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Abstract

For the Tate pairing implementation over hyperelliptic curves, there is a development by Duursma-
Lee and Barreto et al., and those computations are focused on degenerate divisors. As divisors
are not degenerate form in general, it is necessary to find algorithms on general divisors for the
Tate pairing computation. In this paper, we present two efficient methods for computing the Tate
pairing over divisor class groups of the hyperelliptic curves y2 = xp − x + d, d = ±1 of genus 3.
First, we provide the point-wise method, which is a generalization of the previous developments by
Duursma-Lee and Barreto et al. In the second method, we use a Resultant for the Tate pairing
computation. According to our theoretical analysis of the complexity, the Resultant method is
approximately three times faster than the point-wise method, and our implementation result shows
that the Resultant method is much faster than the point-wise method. These two methods are
completely general in a sense that they work for general divisors, and they provide very explicit
algorithms.

keywords: Tate pairing; hyperelliptic curves; divisors; eta pairing; resultant; pairing-based cryptosystem

Introduction

In recent years the Tate pairing and the Weil pairing have been getting a lot of attentions for designing
various protocols in cryptosystem [4, 5, 15, 14, 23, 27, 28]. It is therefore important to develop the
efficient implementation of those pairings for the practical applications in our real world. It is known
that the computation of the Weil pairing is almost the same as computing the Tate pairing twice [11],
therefore the Tate pairing implementation have been actively developed. The recent papers by Barreto
et al. [1] and Galbraith et al. [12] provided the fast computation of the Tate pairing over the supersingular
elliptic curves y2 = x3 − x ± 1 in characteristic three. In 2003, Duursma and Lee [9] generalized their
results to the hyperelliptic curves y2 = xp − x ± 1, p = 3 (mod 4) in characteristic p. In particular,
they provided a closed formula for the efficient computation of the Tate pairing. After then, Barreto et
al. [2] proposed a general technique for the efficient computation of the Tate pairing on supersingular
abelian varieties using Eta pairing approach [2, 21]. They also described efficient pairing algorithms on
Fq-rational points for elliptic and hyperelliptic curves over Fq.

∗(e-mail) ejlee@kias.re.kr, hsl@ewha.ac.kr, yoonjinl@sfu.ca The authorsa,b were supported by KOSEF, grant number
R01-2005-000-10713-0. This work was also done while the last authorc was visiting KIAS in Seoul during the summers of
2004 and 2005. The author expresses their gratitude to the institute.
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In fact, generally divisor operations over hyperelliptic curves are more complicated than point operations
over elliptic curves. Therefore, it has been pointed out that Elliptic Curve Cryptosystem (ECC) is more
efficient than Hyperelliptic Curve Cryptosystem (HCC) [27]. The Tate pairing computation uses the
Miller algorithm, and the Miller algorithm relies on divisor operations. Thus one expects that the
Tate pairing computation over hyperelliptic curves may not be as efficient as that over elliptic curves.
However, in some special cases, it was shown that HCC can be made more efficient than ECC by giving
the explicit formula for divisor operations [6, 20, 24]. For the higher genus, preserving the same security
level, we can decrease the size of the defining field. In fact, some examples given in [6, 20] show that
for the efficiency of cryptosystems, the size of the defining field is more important than the complexity
of group operation formula. For the Tate pairing, Barreto et al. [2] presented implementation results
over elliptic curves and hyperelliptic curves of genus 2, where both are defined over F2n . The running
time for the Tate pairing over hyperelliptic curves was faster than that of elliptic curves. For the Tate
pairing computation it is therefore certainly worthy to work over some special types of hyperelliptic
curves.

Recent developments [2, 9] on the Tate pairing implementation on hyperelliptic curves over a finite field
Fq have focused on the case of degenerate divisors as mentioned before. However, in the pairing-based
cryptography, the efficient Tate pairing implementation over general divisors is significantly important.
For instance, in the Boneh-Franklin identity-based encryption scheme, the private keys are general
divisors, and therefore the decryption process requires computing a pairing of general divisors. For the
case of genus 2, the result in [6] presents both divisor-wise and point-wise approach, and it turns out
that the divisor-wise approach is more efficient than the point-wise approach. For the case of genus
≥ 3, when divisors are general, there has been no Tate pairing computation method developed so far.

In this paper, we develop the general method of computing the Tate pairing for the genus 3 case. We
present two feasible methods by point-wise approach and Resultant approach for computing the Tate
pairing over divisor class groups of the hyperelliptic curves Hd : y2 = xp−x+d, d = ±1 of p = 7. Those
methods are completely general in a sense that they work for general divisors, and we give very explicit
and feasible formulas over Hd. Furthermore, we investigate the efficiency and compare the complexity
between two methods. In fact, efficient algorithms for computing the resultant have been developed;
for instance in [25]. For our two methods, we use the Eta pairing for reducing the computation cost.
We used SINGULAR [13] software package for symbolic computations in this paper.

The first method in Section 2 is a generalization of the point-wise method developed in ([2], [9]), and
our method is an algorithm for computing the Tate pairing over general divisors. The second method in
Section 3 is by using Resultant. In Section 4, we compare the complexity between two methods, and the
result shows that the Tate pairing computation by using Resultant is approximately three times faster
than the point-wise approach. In Section 5 we provide experimental results using NTL [26] software
package. According to our implementation result, we conclude that the Tate pairing computation by
using Resultant is much faster than the point-wise approach. We point it out that this is the first
implementation over a genus 3 curve.

1 Tate pairing on divisors

Let Fq be a finite field with q elements, and H/Fq be a hyperelliptic curve over Fq. We denote the group
of degree zero divisor classes of H by JH . Note that each divisor class can be uniquely represented
by the reduced divisor using the Mumford representation [22]. Reduced divisors of the curve H can
be found as discussed in ([18], [22]), and most of reduced divisors in JH with genus 3 are written as
D = [UD, VD] = [x3 + uD,2x

2 + uD,1x + uD,0, vD,2x
2 + vD,1x + vD,0].

We recall the definition of the Tate pairing [10]. Let ` be a positive divisor of the order of JH(Fq) with
gcd(`, q) = 1, and k be the smallest integer such that ` | (qk−1); such k is called the embedding degree.
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Let JH [`] = {D ∈ JH | `D = O}. The Tate pairing is a map

〈 · 〉` : JH [`]× JH(Fqk)/`JH(Fqk) → F∗qk/(F∗qk)`

〈D, E〉` = fD(E′),

where div(fD) = `D and E′ ∼ E with support(E′) ∩ support(div(fD)) = ∅. We define the Tate paring

value by t(D, E) = 〈D, E〉
qk−1

`

` so that the pairing value is defined uniquely. We write x(i) for xpi

.

We consider a hyperelliptic curve Hd over Fq defined by y2 = xp − x + d, d = ±1, for p ≡ 3 (mod 4),
where q = pn with gcd(2p, n) = 1, and we let F/Fq and K/Fq be the extensions of degree [F : Fq] = p
and degree [K : Fq] = 2p, respectively. Over the extension field K, the curve is the quotient of a
hermitian curve, hence it is Hasse-Weil maximal. And the class group over K is annihilated by ppn +1;
this can be also seen from the following Lemma 1.1. It shows that for P ∈ Hd(K), (ppn +1)((P )− (O))
is principal [8].

Lemma 1.1 ([8]). Let P = (α, β) ∈ Hd. The function

hP = βpy − (αp − x + d)
p+1
2

has divisor (hP ) = p(P ) + (P ′)− (p + 1)O, where P ′ = (α(2) + 2d, β(2)).

¿From Lemma 1.1, we observe that

p((P )− (O)) ≡ ([p]P )− (O),

thus the multiplication by p over Hd has an extremely special form such as [p] = φπ2, where φ =
(x + 2d,−y) and π is a Frobenius map of pth power.

Lemma 1.2 ([8]).
|JH(+1)(k)||JH(−1)(k)| = (ppn + 1)/(pn + 1)

In paticular, letting [k : F7] = n and m = (n + 1)/2, we thus have

|JH(+1)(k)| = (1 + 7n)3 + (
7
n

)7m(1 + 7n + 72n).

|JH(−1)(k)| = (1 + 7n)3 − (
7
n

)7m(1 + 7n + 72n).

And |JH(+1)(k)||JH(−1)(k)| = (1 + 77n)/(1 + 7n).

1.1 Eta pairing on Hd

We discuss the Eta pairing introduced in [2] which is very useful for efficient computation of the Tate
pairing.

We consider a hyperelliptic curve Hd over some finite field Fpn , and let ψ be an endomorphism on the
curve Hd given by

ψ : Hd(K) → Hd(K), ψ(x, y) = (ρ− x, σy), (1)

where ρ ∈ F is a root of ρp − ρ + 2d = 0, and σ, σ̄ ∈ K are the roots of σ2 + 1 = 0.
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For efficient Tate pairing computation, we concern with the twisted Tate pairing

t̂ : JHd
[`]× JHd

(Fp2pn)/`JHd
(Fp2pn) −→ F∗p2pn

t̂(D, E) = fD(ψ(E))ppn−1,

where (fD) = (ppn + 1)D from [9, Theorem 4].

For two divisors D and E in JHd
, the Eta pairing is defined by

η(D,E) =
n−1∏

i=0

hDi
(ψ(E))pn−1−i

, (2)

where Di+1 + (hDi) = pDi with a divisor D0 = D and some rational function hDi .

By Lemma 1.1, Hd has a property that

q(P )− q(O) = (γ(P ))− (O) + (gP ), (3)

for some automorphism γ on Hd and some function gP . Thus γ can be given by γ = φnπ2n. Now we
provide the crucial theorem for efficient computation of the Tate pairing on divisors proved in [21].

Theorem 1.3 ([2], [21]). Let q = pn, p ≡ 3 (mod 4), γ = φnπ2n on JHd
induced from Eq. (3), and ψ

be an endomorphism on the curve Hd over Fq. Assume that

φnψ[q] = ψ, (4)

where ψ[q] denotes a map obtained by raising the coefficients of ψ by qth power. Then for divisors D
and E in JH(Fq), we have

η(qD, E) = η(D, E)q.

For any divisor E = [UE , VE ] in JHd
(Fq), the endomorphism ψ in Eq.(1) on divisors are easily deduced

as follows: ψ(E) = [Uψ(E), Vψ(E)], where

Uψ(E) = x3 − (3ρ + uE,2)x2 + (3ρ2 + 2uE,2ρ + uE,1)x− (ρ3 + uE,2ρ
2 + uE,1ρ + uE,0),

Vψ(E) = σ(vE,2x
2 − (2ρvE,2 + vE,1)x + vE,2ρ

2 + vE,1ρ + vE,0).
(5)

The following lemma shows that our curve Hd satisfies the crucial condition in Eq. (4) for Theorem 1.3,
and the proof is straightforward by using Eq. (5).

Lemma 1.4. Let E be a divisor of the curve Hd, and φ be a map defined on the curve Hd such that
φ(x, y) = (x + 2d,−y). Then we have the following

φnψ[q](E) = ψ(E).

From Theorem 1.3 and Lemma 1.4, it follows that

t̂(D, E) = η(D,E)7
6n+1(77n−1). (6)

It is therefore enough to compute η(D, E) to obtain t̂(D, E) for any divisors D, E ∈ JHd
(Fq). When all

the points in support(D) and support(E) are Fq-rational points, using Eq. (6) makes the Tate pairing
computation very efficient as mentioned in [2]. In Section 2, we will extend the concept of the Eta
pairing on the general divisors, that is, the supports of D and E are not necessarily Fq-rational points.
In our two methods we use the Eta pairing for reducing the computation cost.

Throughout this paper, we focus on the hyperelliptic curve Hd : y2 = xp − x + d, d = ±1, p ≡ 3 (mod
4) of genus g = 3, therefore we work on the case p = 7; this case is cryptographically useful [9].
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2 Point-wise computation of the Tate pairing

This section presents a generalization of the point-wise method developed in [2] and [9], and this method
can be used for any divisors, not only for Fq-rational points. The Eta pairing is used for reducing the
computation cost as well.

As mentioned in [2], for divisors D,E in JHd
, the Tate pairing can be computed by

t̂(D, E) =
3∏

i,j=1

t̂(Pi, Qj), (7)

where D and E have the form D = (P1) + (P2) + (P3) − 3(O), E = (Q1) + (Q2) + (Q3) − 3(O) for
points Pi and Qj contained in Hd(F73n) with i, j = 1, 2, 3.

If we want to apply the Eta pairing introduced in [2] for computing t̂(Pi, Qj), then it requires that Pi

and Qj belong to Hd(F7n) for each i, j. Therefore we define a new pairing, η3, similar to the Eta pairing
for general divisors as follows:

η3(P, Q) =
3n−1∏

i=0

hDi
(ψ(Q))7

3n−1−i

. (8)

Then we can efficiently compute the Tate pairing for general divisors by using the following theorem
and Eq. (7).

Theorem 2.1. For P, Q ∈ Hd(F73n),

t̂(P,Q) = (η3(P, Q)2·7
4n

η(P,Q)7
6n

)7
7n−1.

Proof. We have t̂(P, Q) = fD(ψ(Q))7
7n−1 with (fD) = (77n)((P )− (O))− (−P ) + (O). We also notice

that

fD(ψ(Q)) = η3(P,Q)7
4n

η3(73nP, Q)7
n

η(76nP,Q)

= η3(P,Q)2·7
4n

η(P, Q)7
6n

,

where the last equality follows from the facts

η3(73nP, Q) = η3(P, Q)7
3n

, η(76nP, Q) = η(P, Q)7
6n

;

these can be directly derived from the proof of Theorem 1.3 since P, Q ∈ Hd(F73n).

Based on Theorem 2.1, we have Algorithm 1 for computing the Tate pairing of P and Q.

We notice that fD(ψ(Q)) = (η3(P, Q)2η(P, Q)7
2n

)
74n

. Now we discuss the complexity of Algorithm 1
by counting the number of operations which are necessary for computing

3∏

i,j=1

η3(Pi, Qj)2η(Pi, Qj)7
2n

. (9)

We denote the time for multiplications in F7n , F77n and F714n by m, m′ and M , respectively, and a
multiplication between F7n and F77n by m̃. For simplicity, we assume that a squaring cost is similar to a
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Algorithm 1 Point-wise computation

INPUT P = (α, β), Q = (x, y) ∈ F73n

OUTPUT t̂(P, Q)

1: g1 ← 1

2: For i = 0 to n− 1 do

3: compute h = β7 · y · σ − (α7 + x + d− ρ)4

4: set g1 ← g7
1 · h

5: set α ← α72
+ 2d, β ← β72

6: g ← g1

7: For i = n to 3n− 1 do

8: compute h = β7 · y · σ − (α7 + x + d− ρ)4

9: set g ← g7 · h
10: set α ← α72

+ 2d, β ← β72

11: Return (g2g72n

1 )7
4n(77n−1), where g = η3(P, Q), g1 = η(P,Q).

multiplication cost, and we omit the computation cost for 7th powering since it is negligible comparing
to the other operations.

For each point P (resp. Q) in the support of D (resp. E), the step 3 requires 2 multiplications (mult.)
and two squarings (sq.) in F73n , and the step 4 needs a multiplication in F73(14n) . Since these operations
are repeated twice in the steps 8 and 9, the number of operations is

3n ((2 mult. + 2 sq.) in F73n + 1 mult. in F73(14n)) + 2 mult. in F73(14n) .

Let m3 and M3 be the time cost for a multiplication in F73n and F73(14n) respectively. For computing
Eq. (9), the total complexity is

2 T3rt + 9 (3n (4m3 + 1M3) + 2M3) + 8M3, (10)

which is equal to
TP := 2 T3rt + n (108m3 + 27M3) + 26M3, (11)

where T3rt is the time for finding all the roots of a cubic polynomial over F73n ; this is required for
obtaining the supporting points of D and E.

3 Computation of the Tate pairing by using Resultant

In this section, our goal is, for given divisor inputs with the divisor representation, to find an efficient
algorithm which provides us the final Tate pairing value over Hd. The resultant is a well-known tool for
evaluating a function at a divisor. With this idea we apply the Resultant for the efficient computation of
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the Tate pairing, and show that this approach is much faster than the first method. As a matter of fact,
there has been much development for the resultant in terms of its properties and efficient computation,
for instance in [29].

According to Eq. (6), for the Tate pairing computation over divisors D, E ∈ JH(F7n), it is sufficient to
compute

η(D,E) =
n−1∏

i=0

hDi
(ψ(E))7

n−1−i

,

where Di+1+(hDi) = 7Di with a divisor D0 = D and some rational function hDi . In order to obtain the
value of η(D, E), in the following subsections 3.1 and 3.2, we find the explicit formulas for Di = [7i]D
and hDi , i ≥ 1, and we also obtain the evaluation formula of rational function hDi at a divisor in a
very explicit way.

3.1 7-multiplication on divisors

Let D be a reduced divisor of Hd such that

D = (P1) + (P2) + (P3)− 3O = [UD, VD],

where Pj = (αj , βj) for j = 1, 2, 3, UD = x3 +uD,2x
2 +uD,1x+uD,0, and VD = vD,2x

2 +vD,1x+vD,0 ∈
F7n [x]. Let D0 = D, Di+1 + (hDi) = 7Di, and Di = [UDi , VDi ] for each positive integer i.

The following lemma provides us with explicit formulas for UDi and VDi in terms of the coefficients of
UD and VD for i ≥ 1. The proof can be obtained from the knowledge of Section 5 in Appendix of [18].

Lemma 3.1. Let [7] be the multiplication map by 7 on the divisor class group of Hd/F7n . Then we
have, for i ≥ 1, [7i]D = Di = [UDi , VDi ] with

UDi = x3 + (u(2i)
D,2 + id)x2 + (u(2i)

D,1 + 3idu
(2i)
D,2 − 2i2)x + u

(2i)
D,0 − 2idu

(2i)
D,1 − 3i2u

(2i)
D,2 − i3d,

VDi = (−1)iv
(2i)
D,2x

2 + (−1)i(3idv
(2i)
D,2 + v

(2i)
D,1)x + (−1)i(−3i2v

(2i)
D,2 − 2idv

(2i)
D,1 + v

(2i)
D,0).

In the following proposition, we find the function hD such that (hD) = 7D + (D′) in an explicit way.

Proposition 3.2. Let hD(x, y) be a function such that (hD) = 7D + (D′), and τ be a map

τ : Hd → Ĥd, (x, y) → (X̂, Y ) = (x− ξ7 − d, y).

Then, for appropriate ξ, we have

ĥD̃(X̂, Y ) := hD(x, y) ◦ τ−1 = δ1Y
3 + s(X̂)Y 2 + t(X̂)Y + δ16(X̂),

where δ16(X̂) = −(X̂3 + ũ7
1X̂ + ũ7

0)
4, and δ1, s(X̂) and t(X̂) are described in Table 1.

Proof. Let D = (P1) + (P2) + (P3)− 3(O), and 7((Pj)− (O)) = (hj)− (P ′j) + (O) for j = 1, 2, 3. Then

7D = (h1h2h3)− [(P ′1) + (P ′2) + (P ′3)− 3(O)] = (hD)−D′,

where D′ = (P ′1) + (P ′2) + (P ′3)− 3(O).

For simplicity, we use the change of variable

τξ : x → X = x− ξ, y → Y = y
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with ξ = −uD,2

3
. It transforms the curve Hd to a curve H̃d : Y 2 = X7 −X + (ξ7 − ξ + d).

Let Pj = (αj , βj), P̃j = (αj − ξ, βj), α̃j := αj − ξ and β̃j := βj .

From the fact that βj = VD(αj) and β̃j = VD̃(α̃j) = VD̃(αj − ξ), it follows that

UD̃ = x3 + (3ξ2 + 2ξuD,2 + uD,1)x + (uD,2ξ
2 + uD,1ξ + uD,0 + ξ3)

= x3 + ũ1x + ũ0,

VD̃ = vD,2X
2 + (2ξvD,2 + vD,1)X + (vD,2ξ

2 + vD,1ξ + vD,0)

= ṽ2X
2 + ṽ1X + ṽ0.

We also have

D̃ = (P̃1) + (P̃2) + (P̃3)− 3(O) = [X3 + ũ1X + ũ0, ṽ2X
2 + ṽ1X + ṽ0].

Furthermore, (h̃j) = 7(P̃j) + (P̃j
′
)− 8(O), where h̃j = hj(X + ξ, Y ). Letting θ = ξ7 − ξ + d, it is easy

to see the following:

h̃j = β̃j
7
Y − (α̃j

7 −X + θ)4 = (ṽ2α̃j
2 + ṽ1α̃j + ṽ0)7Y − (α̃j

7 −X + θ)4.

Thus we obtain

hD̃(X, Y ) = h̃1(X, Y )h̃2(X, Y )h̃3(X, Y )

=
3∏

j=1

(
(ṽ2α̃j

2 + ṽ1α̃j + ṽ0)7Y − (α̃j
7 −X + θ)4

)
.

(12)

If we apply the Elimination method in [7] to Eq. (12) with elimination order {α̃1, α̃2, α̃3} > {ũ1, ũ0},
then we can obtain Eq. (12) as a function of ũ1 and ũ0. The coefficients for ĥD̃(X̂, Y ) = hD̃(X − θ, Y )
are described in Table 1, where the second column shows the corresponding coefficient in terms of ṽi

′s
and ũi

′s.

3.2 Evaluation at a divisor

In this subsection we show that the notion of Resultant can be used for evaluating a rational function
at a divisor, which is necessary to achieve our goal.

What follows is the crucial result for the resultant, and for the proof we refer to [29, Ch. VI].

Theorem 3.3. Let F be a field, A,B ∈ F [x], α1, α2, · · · , αm ∈ F̄ (= algebraic closure of F ) be all the
roots of A, deg A = m, deg B = n, and a be the leading coefficient of A. Then we have

res(A,B) = an
m∏

i=1

B(αi).

With the same notations as in Theorem 3.3, furthermore, we have

res(A,B) = (−1)mnres(B, A). (13)
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Table 1: hD formula for 7D
Input D = [UD, VD] ∈ JHd

(k) Cost

Output ĥD̃(X̂, Y ) = δ1Y 3 + s(X̂)Y 2 + t(X̂)Y + δ16(X̂)

s(X̂) = δ2X̂4 + δ3X̂3 + δ4X̂2 + δ5X̂ + δ6

t(X̂) = δ7X̂8 + δ8X̂7 + δ9X̂6 + δ10X̂5 + δ11X̂4 + δ12X̂3 + δ13X̂2 + δ14X̂ + δ15

δ1 (ṽ2ũ0(ṽ2(ṽ2ũ0) + 3ṽ1(ṽ0 + 2ṽ2ũ1)) + ṽ2
1(ṽ0ũ1 − ṽ1ũ0) + ṽ0(ṽ2ũ1 − ṽ0)

2)7 8m + 2s

δ2 (4(2ṽ2ũ1 + ṽ0)(−ṽ2ũ1 + ṽ0)− ṽ1(3ṽ2ũ0 + ṽ1ũ1))
7 3m

δ3 (−2ṽ2ũ0(2ṽ2ũ1 + ṽ0) + ṽ1(2ṽ2ũ0 + ṽ0ũ1))
7 2m

δ4 (3ṽ2
2 ũ2

0 + ṽ1ũ0(−2ṽ2ũ1 + 3ṽ0) + ṽ0ũ1(2ṽ2ũ1 − 2ṽ0))
7 2m + 1s

δ5 (ṽ2ṽ0(2ṽ1ṽ0 − 3ũ1ũ0)− ṽ1ũ1(ṽ0ũ1 − ṽ1ũ0) + 2ṽ2
0 ũ0)

7 3m

δ6 (2ũ0(ṽ2ũ0)(ṽ2ũ1 − 2ṽ0)− (ṽ0ũ1 + ṽ1ũ0)(4ṽ1ũ0 + 2ũ1(ṽ0 − ṽ2ũ1)))
7 4m

δ7 (−2ṽ2ũ1 + 3ṽ0)
7 0m

δ8 (2ṽ2ũ0 − ṽ1ũ1)
7 0m

δ9 (2ũ1(ṽ0 − ṽ2ũ1) + 2(2ṽ0ũ1 − ṽ1ũ0))
7 0m

δ10 (ũ1(2ṽ2ũ0 + ṽ1ũ1) + ṽ0ũ0)
7 1m

δ11 (ũ2
1(−2ṽ2ũ1 + ṽ0) + ũ0(ṽ2ũ0 + 2ṽ1ũ1))

7 2m + 1s

δ12 (ũ0(3ũ1(2ṽ2ũ1 + ṽ0)− ṽ1ũ0))
7 1m

δ13 (ũ2
0(−ṽ2ũ1 + 2ṽ0) + 3ũ2

1(ṽ1ũ0 − ṽ0ũ1))
7 2m + 1s

δ14 (2ũ2
0(ṽ2ũ0 + 2ṽ1ũ1) + 3(ũ0ṽ0)ũ

2
1)

7 2m

δ15 (ũ1(ũ
2
0(−ṽ2ũ1 + 2ṽ0) + 3ũ2

1(ṽ1ũ0 − ṽ0ũ1)) + ũ2
0(2ũ1(ṽ2ũ1 − ṽ0) + 4(ṽ0ũ1 + ṽ1ũ0))

7 2m

Total cost 32m + 5s
Notation: m denotes a multiplication in F7n , and s a squaring in F7n .

In addition, efficient reduction method for computing the resultant is also introduced in [29, Ch. VI].
When m ≥ n, by Euclidean division algorithm, there exists Q(x), R(x) ∈ F (x) such that A(x) =
Q(x)B(x) + R(x) with deg R < n. Then

res(A,B) = (−1)mnres(B, R). (14)

Now we are ready to apply the resultant to our Tate pairing computation.

Lemma 3.4. For hD given in Table 1 and E = [UE , VE ], we let HD,E(x) = hD(x, VE(x)). Then we
have

hD(E) = res(UE , HD,E).

Proof. In fact, hD(E) = HD,E(x1)HD,E(x2)HD,E(x3) with xi’s the roots of UE(x). The assertion thus
follows immediately from Theorem 3.3.

Table 2 indicates the nonzero coefficients of HD(x), and the complexity is counted by using Karastuba’s
technique [16].

Now by using the reduction method in Eq. (14), we can compute res(UE ,HD,E) as follows:

Lemma 3.5. Let HD,E(x) = Q(x)UE(x) + R(x) with deg R ≤ 2. Then we have

hD(E) = res(UE , R).

Proof. We observe that the degree of HD,E is 12 and the degree of UE is 3. Thus by using Eq. (13),
we have res(UE ,HD,E) = res(HD,E , UE). From Eq. (14) it follows that res(HD,E , UE) = res(UE , R),
so we get res(UE ,HD,E) = res(UE , R).

9



Table 2: HD,E formula complexity counting
i ith coefficient of HD̃ Cost

12 −1 0

10 δ7vE,2 + 3u7
1 1m

9 δ7vE,1 + δ8vE,2 + 3u7
0 2m̃

8 δ2v2
E,2 + δ7vE,0 + δ8vE,1 + δ9vE,2 + u14

1 1m + 1s + 2m̃

7 2δ2vE,1vE,2 + δ3v2
E,2 + δ8vE,0 + δ9vE,1 + δ10vE,2 + 2u7

0u7
1 2m + 3m̃

6 δ1v3
E,2 + 2δ2vE,0vE,2 + δ2v2

E,1 + 2δ3vE,1vE,2 + δ4v2
E,2 + δ9vE,0 3m + 4m̃ + 1s

+δ10vE,1 + δ11vE,2 + u14
0 + 3u21

1
5 3δ1vE,1v2

E,2 + 2δ2vE,0vE,1 + 2δ3vE,0vE,2 + δ3v2
E,1 + 2δ4vE,1vE,2 7m̃ + 1m

+δ5v2
E,2 + δ10vE,0 + δ11vE,1 + δ12vE,2 + 2u7

0u14
1

4 3δ1vE,0v2
E,2 + 3δ1v2

E,1vE,2 + δ2v2
E,0 + 2δ3vE,0vE,1 + 2δ4vE,0vE,2 + δ4v2

E,1 5m̃ + 2m

+2δ5vE,1vE,2 + δ6v2
E,2 + δ11vE,0 + δ12vE,1 + δ13vE,2 + 2u14

0 u7
1 − u28

1

3 −δ1vE,0vE,1vE,2 + δ1v3
E,1 + δ3v2

E,0 + 2δ4vE,0vE,1 + 2δ5vE,0vE,2 + δ5v2
E,1 1m′ + 5m̃ + 1m

+2δ6vE,1vE,2 + δ12vE,0 + δ13vE,1 + δ14vE,2 + 3u21
0 + 3u7

0u21
1

2 (3δ1v2
E,0vE,2 + 3δ1vE,0v2

E,1 + δ4v2
E,0 + 2δ5vE,0vE,1 + 2δ6vE,0vE,2 + δ6v2

E,1 1m′ + 2m̃ + 1m + 1s

+δ13vE,0 + δ14vE,1 + δ15vE,2 + u14
0 u14

1
1 3δ1v2

E,0vE,1 + δ5v2
E,0 + 2δ6vE,0vE,1 + δ14vE,0 + δ15vE,1 + 3u21

0 u7
1 1m + 1m′ + 1m̃

0 δ1v3
E,0 + δ6v2

E,0 + δ15vE,0 − u28
0 1m′ + 1s

Total cost 4s + 13m + 31m̃ + 4m′

3.3 Algorithm for the Tate pairing computation by using Resultant

In this subsection, we describe an algorithm for computing the Tate pairing on divisors, and we also
compute its complexity. ¿From Lemma 3.1, Proposition 3.2, and Lemma 3.4, the Tate pairing given in
Eq. (6) can be computed by using Algorithm 2.

Since vÊ,j = σ · (some element in F77n), j = 0, 1, 2, we note that HD̃,Ê in the step 7 of Algorithm 2
can be written as

HD̃,Ê = −x12 +
10∑

i=0

(diσ + ei)xi, di, ei ∈ F77n for 0 ≤ i ≤ 10.

To find HD̃,Ê (mod UÊ) in the step 7, we use the following recursive relations:

xi ≡ aix
2 + bix + ci, 3 ≤ i ≤ 12

a3 = −uÊ,2, b3 = −uÊ,1, c3 = −uÊ,0 ∈ F77n

ai = ai−1a3 + bi−1, bi = ai−1b3 + ci−1, ci = ai−1c3.

Then R can be computed by

R = HD̃,Ê (mod UÊ)

= (a12 +
10∑

i=3

ai(diσ + ei) + d2σ + e2)x2

+ (b12 +
10∑

i=3

bi(diσ + ei) + d1σ + e1)x

+ (c12 +
10∑

i=3

ci(diσ + ei) + d0σ + e0).

(15)

Now we discuss the complexity of Algorithm 2 by counting the number of operations which are necessary
for computing η(D,E). As before, we denote the time for multiplications in F714n ,F77n and F7n by M,m′

and m, respectively, and a multiplication between F7n and F77n by m̃.
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Algorithm 2 Tate pairing computation by using resultant

INPUT D = [UD, VD], E = [UE , VE ] ∈ JHd
(F7n), endomorphism ψ

OUTPUT t̂(D, E)

1: Set ξ ← 2uD,2 and θ ← ξ7 − ξ + d.

2: Compute u1 = 3ξ2 + 2ξuD,2 + uD,1 and u0 = ξ3 + uD,2ξ
2 + uD,1ξ + uD,0.

3: Compute δj for j = 1, ..., 15 using Table 1

4: g ← 1,

5: for i = 0 to n− 1 do

6: compute Ê = τξ+θ(ψ(E))

7: compute HD̃,Ê = ĥD̃(x, VÊ) using u0, u1 and δj ’s (Table 2), and

compute R = HD̃,Ê (mod UÊ).

8: compute hDi(ψ(E)) = res(UÊ , R).

9: g ← g7 · hDi(ψ(E))

10: set u0 ← u72

0 , u1 ← u72

1

11: set ξ ← ξ72
, θ ← θ72

, δj ← δ72

j if j = 2, 3, 4, 5, 6, and δj ← (−1)iδ72

j otherwise.

12: Return g76n+1(77n−1), g = η(D, E).

Noting that, in Step 6, uÊ,j , j = 0, 1, 2 and vÊ,0, vÊ,1 belong to F77n , and from Eq. (5) we have
vÊ,2 = σ · (some element in F7n). The computation cost of HD̃,Ê = ĥD̃(x, VÊ) in Step 7 is counted in
Table 2. For computing R, given in Eq. (15), we need 24m′ for computing xn (mod UE) and 60m′ for
computing R.

The total complexity of this algorithm is therefore

40m + n(22m + 31m̃ + 88m′ + Tres + 1M), (16)

where Tres is the computation cost for the resultant res(UÊ , R) of UÊ and R in F714n . In detail, we
need 3m in the step 2, and 37m in the step 3 from Table 1. For each loop, we need 5m in the step 6,
17m + 31m̃ + 4m′ in the step 7 from Table 2, and 1M in the step 9.

For an asymptotically efficient computation of the resultant of a pair of polynomials, we can use the
reduction method in Eq. (14) and Lemma 3.5 repeatedly. Schwartz [25] presented a very efficient
algorithm for calculating the resultant by adapting the fast polynomial GCD algorithm by Moenck,
and this is O(N log2 N) algorithm for the resultant calculation, where N is the sum of degrees of two
polynomials.

However we calculate the resultant by computing the determinant of two polynomials with degree 2 and
3 in Mumford representation. Then we have Tres = 17M + 6S, where M (resp. S) is a multiplication
(resp. squaring) in F714n . Explicitly, let UÊ(x) = x3 + u2x

2 + u1x + u0 and R(x) = r2x
2 + r1x + r0,

then res(UÊ , R) is as follows:

11



r2
2(u0(−2r0u2−r1u1)+r2u

2
0+r0u

2
1)+r2

0(r2(u2
2−2u1)−r1u2+r0)+r2

1(u0(r2u2−r1)−u1r0)+r0r1r2(3u0−u1u2).

4 Complexity comparison

In this section we compare the complexity of our two methods given in Section 2 and 3.

When an extension degree is of the form k = 2i3j , the computation cost for a multiplication in Fqk is
theoretically 3i5j times of the cost for a multiplication Fq ([17], [19]). From this observation, we assume
that

1 mult. in F73n(m3) ≈ 5m, 1 mult. in F73(14n)(M3) ≈ 5M, 1 mult. in F714n(M) ≈ 3m′ (17)

and we also let m̃ ≈ 7m.

With the above assumptions, the point-wise computation cost in Eq. (11) is

TP := 2 · T3rt + 27n · (20m + 15m′) + 270m′ + 120m′

= 2 · T3rt + (540n)m + (405n + 390)m′,

where T3rt is the time for finding all the roots of a cubic polynomial over F73n . By Berlekamp-Rabin
algorithm [3], we have T3rt = O(32 log 3 log 73n) · 5m ≈ 27n · 4 · 5m .

Counting the cost for T3rt, we finally have

TP ≈ (1620n)m + (405n + 390)m′. (18)

On the other hand, the total time for the Resultant method in Eq. (16) is

TR = 40m + n(239m + 91m′ + Tres),

where Tres is the time for computing the resultant of two polynomials over F714n .

As shown in Section 3.3, we have Tres = 17M + 6S, where M (resp. S) is a multiplication (resp.
squaring) in F714n .

Thus, the computation cost of our Resultant approach is approximately

TR = 40m + n(239m + 91m′ + 17M + 6S)
≈ 40m + n(239m + 91m′ + 23M)
= (239n + 40)m + (160n)m′.

(19)

To compare the complexity of two methods, we summarize TP , TR and the ratio TP /TR in Table 3,
where the examples are chosen for cryptographical meaningful values [19].

Table 3: Complexity comparison: examples
Security (bits) 80 128 192

bitlength of 714n 1140 3072 8192
n 29 79 211

Point-wise (TP ) 46980m + 12135m′ 127980m + 32385m′ 341820m + 85845m′

Resultant (TR) 6971m + 4640m′ 18921m + 12640m′ 50469m + 33760m′
TP

TR
2.74 ≤ TP

TR
≤ 3.34 2.69 ≤ TP

TR
≤ 3.30 2.67 ≤ TP

TR
≤ 3.29
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According to [17], the ratio of m′ and m is 7 ≤ m′
m ≤ 49, and the last row of Table 3 shows the range of

the ratio of TP

TR
for each fixed value of n. Therefore, we can conclude that the Tate pairing computation

by using Resultant is approximately three times faster than the point-wise computation.

5 Experimental results

We have proposed two methods by Resultant and Point-wise approach for computing the Tate pairing
over the genus 3 hyperelliptic curve Hd : y2 = x7−x+d, d = ±1 over Fq. In Section 4, we compared the
complexity of two proposed methods, and it turned out that the Resultant approach is approximately
three times faster than the Point-wise approach. In this section, we provide experimental results for the
Tate pairing computation over the genus 3 hyperelliptic curve and compare the running time. Basically
our goal in this experimentation is that we verify our theoretical complexity comparison in Section 4
by actual implementation using one of the standard packages such as NTL. We make implementations
when both input divisors D and E are general divisors, and we use the NTL software package. We
provide implementation for genus 3 hyperelliptic curves for the first time.

We first need to find a prime n for each security level s such that 2s ≈ 73n, and also find a large prime `
dividing |JHd

(F7n)| such that ` ≈ 2s. The formula for |JHd
(F7n)| is given in Lemma 1.2. By searching

for good candidates for ` and n from n = 29 through n = 79, we find the following:

When n = 29, for H(−1) curve,
` = 295427580543981044508742175251656510425218717654351011099430750210650097.

When n = 43, for H(−1) curve,
` = 537186185691863880188217039863742753517055763668500175524814523901957588878744075332862
878883563864467.

When n = 47, for H(−1) curve,
` = 137497724610044251112031797733313211281120174698633752700226951030340651490044989128316
78964830780873139729982133.

When n = 73, for H(+1) curve,
` = 105533980645146561990468186060654951766146626712223193723674163198013158899403621841975
533231846990078128557860204797895519409349765129072347530962042588033357651667698004214953
2583647.

Table 4 shows the amounts of time to perform the field multiplications in F7n , F73n and F77n using
NTL. The table was computed by taking average time of 5000 multiplications of random elements in
each field.

Table 4: Multiplication timings (in milliseconds)
n 29 43 47 73
F7n (m) 0.2 0.4468 0.5312 1.2688
F73n(m3) 1.8468 3.3156 3.8376 8.5688
F77n (m′) 5.9938 12.9062 13.2562 21.1594
m3/m 9.234 7.42077 7.2244 6.75347
m′/m 29.969 28.8859 24.9552 16.6767
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In Section 2, the complexity for the Tate pairing computation by point-wise method is given by

TP := 2 T3rt + n (108m3 + 27M3) + 26M3. (20)

Assuming that the field operation m3 in F73n and the field operation m in F7n has the ratio m3/m = 5,
we obtain Table 3. However, in NTL the actual ratio is approximately 7 or 9 as shown in Table 5.
According to the actual ratio of the field operations in NTL, Table 3 is adjusted to Table 5.

Table 5: Complexity comparison: examples in NTL
bitlength of 714n 1140 1690 1847 2869

n 29 43 47 73
Point-wise (TP ) 59508m + 21843m′ 78948m + 24927m′ 86292m + 27195m′ 134028m + 41937m′

Resultant (TR) 6971m + 4640m′ 10317m + 6880m′ 11273m + 7520m′ 17487m + 11680m′
TP

TR
4.89 3.82 3.85 3.92

Table 6 shows the experiment results of the Tate pairing for selected examples. We performed fifty
calculations with random samples for each method and took the average time. The experiments ran on
a machine with 2.8Ghz Opteron and 4GB of RAM, and we used Microsoft Visual C++ 6.0 with speed
optimizations on.

Table 6: Experiment results (in seconds)
bit-length of ` 237 338 373 608
bit-length of 714n 1140 1690 1847 2869
n 29 43 47 73
Point-wise method(TP ) 125.639 357.626 453.749 1638.18
Resultant method(TR) 14.8825 45.7058 56.0878 173.698

TP

TR
8.44209 7.82452 8.08998 9.43119

There is room for further optimization and using NTL might not be the best choice. However, our
implementation is sufficient enough to conclude that the Resultant method is much faster than the
point-wise method.
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