulo n. The only way a real view can differ in distribution from the simulated view is if at least one of the elements $u_{a}^{x_{0}}\left(u_{a}^{e}\right)^{x_{1}} / w_{a}, u_{0}^{x_{0}}\left(u_{0}^{e}\right)^{x_{1}} / w_{0}$, and $u_{1}^{x_{0}}\left(u_{1}^{e}\right)^{x_{1}} / w_{1}$ have order different from $p^{\prime} q^{\prime}$ and 1 , where $p=2 p^{\prime}+1, q=2 q^{\prime}+1$ and $n=p q$. However, finding any such element implies that the factors p and q can be recovered (see for example Mao and Lee [21]), and this clearly implies that the factoring assumption is broken, which implies that the strong RSA-assumption is broken.

More precisely, if there exists an instance chooser I such that the elements are anomalous as above with non-negligible probability, then we can define A to be the algorithm that takes n as input, and simulates $\left(\mathrm{Kg}_{c}^{\mathrm{dc}}\right)^{\prime}$ using this modulus. Then we execute the zero-knowledge experiment and output the anomalous element if the instance chooser outputs such an element. Note that it is essential that the factorization of n is not used by the decryption algorithm.

Corollary 6.8. The special composition π_{c}^{\perp} of $\pi_{t p}$ and Protocol 6.5 is a $\mathrm{Kg}_{c}^{\mathrm{dc}}$-zeroknowledge proof of knowledge for the relation $\mathcal{R}_{c} \cap\left\{((\sigma, s, p k, s p k), s k): \operatorname{Con}_{s k}^{\mathrm{dc}}(\sigma, s p k)=\right.$ $\perp\}$ under the strong RSA-assumption and the discrete logarithm assumption.

Corollary 6.9. The pair $\left(\pi_{c}^{v}, \pi_{c}^{\perp}\right)$ gives a $\mathrm{Kg}_{c}^{\mathrm{dc}}$-zero-knowledge proof of knowledge for the relation \mathcal{R}_{c} under the strong $R S A$-assumption and the discrete logarithm assumption.

6.6.3 Validity/Invalidity of DC-signatures

Since the protocols π_{v} and π_{c} achieve similar results we define a joint protocol that behaves slightly differently depending on which type of input it is executed on. Below we ignore the case where $m=\perp$, since by definition no signature can be valid for this message.

Protocol 6.10 (Validity/Invalidity of Well-Formed Signature).

Common Input: An integer N and $g, h \in \mathbb{Z}_{n}^{*}$, a public key of the form $p k=\left(H, n, \lambda, y, y_{0}, y_{1}, P, g, \beta_{x}, \beta_{x_{0}}, \beta_{x_{1}}, \mu, \nu_{x}, \nu_{x_{0}}, \nu_{x_{1}}\right)$, a public signature key of the form $s p k=\left(N_{0}, g_{0}, N_{1}, g_{1}\right)$, a message $m \in\left[0,2^{\kappa_{m}}-1\right]$, a candidate signature of the form
$\left(\left(u_{a}, v_{a}, w_{a}\right),\left(u_{0}, v_{0}, w_{0}\right), c_{0}^{\prime},\left(u_{1}, v_{1}, w_{1}\right), c_{1}^{\prime}\right)$, and a bit b.
PRIVATE INPUT: $r \in\left[2^{2 \kappa_{r}+\kappa_{m}}, 2^{2 \kappa_{r}+\kappa_{m}}+2^{\kappa_{r}+\kappa_{m}}-1\right]$, odd $s_{0}, s_{1} \in\left[0,2^{\kappa_{p}-\kappa_{p}^{\prime}}-1\right]$, from which we define

$$
\begin{aligned}
e & =H\left(s p k, u_{a}, v_{a}, u_{0}, v_{0}, c_{0}^{\prime}, u_{1}, v_{1}, c_{1}^{\prime}\right) \\
a & =\operatorname{Pack}\left(r, s_{0}, s_{1}\right)
\end{aligned}
$$

and either (1) $r_{0}, r_{1} \in\left[0,2^{\kappa_{r s a}+\kappa_{r}}-1\right], t_{a}, t_{0}, t_{1} \in\left[0,2^{\kappa_{p a}+\kappa_{r}}-1\right]$, and $b=1$, such that

$$
\begin{align*}
\left(u_{a}, v_{a}, w_{a}\right) & =\left(k^{t_{a}}, \eta^{a} y^{t_{a}},\left(y_{0} y_{1}^{e}\right)^{t_{a}}\right) \tag{10}\\
\left(u_{0}, v_{0}, w_{0}\right) & =\left(k^{t_{0}}, \eta^{r_{0}} y^{t_{0}},\left(y_{0} y_{1}^{e}\right)^{t_{0}}\right) \tag{11}\\
\left(u_{1}, v_{1}, w_{1}\right) & =\left(k^{t_{1}}, \eta^{r_{1}} y^{t_{1}},\left(y_{0} y_{1}^{e}\right)^{t_{1}}\right) \tag{12}
\end{align*}
$$

or (2) $s k=\left(x, x_{1}, x_{2}, r\right)$ with $x, x_{1}, x_{2} \in\left[0,2^{\kappa_{p a}+\kappa_{r}}-1\right]$ and $r \in \mathbb{Z}_{Q}$ such that Equations (3)-(4) are satisfied and

$$
\begin{align*}
\left(v_{a}, w_{a}\right) & =\left(\eta^{a} u_{a}^{x}, u_{a}^{x_{0}}\left(u_{a}^{e}\right)^{x_{1}}\right) \tag{13}\\
\left(v_{0}, w_{0}\right) & =\left(\eta^{r_{0}} u_{0}^{x}, u_{0}^{x_{0}}\left(u_{0}^{e}\right)^{x_{1}}\right) \tag{14}\\
\left(v_{1}, w_{1}\right) & =\left(\eta^{r_{1}} u_{1}^{x}, u_{1}^{x_{0}}\left(u_{1}^{e}\right)^{x_{1}}\right) . \tag{15}
\end{align*}
$$

In both cases it also holds that

$$
\begin{aligned}
\left(c_{0}^{\prime}, c_{1}^{\prime}\right) & =\left(g_{0}^{r_{0}} z_{0}, g_{1}^{r_{1}} z_{1}\right) \\
w f\left(\left(r, z_{0}, s_{0}, z_{1}, s_{1}\right), p k, s p k\right) & =1 \\
\operatorname{Vf}_{s p k}\left(m,\left(r, z_{0}, s_{0}, z_{1}, s_{1}\right)\right) & =b
\end{aligned}
$$

1. The prover forms commitments holding the different parts of the signature $\left(r, z_{0}, s_{0}, z_{1}, s_{1}\right)$. More precisely, the prover defines $r^{\prime}=r-2^{2 \kappa_{r}+\kappa_{m}}, s_{0}^{\prime}=$
$\left(s_{0}-2^{\kappa_{p}-1}-1\right) / 2$ and $s_{1}^{\prime}=\left(s_{1}-2^{\kappa_{p}-1}-1\right) / 2$, chooses $l_{r}, l_{s_{0}}, l_{s_{1}}, l_{r_{0}}, l_{r_{1}} \in$ [$\left.0,2^{\kappa_{\text {rsa }}+\kappa_{r}}-1\right]$ randomly, computes

$$
\begin{equation*}
\left(C_{r}^{\prime}, C_{s_{0}}^{\prime}, C_{s_{1}}^{\prime}, C_{r_{0}}, C_{r_{1}}\right)=\left(g^{l_{r}} h^{r^{\prime}}, g^{l_{s_{0}}} h^{s_{0}^{\prime}}, g^{l_{s_{1}}} h^{s_{1}^{\prime}}, g^{l_{r_{0}}} h^{r_{0}}, g^{l_{r_{1}}} h^{r_{1}}\right) \tag{16}
\end{equation*}
$$

and hands $\left(C_{r}^{\prime}, C_{s_{0}}^{\prime}, C_{s_{1}}^{\prime}, C_{r_{0}}, C_{r_{1}}\right)$ to the verifier.
2. The prover and verifier compute

$$
\begin{align*}
C_{s_{0}} & =\left(C_{s_{0}}^{\prime}\right)^{2} h^{2^{\kappa_{p}-1}+1} \tag{17}\\
C_{s_{1}} & =\left(C_{s_{1}}^{\prime}\right)^{2} h^{2^{\kappa_{p}-1}+1} \tag{18}\\
C_{r} & =C_{r}^{\prime} h^{2^{2 \kappa_{r}+\kappa_{m}}} \tag{19}\\
C_{a} & =C_{r}^{2^{2 \kappa_{p}}} C_{s_{0}}^{2^{\kappa_{p}}} C_{s_{1}} \tag{20}\\
C_{e_{0}} & =\left(C_{r} h^{m}\right)^{2^{\kappa_{p}}} C_{s_{0}} \tag{21}\\
C_{e_{1}} & =C_{r}^{2^{\kappa_{p}}} C_{s_{1}} . \tag{22}
\end{align*}
$$

The prover computes $a=\operatorname{Pack}\left(r, s_{0}, s_{1}\right), l_{a}=2^{2 \kappa_{p}} l_{r}+2^{\kappa_{p}} l_{s_{0}}+2 l_{s_{1}}, e_{0}=2^{\kappa_{p}}(r+$ $m)+s_{0}, l_{e_{0}}=2^{\kappa_{p}+1} l_{r}+2 l_{s_{0}}, e_{1}=2^{\kappa_{p}} r+s_{1}$, and $l_{e_{1}}=2^{\kappa_{p}+1} l_{r}+2 l_{s_{1}}$.
Note that C_{a} is a commitment of $a, C_{e_{0}}$ is a commitment of e_{0}, and $C_{e_{1}}$ is a commitment of e_{1}.
3. For all types of inputs the prover proves knowledge of a and l_{a} such that

$$
\begin{equation*}
C_{a}=g^{l_{a}} h^{a} \tag{23}
\end{equation*}
$$

In case (1) the prover proves knowledge of exponents such that Equations (10)(12) and Equation (16) are satisfied simultaneously, i.e., exponents are equal when appropriate. In case (2) the prover proves knowledge of exponents such that Equations (3)-(4), Equations (13)-(15), and Equation (16) are satisfied simultaneously, i.e., exponents are equal when appropriate. The use of $\pi_{e q}$ implies that the exponents satisfy $r^{\prime} \in\left[-2^{\kappa_{m}+2 \kappa_{r}}+1,2^{\kappa_{m}+2 \kappa_{r}}-1\right]$ and $s_{0}^{\prime}, s_{1}^{\prime} \in$ $\left[-2^{\kappa_{p}-\kappa_{p}^{\prime}+\kappa_{r}}+1,2^{\kappa_{p}-\kappa_{p}^{\prime}+\kappa_{r}}-1\right]$.
These proofs show that the committed values correspond to the encrypted signature.
4. The prover chooses $l_{0}, l_{0}^{\prime}, j_{0}, l_{1}, l_{1}^{\prime}, j_{1} \in\left[0,2^{\kappa_{\text {rsa }}+\kappa_{r}}-1\right]$ randomly, computes

$$
\begin{align*}
& \left(C_{0}, C_{0}^{\prime}, C_{0}^{\prime \prime}\right)=\left(g^{l_{0}} C_{r_{0}}^{e_{0}}, g^{l_{0}^{\prime}} h^{j_{0}},\left(c_{0}^{\prime}\right)^{j_{0}}\left(c_{0}^{\prime}\right)^{e_{0}}\right) \tag{24}\\
& \left(C_{1}, C_{1}^{\prime}, C_{1}^{\prime \prime}\right)=\left(g^{l_{1}} C_{r_{1}}^{e_{1}}, g^{l_{1}^{\prime}} h^{j_{1}},\left(c_{1}^{\prime}\right)^{j_{1}}\left(c_{1}^{\prime}\right)^{e_{1}}\right) \tag{25}
\end{align*}
$$

and hands $\left(C_{0}, C_{0}^{\prime}, C_{0}^{\prime \prime}, C_{1}, C_{1}^{\prime}, C_{1}^{\prime \prime}\right)$ to the verifier. Then the prover proves knowledge of exponents such that Equations (24)-(25) are satisfied and

$$
\begin{equation*}
\left(C_{e_{1}}, C_{1}, C_{1}^{\prime \prime} / g_{1}\right)=\left(g^{l_{e_{1}}} h^{e_{1}}, g^{l_{1}^{\prime \prime}} h^{j_{1}^{\prime}},\left(c_{1}^{\prime}\right)^{j_{1}} g_{1}^{j_{1}^{\prime}}\right) \tag{26}
\end{equation*}
$$

for some $l_{1}^{\prime \prime}$ and j_{1}^{\prime}.
Recall that for well-formed signatures this can always be proved.
5. If $b=1$, i.e., the input was a valid signature, the prover also proves knowledge of exponents such that

$$
\begin{equation*}
\left(C_{e_{0}}, C_{0}, C_{0}^{\prime \prime} / g_{0}\right)=\left(g^{l_{e_{0}}} h^{e_{0}}, g^{l_{0}^{\prime \prime}} h^{j_{0}^{\prime}},\left(c_{0}^{\prime}\right)^{j_{0}} g_{0}^{j_{0}^{\prime}}\right) \tag{27}
\end{equation*}
$$

for some $l_{0}^{\prime \prime}$ and j_{0}^{\prime}.
6. If $b=0$ then the prover chooses $i_{0}, i_{0}^{\prime}, i_{0}^{\prime \prime} \in\left[0,2^{\kappa_{r s a}+\kappa_{r}}-1\right]$ randomly, computes

$$
\begin{equation*}
\left(B_{0}, B_{0}^{\prime}, B_{0}^{\prime \prime}\right)=\left(g^{i_{0}} C_{0}^{i_{0}^{\prime \prime}}, g^{i_{0}^{\prime}}\left(C_{0}^{\prime}\right)^{i_{0}^{\prime \prime}},\left(C_{0}^{\prime \prime} / g_{0}\right)^{i_{0}^{\prime \prime}}\right) \tag{28}
\end{equation*}
$$

and proves in addition to knowledge of the above exponents also knowledge of $k_{0}, k_{0}^{\prime}, f_{0}, f_{0}^{\prime}$ such that

$$
\begin{equation*}
\left(B_{0}, B_{0}^{\prime}, B_{0}^{\prime \prime}\right)=\left(g^{k_{0}} h^{f_{0}}, g^{k_{0}^{\prime}} h^{f_{0}^{\prime}},\left(c_{0}^{\prime}\right)^{f_{0}^{\prime}} g_{0}^{f_{0}} d_{0}\right) \tag{29}
\end{equation*}
$$

for some $d_{0} \neq 1$ that is sent to the verifier.
Proposition 6.11. Protocol 6.10 is a proof of knowledge for the relation $\mathcal{R}_{\text {srsa }}^{\prime} \vee$ \mathcal{R}_{v} and $\mathcal{R}_{\text {srsa }}^{\prime} \vee \mathcal{R}_{e}$ for Case (1) and Case (2) inputs respectively under the discrete logarithm assumption.

Proof. The extractor simply invokes the extractor of the subprotocol $\pi_{e q}$. The proposition allows us to assume that it outputs exponents $l_{r}, l_{s_{0}}, l_{s_{1}}, l_{r_{0}}, l_{r_{1}}, r_{0}, r_{1}, a, l_{a}$, $r^{\prime} \in\left[-2^{\kappa_{m}+2 \kappa_{r}}+1,2^{\kappa_{m}+2 \kappa_{r}}-1\right]$, and $s_{0}^{\prime}, s_{1}^{\prime} \in\left[-2^{\kappa_{p}-\kappa_{p}^{\prime}+\kappa_{r}}+1,2^{\kappa_{p}-\kappa_{p}^{\prime}+\kappa_{r}}-1\right]$ such that

- Case (1): Equations (10)-(12), Equation (16), and Equation (23) are satisfied for some exponents t_{a}, t_{0}, t_{1}, or
- Case (2): Equations (13)-(15), Equation (16), and Equation (23) are satisfied for some exponents x, x_{0}, x_{1} and r.

For the unique $s k$ such that $(p k, s k)$ is well-formed it also holds that

$$
v_{a} u_{a}^{-x}=\eta^{a}, \quad v_{0} u_{0}^{-x}=\eta^{r_{0}}, \quad \text { and } \quad v_{1} u_{1}^{-x}=\eta^{r_{1}} .
$$

In other words the committed values are equal to the encrypted values. In addition to this we also have an exponent l_{a}^{*} such that

$$
C_{a}=g^{l_{a}^{*}} h^{\operatorname{Pack}\left(r, s_{0}, s_{1}\right)},
$$

where $s_{0}=2 s_{0}^{\prime}+2^{\kappa_{p}-1}+1$ and $s_{1}=2 s_{1}^{\prime}+2^{\kappa_{p}-1}+1$. We may assume that $\left(a, l_{a}\right)=$ $\left(\operatorname{Pack}\left(r, s_{0}, s_{1}\right), l_{a}^{*}\right)$, since otherwise we can define $\eta_{1}=l_{a}^{*}-l_{a}$ and $\eta_{2}=\operatorname{Pack}\left(r, s_{0}, s_{1}\right)-a$ and have $\left((N, g, h),\left(1,0, \eta_{1}, \eta_{2}\right)\right) \in \mathcal{R}_{\text {srsa }}^{\prime}$.

From Equations (19)-(22) we get exponents $r=r^{\prime}+2^{2 \kappa_{r}+\kappa_{m}}, e_{0}=2^{\kappa_{p}}(r+m)+s_{0}$, $l_{e_{0}}, e_{1}=2^{\kappa_{p}} r+s_{1}$, and $l_{e_{1}}$ such that

$$
\left(C_{e_{0}}, C_{e_{1}}\right)=\left(g^{l_{e_{0}}} h^{e_{0}}, g^{l_{e_{1}}} h^{e_{1}}\right) .
$$

Note that $r \in\left[1,2^{2 \kappa_{r}+\kappa_{m}+1}-1\right]$ and the exponents s_{0} and s_{1} are odd by construction and contained in $\left[0,2^{\kappa_{p}}-1\right]$, since $\kappa_{p}^{\prime} \geq \kappa_{r}+2$ by Equation (1). Furthermore, e_{0}
and e_{1} are formed from r, m, s_{0}, and s_{1} as defined by the twin-moduli signature scheme. Thus, all that remains of the verification of the encrypted candidate twinmoduli signature is to consider how e_{0} and e_{1} relate to $z_{0}=c_{0}^{\prime} / g_{0}^{r_{0}}$ and $z_{1}=c_{1}^{\prime} / g_{0}^{r_{1}}$. Recall that for any well-formed twin-moduli signature both g_{0} and g_{1} are invertible and we have $z_{1}^{e_{1}}=g_{1}$.

From Equations (24) and (25) we have exponents $e_{1}^{*}, l_{e_{1}}^{*}, l_{1}, l_{1}^{\prime}$, and j_{1} such that

$$
\begin{aligned}
& \left(C_{e_{0}}, C_{0}, C_{0}^{\prime}, C_{0}^{\prime \prime}\right)=\left(g^{l_{e_{0}^{*}}^{*}} h^{e_{0}^{*}}, g^{l_{0}} C_{r_{0}^{e}}^{e_{0}^{*}} g^{l_{0}^{\prime}} h^{j_{0}},\left(c_{0}^{\prime}\right)^{j_{0}}\left(c_{0}^{\prime}\right)^{e_{0}^{*}}\right) \\
& \left(C_{e_{1}}, C_{1}, C_{1}^{\prime}, C_{1}^{\prime \prime}\right)=\left(g^{l_{e_{1}}^{*}} h^{e_{1}^{*}}, g^{l_{1}} C_{r_{1}^{*}}^{e_{1}^{*}}, g^{l_{1}^{\prime}} h^{j_{1}},\left(c_{1}^{\prime}\right)^{j_{1}}\left(c_{1}^{\prime}\right)^{e_{1}^{*}}\right)
\end{aligned}
$$

Similarly to the above, we may assume that $\left(l_{e_{0}}^{*}, e_{0}^{*}\right)=\left(l_{e_{0}}, e_{0}\right)$ and $\left(l_{e_{1}}^{*}, e_{1}^{*}\right)=$ $\left(l_{e_{1}}, e_{1}\right)$. From Equation (26) we get additional exponents $l_{1}^{\prime \prime}$ and j_{1}^{\prime} such that

$$
\begin{equation*}
\left(C_{1}, C_{1}^{\prime \prime} / g_{1}\right)=\left(g^{l_{1}^{\prime \prime}} h^{j_{1}^{\prime}},\left(c_{1}^{\prime}\right)^{j_{1}} g_{1}^{j_{1}^{\prime}}\right) . \tag{30}
\end{equation*}
$$

Thus, we have $g^{l_{r_{1}} e_{1}+l_{1}} h^{r_{1} e_{1}}=C_{1}=g^{j_{1}^{\prime \prime}} h^{j_{1}^{\prime}}$, and similarly to the above we may assume that $j_{1}^{\prime}=r_{1} e_{1}$. This then implies that $\left(c_{1}^{\prime}\right)^{j_{1}}\left(c_{1}^{\prime}\right)^{e_{1}}=C_{1}^{\prime \prime}=\left(c_{1}^{\prime}\right)^{j_{1}} g_{1}^{r_{1} e_{1}} g_{1}$. By assumption both c_{1}^{\prime} and g_{1} are invertible modulo N_{1}. Thus, we have $\left(c_{1}^{\prime} / g_{1}^{r_{1}}\right)^{e_{1}}=g_{1}$ as expected.

If $b=1$, i.e., we expect to extract a valid signature, then from Equation (27) we get additional exponents $l_{0}^{\prime \prime}$ and j_{0}^{\prime} such that

$$
\begin{equation*}
\left(C_{0}, C_{0}^{\prime \prime} / g_{0}\right)=\left(g^{l_{0}^{\prime \prime}} h^{j_{0}^{\prime}},\left(c_{0}^{\prime}\right)^{j_{0}} g_{0}^{j_{0}^{\prime}}\right) \tag{31}
\end{equation*}
$$

Similarly to the above it follows that $\left(c_{0}^{\prime} / g_{0}^{r_{0}}\right)^{e_{0}}=g_{0}$ as expected. To summarize, the ciphertext contains a valid, and well-formed, twin-moduli signature $\left(r, z_{0}, s_{0}, z_{1}, s_{1}\right)$ of the message m relative the public key $s p k$.

If $b=0$ we instead have exponents $i_{0}, i_{0}^{\prime}, i_{0}^{\prime \prime}, k_{0}, f_{0}, k_{0}^{\prime}$, and f_{0}^{\prime} such that

$$
\begin{aligned}
& \left(B_{0}, B_{0}^{\prime}, B_{0}^{\prime \prime}\right)=\left(g^{i_{0}} C_{0}^{i_{0}^{\prime \prime}}, g^{i_{0}^{\prime}}\left(C_{0}^{\prime}\right)^{i_{0}^{\prime \prime}},\left(C_{0}^{\prime \prime} / g_{0}\right)^{i_{0}^{\prime \prime}}\right), \quad \text { and } \\
& \left(B_{0}, B_{0}^{\prime}, B_{0}^{\prime \prime}\right)=\left(g^{k_{0}} h^{f_{0}}, g^{k_{0}^{\prime}} h^{f_{0}^{\prime}},\left(c_{0}^{\prime}\right)^{f_{0}^{\prime}} g_{0}^{f_{0}} d_{0}\right) .
\end{aligned}
$$

Thus, we have $g_{0}^{i_{0}} C_{0}^{i_{0}^{\prime \prime}}=g^{l_{r_{0}} e_{0} i_{0}^{\prime \prime}+l_{0} i_{0}^{i^{\prime}+i_{0}}} h^{r_{0} e_{0} i_{0}^{\prime \prime}}=B_{0}=g^{k_{0}} h^{f_{0}}$ and $g^{i_{0}^{\prime}}\left(C_{0}^{\prime}\right)^{i_{0}^{\prime \prime}}=$ $g^{l_{0}^{\prime} i_{0}^{\prime \prime}+i_{0}^{\prime}} h^{j_{0} i_{0}^{\prime \prime}}=B_{0}^{\prime}=g^{k_{0}^{\prime}} h^{f_{0}^{\prime}}$. We conclude that $f_{0}=r_{0} e_{0} i_{0}^{\prime \prime}$ and $f_{0}^{\prime}=j_{0} i_{0}^{\prime \prime}$. We also have

$$
\left(C_{0}^{\prime \prime} / g_{0}\right)^{i_{0}^{\prime \prime}}=\left(c_{0}^{\prime}\right)^{j_{0} i_{0}^{i_{0}^{\prime}}}\left(\left(c_{0}^{\prime}\right)^{e_{0}} / g_{0}\right)^{i_{0}^{\prime \prime}}=B_{0}^{\prime \prime}=\left(c_{0}^{\prime}\right)^{f_{0}^{\prime}} g_{0}^{f_{0}} d_{0} .
$$

Since both c_{0}^{\prime} and g_{0} are invertible modulo N_{0}, this implies that

$$
\left(\left(c_{0}^{\prime}\right)^{e_{0}} / g_{0}\right)^{i_{0}^{\prime \prime}}=g_{0}^{r_{0} e_{0} i_{0}^{\prime \prime}}\left(\left(c_{0}^{\prime} / g_{0}^{r_{0}}\right)^{e_{0}} / g_{0}\right)^{i_{0}^{\prime \prime}}=g_{0}^{f_{0}} d_{0}
$$

i.e., $\left(\left(c_{0}^{\prime} / g_{0}^{r_{0}}\right)^{e_{0}} / g_{0}\right)^{i_{0}^{\prime \prime}}=d_{0}$. Finally, we conclude that $\left(c_{0}^{\prime} / g_{0}^{r_{0}}\right)^{e_{0}} / g_{0} \neq 1$ as expected, since $d_{0} \neq 1$. To summarize, the ciphertext contains an invalid, but well-formed, twinmoduli signature ($r, z_{0}, s_{0}, z_{1}, s_{1}$) of the message m relative the public key $s p k$.

Let $T_{h s}^{\prime}$ be identical to $T_{h s}$ except that the parameters $\left(N_{r}, g_{r}\right)$ are excluded from the output, and let $F_{h s}^{\prime}$ be defined as $F_{h s}$ except that $\left(N_{r}, g_{r}\right)$ is not in its input. Define $T_{c s}^{\prime}$ and $F_{c s}^{\prime}$ correspondingly. We prove the following two propositions jointly.

Proposition 6.12. Protocol 6.10 is $\left(T_{\emptyset}\left\|T_{\emptyset}, F_{s r s a}^{\prime}\right\| \mathrm{Kg}_{\mathrm{s}}^{\mathrm{dc}}\right)$-zero-knowledge for Case (1) inputs under the discrete logarithm assumption.
Proposition 6.13. Protocol 6.10 is $\left(T_{\emptyset}\left\|T_{h s}^{\prime}, F_{s r s a}^{\prime}\right\| F_{h s}^{\prime}\right)$-zero-knowledge as well as $\left(T_{\emptyset}\left\|T_{c s}^{\prime}, F_{s r s a}^{\prime}\right\| F_{c s}^{\prime}\right)$-zero-knowledge for Case (2) inputs under the discrete logarithm assumption.

Proof (Propositions 6.12 and 6.13). Consider first an input with $b=1$, i.e., the DCsignature is valid. The simulator chooses $C_{r}^{\prime}, C_{s_{0}}^{\prime}, C_{s_{1}}^{\prime}, C_{r_{0}}, C_{r_{1}}, C_{0}, C_{0}^{\prime}, C_{1}, C_{1}^{\prime} \in S Q_{N}$, $C_{0}^{\prime \prime} \in\left\langle c_{0}^{\prime}\right\rangle$ and $C_{1}^{\prime \prime} \in\left\langle c_{1}^{\prime}\right\rangle$ randomly and then invokes the zero-knowledge simulator of $\pi_{e q}$. Since all commitments are statistically hiding it follows from the zero-knowledge property of $\pi_{e q}$ that the resulting simulation is acceptable.

Consider now an input with $b=0$, i.e., the DC-signature is invalid. In this case the simulator chooses the commitments above as before, but also computes $B_{0}, B_{0}^{\prime}, B_{0}^{\prime \prime}$ as in the protocol. Provided that the simulator can form a correctly distributed d_{0}, it can then invoke the zero-knowledge simulator of $\pi_{e q}$, and we may conclude that the protocol is zero-knowledge. Unfortunately, it seems difficult to generate a correctly distributed d_{0} for an arbitrary $s p k$ that may be maliciously generated. The problem is that N_{0}, z_{0}, and e_{0} may be chosen maliciously, and if they are it may be the case that $z_{0}^{e_{0}} / g_{0}$ generates some particular subgroup of $\mathbb{Z}_{N_{0}}^{*}$. The distinguisher could then tell the difference between a simulation and a real execution using the factorization of N_{0}. Fortunately, we do not need a zero-knowledge simulator.

The $\left(T_{c s}^{\prime}, F_{c s}^{\prime}\right)$-zero-knowledge simulator can of course use its advice to compute d_{0} exactly as is done in the protocol. Thus, the distribution of the simulated d_{0} is identical to that in a real execution.

The $\left(T_{h s}^{\prime}, F_{h s}^{\prime}\right)$-zero-knowledge simulator simply chooses $d_{0} \in S Q_{N_{0}}$ randomly. This works, since for the instance the protocol is executed, the signature is constructed honestly. More precisely, we know that $z_{0}^{e_{0}^{\prime}}=g_{0}$ for some $e_{0}^{\prime} \neq e_{0}$. Thus, z_{0} generates $S Q_{N_{0}}$ and we may write $z_{0}^{e_{0}} / g_{0}=z_{0}^{e_{0}-e_{0}^{\prime}}$. By construction $e_{0}=2^{\kappa_{p}}(r+m)+s_{0}$ with $r \in\left[1,2^{\kappa_{m}+2 \kappa_{r}}-1\right]$ and $m \in\left[0,2^{\kappa_{m}}-1\right]$, so $\left|e_{0}-e_{0}^{\prime}\right|$ is smaller than the orders of both non-trivial subgroups of $S Q_{N_{0}}$ for every $m \in\left[0,2^{\kappa_{m}}-1\right]$ due to Equation (2). This implies that $z_{0}^{e_{0}-e_{0}^{\prime}}$ generates $S Q_{N_{0}}$.

Thus, we conclude that the proposition is true.
We now have the following corollaries from Lemma 5.12.
Corollary 6.14. The special composition π_{v} of $\pi_{t p}$ and Protocol 6.10 for Case (1) is $a \mathrm{Kg}_{\mathrm{s}}^{\mathrm{dc}}$-zero-knowledge proof of knowledge for the relation \mathcal{R}_{v} under the strong $R S A$ assumption and the discrete logarithm assumption.

Corollary 6.15. The special composition π_{e} of $\pi_{t p}$ and Protocol 6.10 for Case (2) is $a\left(T_{h s}, F_{h s}\right)$-zero-knowledge and $\left(T_{c s}, F_{c s}\right)$-zero-knowledge proof of knowledge for the relation \mathcal{R}_{v} under the strong $R S A$-assumption and the discrete logarithm assumption.

6.7 Complexity Analysis

For simplicity we estimate the efficiency of the scheme without any non-trivial optimizations. For each composite modulus used in the protocols either the prover or the verifier knows the factorization and can exponentiate using Chinese remaindering.

There are also a number of well known techniques to improve the efficiency of schemes such us ours, e.g., off-line precomputation, combining commitments, and speeding up computing multiple exponentiations and fixed based exponentiations. We expect these techniques to reduce the complexity of our protocols substantially.

We use the following assumptions in our analysis. Exponentiation modulo a ($\kappa+$ κ^{\prime})-integer is computationally equivalent to $\left(\frac{\kappa+\kappa^{\prime}}{\kappa}\right)^{3}$ exponentiations modulo a κ-bit integer. Exponentiation modulo a κ-bit integer, where the exponent has $\kappa+\kappa^{\prime}$ bits is equivalent to $1+\frac{\kappa^{\prime}}{\kappa}$ exponentiations modulo a κ-bit integer.

We assume that the $\left(f, f^{\prime}\right)$-embedding assumption holds with $\kappa_{p}=f\left(\kappa_{r}+\kappa_{m}+1\right)=$ $2 \kappa_{r}$ and $f^{\prime}\left(\kappa_{r}+\kappa_{m}+1\right)=\kappa_{r}+2$. For our estimates below we assume that on average the embedding algorithm $\mathrm{Emb}_{f}^{f^{\prime}}$ requires the equivalent of $2 \kappa^{\prime}\left(\frac{\kappa^{\prime}}{\kappa}\right)^{3} \kappa$-bit exponentiations, where $\kappa^{\prime}=\kappa_{p}+\kappa_{m}+2 \kappa_{r}$ to find an embedding. In other words we assume that given $r \in\left[0,2^{\kappa_{m}+2 \kappa_{r}}-1\right]$ the embedding algorithm tries random odd s until $e=2^{\kappa_{p}} r+s$ is prime, and we assume that each such odd integer is prime with probability roughly $\delta=\frac{2}{\kappa^{\prime} \ln 2}$ (this is reasonable since a random κ^{\prime}-bit integer is prime with probability roughly $1 / \kappa \ln 2$). We also assume that in each iteration the Miller-Rabin test identifies a composite as such with probability $3 / 4$, and that the output probable prime passes κ_{c} iterations. Thus, our estimate follows from estimating the extected number of exponentiations to $\sum_{i=0}^{\infty} \delta(1-\delta)^{i} \frac{4}{3} i+\kappa_{c} \leq 2 \kappa^{\prime}$, for reasonable choices of κ_{r} and κ_{c}.

Recall that the Cramer et al. [7] protocol $\pi_{p l}$ for proving knowledge of a logarithm requires 4 exponentiations for the prover and 6 exponentiations for the verifier over the prime order group in which the protocol is executed.

By tedious book-keeping we have written a program that computes the complexity of all operations and protocols taking into account the various bit-sizes of moduli and exponents. Table 1 summarizes the results for a set of practical parameters. We stress that these values do not include the cost for checking primality and for generating RSA-parameters, see Remark 5.6 and 5.11 for a discussion on this. The size of a signature is $18 \kappa_{p a}+2 \kappa_{r s a}$ bits, which for the choice of parameters in Table 1 amounts to about 22 kB .

Operation	Alg./Prot.	Signer	Confirmer	Verifier
Signing	$\mathrm{Sig}^{\mathrm{dc}}$	140		
Converting	$\mathrm{Con}^{\mathrm{dc}}$		66	
Verifying	$\mathrm{Vf}^{\mathrm{dc}}$			1
Well-Formedness	$\pi_{w f}$		61	59
Correctness of conversion	π_{c}		327	227
Validity/Invalidity	π_{e}		189	169
Validity	π_{v}	166		151

Table 1: The estimated average complexity of the algorithms and the protocols in terms of κ-bit exponentiations when $\kappa=1024, \kappa_{r}=\kappa_{c}=50$, and $\kappa_{m}=160$.

7 Acknowledgments

I thank Ronald Cramer and Ivan Damgård for answering my questions about their work, I thank Dominik Raub and Stefano Tessaro for discussions on non-transferability, and I thank the anonymous reviewers of TCC 2007 for helpful comments.

References

[1] N. Barić and B. Pfitzmann. Collision-free accumulators and fail-stop signature scheme. In Advances in Cryptology - Eurocrypt '97, volume 1233 of Lecture Notes in Computer Science, pages 480-494. Springer Verlag, 1997.
[2] F. Boudot. Efficient proofs that a committed number lies in an interval. In Advances in Cryptology - Eurocrypt 2000, volume 1807 of Lecture Notes in Computer Science, pages 431-444. Springer Verlag, 2000.
[3] J. Camenisch and Markus Michels. Confirmer signature schemes secure against adaptive adversaries. In Advances in Cryptology - Eurocrypt 2000, Lecture Notes in Computer Science, pages 243-258. Springer Verlag, 2000.
[4] J. Camensisch and V. Shoup. Practical verifiable encryption and decryption of discrete logarithms. In Advances in Cryptology - Crypto 2003, volume 2729 of Lecture Notes in Computer Science, pages 126-144. Springer Verlag, 2003.
[5] D. Chaum. Designated confirmer signatures. In Advances in Cryptology - Eurocrypt '94, volume 950 of Lecture Notes in Computer Science, pages 86-91. Springer Verlag, 1994.
[6] D. Chaum and H. van Antwerpen. Undeniable signatures. In Advances in Cryptology - Crypto '89, volume 435 of Lecture Notes in Computer Science, pages 212-216. Springer Verlag, 1990.
[7] R. Cramer, I. Damgård, and P. D. MacKenzie. Efficient zero-knowledge proofs of knowledge without intractability assumptions. In Public Key Cryptography PKC 2000, volume 1751, pages 354-372. Springer Verlag, 2000.
[8] R Cramer, I. Damgård, and T. P. Pedersen. Efficient and provable security amplifications. In Security Protocols, International Workshop, Cambridge, United Kingdom, April 10-12, 1996, Proceedings, volume 1189 of Lecture Notes in Computer Science, pages 101-109. Springer, 1996.
[9] R. Cramer and V. Shoup. Signature schemes based on the strong RSA assumption. In 6th ACM Conference on Computer and Communications Security (CCS), pages 46-51. ACM Press, 1999.
[10] R. Cramer and V. Shoup. Universal hash proofs and a paradigm for adaptive chosen ciphertext secure public-key encryption. http://homepages.cwi. nl/~cramer/, June 1999.
[11] I. Damgård and E. Fujisaki. A statistically-hiding integer commitment scheme based on groups with hidden order. In Advances in Cryptology - Asiacrypt 2002, volume 2501 of Lecture Notes in Computer Science, pages 125-142. Springer Verlag, 2002.
[12] W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Transactions on Information Theory, 22(6):644-654, 1976.
[13] D. Dolev, C. Dwork, and M. Naor. Non-malleable cryptography. In 23rd $A C M$ Symposium on the Theory of Computing (STOC), pages 542-552. ACM Press, 1991.
[14] E. Fujisaki and T. Okamoto. Statistical zero knowledge protocols to prove modular polynomial relations. In Advances in Cryptology - Crypto '97, volume 1294 of Lecture Notes in Computer Science, pages 16-30. Springer Verlag, 1997.
[15] R. Gennaro, S. Halevi, and T. Rabin. Secure hash-and-sign signatures without the random oracle. In Advances in Cryptology - Eurocrypt '99, volume 1592 of Lecture Notes in Computer Science, pages 123-139. Springer Verlag, 1999.
[16] C. Gentry, D. Molnar, and Z. Ramzan. Efficient designated confirmer signatures without random oracles or zero-knowledge proofs (extended abstract). In $A d-$ vances in Cryptology - Asiacrypt 2005, volume 3788 of Lecture Notes in Computer Science, pages 662-681. Springer Verlag, 2005.
[17] O. Goldreich. A uniform-complexity treatment of encryption and zeroknowledge. Journal of Cryptology, 6(1):21-53, 1993.
[18] S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme secure against adaptive chosen-message attacks. SIAM Journal on Computing, 17(2):281-308, 1988.
[19] S. Goldwasser and E. Waisbard. Transformation of digital signature schemes into designated confirmer signatures. In 1st Theory of Cryptography Conference (TCC), volume 2951 of Lecture Notes in Computer Science, pages 77-100. Springer Verlag, 2004.
[20] M. Jakobsson, K. Sako, and R. Impagliazzo. Designated verifier proofs and their applications. In Advances in Cryptology - Eurocrypt '96, volume 1070 of Lecture Notes in Computer Science, pages 143-154. Springer Verlag, 1996.
[21] W. Mao and C.H. Lim. Cryptanalysis of subgroups of \mathbb{Z}_{n}^{*} advances in cryptology. In Advances in Cryptology - Asiacrypt '98, volume 1514 of Lecture Notes in Computer Science, pages 214-216. Springer Verlag, 1998.
[22] M. Michels and M. Stadler. Generic constructions for secure and efficient confirmer signature schemes. In Advances in Cryptology - Eurocrypt 1998, volume 1403 of Lecture Notes in Computer Science, pages 406-421. Springer Verlag, 1998.
[23] T. Okamoto. Designated confirmer signatures and public key encryption are equivalent. In Advances in Cryptology - Crypto '94, volume 839 of Lecture Notes in Computer Science, pages 61-74. Springer Verlag, 1994.
[24] P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. In Advances in Cryptology - Eurocrypt '99, volume 1592 of Lecture Notes in Computer Science, pages 223-238. Springer Verlag, 1999.
[25] R. Pass and A. Rosen. New and improved constructions of non-malleable cryptographic protocols. In 37th ACM Symposium on the Theory of Computing (STOC), pages 533-542. ACM Press, 2005.
[26] V. Shoup and R. Gennaro. Securing threshold cryptosystems against chosen ciphertext attack. In Advances in Cryptology - Eurocrypt '98, volume 1403 of Lecture Notes in Computer Science, pages 1-16. Springer Verlag, 1998.
[27] D. Wikström. On the security of mix-nets and hierarchical group signatures. Doctoral thesis, Department of Numerical Analysis and Computer Science, Royal Institute of Technology, TRITA NA 05-38, ISSN 0348-2952, ISRN KTH/NA/R--05/38--SE, ISBN 91-7283-717-9, December 2005, http://www.kth.se.
[28] Douglas Wikström. Designated confirmer signatures revisited. In 4th Theory of Cryptography Conference (TCC), volume 4392 of Lecture Notes in Computer Science, pages 342-361. Springer Verlag, 2007.

A Detailed Descriptions of Problems With Some Previous Definitions

In this section we describe problems we see with some previous definitions.

A. 1 Camenisch and Michels [3]

For the discussion in this section we assume familiarity with [3]. Consider "Security for the signer" on page 246 in [3]. First the key generators for the signer and confirmer are executed and the adversary is given the public key y_{S} of the signer and the public key y_{C} and secret key x_{C} of the confirmer. Then the adversary is allowed oracle access to the signer, and it must output a signature of a message it did not send as a query to the signer. For every adversary its success probability should be negligible, where the probability is taken over the key generators. The definition says nothing about the success probability when the adversary can choose y_{C}, i.e., unforgeability is not guaranteed against malicious confirmers.

Consider the definition of non-transferability on page 247 in [3]. The definition states that there must exist a "simulator" such that Game 1 and Game 2 are indistinguishable. The notion of a simulator is not defined, but we assume that it is an expected or strict polynomial machine. Game 2 is defined in such a way that the simulator must execute an interactive proof with the adversary without using a witness, and without rewinding. This is of course impossible, since the existence of such a simulator contradicts the soundness of the interactive proof. Most likely the authors meant to formalize an experiment such that the simulator can be rewound.

A. 2 Goldwasser and Waisbard [19]

For the discussion in this section we assume familiarity with [19]. Consider the definition of unforgeability in [19], i.e., Definition 1, point 6(a). The forging algorithm is given the signers public key $P K_{s}$ and the confirmers public key $P K_{c}$ and secret key $S K_{c}$. Then the forger is allowed to request signatures of arbitrary messages and must come up with a valid signature of a new message. A scheme is unforgeable if no adversary can do this with non-negligible probability, where the probability is taken over the randomness of the keys $P K_{s}, P K_{c}$, and $S K_{c}$. This means that the definition says nothing about the probability of forging a valid signature of a new message when the adversary is allowed to choose $P K_{c}$, i.e., unforgeability is not guaranteed against malicious confirmers.

Goldwasser and Waisbard [19] claim that it suffices to use witness hiding protocols. However, Definition 1 point 6(b) in [19], that deals with non-transferability only requires that the adversary can not convince a third party using the confirmation protocol ConfirmedSign of the designated signature scheme. It does not rule out the existence of another protocol different from the confirmation protocol for proving the validity of a signature. More precisely, there could exist a sound protocol that is not a proof of knowledge, with which the adversary can convince a distrustful verifier. The witness-hiding property of the protocols does not rule out that the adversary by interacting with the signer and confirmer gains the ability to convince a distrustful verifier using such a protocol.

Going back to the job offer scenario, this means that nothing prevents a candidate from convincing a third party that it was given a job offer from a certain employer.

Another problem with the definition in [19] is that the adversary is not given access to a conversion oracle. Thus, the definition says nothing about the ability of the adversary to forge signatures or transfer knowledge of the validity of signatures, when it sees some converted signatures.

A. 3 Gentry, Molnar, and Ramzan [16]

For the discussion in this section we assume familiarity with [16]. Consider the definition of experiment "Exp-No-FoolVerifier" on page 72 in [16]. It clearly states that adversary is given the public key $\mathrm{SGk}_{\mathcal{S}}$ of the signer and secret key $\mathrm{Sk}_{\mathcal{C}}$ of the confirmer. However, these keys are honestly generated. Thus, the definition says nothing about the success probability of the adversary when it is allowed to choose the confirmer key, i.e., unforgeability is not ensured for malicious confirmers.

As for transferability the authors of [16] admit (see page 72) that they do not even aim for a solution that is non-transferable. Indeed, the holder of a DC-signature using their definition can always prove that the signer was involved in the computation of the signature.

B Proof of Equal Exponents

Denote by $\pi_{p l}=\left(P_{p l}, V_{p l}\right)$ the zero-knowledge proof of knowledge of a logarithm for prime order groups described by Cramer et al. [7].
Protocol B. 1 (General Equality Relations).
Common Input: An integer N, and $g, h \in \mathbb{Z}_{N}^{*}$. Positive integers n_{1}, \ldots, n_{k}, positive
integer bit-sizes $\left(\left(\left(\kappa_{i, j, l}\right)_{l=1}^{s_{j}}\right)_{j=1}^{t_{i}}\right)_{i=1}^{k}$, elements $\left(\left(\left(g_{i, j, l}\right)_{l=1}^{s_{j}}\right)_{j=1}^{t_{i}}\right)_{i=1}^{k}$ and $\left.\left(\left(u_{i, j}\right)_{j=1}^{t_{i}}\right)_{i=1}^{k}\right)$, where for all j, l it holds that $g_{i, j, l}, u_{i, j} \in \mathbb{Z}_{n_{i}}^{*}$.
Private Input: Exponents $\left(\left(\left(x_{i, j, l}\right)_{l=1}^{s_{j}}\right)_{j=1}^{t_{i}}\right)_{i=1}^{k}$, in the intervals $x_{i, j, l} \in\left[-2^{\kappa_{i, j, l}}+\right.$ $\left.1,2^{\kappa_{i, j, l}}-1\right]$ such that for all i, j it holds that $u_{i, j}=\prod_{l=1}^{l_{j}} g_{i, j, l}^{x_{i, j, l}} \bmod n_{i}$.

1. The verifier chooses a safe κ-bit prime $P=2 Q+1$, and $H \in G_{Q}$ randomly. Then it chooses $x \in \mathbb{Z}_{Q}$ randomly, computes $K=H^{x}$, hands (P, H, K) to the generator, and executes $\pi_{p l}$ as the prover on common input (P, H, K) and private input x. If the verifier of $\pi_{p l}$ rejects the prover hands \perp to the verifier and halts.
2. The prover chooses $r \in\left[0,2^{\kappa+\kappa_{r}}-1\right], c_{p} \in\left[0,2^{\kappa_{c}-1}-1\right]$, and $z_{i, j, l} \in\left[0,2^{\kappa+\kappa_{r}}-\right.$ 1] randomly, computes $w=K^{r} H^{c_{p}}, v_{i, j, l}=g^{z_{i, j, l}} h^{x_{i, j, l}}$, and hands the tuple $\left(w,\left(\left(\left(v_{i, j, l}\right)_{l=1}^{s_{j}}\right)_{j=1}^{t_{i}}\right)_{i=1}^{k}\right)$ to the verifier.
3. The prover checks that P is a safe prime. Then it chooses $r_{i, j, l} \in\left[0,2^{\kappa_{i, j, l}+\kappa_{c}+\kappa_{r}-}\right.$ 1] and $r_{i, j, l}^{\prime} \in\left[0,2^{\kappa+\kappa_{c}+2 \kappa_{r}}-1\right]$ randomly, computes $\alpha_{i, j}=\prod_{l=1}^{s_{j}} g_{i, j, l}^{r_{i, j}} \bmod n_{i}$, and $\beta_{i, j, l}=g^{r_{i, j, l}^{\prime}} h^{r_{i, j, l}} \bmod N$, and hands $\left.\left(\left(\alpha_{i, j},\left(\beta_{i, j, l}, \gamma_{i, j, l}\right)_{l=1}^{s_{j}}\right)_{j=1}^{t_{i}}\right)_{i=1}^{k}\right)$ to the verifier.
4. The verifier chooses $c_{v} \in\left[2^{\kappa_{c}-1}, 2^{\kappa}-1\right]$ randomly and hands c_{v} to the prover.
5. The prover computes $c=c_{p} \oplus c_{v}, d_{i, j, l}=x_{i, j, l} c+r_{i, j, l} \bmod 2^{\kappa_{i, j, l}+\kappa_{c}+\kappa_{r}}$, and $e_{i, j, l}=z_{i, j, l} c+r_{i, j, l}^{\prime} \bmod 2^{\kappa+\kappa_{c}+2 \kappa_{r}}$ and hands $\left(r, c_{p},\left(\left(\left(d_{i, j, l}, e_{i, j, l}\right)_{l=1}^{s_{j}}\right)_{j=1}^{t_{i}}\right)_{i=1}^{k}\right)$ to the verifier.
6. The verifier checks that $c_{p} \in\left[0,2^{\kappa_{c}-1}-1\right], w=H^{r} K^{c_{p}}, u_{i, j}^{c} \alpha_{i, j}=\prod_{l=1}^{s_{j}} g_{i, j, l}^{d_{i, j} l} \bmod$ n_{i}, and that $v_{i, j, l}^{c} \beta_{i, j, l}=g^{e_{i, j, l}} h^{d_{i, j, l}} \bmod N$.

It is easy to see that a verifier can reuse the same (P, H, K) in every invokation of the protocol, and these parameters can be generated in advance. We state the protocol as above to avoid unnecessary cluttering of our notation. We denote the protocol above by $\pi_{e q}=\left(P_{e q}, V_{e q}\right)$.
Remark B.2. For exponents $x_{i, j, 1}$ and $x_{i, j, 2}$ such that $n_{i}=N$ and $u_{i, j}=g^{x_{i, j, 1}} h^{x_{i, j, 2}}$ there is no need to construct separate commitments $v_{i, j, 1}$ and $v_{i, j, 2}$. We use this observation in our complexity estimates.

C Cryptographic Assumptions

C. 1 Safe Prime Assumption

Recall that a prime p is said to be safe if $(p-1) / 2$ is prime. It is not even known if there are infinitely many safe primes, but in practice the probability that a random prime p is safe is roughly $1 / \log p$. Formally, we make an assumption.

Definition C. 1 (Safe Prime Assumption). There exists an integer $c>0$ such that a random κ-bit prime p is safe with probability at least κ^{-c}.

C. 2 Strong RSA-Assumption

The strong RSA-assumption says that it is infeasible to compute any non-trivial root of a random element in $S Q_{N}$ where N is an RSA-modulus, even if allowed to select which root to compute.

This assumption was first considered by Barić and Pfitzmann [1] and differs from the standard RSA-assumption in that the root to compute is not predetermined. Currently the fastest known method to solve this problem is to factor N, but it is not known if the strong RSA-assumption is equivalent to the factoring assumption.

Definition C. 2 (Strong RSA-Assumption). Let p and q be randomly chosen $\kappa / 2$ bit safe primes, define $N=p q$, and let $g \in S Q_{N}$ be randomly chosen. Then for every $A \in \mathrm{PPT}$ the probability $\operatorname{Pr}\left[A(N, g)=(b, e) \wedge e \neq \pm 1 \wedge b^{e}=g \bmod N\right]$ is negligible.

In contrast to the original assumption made in [1] we assume that the factors of N are safe primes, but it is easy to see that our assumption is equivalent to the original if the safe prime assumption holds.

To simplify our proofs use use the following lemma. A weak version of the lemma can be found in Damgård and Fujisaki [11], but our lemma is slightly stronger. In their analysis it is essential that the bit-size of η_{0} is smaller than $\kappa / 2$. In [27] it is shown that this restriction is not necessary.

Lemma C. 3 (Variants of Strong RSA-Assumption). Assume that the strong $R S A$-assumption is true. Let p and q be randomly chosen $\kappa / 2$-bit safe primes, define $N=p q$, and let $g, h \in S Q_{N}$ be random. Then for all adversaries $A \in \mathrm{PPT}$ the probabilities

$$
\begin{aligned}
& \operatorname{Pr}\left[A(N, g, h)=\left(b, \eta_{0}, \eta_{1}, \eta_{2}\right) \wedge \eta_{0} \neq 0 \wedge\left(\eta_{0} \nmid \eta_{1} \vee \eta_{0} \nmid \eta_{2}\right)\right. \\
& \left.\quad \wedge b^{\eta_{0}}=g^{\eta_{1}} h^{\eta_{2}} \bmod N\right] \\
& \operatorname{Pr}\left[A(N, g, h)=\left(b, \eta_{1}, \eta_{2}\right) \wedge\left(\eta_{1}, \eta_{2}\right) \neq(0,0) \wedge g^{\eta_{1}}=h^{\eta_{2}} \bmod N\right]
\end{aligned}
$$

are negligible.

C.2.1 A Simplifying Convention

Consider any computation involving an RSA-modulus N where the inverse of an element $a \in \mathbb{Z}_{N}$ must be computed. In principle, it could happen that a is not a unit in \mathbb{Z}_{N}. However, if such an element is encountered with non-negligible probability in a computation where the factorization of N is not known, we have of course found one of the factors of N and the strong RSA-assumption is broken.

To simplify the exposition of the protocols and their analysis we assume, without loss, that all elements in \mathbb{Z}_{N} that appear in the simulations in the security analyses always can be inverted.

C. 3 Composite Residuosity Class Assumptions

Assumptions about the hardness of computing and deciding composite residuosity classes were first considered by Paillier [24] to prove the security of the Paillier cryptosystem.

Let p and q be distinct primes with the same number of bits and define $n=p q$ and $\eta=n+1$. Define also $\mathcal{E}_{\eta}: \mathbb{Z}_{n} \times \mathbb{Z}_{n}^{*} \rightarrow \mathbb{Z}_{n^{2}}^{*}, \mathcal{E}_{\eta}:(m, r) \mapsto \eta^{m} r^{n} \bmod n^{2}$. Then Lemma 3 in [24] states that \mathcal{E}_{η} is a bijection.

Definition C. 4 (Residue Class). The n-th residue class $[u]_{\eta}$ of u with respect to η is the unique $m \in \mathbb{Z}_{n}$ such that there exists an $r \in \mathbb{Z}_{n}^{*}$ such that $\mathcal{E}_{\eta}(m, r)=u$.

Definition C. 5 (Composite Residuosity Assumption). Let p and q be randomly chosen $\kappa / 2$-bit safe primes and define $n=p q$. Let $u \in \mathbb{Z}_{n^{2}}^{*}$ be randomly chosen. The composite residuosity (CR) assumption states that for all adversaries A the probability $\operatorname{Pr}\left[A(n, u)=[u]_{\eta}\right]$ is negligible.

Definition C. 6 (Decision Composite Residuosity Assumption). Let p and q be randomly chosen $\kappa / 2$-bit safe primes and define $n=p q$. Let $u \in \mathbb{Z}_{n^{2}}^{*}$ be randomly chosen. The decision composite residuosity (DCR) assumption states that for all adversaries $A \in \mathrm{PPT}$ the absolute value $\left|\operatorname{Pr}[A(n, u)=1]-\operatorname{Pr}\left[A\left(n, u^{n} \bmod n^{2}\right)=1\right]\right|$ is negligible.

In contrast to Paillier, we assume that the factors of n are safe primes, but it is easy to see that our assumption follows from the original under the safe prime assumption.

C. 4 Discrete Logarithm Assumption

There seems to be no consensus on a formal definition of a "standard discrete logarithm assumption" in a subgroup of the multiplicative group modulo a prime. Thus, we take the liberty to simply call the specific assumption we define below "the discrete logarithm assumption" without any qualifier.

Definition C. 7 (Discrete Logarithm Assumption). If $P=2 Q+1$ is a random safe prime, and $g, \beta \in G_{Q}$ are random, where G_{Q} is the group of squares in \mathbb{Z}_{P}^{*}, then for every adversary $A \in \mathrm{PPT}$ the probability $\operatorname{Pr}\left[A(P, g, \beta)=\log _{g} \beta\right]$ is negligible.

C. 5 Decision Diffie-Hellman Assumption

Similarly to the discrete logarithm problem, the decision Diffie-Hellman problem can be considered over many different groups and there seems to be no consensus on a standard group. Again we use no qualifier.

Definition C. 8 (Decision Diffie-Hellman Assumption). Let $P=2 Q+1$ be a random safe prime, let G_{Q} be the group of squares of \mathbb{Z}_{P}^{*}, let g generate G_{Q}, and let $a, b, c \in \mathbb{Z}_{Q}$ be randomly chosen. Then for every adversary $A \in \mathrm{PPT}$ the absolute value $\left|\operatorname{Pr}\left[A\left(P, g, g^{a}, g^{b}, g^{a b}\right)=1\right]-\operatorname{Pr}\left[A\left(P, g, g^{a}, g^{b}, g^{c}\right)=1\right]\right|$ is negligible.

A hybrid argument shows that a more slightly more general statement holds. Namely, if $b^{\prime}, b^{\prime \prime}, c^{\prime}, c^{\prime \prime} \in \mathbb{Z}_{Q}$ are chosen randomly as well, then the absolute value above can be replaced by $\mid \operatorname{Pr}\left[A\left(P, g, g^{a}, g^{b}, g^{a b}, g^{b^{\prime}}, g^{a b^{\prime}}, g^{b^{\prime \prime}}, g^{a b^{\prime \prime}}\right)=1\right]$ $-\operatorname{Pr}\left[A\left(P, g, g^{a}, g^{b}, g^{c}, g^{b^{\prime}}, g^{c^{\prime}}, g^{b^{\prime \prime}}, g^{c^{\prime \prime}}\right)=1\right] \mid$.

D Standard Definitions

Definition D. 1 (Signature Scheme). A signature scheme $\mathcal{S S}=(\mathrm{Kg}, \mathrm{Sig}, \mathrm{Vf})$ consists of three polynomial-time algorithms

1. A probabilistic key generation algorithm Kg that on input 1^{κ} outputs a public key $s p k$ and a private key $s s k$.
2. A probabilistic signature algorithm Sig that on input a private key ssk and a message m outputs a signature s.
3. A probabilistic verification algorithm Vf that on input a public key $s p k$, a message m, and a signature s outputs a bit $b \in\{0,1\}$.

Furthermore, for each output ($s s k, s p k$) of $\operatorname{Kg}\left(1^{\kappa}\right)$ and each m it must hold that $\mathrm{Vf}_{s p k}\left(m, \operatorname{Sig}_{s s k}(m)\right)=1$.

Experiment D. 2 (CMA-Security, $\operatorname{Exp}_{\mathcal{S} \mathcal{S}, A}^{\mathrm{cma}}(\kappa)$).

$$
\begin{aligned}
(s p k, s s k) & \leftarrow \mathrm{Kg}\left(1^{\kappa}\right) \\
(m, s) & \leftarrow A^{\mathrm{Sig}_{s s k}(\cdot)}(\text { guess }, s p k)
\end{aligned}
$$

If $\mathrm{Vf}_{\text {spk }}(m, s)=1$ and A did not ask for a signature of m return 1 , else return 0 .
Definition D. 3 (CMA-Security). A signature scheme $\mathcal{S S}$ is CMA-secure if for every adversary $A \in \mathrm{PPT}$ the probability $\operatorname{Pr}\left[\operatorname{Exp}{ }_{\mathcal{S} \mathcal{S}, A}^{\mathrm{cma}}(\kappa)=1\right]$ is negligible in κ.

E Program Used To Estimate the Complexity

; (1oad "efficiency.scm")
; (complexity 1024505016050)
(def ine (complexity secpRSA secpR secpC secpM secpPPad)
let ($\mathrm{secpDL} \operatorname{secpRSA)}$
$(\operatorname{secpPA}(+\operatorname{secpRSA}(* 2 \operatorname{secpR}) 3)))$
(secpP (+ secpR $\sec p P P a d))$)

The cost of various types of exponentiations.
(def ine (RSAexp secp)
(/ secp secpRSA))
(/ secp secpRSA))
(def ine (DLexp secp)
(def ine (DLexp secp)
$(/ \mathrm{secp} \operatorname{secpDL}))$
(def ine (PAexp secp)
(* 8 (/ secpPA secpRSA) (/ secpPA secpRSA) (/ secpPA secpRSA) $(/ \operatorname{secp}(* 2 \operatorname{secp} P A))))$ (def ine (DDHexp secp)
(* (/ secpDDH secpRSA) (/ secpDDH secpRSA) (/ secpDDH secpRSA) (/ secp secpDDH)))
def ine (OneExp secp)
$(*(/ / \operatorname{secp} \operatorname{secpRSA})$$(/ \operatorname{secp} \operatorname{secpRSA)}$ (/ secp secpRSA)))
Computing a tuin-moduli signature
(define (Sig)
(+ (* 4 (RSAexp secpRSA))

* 4 (+ secpM secpR secpr secpp)
(OneExp ($+\operatorname{secpM} \operatorname{secpR} \operatorname{secpR} \operatorname{secpP}$)))))
(define (desSig)
(+ (Sig)
(* 9 (PAexp (+ secpPA secpR)))
$(* 2($ RSAexp $(+$ secpRSA $\operatorname{secpR})))$
$(* 3($ PAexp $\operatorname{secpPA))})$ (${ }^{*} 3$ (PAexp \sec ecpRSA)))

Converting a si
(+ (* 3 (PAexp secpPA))
(* 3 (PAexp (+ secpPA secpR secpRSA))

* 3 (PAexp (+ secpPA secpR)))

```
Our estimate is in terms of RSA-exponentiations
; DL-prime has same size as RSA-modulus.
; PA-modulus has same size as RSA-modulus,
; but we compute modulo the square of the modulus.
DDH-prime is larger than RSA-modulus.
Cost of a single secp-bit exponentiation
which is used in primality testing
; Inversion in exponent and exponentiation
Embedding string into prime
```

```
; t_a
; t_a 
2n decoding in hash
```

; ${ }^{2 n}$
; 2n decoding
; x decryption

```
                                    ** 2 (RSAexp (+ secpRSA secpR)))))
                                    (r_0,r_1)-decoding
; Verifying a converted signature.
def ine (desvf)
Cramer et al. zero-knowledge proof of knowledge of logarithm
*)
    Verifier exponentiations
;Protocol for generating Fujisaki-Okamoto parameters.
(def ine (GpitP)
    (VpiPL)
        (*2(RSAexp (+ (* 2 secpRSA) secpR)))
        + (DLexp secpC)
        * 2(RSAexp (+ (* 2 (+ secpRSA secpR)) secpC)))))
define (RpiTP)
    (PpiPL)
        (DLexp secpDL)
            * 2 (+ (RSAexp (+ (* 2 (+ secpRSA secpR)) secpC))
                (RSAexp secpC)))))
; The overhead cost of the general equality protocol that is independent
; of the particular relation that is considered.
(PpiEQoverhead)
    (+ (RpiTP)
            (piPL)
            (DLexp secpDL)
def ine (VPiEQoverhead)
    (+ (GpiTP)
    (PpipL)
    (pLexp secpDL)
    (DLexp secpDL)
    ; Generate commitment parameters
mamer et al. Pok exponent, verifier
    x exponentiations
; c_g
r r_g
; Cramer et al. PoK exponent, prover
; c_g
; r_g
    (VpiPL)
    ; r
    The overhead cost for forming a commitment of a secp-bit value
that is not committed to othervise.
(define (PpiEQ-formsecp)
    (+ (RSAexp secp)
        (RSAexp (+ secpRSA secpR))))
    Random value exponentiation
The overhead cost in the general equality proof for each unique exponent
that is not committed to othervise.
def ine (PpiEQ-comm secp)
    (+ (RSAexp (+ secpRSA (* 2 secpR) secpC))
        (RSAexp (+ secp secpR secpC))))
(+ (RSAexp (+ secpRSA (* 2 secpR) secpC))
    (RSAexp (+ secpRSA (* 2 secpR) secpC))
    (RSAexp secpC)))
    Proof about random value
    Proof about committed value
def ine (VPiEQ-comm secp)
    < Reply exponentiations
The general equality proof for a single exponent with secp
bits for various moduli.
; Provers
def ine (PpiEQ-RSA secp) (RSAexp (+ secp secpR secpC)))
define (PpiEQ-PA secp) (PAexp (+ secp secpR secpC)))
(define (PpiEQ-DDH secp) (DDHexp (+ secp secpR secpC)))
; Verifiers
def ine (VPiEQ-RSA secp) (+ (RSAexp (+ secp secpR secpC))
    (RSAexp secpC)))
                            (PAexp (+ secp secpR secpC))
                            (PAexp secpC)))
                            +(DDHexp (+ secp secpR secpC))
                                    (DDHexp secpC))
Proof of knowledge of well-formedness
def ine (PpivF)
    ++ (PpiEQoverhead)
    (* 3 (PpiEQ-form (+ secpPA secpR)))
    * 3(PpiEQ-form (+ secpPA secpR)))
    ** (Ppieq-comm (+ secpPA secpR)))
    * 3(PpiEQ-DDH (+ secpPA secpR)))
    (* 4 (DDHexp secpDDH))))
define (VpiVF)
    + (VpiEQoverhead)
    (VpiEQoverhead)
    (* 3 (VpiEQ-comm (+ secpPA secpR)))
    (* 3 (VPIEQ-PA (+ secpPA secpR)))
    ** 3(VpiEQ-DDH (+ secpPA secpR)))
Proof of knowledge of correct conversion of valid cryptotext.
def ine (PpiXvalid)
    (+ (PpivF)
            (* 3 (PAexp secpRSA))
            (*) (PAexp secpRSA))
            (** (PpiEQ-PA (+ secpPA secpR)))
            (PpiEQ-comm (+ secpRRA secpR))
            ** 4(PpiEQ-PA secpPA)))
    (* 4 (PpiEQ-PA
    define (VpiX
    (* 3 (PAexp secpRSA))
```

; EQ-prot overhead
Form commitments of $\mathrm{x}, \mathrm{x}-0, \mathrm{x}$
Proof overhead from these commitments
Proofs about x, x_0, x_1
; r
EQ-prot overhead
; Proof overhead from commitments of $x, x_{-} 0, x_{-}$
Proofs about $x, x-0, x$
; r
, The key is valid
; Exponentiation by e
The $x, x_{-} 0, x_{-} 1$ exponents
Form commitments of $r_{-} 0, r_{-} 1$
Overhead for proofs about $r_{-} 0, r_{-} 1$
The $r_{-} 0, r_{-} 1$ exponents
; The key is valid
: Exponentiation by e
(* 9 (PpiEQ-PA (+ secpPA secpR)))
$(* 2(\operatorname{PpiEQ}-\mathrm{comm}(+\operatorname{secpRSA} \operatorname{secpR})))$
$(* 4(\mathrm{PpiEQ}-\mathrm{PA} \operatorname{secpA}))))$
Proof of knowledge of correct conversion of invalid cryptotext Xinvalid
(+ (PpivF)
(* 3 (PAexp (+ secpP
(* 3 (PAexp secpPA))
(* 3 (PAexp (+ secpPA secpR)))
(* 3 (+ (* 2 (RSA exp (+ secpRSA secpR)))

* 2 (RSA exp (+ secpPA secpR)))
(* 4 (PAexp $(+\operatorname{secpPA} \operatorname{secpR}))))$)
* 3 (+ (PpiEQ-RSA (+ secpRSA secpR))
(PpiEQ-RSA (+ secpPA secpR))

(PDiEQ-PA (+ secpPA secpR))
(Ppieq-RSA (+ secpRSA secpR))
(PpiEQ-RSA (+ secpPA secpR))
(PpiEQ-PA $(+$ secpA $\operatorname{secpR}))$))
(* 3 (+ (PpiEQ-RSA (+ secpRSA secpPA secpR secpR secpR))
(PpiEq-RSA (+ secpPA secpPA secpR secpR secpR))
(PpiEQ-PA ($+\operatorname{secpPA} \sec \operatorname{PPA} \operatorname{secpR} \sec (p R \operatorname{secpR}))$))) define (V_{p} ixinvalid)
(+ (VpivF)
* 3 (PAexp secpRSA)
(* 3 (PAexp secpPA))
(PpiEQ-RSA (+ secpRSA secpR))
(PpiEQ-RSA (+ secpPA secpR))
$($ PpiEQ-PA $(+\operatorname{secpPA} \operatorname{secpR}))$
(PpiEq-PA (+ secpPA secpR))
(PpiEQ-PA (+ secpPA secpR))
(PpiEQ-RSA (+ secpRSA secpR))
(PpiEQ-RSA (+ secpPA secpR))
(* 3 (+ (PpiEQ-RSA (+ secpRSA secpPA secpR secpR secpR))
(PpiEQ-RSA (+ secpRSA secpPA secpR secpR secpR))
(PpiEQ-RSA (+ secpPA secpPA secpR secpR secpR))
(PpiEQ-RSA (+ secpPA secppa secpR secpR secph))))
Proof of correct conversion.
(max (PpiXvalid) (PpiXinvalid)))
def ine ($V_{p i X}$)
(max (VpiXvalid) (VpiXinvalid)))
; Proof of validity/invalidity (general method) (def ine (Ppivigeneral thebit thecase)
* 5 (RSAexp (+ secpRSA secpR))
(* 2 (RSAexp (- secpP secpR)))
(* 2 (RSAexp (+ secpRSA secpR)))
RSAexp (+ secpP $\operatorname{secpP} \operatorname{secpP}$))
(RSAexp secpp)
(RSAexp secpp)
(* (-1 thecase)

(RSAexp secpRSA)
$(* 3$ (+ (PpiEq-form (+ secpPA secpR))
(* 3 (Ppieq-comm (+ secpPA secpR)))
(PPIEQ-PA (+ secpRSA secpR)))
(PpiEQ-PA (+ secpM secpR secpR secpP secpP))))
thecase
(+ (PpivF)
(* 9 (PpiEq-PA (+ secpPA secpR)))
(* 3 (PpiEQ-RSA $(+$ secpRSA secpR)))))
(* 7 (PpiEQ-RSA (+ secpRSA secpR)))
(PpiEq-RSA (+ secpM secpR secpR))
(* 2 ($+(* 2$ (RSA $\exp (+$ secpRSA secpR)))
(RSAexp (+ secpM secpR secpR secpP))
(RSA $\exp (+$ secpM secpR secpR secpF)
(RSA exp (+ secpRSA secpR))
(* 2 (+ (PpiEQ-RSA (+ secpRSA secpR))
(PpiEQ-RSA (+ secpM secpR secpR secpp))
(Ppieq-RSA (+ secpRSA secpR))
(Ppieq-RSA (+ secpRSA secpR))
(PpiEQ-RSA (+ secpRSA secpR))
(PDEO (
Ppieq-RSA (+ secpRSA secpl secpp))
(PDiEQ-RSA (+ secpRSA secpR secpM secpR secpR secpP)

PpiEQ-RSA (+ secpRSA secpr ser sel
PpiEQ-RSA (+ secpRSA secpR))
(PpiEQ-RSA (+ secpRSA secpR secpM secpR secpR secpp))
(* thebit
(+ (PpiEQ-RSA (+ secpRSA secpR secpP)
(PpiEQ-RSA (+ secpM secpR secpR secpp)
(PpiEQ-RSA (+ secpRSA secpR secpM secpR secpR secpP))
(PpiEQ-RSA (+ secpRSA secpR secpM secpR secpR secpP))
(PpiEQ-RSA (+ secpRSA secpR))
* (- 1 thebit)

The $x, x_{-}, x_{-} 1$ exponents
Overhead for proofs about $r_{-} 0, r_{-} 1$
; The $r_{-} 0, r_{-} 1$ exponents

The key is valid
; Exponentiation by e
Form commitments, t_a, l_
s_a, k_a over RSA-modulus
$s_{-} a, k_{-} a, x_{-} 0, x_{-} 1$ over PA-modulus
; ta
; s_a
x-0
x_1
; l_a
$t_{-}{ }^{\prime}, t_{-} 0^{\prime}, t_{-} 1$
; s_a, ${ }^{\prime} \mathbf{s}_{-}{ }^{\prime}, s_{-1}$,
The key is val
Exponentiation by e
Inverting w_a, w- $0, w_{-} 1$
; t_a
; s_a
x_1
; 1_a
; k_a
${ }^{\text {t-a }}$, ,t-0, t_{-1},
; s-a, $, s_{-} 0, s_{-1}$,
; s_a’
; Worst case of valid/invalid
Worst case of valid/invalid

```
Form commitments the 1
; \(r\),
; s-0, \(s_{-1}\),
; \(r_{-} 0, r_{-} 1\)
; C-a
; C-\{e_1\}
Signer executes prover
Overhead of EQ-protocol
Overhead of EQ-protoco
; Exponentiation by e
Form commitments of \(\mathrm{t}_{-} \mathrm{a}, \mathrm{t}_{-} 0, \mathrm{t}_{\mathbf{-}} 1\)
Proof about t_a, t_0, t_
; Proof about \(r_{-} 0\) and \(r_{-} 1\) (RSA-part below)
; \(a\) in the input
Proofs about EQoverhead
    Proofs about \(x_{1}, x_{-} 0, x_{-} 1\)
    Proofs about a, \(r_{-} 0, r_{-} 1\)
    all 1 and \(r_{-} 0 r_{-} 1\)
; \(r\)
s_0', s_ 1
Form commitments, \(1 \_0,1 \_0\)
; e_o
; e-0
; Proofs, 1_0
; e-0
; jo
; j_o
; Proofs, 1_\{e_1\}
; e_1 1 ,
\({ }^{1-1}\),
; \(\begin{gathered}j_{1}-1 \\ ; \\ j-1 \\ j-1\end{gathered}\),
Proofs, 1_\{e_0\}
; e_0
; 1_0,
j- \({ }^{1}\)
; jo \({ }^{j} 0\),
C-a
Proof about t_a,t_0,t
all 1 and \(r_{-} 0 r_{-} 1\)
s_0', s_1
```

(+ (* 5 (RSAexp (+ secpRSA secpR)))
(* 5 (PpiEQ-RSA (+ secpRSA secpR))
(PpiEq-RSA (+ secpRSA secpR secpM secpR
(PpiEQ-RSA (+ secpr secp secpRA secpR))
secpR secpP secpRSA secpR))
(PpiEQ-RSA (* 2 (+ secpRSA secpR)))
(PpiEQ-RSA (* $2(+$ secpRSA $\sec p R))$)
(PpiEQ-RSA (* $2(+\operatorname{secpRSA} \operatorname{secpR}))$)
(PpiEQ-RSA (+ secpRSA secpR secpM secpR
secpR secpP secpRSA secpR))))
))
ef ine (Vpivigeneral thebit thecase)
(RSAexp (+ secpP secpP secpP))
(RSAexp secpP)

(+ (VpiEQoverhead)
(RSAexp secpRSA)
(* 3 ($+\left(* 3\right.$ ($\mathrm{V}_{\mathrm{piEQ}}$-comm (+ secpPA secpR)))
(* 3 (VpiEQ-PA (+ secpPA secpR)))))
(* 2 (VpiEQ-PA (+ secpRSA secpR)))

(* thecase
(VpivF)
(* 9 (VpiEQ-PA (+ secpPA secpR))) $)$
$(* 9($ VpiEQ-PA $(+$ secpPA secpR)))
$(* 3($ VpiEQ-RSA $(+$ secpRSA $\operatorname{secpR}))))$

* 7 (Vpieq-RSA (+ secpRSA secpR))
(VPiEQ-RSA (+ secpM secpR secpR))
(* 2 (+ (Vpieq-RSA (+ secpRSA secpR))
(VPiEQ-RSA (+ secpM secpR secpR secpP))
(Vpieq-RSA (+ secpRSA secpR))
(Vpieq-RSA (+ secpRSA secpR))
(Vpieq-RSA (+ secpRSA secpR))
(VpiEQ-RSA (+ secpM secpR secpR secpp))))
Vpieq-RSA (+ secpRSA secpR secpp))

(VPIEQ-RSA (+ secpRSA secpR secpM secpR secpR secpP))
(VPiEQ-RSA (+ secpRSA secpR secpM secpR secpR secpp)
(VpiEQ-RSA (+ secpRSA secpR))
(iEQ-RSA (+ secpRSA secpR se
(* thebit
(+ (VpiEQ-RSA (+ secpRSA secpR secpP))
(VpiEQ-RSA (+ secpM secpR secpR secpP))
(VpiEQ-RSA (+ secpRSA $\operatorname{secpR} \operatorname{secpM}$ secpR secpR secpP))
(Vpieq-RSA (+ secpRSA secpR secpM secpR secpR secpP)) (VpiEQ-RSA (+ secpRSA secpR)
(- 1 thebit) $)$
(V LiEQ-RSA (+ secpRSA secpR secpM sect

($V_{\text {PIEQ-RSA }}(+\operatorname{secpRSA} \operatorname{secpR} \operatorname{secp} \mathrm{secpR})$

(Vpieq-RSA (* $2(+$ secpRSA secpR)))
(VpiEQ-RSA (* $2(+$ secpRSA $\sec \mathrm{pR})))$

))

Proof of validity/invalidity of conf irmer.
def ine (PpiDE)
(max (PpiVIgeneral 0 1) (PpiVIgeneral 1 1))
def ine (V_{p} iDE)
Proof of validity signer.
(define (PpiEE) (Ppivigeneral 100$)$)
$\left.\begin{array}{l}\text { (define (PpiEE) (PpiVIgeneral } 100) \text {) } \\ \text { (define (VpiEE) (VpiVIgeneral } \\ 1\end{array} 0\right)$)
Utility function
def ine (spacepad val
(cond ((< value 10)
(display " ")
(display value))
((and (< value 100) (> value 9))
(display " ")
(display value))
(else (display value))))
; Pretty print all complexities.
def ine (all)
(newline)
(newline)
(display ${ }^{\text {(newline) }}$
(display "Signing
(spacepad (round (desSig)))
(newline)
(display "Converting
(spacepad (round (desConv)))
(display "Verifying

Signer Confirmer Verifier")
")

Form commitments, i_0,i_0, i_0,
; Proofs, i_0,i_0, i_0,'
; Proofs
; k_{-}
; f_o
$; \mathrm{f}_{-0}$,
$; \mathrm{f}_{-}$,
; f_o

; C_\{e_1\}
Signer executes prover
Overhead of EQ-protocol
; Overhead of EQ-prot
; Exponentiation by e
; Proof about $t_{-} a, t_{-} 0, t_{-} 1$
; Proof about $r_{-} 0$ and $r_{-} 1$ (RSA-part below)
; a in the input
; this includes EQoverhead
Proofs about $x, x_{-} 0, x_{-} 1$
Proofs about a,r_0,r-

; s_0', s_1
; e_0
j-o
; j-0
; e_O
; e_1 ${ }^{\text {; }} 1_{-1}$,

; Proofs, 1_\{e_0\}
; e_o
; 1_0,'
; j-0
; j-0
; Proofs, i_0,i_0, i_0,
; Proof
; f_o
; ${ }^{\text {k }}$ for
; foo
; f_o
(spacepad (round (desvf)))
(newline)
(display "Well-Formedness
(spacepad (round (PpiVF)))
(display " ")
(spacepad (round (VpivF)))
(spacepad
(newline)
(display "Correctness of conversion
(spacepad (round (PpiX)))
(display" (spacepad (round ") (Vpix)))
(spacepad
(nemline)
(display "Validity/Invalidity
(spacepad (round (PpiDE)))
(display " (round ") (VpiDE)))
(spacepad
(newline)
(display "Validity
(spacepad (round (PpiEE)))
(display " (round (PpiEE)) ")
(spacepad (round (VpiEE)))
(newline)
(newline))
(all))))

[^0]: *An extended abstract [28] of this paper appears in the proceedings of the Fourth Theory of Cryptography Conference 2007.

[^1]: ${ }^{1}$ Camenisch and Michels [3] claim a similar, but weaker, theorem according to their definition, but as explained above their definition can not be satisfied, and only a proof sketch is given.

