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Abstract. The paper discusses the security of hash function with Merkle-
Damg̊ard construction and provides the complexity bound of finding a
collision and primage of hash function based on the condition probabil-
ity of compression function y = F (x, k). we make a conclusion that in
Merkle-Dammåard construction, the requirement of free start collision
resistant and free start collision resistant on compression function is not
necessary and it is enough if the compression function with properties of
fix start collision resistant and fix start preimage resistant. However, the
condition probability PY |X=x(y) and PY |K=k(y) of compression function
y = F (x, k) have much influence on the security of the hash function.
The best design of compression function should have properties of that
PY |X=x(y) and PY |K=k(y) are both uniformly distributed for all x and
k. At the end of the paper, we discussed the block cipher based hash
function, point out among the the 20 schemes, selected by PGV[2] and
BPS[12], the best scheme is block cipher itself, if the block cipher with
perfect security and perfect key distribution.

1 Introduction

Most of hash functions iterated a compression function by Merkle-Damg̊ard con-
struction with constant IV[3]. A well known approach for building hash function
is the compression function out of a block cipher which have been discussed
sine Rabin[10] given the first model of that kind of structure. As BRS point out
the block cipher approach has been less widely used for variety of reasons, and
the emergence of the AES[13] has somewhat modified this landscape, especially
recently the MD5 and SHA1 are attacked[8][9][14][16].

The topics of building hash function based on block cipher have been system-
atically analyzed in paper [2] [4][7][12][15]. The PGV paper considered turning a
block cipher E : {0, 1}n×{0, 1}n → {0, 1}n into a hash function H : ({0, 1}n)∗ →
{0, 1}n using a compression function F : {0, 1}n×{0, 1}n → {0, 1}n derived from
E. For v is a fixed n-bit constant, PGV considers all 64 compression functions
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F of the form F (hi−1,mi) = Ea(b) ⊕ c where a, b, c ∈ {hi−1,mi, hi−1 ⊕mi, v},
then define the iterated hash of F as H(M1, . . . , Mt, IV ) = ht, h0 = IV, hi =
F (hi−1,Mi), i ∈ [1..t], |Mi| = n. Of the 64 such schemes, the authors of [2]
regarded 12 as secure. In fact, PGV[2] implied the condition of free start not
fix start. The authors of [12] taken a more proof-centric look at the schemes
from PGV, proved additional 8 schemes were collision resistant, divided the 20
schemes into two group where the group − 1 were the 12 schemes picked by
PGV and the group− 2 were the new founded 8 schemes. For the new founded
schemes, the hash function H immune to collision attack within the Merkle-
Damg̊ard paradigm, the compression functions were not immune to collision
attack, the proves of collision resistant of group − 2 used the assumptions of
E with black box model and H with fix start model. They also provided both
upper and lower bounds for each scheme.

This paper takes a proof-centric look at the schemes based on the probability
theory, providing the exact probability of finding a collision or primage based
on the assumption of known condition probability of block cipher E. Let F :
{0, 1}ι×{0, 1}κ → {0, 1}n, x ∈ {0, 1}ι, y ∈ {0, 1}n,k ∈ {0, 1}κ and Hash function
H is Merkle-Damg̊ard construction hash function with compression function F .

Firstly, the probability of finding a collision or a preimage is defined by com-
plexity of finding collision in one time computation of compression function F ,
based on which a more precise definitions of free start and fix start of collision
resistant and preimage resistant are given about compression function and Hash
function. In our point of view, if we have no way to find the collision or preimage
except exhaustive search then the function is called collision resistant or preim-
age resistant. Secondly, the upper bound probabilities of finding collision and
preimage about the compression function F and the Hash function with M-D
paradigm are given which is based on the condition probability of PY |X=x(y)
and PY |K=k(y). At last we analyze the 64 schemes with M-D construction, in
fact the best compression function to build M-D hash function is block cipher
E itself, the best block cipher is the block cipher designed with perfect security
and perfect key distribution.

The paper is organized as follows. The mathematical preliminaries and nota-
tion employed are described in section 2. The preimage resistance and collision
resistance of compression function are given in section 3,that of a hash func-
tion are presented in section 4. Section 5 describe the preimage resistance and
collision resistance of PGV schemes. Section 6 is our conclusion.

2 Definition

2.1 Basic Definition

A discrete random variable X is a mapping from the sample space Ω to an
alphabed X . X assigns a value x ∈ X to each elementary event in the Ω and
the probability distribution of X is the function[5]

PX : X → < : x 7→ PX(x) = P [X = x] =
∑

ω∈Ω:X(ω)=x

P [ω].
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If the conditioning event involves another random variable Y defined on the
same sample space, the conditional probability distribution of X given that Y
takes on a value y is:

PX|Y =y(x) =
PXY (x, y)

PY (y)

whenever PY (y) is positive . Two random variables X and Y are called indepen-
dent if for all x ∈ X and y ∈ Y:

PXY (x, y) = PX(x) · PY (y).

Let F : {0, 1}ι × {0, 1}κ → {0, 1}n, x ∈ {0, 1}ι, y ∈ {0, 1}n,k ∈ {0, 1}κ and
y = Fk(x). If F : {0, 1}ι × {0, 1}κ → {0, 1}n is a compression function of hash
function HX and HK :

HX : {0, 1}n × {0, 1}κ·∗ → {0, 1}n, x ∈ {0, 1}n,m ∈ {0, 1}κ·∗, y ∈ {0, 1}n

z = HX(m,x)
4
= HX(mt‖ . . . ‖m1, x) = Fmt(Fmt−1(. . . (Fm1(x)) . . .))

HK : {0, 1}ι·∗ × {0, 1}n → {0, 1}n, k ∈ {0, 1}n,m ∈ {0, 1}ι·∗, y ∈ {0, 1}n

z = HK(m, k)
4
= HK(mt‖ . . . ‖m1, k) = F...FFk(m1)(m2)...

(mt)

HK(m2‖m1, k) = FFk(m1)(m2).

In this paper, if no special statement are given, the function HK ,HX and
F are defined as above and x, k are uniformly distributed in definition domain.
qk,qx and qy denote qk

4
= max

y
PY |K=k(y)2ι, qx

4
= max

y
PY |X=x(y)2κ and qy

4
=

PY (y)2ι2κ.
In hash function attack, the probability of finding a primage or collision is

different from tradition point of view of probability. If the compression func-
tion F is block cipher E with form of Ek(x) = y, then the probabilities of
PX|Y =y,K=k(x), PK|Y =y,X=x(k) are both equal 0 or 1 (assume the cipher with
perfect key distribution). However, for given y, k the value x satisfying y = Ek(x)
can be found directly by computing x = E−1

k (y), but for given y, x the value k
satisfying y = Ek(x) can be found only by exhaustive search of k, that implies
we should compute E for each guessing k. So we consider giving new defini-
tion about the probability of finding collision or preimage based on the times
computing F being made.

Definition 1. Let X,Y and K are random variables defined in X ,K and Y,
respectively, Y can be deduced from X, K by y = Fk(x), E be a set with variables
of X, K, Y , the QE is defined as the max probability of finding the inner relations
of variables in E with one time computation of function F .

More precisely, QXY K means the max probability of finding values x, y, k
satisfying y = Fk(x) in one time computation of F , in fact for any x, k, we can
compute y by Fk(x), which gives QXKY = 1. QXX′K means the max probability
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of finding x, x′ satisfying Fk(x) = Fk(x′) in one time computation of F , if Λ ∈ X ,
let QXX′

Γ
K means the max probability of finding x, x′ ∈ Γ satisfying Fk(x) =

Fk(x′) in one time computing of F . The condition probability QXK|Y =y implies
for given y ∈ Y the max probability of finding x, k satisfying y = Fk(x) in one
time computation of F , and QXK|Y = max

y
QXK|Y =y. If p is the max probability

of finding the inner relation of E in t times computation of F , then QE = p
t ,

where if F is invertible, the one times of computing F−1 is regarded as one times
computation of F .

If F is block cipher, from given y, k we can compute x = F−1
k (y) that means

QXK|Y =y = QX|K=k,Y =y = 1. But we can’t compute k directly from give y, x,
the only way to find k is exhaustive search, we have QK|X=x,Y =y ≥ PY |X=x(y).

Definition 2 (Perfect Secrecy[6]). A cryptosystem has perfect secrecy if

PX|Y =y(x) = PX(x)

for all x ∈ {0, 1}n, y ∈ {0, 1}n.

Definition 3 (Perfect Key Distribution). A cryptosystem has perfect key
distribution if

PK|Y =y(k) = PK(k)

for all x ∈ {0, 1}n, y ∈ {0, 1}n.

In fact, PXY (xy) = PX|Y =yPY (y) = PY |X=x(y)PX(x), since PX|Y =y(x) =
PX(x), we get PY |X=x(y) = PY (y).

Definition 4 (Random Oracles[12]). A fixed-size random oracle is a func-
tion f : {0, 1}ι → {0, 1}n, chosen uniformly at random from the set of all such
functions. For interesting sizes a and b, it is infeasible to implement such a func-
tion, or to store its truth table. Thus, we assume a public oracle which, given
x ∈ {0, 1}ι, computes y = f(x) ∈ {0, 1}n.

Definition 5 (Free Start Collision resistant). We call F, HX or HK is col-
lision resistant if there is no way to find collision except exhaustive search. And
Q<XX′KK′>, Q<XX′MM ′> and Q<MM ′KK′> denote the max probability of find-
ing the collision of F, HX and HK , in one time computation of F , respectively.

Definition 6 (Fix Start Collision resistant). Let Λ ⊂ {0, 1}ι, Γ ⊂ {0, 1}κ,
we call F or HX is collision resistant with fix start X, if there is no way to find
collision Fk(x) = Fk′(x′) or HX(m,x) = HX(m′, x′) except exhaustive search of
k or k′, where x, x′ ∈ Λ. And F or HK is collision resistant with fix start K,
if there is no way to find collision Fk(x) = Fk′(x′) or HK(m, k) = HK(m′, k′)
except exhaustive search, where k, k′ ∈ Λ. And Q<XX′

Λ
KK′>,Q<XX′

Λ
MM ′> rep-

resent the max probabilities of finding the collision of F and HX with fix start
X, in one time computation of F , respectively. Q<XX′KK′

Γ
>,Q<MM ′KK′

Γ
> rep-

resent the max probabilities of finding the collision of F and HK with fix start
K, in one time computation of F , respectively.
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Definition 7 (Free Start Preimage Resistant). We call F (HX or HK)
is preimage resistant if, for given y, no way to find (x, k)((x,m) or (k, m))
satisfying y = Fk(x)(y = HX(m,x) or y = HK(m, k)) except exhaustive search.
And Q[XK|Y ], Q[XM |Y ] and Q[MK|Y ] denote the max probabilities of finding the
preimage of F ,HX and HK , for some given y in one time computation of F ,
respectively.

Definition 8 (Fix Start Preimage Resistant). Let Λ ⊂ {0, 1}ι, Γ ⊂ {0, 1}κ,
we call F or HX is preimage resistant with fix start X, if for given y, no way to
find (k, x) or (m,x) satisfying y = Fk(x) or y = HX(m,x), where x ∈ Λ, except
exhaustive search of k, we call F or HK is primage resistant for fix start K, if for
given y no say to find (k, x) or (k, m) satisfying y = Fk(x) or HK(m, k) expect
exhaustive search of m where k ∈ Γ . And P[XΛK|Y ] denotes the max probability
of finding the x, k satisfying y = Fk(x) in one time computation of F for random
selected y and x ∈ Λ. Q[XΛK|Y ] denotes the max probability of finding the x, k
satisfying y = Fk(x) for random selected y in one time computation where k ∈ Γ .

3 Hash Properties of Compression Function

The conclusions of this section are that the best design of F should satisfy y is
uniformly distributed in {0, 1}n for each k ∈ {0, 1}κ and for each x ∈ {0, 1}ι, no
matter for free start or fix start and for preimage resistance or collision resistance.

3.1 Free Start Preimage Resistance

The conclusion of this subsection is Theorem1, the upper bound of free start
preimage resistant of F is max

x,k
{qk2−ι, qx2−κ}, which implies the best selection

of free start collision resistant and free start preimage resistant have same re-
quirement on F .

Lemma 1. Q[XK|Y ] = max
y
{QXKY =y, QX|KY , QK|XY }.

Theorem 1. If F is free start Preimage resistance then

Q[XK|Y ] ≤ max
x,k

{qk2−ι, qx2−κ}. (1)

Proof. Given y, k finding x1, . . . , xt with y = Fk(xi) the success probability is:

p = 1−
t−1∏

i=0

(2ι − 2ιPY |K=k(y)− i)
(2ι)(2ι − 1) . . . (2ι − t + 1)

Let denote n = 2ι then

p = 1−
t−1∏

i=0

(1− qk

n− i
) ≈ 1−

t−1∏

i=0

exp
qk

n−i ≈ 1−
t−1∏

i=0

exp(
qk
n +

iqk
n2 )

We get QX|Y K ≤ qk2−ι, similarly we get QK|Y X ≤ qx2−κ. ut
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3.2 Free Start Collision Resistance

Conclusion of this subsection is Theorem2, upper bound of free start collision re-
sistant of F is smaller than max

x,k,y
{
√

(qx − 1)2−κ,
√

(qk − 1)2−ι,
√

(qy − 1)2−ι−κ},
which implies the best design of F should satisfy y is uniformly distributed in
{0, 1}n for each k ∈ {0, 1}κ and for each x ∈ {0, 1}ι.

Lemma 2. Q<XX′KK′> = max{QXX′K , QXKK′ , QXX′KK′}

Proof. If f is collision resistant, getting a collision of F has three ways, firstly,
searching x, x′, k satisfying Fk(x) = Fk(x′), secondly searching x, k, k′ satisfying
Fk(x) = Fk′(x), and thirdly, searching x, x′, k, k′ satisfying Fk(x) = Fk′(x′). ut

Lemma 3. F is collision resistant, then

– QXX′K ≤ max
k

√
(qk − 1)2−ι

– QXKK′ ≤ max
x,y

√
(qx − 1)2−κ

– QXX′KK′ ≤ max
y

√
(qy − 1)2−ι−κ

Proof. F is collision resistant, the collision can be get only by exhaustive search.

– The fastest way to search for collision is the way based on birthday paradox.
For random selected k searching x1, x2, . . . xt finding collision of Fk(xi) =
Fk(xj). The max probability of success is

p = 1−
2ι(2ι − 2ιPY |K=k(y1)) . . . (2ι −

t−1∑
i

(2ιPY |K=k(yi))
(

2ι

t

)
t!

Let denote n
4
= 2ι and qk

4
= 2ι maxy PY |K=k(y) then

p ≤ 1− (n)(n− qk) . . . (n− qk(t− 1))
(n)(n− 1) . . . (n− t + 1)

= 1−
t−1∏

i=0

n− iqk

n− i
= 1−

t−1∏

i=0

(1− iqk − i

n− i
) = 1−

t−1∏

i=0

(1− i

n− i
(qk − 1))

≈ 1−
t−1∏

i=0

exp
i

n−i (qk−1) ≈ 1−
t−1∏

i=0

exp( i
n + i2

n2 )(qk−1)

Same as birthday paradox, when t ≥
√

n/(qk − 1), qk > 1 the success prob-

ability of collision is bigger than 1/2. We get QXX′|K ≤
√

qk−1
2ι .

– similar as item 1, we get QKK′|X ≤
√

qx−1
2κ ;
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– similar as item 1, we get QKK′XX ≤
√

qy−1
2κ+ι . ut

Theorem 2. F is collision resistant then

Q<XX′KK′> ≤ max
x,k,y

{
√

(qx − 1)2−κ,
√

(qk − 1)2−ι,
√

(qy − 1)2−ι−κ} (2)

3.3 Fix Start Preimage Resistance

The conclusions of this subsection are Theorem3 and Theorem4.

Lemma 4. Let Λ ⊂ {0, 1}ι, Γ ⊂ {0, 1}κ, PXΛ
, PKΓ

to denote the probability of
x ∈ Λ

– QXΛK|Y =y = max{max
x∈Γ

QK|Y =y,X=x , QXK|Y =yPXΛ
}

– QXKΓ |Y =y = max{max
k∈Γ

QX|Y =y,K=k , QXK|Y =yPKΓ
}

Proof. For QXΛK|Y =y, the preimage can be found in two ways, firstly for selected
x ∈ Γ , find the preimage of y; secondly, find the preimage of y, then check x ∈ Λ
being satisfied or not. ut
Lemma 5. If QX|Y =y,K=k = 1 ∧QK|Y =y,X=x = qx2−κ then:

– QX|Y =y,K=k:k,∈Γ = 1
– QK|Y =y,X=x:x∈Λ ≤ qx2−κ

Lemma 6. If QK|Y =y,X=x = 1 ∧QX|Y =y,K=k = qk2−ι then:

– QK|Y =y,X=x:x∈Λ = 1
– QX|Y =y,K=k:k∈Γ ≤ qk2−ι

Theorem 3. If If QX|Y =y,K=k = 1 ∧QK|Y =y,X=x = qx2−κ then

Q[XKΓ |Y ] = 1. (3)

Q[XΛK|Y ] ≤
∑

x∈Λ

qx2−κ (4)

Proof. The Eq.(3) can be get directly from Lemma5.

QK|Y =y,X=x = qx2−κ ⇒ QK|Y =y,X=x:x∈Λ ≤ qx2−κ

QX|Y =y,K=k = 1 ⇒ QX=x0,K|Y =y = PY |X=x0(y)

From Lemma4 we get the conclusion. If ∀k, k′, k 6= k′ and ∀x, x′ ∈ Λ we have
Fk(x) 6= Fk′(x′), then the equation being hold.

Theorem 4. If If QK|Y =y,X=x = 1 ∧QX|Y =y,K=k = qk2−ι then:

Q[XΛK|Y ] = 1. (5)

Q[XKΓ |Y ] ≤
∑

k∈Γ

qk2−ι (6)
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3.4 Fix Start Collision Resistance

The conclusion of this subsection are Theorem5 and Theorem6, which tell us
the best design of F also should satisfy Y is uniformly distributed in {0, 1}n for
each k ∈ {0, 1}κ and for each x ∈ {0, 1}ι.

Lemma 7. Let Λ ⊂ {0, 1}ι, Γ ⊂ {0, 1}κ

– Q<XX′
Λ

KK′> = max{QXX′
Λ

K , QXΛKK′ , QXX′
Λ

KK′}
– Q<XX′KK′

Γ
> = max{QXX′KΓ

, QXKK′
Γ
, QXX′KK′

Γ
}.

Lemma 8. Let Λ ⊂ {0, 1}ι

– QXΛKK′ = max
x∈Λ

{QKK′|X=x, PXΛ
QXKK′}

– QXX′
Λ

K = max
x,x′∈Λ

{QK|X=x,X′=x′ , PXΛ
QXK|X′=x′ , PXΛX′

Λ
QXX′K}

– QXX′
Λ

KK′ = max
x,x′∈Λ

{QKK′|X=x,X′=x′ , PXΛ
QXKK′|X′=x′ , PXΛX′

Λ
QXX′KK′}

Lemma 9. Let Γ ⊂ {0, 1}κ

– QXX′KΓ
= max

k∈Γ
{QXX′|K=k, PKΓ

QXX′K}
– QXKK′

Γ
= max

k,k′∈Γ
{QX|K=k,K′=k′ , PKΓ

QXK|K′=k′ , PKΓ K′
Γ
QXKK′}

– QXX′KK′
Γ

= max
k,k′∈Γ

{QXX′|K=k,K′=k′ , PKΓ
QXX′K|K′=k′ , PKΓ K′

Γ
QXX′KK′}.

Theorem 5. If QX|Y =y,K=k = 1 ∧QK|Y =y,X=x = qx2−κ then:

Q<XX′KK′
Γ

> =
{

1
2 |Γ | > 1
0 else

(7)

Q<XX′
Λ

KK′> ≤ max
x∈Λ

{
√

(qx − 1)2−κ, (
∑

x∈Λ

qx−1)2−κ,

√
(
∑

x∈Λ

qx − 1)2−κ|Λ|}. (8)

Proof. The Eq.(7) can be get directly from Lemma5.

– Since QK|Y =y,X=x = qx2−κ, for x ∈ Λ, the fastest way to get collision is
for random select a k1, . . . , kt getting y = Fki(x), checking Fki(x) = Fkj (x)
equals or not, similar as proof of Lemma3, QKK′|X=x,x∈Λ =

√
(qx − 1)2−κ.

– QX|Y =y,K=k = 1 ⇒ QXK′|K=k = 1
2 ⇒ QX=x,K′|K=k = PY |X=x(Fk(x))− 1,

we have PXΛ
QXK′|K = (

∑
x∈Λ

qx − 1)2−κ.

– If |Λ| = 1, QKX=x,X′=x′ = 0, or else for selected x, x′ searching k satisfy-
ing Fk(x) = Fk(x′), the success firstly needs exist of k satisfying Fk(x) =
Fk(x′) for selected x, x′, since QK|Y =y,X=x ≤ qx2−κ then QKX=xX′=x′ ≤
#{Fk(x) = Fk(x′)|x, x′ ∈ Λ, k ∈ {0, 1}κ}2−κ.
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– if |Λ| = 1, QK,K′|X=x,X′=x′;x,x′∈Λ = 0, or else for given x, x′ the fastest way
to find k, k′ is random select k1, k2, .., compute yi = Fki

(x),y′i = Fki
(x′) then

check yi equals y′j or not, since QK|Y =y,X=x ≤ qx2−κ, from Lemma3 we get

PXΛX′
Λ
QXX′KK′ =

√
(
∑

x∈Λ

qx − 1)2−κ|Λ|. ut

Theorem 6. If QK|Y =y,X=x = 1 ∧QX|Y =y,K=k = qk2−ι then:

Q<XX′KK′
Γ

> ≤ max
k∈Γ

{
√

(qk − 1)2−ι, (
∑

k∈Γ

qk − 1)2−ι,

√
(
∑

k∈Γ

qk − 1)2−ι|Γ |}. (9)

Q<XX′
Λ

KK′> =
1
2
. (10)

4 Hash Properties of Iterated Structure

In this section, we give the proves of that if the compression function is free
start preimage resistant and collision resistant, then the hash function is free
start preimage resistant and but not free start collision resistant, if the com-
pression function is fix start collision resistant and preimage resistant then the
hash function is fix start collision resistant and preimage resistant, and also the
upper bounds of collision resistance and preimage resistance are given based on
the condition probabilities PY |X=x(y) and PY |K=k(y) of compression function
F . And also if the compression function is not immune to free start preimage
resistant, then the compression function should be designed with minimum val-
ues of PY |X=x(y) and PY |K=k(y), which imply the best design require the Y is
uniformly distributed in {0, 1}n for each k and each x, if n = κ = m then the
best design of compression function is permutation for each k and each x.

Lemma 10. Let F : {0, 1}n × {0, 1}κ → {0, 1}n, y = Fk(x), y ∈ {0, 1}n, x ∈
{0, 1}n, HX : {0, 1}n×{0, 1}κ·t → {0, 1}n, z = Fmt

(. . . Fm1(x) . . .), z ∈ {0, 1}n,
m = mt‖ . . . ‖m1 ∈ {0, 1}κ·t and m1, . . . , mt are independent from each other
then:

– PZ|M=m(z) ≤ qk
t2−n

– PZ|X=x(z) ≤ qx2−κ.

Proof. It is clear t = 1 the inequality is correct, when t = 2:

PZ|M=m(z) = PZ|M=m2‖m1(z)

=
∑

x

PX(x)PZ|M=m2‖m1,X=x(z = Fm2(Fm1(x)))

=
∑

x

∑
u

PX(x)PZ|M=m2‖m1,X=x(z = Fm2(u), u = Fm1(x))
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=
∑

u

PZ|M2=m2,U=u(z = Fm2(u))
∑

x

PX(x)PU |M1=m1,X=x(u = Fm1(x))

=
∑

u

PZ|M2=m2,U=u(z = Fm2(u))PU |M1=m1(u)

≤ qk

∑
u

1
2n

PZ|M2=m2,U=u(z = Fm2(u)) ≤ qkPZ|M2=m2(z)

PZ|X=x(z) =
∑

m1,m2

PM (m1)PM (m2)PZ|M=m2‖m1,X=x(z = Fm2(Fm1(x)))

=
∑

m1,m2

∑
u

PM (m1)PM (m2)PZ|M=m2‖m1,X=x(z = Fm2(u), u = Fm1(x))

=
∑
m2

∑
u

PM (m2)PZ|M2,U=u(z = Fm2(u))
∑
m1

PM (m1)PU |M1,X(u = Fm1(x))

=
∑
m2

∑
u

PM (m2)PZ|M2,U=u(z = Fm2(u))PU |X=x(u)

=
∑

u

PZ|U=u(z)PU |X=x(u) ≤ qx2−κ
∑

u

PU |X=x(u) = qx/2κ.

Let assume when t ≤ l − 1 the inequality is true, when t = l

PZ|M=m(z) =
∑

x

PX(x)PZ|M ′=m′‖m1,X=x(z = HX(m′, Fm1(x)))

=
∑

u

PZ|M ′=m′,U=u(z = HX(m′, u))PU |M1=m1(u)

≤ qk

∑
u

1
2n

PZ|M ′=m′,U=u(z = HX(m′, u)) ≤ qk
l2−n

PZ|X=x(z) =
∑

m′,m1

PM (m′)PM (m1)PZ|M=m′‖m1,X=x(z = HX(m′, (Fm1(x)))

=
∑

m′,m1,u

PM ′(m′)PM (m1)PZ|M=m′‖m1,X=x,U=u(z = HX(m′, u), u = Fm1(x))

=
∑

m′

∑
u

PM ′(m′)PZ|M ′=m′,U=u(z = H(m′, u))PU |X=x(u)

=
∑

u

PZ|U=u(z)PU |X=x(u) ≤ qx2−κ
∑

u

PU |X=x(u) = qx2−κ.

From induction principle we get the conclusions. ut
Lemma 11. Let F : {0, 1}ι × {0, 1}n → {0, 1}n, HK : {0, 1}ι·t × {0, 1}n →
{0, 1}n, k ∈ {0, 1}n,m ∈ {0, 1}ι·t, y ∈ {0, 1}n, z ∈ {0, 1}n, y = Fk(x), z =
F...(FFk(m1)(m2))...(mt) and m1, . . . , mt are independent from each other then:

– PZ|M=m(z) ≤ max
x

qx
t2−n
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– PZ|K=k(z) ≤ max
k

qk2−ι.

Proof. It is clear t = 1 the inequations are correct. Let assume when t ≤ l − 1
the inequations are correct.

PZ|M=m(z) =
∑

k

PK(k)PZ|M ′=m′‖m1,K=k(z = HK(m′, Fk(m1)))

=
∑

u

PZ|M ′=m′,U=u(z = HK(m′, u))PU |M1=m1(u)

≤ qx

∑
u

1
2n

PZ|M ′=m′,U=u(z = HX(m′, u)) ≤ qx
l2−n

PZ|K=k(z) =
∑

m′,m1

PM (m′)PM (m1)PZ|M=m′‖m1,K=k(z = HK(m′, (Fk(m1)))

=
∑

m′,m1,u

PM ′(m′)PM (m1)PZ|M=m′‖m1,K=k,U=u(z = HK(m′, u), u = Fk(m1))

=
∑

m′

∑
u

PM ′(m′)PZ|M ′=m′,U=u(z = HK(m′, u))PU |K=k(u)

=
∑

u

PZ|U=u(z)PU |K=k(u) ≤ qk2−κ
∑

u

PU |K=k(u) = qk2−ι.

From induction principle we get the conclusions. ut
Theorem 7. If F : {0, 1}n × {0, 1}κ → {0, 1}n is preimage resistant and colli-
sion resistant, HX : {0, 1}n × {0, 1}κ·t → {0, 1}n, x ∈ {0, 1}n,m ∈ {0, 1}κ·t, y ∈
{0, 1}n, z ∈ {0, 1}n, y = Fk(x) and z = Fmt

(. . . Fm1(x) . . .) then:

Q[MX|Z] ≤ 2max
x,k

{qx2−κ, qk2−n} (11)

Q<MM ′XX′> = 1/2 (12)

Proof.

– Let assume for given y we find m,x satisfying HX(mt‖ . . . ‖m1, x) = y then
we find HX(mt−1‖ . . . ‖m1, x),mt satisfying Fmt(HX(mt−1‖ . . . ‖m1, x)) =
y, which implies Q[XK|Y ] ≥ 1

1
Q[MX|Z]

+t
≥ Q[MX|Z]

2 , from Theorem1 we get

the conclusion.
– We get HX(m2‖m1, x) = HX(m2,HX(m1, x)), then we find collision. ut

Theorem 8. If F : {0, 1}ι × {0, 1}n → {0, 1}n, is preimage resistant and colli-
sion resistant, HK : {0, 1}ι·t × {0, 1}n → {0, 1}n, k ∈ {0, 1}n,m ∈ {0, 1}ι·t, y ∈
{0, 1}n, z ∈ {0, 1}n, y = Fk(x) and z = F...(FFk(m1)(m2))...(mt) then:

Q[KM |Z] ≤ 2max
x,k

{qx2−κ, qk2−n} (13)

Q<KK′MM ′> = 1/2 (14)
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Theorem 9. If F : {0, 1}n × {0, 1}κ → {0, 1}n, HX : {0, 1}n × {0, 1}κ·∗ →
{0, 1}n, x ∈ {0, 1}n,m ∈ {0, 1}κ·∗, y ∈ {0, 1}n, z ∈ {0, 1}n, y = Fk(x), z =
Fm∗(. . . Fm1(x) . . .), m1, . . . , m∗ are independent from each other,

– if QK|Y =y,X=x = 1 ∧QX|Y =y,K=k = qk2−ι then

Q[XΛM |Z] =
κ

|M | , Q<XX′
Λ

MM ′> =
κ

|M |+ |M ′|

– if QX|Y =y,K=k = 1 ∧ QK|Y =y,X=x = qx2−κ, Λ′
4
= {HX(m′, x), x ∈ Λ} ∪ Λ

then:

Q[XΛM |Z] = max{
∑

x∈Λ

qx2−κ, q
|M|

κ

k 2−n} (15)

Q<XX′
Λ

MM ′> ≤ max
x∈Λ,k

{q
|M|

κ

k

2n
,

√
(qx − 1)

2κ
,

∑
x∈Λ

qx − 1

2κ
,

√√√√
∑

x∈Λ′
qx − 1

2κ|Λ′| } (16)

Proof.

– The conclusions Q[XΛM |Y ] = κ
|M | , Q<XX′

Λ
MM ′> = κ

|M |+|M ′| can be get
by the direct computation, since QK|XΛY = 1.

– there are two ways to find the preimage:
• Case 1 : Finding the preimage of z, directly searching m ∈ {0, 1}κ·∗ sat-

isfying z = HX(m,x) where x ∈ Λ. QK|Y =y,X=x = qx2−κ implies for
given z, x the only way of finding m satisfying z = HX(m,x) is exhaus-
tive search, more precisely, QM |Z=z,X=x = qx2−κ κ

|M | . From Lemma10
and Theorem3 we get Q[M |XΛZ] =

∑
x∈Λ

qxκ2−κ.

• Case 2 : for given z, search m′ ∈ {0, 1}κ·t′ , m′′ ∈ {0, 1}κ·t′′ , satisfying
z = HX(m′′, u) and u = HX(m′, x) where x ∈ Λ:

∗ Select m′ randomly, searching m′′, let Λ′
4
= {HX(m′, x), x ∈ Λ}, the

problem become case 1;
∗ Select m′′ randomly, get u from z = HX(m′′, u), then searching m′

satisfying u = HX(m′, x), equals finding the preimage of u;
∗ Guessing m′ and m′′, compute u and u′ from u = HX(m′, x) and

z = HX(m′′, u′), let t = |m′′|, the probability of u = u′ smaller than
max{qt

k2−n, qx2−κ}, more precisely, if the compression function is
designed with property of that, ∃ż ∈ {0, 1}n, ṁ ∈ {0, 1}κt satisfy
PZ|M=ṁ(ż) = qt

k and qk > 1, then the complexity of finding preimage

of ż is qt
k

2n , where we search m satisfy ż = HX(ṁ‖m,x).

From Case 1 and Case 2, we get Q[XΛM |Z] = max{∑
x∈Λ

qx2−κ, q
|M|

κ

k 2−ι}.
– there are three ways to find the collision,let :
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• Case 1: Finding collision of HX means searching m′ ∈ {0, 1}κ·t′ , m′′ ∈
{0, 1}κ·t′′ satisfying HX(m′, x) = HX(m′′, x) with x ∈ Λ. QK|Y =y,X=x =
qx2−κ implies for given z, x the only way of finding m satisfying z =
HX(m,x) is exhaustive search, more precisely, QM |Z=z,X=x = qx2−κ κ

|M | .
From Lemma10 and Theorem5 we get the conclusion: Q<XX′

Λ
MM ′> ≤

max
x∈Λ

{
√

(qx − 1)2−κ, (
∑

x∈Λ

qx − 1)2−κ,
√

(
∑

x∈Λ

qx − 1)2−κ|Λ|}.

• Case 2: search m ∈ {0, 1}κ·t, m′ ∈ {0, 1}κ·t′ , m′′ ∈ {0, 1}κ·t′′ , satisfying
HX(m,x) = HX(m′′, u) and u = HX(m′, x) where x ∈ Λ:
∗ if we randomly select m searching m′,m′′, the problem becomes find-

ing a primage of z = HX(m,x);
∗ If we randomly select m′ get u from u = HX(m′, x), then search m

and m′′ satisfying H(m,x) = HX(m′′, u), let Λ′
4
= {HX(m′, x), x ∈

Λ} ∪ Λ, the problem become case 1 where x ∈ Λ′;
∗ If we randomly select m′′ search m,m′ checking HX(m′′,HX(m′, x)) =

HX(m,x) being satisfied or not which needs more computation than
for given m′′ finding z and m′ satisfying z = HX(m′′,HX(m′, x)).

• Case 3: search m ∈ {0, 1}κ·t, m′ ∈ {0, 1}κ·t′ , m̄ ∈ {0, 1}κ·t̄, m̄′ ∈ {0, 1}κ·t̄′

satisfying HX(m′,HX(m,x)) = HX(m̄′,HX(m̄, x) where x ∈ Λ, similar
as case 2, case 3 needs more computation than case 2.

From Case 1, Case 2 and Case 3, we get the conclusion: Q<XX′
Λ

MM ′> ≤
max
x∈Λ,k

{q
|M|

κ

k 2−n,
√

(qx − 1)2−κ, (
∑

x∈Λ

qx − 1)2−κ,
√

(
∑

x∈Λ

qx − 1)2−κ|Λ|}. ut

Theorem 10. Let F : {0, 1}n × {0, 1}κ → {0, 1}n, HK : {0, 1}ι·t × {0, 1}n →
{0, 1}n, k ∈ {0, 1}n,m ∈ {0, 1}ι·t, y ∈ {0, 1}n, z ∈ {0, 1}n, y = Fk(x), z =
F...(FFk(m1)(m2))...(mt) and m1, . . . , mt are independent from each other then:

– if QX|Y =y,K=k = 1 ∧QK|Y =y,X=x ≤ qx2−n then

Q[KΓ M |Z] =
ι

|M | , Q<KK′
Γ

MM ′> =
ι

|M |+ |M ′|

– if QK|Y =y,X=x = 1 ∧ QK|Y =y,K=k ≤ qx2−ι,Γ ′
4
= {HX(m′, x), x ∈ Γ} ∪ Γ

then:

Q[KΓ M |Z] = max{
∑

k∈Γ

qk2−κ, q
|M|

κ
x 2−n} (17)

Q<KK′
Γ

MM ′> ≤ max
k∈Γ,x

{q
|M|

κ
x

2n
,

√
(qk − 1)

2κ
,

∑
k∈Γ

qk − 1

2κ
,

√√√√
∑

k∈Γ ′
qk − 1

2κ|Γ ′| } (18)

Theorem 11. Let F : {0, 1}n × {0, 1}n → {0, 1}n, HK : {0, 1}n·t × {0, 1}n →
{0, 1}n, HX : {0, 1}n·t × {0, 1}n → {0, 1}n, m = mt‖ . . . ‖mt, m1, . . . , mt are
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independent from each other. If QK|Y =y,K=k ≤ qk2−n ∧QK|Y =y,X=x ≤ qx2−n,

Λ′
4
= {HX(m′, x), x ∈ Λ} ∪ Λ,Γ ′

4
= {HX(m′, x), x ∈ Γ} ∪ Γ then:

Q[XΛM |Z] = max
x∈Λ

{qx2−n, q
|M|

n

k 2−n} (19)

Q<XX′
Λ

MM ′> ≤ max
x∈Λ,k

{q
|M|

n

k

2n
,

√
(qx − 1)

2n
,

√√√√
∑

x∈Λ′
qx − 1

2n|Λ′| } (20)

Q[KΓ M |Z] = max
k∈Γ

{qk2−n, q
|M|

n
x 2−n} (21)

Q<KK′
Γ

MM ′> ≤ max
k∈Γ,x

{q
|M|

n
x

2n
,

√
(qk − 1)

2n
,

√√√√
∑

k∈Γ ′
qk − 1

2n|Γ ′| } (22)

Theorem11 tell us on condition of the compression function F is free start preim-
age resistant and free start collision resistant, the best design of HX and HK

have properties of qk = 1 and qx = 1.

5 Collision Resistance of PGV Schemes

We assume block cipher E : {0, 1}n × {0, 1}n → {0, 1}n has no weakness, that
means for given y, x no ways to finding k except exhaustive search, we also
assume PY |X=x(y) = PY |K=k(y) = 1

2n , the block cipher E with perfect security
and perfect key distribution. The security of 24 PGV schemes is summarized
in tables 1 where we give up to consider the constant value v, in black box
model the value v does not influence the security of compression function and
hash function. The functions are numbered in BRS[12], where the F1 ∼ F12

are the group one schemes which is immune to free start collision resistance and
F13 ∼ F20 are the group two schemes which are not immune to free start collision
resistance and immune to fix start collision resistance. In fact those 24 schemes
are derive from 12 compression function with different fix start and four of which
are not immune to fix start collision resistance.

Theorem 12. If block cipher E is a random oracle model with perfect security
and perfect key distribution, PY |K=k(y), PY |X=x(y) of Fi 1 ≤ i ≤ 24 are equal
to that of E.

Proof. Since y = Ek(x) is random orale, x,k and Ek(x) are independent from
each other. We give the prove of the most famous mode y′ = Ek(x)⊕ x.

PY |K=k(y) =
∑

x

PX(x)PY |X=x,K=k(y = Ek(x)⊕ x)

=
∑

x,x′
PX(x)PX′(x′)PY |X=x,K=k,X′=x′(y = Ek(x)⊕ x′)
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=
∑

x,x′

∑
t

PX(x)PY |X=x,T=t(y = x⊕ t)PX′(x′)PT |X′=x′,K=k(t)

=
∑

x

∑
t

PX(x)PY |X=x,T=t(y = x⊕ t)PT |K=k(t)

= pk

∑
x

∑
t

PX(x)PY |X=x,T=t(y = x⊕ t) = pk

PY |X=x(y) =
∑

k

PK(k)PY |X=x,K=k(y = Ek(x)⊕ x)

=
∑

k

∑
t

PK(k)PY |X=x,K=k(y = x′ ⊕ t; t = Ek(x))

=
∑

k

∑
t

PK(k)PY |X=x,T=t(y = x⊕ t)PT |X=x,K=k(t)

=
∑

t

PY |X=x,T=t(y = x⊕ t)px = px

The prove of mode 13 is:

PY |K=k(y) =
∑

x

PX(x)PY |X=x,K=k(y = Ek⊕x(x′))

=
∑
x,t

PX(x)PY |X=x,K=k(t = k ⊕ x; y = Et(x′))

= pk

∑
tPY |X=x,K=k(t = k ⊕ x) = pk

PY |X=x(y) =
∑

k

PK(k)PY |X=x,K=k(y = Ek⊕x(x))

=
∑

k,t

PK(k)PY |X=x,K=k(t = k ⊕ x; y = Et(x′)) = px

other modes can be proved in similar way. ut
Theorem 13. Fi, 1 ≤ i ≤ 12 are free start preimage resistant and free start
collision resistant.

Theorem 14. Fi, 1 ≤ 13 ≤ 24 are not free start preimage resistant and not free
start collision resistant.

Proof.

– F13:∀y, k compute x = E−1
k (y), let k′ = x⊕ k then Ek′⊕x(x) = y;

– F14:∀y, k compute x = E−1
k (y ⊕ k), let k′ = x⊕ k then Ek′⊕x(x)⊕ k = y;

– F15:∀y, k compute x = E−1
k (y ⊕ k), let k′ = x, x′ = k then Ek′(x′) = y;

– F16:∀y, k compute x = E−1
k (y), let k′ = x, x′ = k ⊕ x then Ek′⊕x′(k′) = y;

– F17:∀y, k compute x = E−1
k (y ⊕ k), let k′ = x, x′ = k then Ex′(k′)⊕ x′ = y;
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– F18:∀y, k compute x = E−1
k (y ⊕ k), let k′ = x, x′ = k ⊕ x then Ex′⊕k′(k′)⊕

x′ ⊕ k′ = y;
– F19:∀y, k compute x = E−1

k (y), let k′ = x⊕ k, x′ = k then Ex′(x′ ⊕ k) = y;
– F20:∀y, k compute x = E−1

k (y ⊕ k), let k′ = x⊕ k then Ek′⊕x(x)⊕ k = y;
– F21:∀y, k compute x = E−1

k (y) then Ek(x) = y;
– F22:∀y, k compute x = E−1

k (y ⊕ k) then Ek(x)⊕ k = y;
– F23:∀y, k compute x = E−1

k (y), let x′ = x⊕ k then Ek(x′ ⊕ k) = y;
– F24:∀y, k compute x = E−1

k (y⊕k), let x′ = k⊕k then Ek(x′⊕k)⊕k = y. ut
Theorem 15. If block cipher E is a random oracle model with perfect security
and perfect key distribution the hash functions HX are fix start collision resistant
and fix start preimage resistant where compression functions are Fi, i ∈ {5 ∼
8, 10, 12, 15 ∼ 20} and HK are fix start preimage resistant and fix start collision
resistant where compression functions are Fi, i ∈ {1 ∼ 4, 9, 11, 13, 14}.

The theorem12 needs block cipher is random oracle, or else (x and k are not
independent from Ek(x). In fact, E is not a random oracle and only F15, F21

with properties of PY |X=x = PY |K=k = 1
2n , which implies the best compression

functions is F15. So we have conclusion that if E is designed to be PY |X=x =
PY |K=k = 1

2n , then the block cipher can be used to construct a secure hash
function.

6 Conclusion

The main conclusion of this paper is that if no way to design the compression
F (k, x) immune to free start preimage resistant, then the best design of compres-
sion function is a block cipher with perfect key distribution and perfect security
where the hash function has M-D structure. So the design of block cipher and
hash function can be one problem and the design of key schedule algorithm of
block cipher become important than before.
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Table 1. Summary of results. Columen1 is the number of hash function which is
given by BRS[12]. Column2 are the compression functions to build hash function.
Column3,4,5 are the probabilities of finding the preimages in one time computation of
F . Column 6 are the hash function and column 7 are the compression function Fi. We
write wi = mi ⊕ hi−1.

i y = QK|XY QX|KY QXK|Y z = hi =

15 Ek(x) pk
1
2 1 1 HX Emi(hi−1)⊕ v

21 Ek(x) HK Ehi−1(mi)⊕ v

19 Ek(x⊕ k) pk
1
2 1 1 HX Emi(wi)⊕ v

23 Ek(x⊕ k) HK Ehi−1(wi)⊕ v

5 Ek(x)⊕ x pk
1
2 px

1
2 p

1
2 HX Emi(hi−1)⊕ hi−1

1 Ek(x)⊕ x HK Ehi−1(mi)⊕mi

17 Ek(x)⊕ k pk
1
2 1 1 HX Emi(hi−1)⊕mi

22 Ek(x)⊕ k HK Ehi−1(mi)⊕ hi−1

7 Ek(x)⊕ x⊕ k pk
1
2 px

1
2 p

1
2 HX Emi(hi−1)⊕ wi

3 Ek(x)⊕ x⊕ k HK Ehi−1(mi)⊕ wi

8 Ek(x⊕ k)⊕ x pk
1
2 px

1
2 p

1
2 HX Emi(wi)⊕ hi−1

4 Ek(x⊕ k)⊕ x HK Ehi−1(wi)⊕mi

20 Ek(x⊕ k)⊕ k pk
1
2 1 1 HX Emi(wi)⊕mi
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