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1. Introduction

An important problem in cryptography is the so called Decision Diffie-Hellman problem (henceforth abbrevi-
ated DDH). The problem is to distinguish triples of the form (ga, gb, gab) from arbitrary triples from a cyclic
group G = 〈g〉. It turns out that for (cyclic subgroups of) the group of m-torsion points on an elliptic curve
over a finite field, the DDH problem admits an efficient solution if there exists a suitable endomorphism
called a distortion map (which can be efficiently computed) on the elliptic curve.

Suppose m is relatively prime to the characteristic of a finite field Fq, then the group of m-torsion points
on an elliptic curve E/Fq, denoted E[m], is isomorphic to (Z/mZ) × (Z/mZ). Fix an elliptic curve E/Fq

and a prime ` that is not the characteristic of Fq. Let P and Q generate the group E[`]. A distortion map
on E is an endomorphism φ of E such that φ(P ) /∈ 〈P 〉. A distortion map can be used to solve the DDH
problem as follows: Given a triple R,S, T of points belonging to the group generated by P , we check whether
e`(R,φ(S)) = e`(P, φ(T )), where e` is the Weil pairing on the `-torsion points. It follows from well known
properties of the Weil pairing that this check succeeds if and only if R = aP , S = bP and T = abP . Under
the assumptions that P and Q are both defined over Fqk , where k is not large (say, bounded by a fixed
polynomial in log(q)), and that φ can be computed in polynomial time, the DDH problem can be solved
in (randomized) polynomial time using this idea. If P and Q are not eigenvectors for the Frobenius map,
then in many cases one can use the trace map as a distortion map (see [GR04]). For this reason, we will
concentrate only on the subgroups that are Frobenius eigenspaces.

It is known that distortion maps exist on supersingular elliptic curves ([Ver01, GR04]), and that distortion
maps that do not commute with the Frobenius do not exist on ordinary elliptic curves (see [Ver01] or
[Ver04] Theorem 6). The latter implies that distortion maps do not exist for ordinary elliptic curves with
embedding degree > 1. The embedding degree, (say) k, is the order of q in the group (Z/`Z)∗. A theorem of
Balasubramanian and Koblitz ([BK98] Theorem 1) says that if E(Fq) contains an `-torsion point and k > 1,
then E[`] ⊆ Fqk . Thus, the only remaining cases where the existence of Distortion maps is not known are
the cases when the embedding degree k is 1. If the embedding degree is 1 and E(Fq) contains an `-torsion
point, then there are two possibilities: either E[`](Fq) is cyclic or E[`] ⊆ E(Fq). In the former situation
there are no distortion maps (by [Ver04] Theorem 6). However, the Tate pairing can be used to solve DDH
efficiently in this case (see the comments in [GR04] following Remark 2.2). Thus, the only case in which the
question of the existence of a distortion map remains open is when E[`] ⊆ E(Fq). In this article we show
that there are no distortion maps for the Frobenius eigenspaces in this case.

2. The Proof

Theorem 2.1. Let E/Fq be an ordinary elliptic curve and let ` be a prime different from the characteristic
of the field. Suppose E[`] ⊆ E(Fq), but no `-torsion points (apart from the identity) are defined over a proper
subfield of Fq, then there are no distortion maps for the Frobenius eigenspaces on E.

Proof : The idea behind the proof is to use Tate’s theorem ([Tat66])to show that no distortion maps exist.

Let π denote the (q-th power) Frobenius map on the Tate module T`(E) = lim
←

E[`n]. The characteristic

polynomial of the Frobenius is f(x) = x2 − tx + q. We claim that f(x) factors over Z`[x] with two distinct
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roots. We begin by noting that the discriminant of this polynomial is t2 − 4q < 0 since the curve is not
supersingular. The polynomial has non-zero discriminant in Z` and thus has distinct roots in the algebraic
closure of Z`. One way to see that f is not irreducible in Q`[x] is as follows: Suppose f is irreducible, then
the 2-dimensional Q` vector space V`(E) = T`(E) ⊗Z`

Q` has a basis of the form P, π(P ). This is a special
case of the linear algebra fact that if a linear operator L acting on a finite dimensional vector space has
minimal polynomial equal to its characteristic polynomial, then it has a cyclic basis: i.e., there is a vector v
such that the vectors v, L(v), L(L(v)), · · · span the space (a Corollary to §7.2 Theorem 3 of [HK71]). With
respect to this basis the action of π on T` is given by

Mπ =
(

0 1
−q t

)
since π(π(P )) = π2(P ) = tπ(P ) − qπ(P ) from the characteristic equation of π. The action of π on E[`]
is given by the reduction of this matrix mod `. But we know that the action of π on E[`] is the iden-
tity matrix, but the reduction of Mπ mod ` is not (conjugate to) the identity matrix since q ≡ 1 mod `
and t ≡ 2 mod `. This is a contradiction and hence f has two distinct roots over Z` and our claim is proven.

We have shown that the action of π on T`(E) is conjugate to

Mπ =
(

α 0
0 β

)
with α 6= β ∈ Z`.

In fact, the matrix Mπ takes the above form with respect to the Frobenius eigenbasis of V`(E). Tate’s
theorem tells us that EndFq (T`(E)) ∼= EndFq (E)⊗Z`. In other words, a matrix with entries in Z` arises from
a map on the curve (in the sense that it belongs to the right hand side of the isomorphism) iff it commutes
with the action of Frobenius given by Mπ. But the commutant of the matrix Mπ are again matrices of the
form (

a 0
0 b

)
.

Therefore, no map of the curve can send points in one eigenspace outside that eigenspace. Thus, there are
no distortion maps. �

Remark 2.2. We note that if E is supersingular and embedding degree k = 1, then Theorem 2.1 gives a simple
proof of the existence of distortion maps. Indeed, under these assumptions one has that f(x) = (x − a)2

where a is an integer and that π, the Frobenius map, acts as multiplication by scalar on E. Since any
matrix commutes with this action, Tate’s theorem implies the existence of distortion maps. If k > 1 a more
complicated argument (still using Tate’s theorem) works (see [Ver04] Theorem 7).
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