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Abstract. The paper discusses the security of compression function and
hash function with Merkle-Damg̊ard construction and provides the com-
plexity bound of finding a collision and primage of hash function based
on the condition probability of compression function y = F (x, k). we
make a conclusion that in Merkle-Dammåard construction, the require-
ment of free start collision resistant and free start collision resistant on
compression function is not necessary and it is enough if the compres-
sion function with properties of fix start collision resistant and fix start
preimage resistant. However, the condition probability PY |X=x(y) and
PY |K=k(y) of compression function y = F (x, k) have much influence on
the security of the hash function. The best design of compression func-
tion should have properties of that y is uniformly distributed for all x
and k.
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1 Introduction

Most of hash functions are iterated hash function and most of compression func-
tion are iterated by Merkle-Damg̊ard structure with constant IV[3]. Since the
MD5 and SHA1 are attacked by [8][14][16], more and more attentions have been
paid on hash function, the discussion about hash function mainly include secu-
rity of compression function, attacking methods on hash function and security
of iterated structure.

Let the compression function F : {0, 1}κ × {0, 1}n → {0, 1}n, xh ∈ {0, 1}n,
xm ∈ {0, 1}κ, y ∈ {0, 1}n, where y = F (xm, xh), in hash iteration xh is chain-
ing value. The compression function of iterated hash function has four way
to build[3]: based on block cipher, based on Modular Arithmetic, based on
knapsack problem and dedicate hash function. No matter what way be used
to design a compression function, the basic requirement on compression func-
tion is not invertible, or else we can build a collision on compression function,
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since the one way permutation is difficult to build, the condition probability
of all known compression function has properties of max

y
PY |Xh=xh

(y) > 1
2n

and max
y

PY |Xm=xm
(y) > 1

2κ . In this paper, we get conclusion of that if the

compression function is collision resistant and preimage resistant for fix start
xh, then the hash function is secure, the requirement of free start collision re-
sistant and free start preimage resistant are not required. But the condition
probability PY |Xh=xh

(y) and PY |Xm=xm
(y) are the most important character

which we have to consider in design of hash function and the best value are
max

y
PY |Xh=xh

(y) = 1
2n and max

y
PY |Xm=xm

(y) = 1
2κ .

The attacking methods on hash function are aimed at finding collision, m 6=
m′ getting H(m) = H(m′), if we can find the collision then we can build forgery
to replace the original message. If for any given hi−1, hi we can find preimage
mi satisfying hi = F (hi−1,mi) then we can build a collision in following way,
selecting an m′

i randomly, compute h′i = F (hi−1,m
′
i), find m′′

i+1 and satisfy
hi = F (h′i,m

′′
i+1), which implies finding collision of two message mi‖ . . . ‖m1

and m′′
i+1‖m′

i‖mi−1‖ . . . ‖m1. Finding a second preimage also means finding a
collision, so hash function should be immune to collision attack, preimage attack
and second preimage attack. The original discussion about immune to attacks
on hash function are defined as ’hard’ to find the attacks, but the ’hard’ is hard
to evaluate the security of the hash function, for if n is very small then no ’hard’
way to finding the collision no matter how nice the compression function be de-
signed and when n is very large a failure design of hash also means hard to find
the collision. The paper make a definition of that if the best way of finding the
preimage and collision are exhaustive search, then it is immune against those
attack. And also the complexity bounds are given based on condition probabil-
ity of compression function PY |Xh=xh

(y) and PY |Xm=xm
(y). Our complexity is

defined as the times needed for computing the compression function.

The most famous iterated structure is M-D structure, which is not immune
to extend attack, fix point attack and multi-collision attack, moreover, some
slight weakness in compression (like some special plaintexts can make collision)
may result in failure of hash function, so some revised structures have been
given, include wide-pipe hash and double-pipe hash. Commonly, the security
of structure was discussed on condition of compression function be random or-
acle model, in this paper the security of those structures are given based on
discussion about condition probability PZ|X=x(z) and PZ|M=m(z) of hash func-
tion H, where H : {0, 1}κ·∗ × {0, 1}n → {0, 1}n, x ∈ {0, 1}n, m ∈ {0, 1}κ·∗,
z ∈ {0, 1}n, and z = H(m,x). We find if the compression function is designed
with max

y
PY |Xh=xh

(y) > 1
2n , then maxz PZ|M=m(z) may increased dramatically,

but in random oracle model max
y

PY |Xh=xh
(y) = 1

2n , so reanalysis the structure

of wide-pipe hash and double-pipe hash, and give some new hash structure which
can vanish the increase of maxz PZ|M=m(z). The padding is adding zero to end
of message, so we assume the message length is multiple of block length.
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2 Definition

A discrete random variable X is a mapping from the sample space Ω to an
alphabed X . X assigns a value x ∈ X to each elementary event in the Ω and
the probability distribution of X is the function[5]

PX : X → < : x 7→ PX(x) = P [X = x] =
∑

ω∈Ω:X(ω)=x

P [ω].

If the conditioning event involves another random variable Y defined on the
same sample space, the conditional probability distribution of X given that Y
takes on a value y is:

PX|Y =y(x) =
PXY (x, y)

PY (y)

whenever PY (y) is positive . Two random variables X and Y are called indepen-
dent if for all x ∈ X and y ∈ Y:

PXY (x, y) = PX(x) · PY (y).

Definition 1 (Perfect Secrecy[6]). A cryptosystem has perfect secrecy if

PX|Y =y(x) = PX(x)

for all x ∈ {0, 1}n, y ∈ {0, 1}n.

Definition 2 (Perfect Key Distribution). A cryptosystem has perfect key
distribution if

PK|Y =y(k) = PK(k)

for all x ∈ {0, 1}n, y ∈ {0, 1}n.

In fact, PXY (xy) = PX|Y =yPY (y) = PY |Xh=xh
(y)PX(x), since PX|Y =y(x) =

PX(x), we get PY |Xh=xh
(y) = PY (y).

Definition 3 (Random Oracles[12]). A fixed-size random oracle is a func-
tion f : {0, 1}n → {0, 1}n, chosen uniformly at random from the set of all such
functions. For interesting sizes a and b, it is infeasible to implement such a func-
tion, or to store its truth table. Thus, we assume a public oracle which, given
x ∈ {0, 1}n, computes y = f(x) ∈ {0, 1}n.

Let the compression function F : {0, 1}κ × {0, 1}n → {0, 1}n, xh ∈ {0, 1}n,
xm ∈ {0, 1}κ, y ∈ {0, 1}n, where y = F (xm, xh), in hash iteration, xh is chaining
value. Let H : {0, 1}κ·∗ × {0, 1}n → {0, 1}n, x ∈ {0, 1}n, m ∈ {0, 1}κ·∗, z ∈
{0, 1}n, and z = H(m,x).

Definition 4. Let F : {0, 1}κ × {0, 1}n → {0, 1}n, H : {0, 1}κ·∗ × {0, 1}n →
{0, 1}n, Λ ⊂ {0, 1}n. Let ΩF 4

= {(xm, xh, y)}F 4
= {(xm, xh, y)|xh ∈ {0, 1}n, xm ∈

{0, 1}κ, y ∈ {0, 1}n, y = F (xm, xh)}. Let ΩH 4
= {(m,x, z)}H 4

= {(m,x, z)|x ∈
{0, 1}n,m ∈ {0, 1}κ·∗, z ∈ {0, 1}n, z = H(m,x)}. The σ-algebra F is the subsets
of Ω, ωF ∈ ΩF .
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The examples of restriction E on Ω are as followings:

– {(xh0 , xm, y)}F 4
= {(xh0 , xm, y)|(xh0 , xm, y) ∈ ΩF };

– {(xh, xm, y)|xh ∈ Λ}F 4
= {(xh, xm, y)|(xh, xm, y) ∈ ΩF , xh ∈ Λ}

– {{(xh, xm, y)}F }xh∈Λ
4
=

⋃
xh∈Λ

{{(xh, xm, y)}F }

Definition 5 (Finding Preimage). Finding Preimage of F or H is for given
y0 or z0 finding ωF ∈ {(xm, xh, y0)}F or ωH ∈ {(m,x, z0)}H .

Definition 6 (Finding Collision). Finding Collision of F or H is finding
ωF , ω′F ∈ A and A ∈ {{(xm, xh, y0)}F }y0∈{0,1}n or finding ωH , ω′H ∈ A and
A ∈ {{(m,x, z0)}H}z0∈{0,1}n .

Definition 7 (Free Start Preimage Resistant). Preimage resistant of F is
that if the best way to find ωF ∈ {(xm, xh, y0)}F is exhaustive search. Preimage
resistant of H is that if the best way to find ωH ∈ {(m,x, z0)}H is exhaustive
search.

Definition 8 (Fix Start Preimage Resistant). Let Λ ⊂ {0, 1}n, F is fix
start preimage resistant, if the best way to find ωF ∈ {(xh0 , xm, y0)}F is ex-
haustive search. H is fix start preimage resistant , if the best way to find ωH ∈
{(x0,m, z0)}H is exhaustive search.

Definition 9 (Free Start Collision Resistant). Collision resistant of F is
that the best way to find ωF , ω′F ∈ A and A ∈ {{(xm, xh, y0)}F }y0∈{0,1}n is
exhaustive search. Collision resistant of H is that the best way to find ωH , ω′H ∈
A and A ∈ {{(m,x, z0)}H}z0∈{0,1}n is exhaustive search.

Definition 10 (Fix Start Collision Resistant). Let Λ ⊂ {0, 1}n, Fix start
collision resistant of F is that the best way to find ωF , ω′F ∈ A and A ∈
{{(xm, xh, y0)|xh ∈ Λ}F }y0∈{0,1}n is exhaustive search. Fix start collision re-
sistant of H is that the best way to find ωH , ω′H ∈ A and A ∈ {{(m,x, z0)|x ∈
Λ}H}z0∈{0,1}n is exhaustive search.

In hash function attack, the probability of finding a primage or collision is dif-
ferent from tradition point of view of probability. If the compression function F is
block cipher E with form of Ek(x) = y, then the probabilities of PX|Y =y,K=k(x),
PK|Y =y,X=x(k) are both equal 0 or 1 (assume the cipher with perfect key distri-
bution). However, for given y, k, the value x satisfying y = Ek(x) can be found
directly by computing x = E−1

k (y), but for given y, x the value k satisfying
y = Ek(x) can be found only by exhaustive search of k, that implies we should
compute E for each guessing k. So we consider giving new definition about the
complexity of finding collision or preimage based on the times computing F
being made.

Definition 11. Let F : {0, 1}κ × {0, 1}n → {0, 1}n, H : {0, 1}κ·∗ × {0, 1}n →
{0, 1}n, Λ ⊂ {0, 1}n. PF and PH are defined as the minimum times required
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of computing F with probability of 1 finding a free start preimage of F and H,
respectively. PF

Λ and PH
Λ are defined as the minimum times required of computing

F with probability of 1 finding a fix start preimage of F or H, respectively. CF

or CH is defined as the minimum times required of computing F with probability
of 1 finding free start collision of F or H. CH

Λ or CH
Λ is defined as the minimum

times required of computing F with probability of 1 finding fix start collision of
F or H.

If F is block cipher F (xm, xh) = Fxh
(xm), from given y, xh we can com-

pute xm = F−1
xh

(y) that means PF = 1. But we can’t compute xh directly
from give y, xm, the only way to find k is exhaustive search, we have PF =
PY |Xh=xh0

(y0)−1.

3 Hash Properties of Compression Function

Let compression function y = F (xm, xh) with qxh

4
= max

y
PY |Xh=xh

(y)2κ, qxm

4
=

max
y

PY |Xm=xm
(y)2n and qy

4
= PY (y)2n2κ. The conclusions of this section are

that the best design of y = F (xm, xh) should satisfy qxh
= qxm

= 1. We make a
assumption of 1

0 = 0.

3.1 Free Start Preimage Resistance

The conclusion of this subsection is Theorem1, the upper bound of free start
preimage resistant of F is min

xm,xh

{ 2κ

qxh
, 2n

qxm
}, which implies the best selection of

free start collision resistant and free start preimage resistant have same require-
ment on F .

Theorem 1. Let y = F (xm, xh) is free start preimage resistant then:

PF = min
xm,xh

{ 2n

qxh

,
2κ

qxm

}. (1)

Proof. F (xm, xh) is preimage resistant, the only way to get preimage is exhaus-
tive search. The exhaustive search has following ways:

– given y0, xh searching xm with y = F (xm, xh), the success probability is:

p = PY |Xh=xh
(y0)

We get the minimum complexity is 2κ

qxh
.

– For given y0, xm searching xh, we get the minimum complexity is 2n

qxm
.

– For given y0, randomly searching xh and xm, the minimum complexity is
2κ2n

qy
. ut
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3.2 Free Start Collision Resistance

Conclusion of this subsection is Theorem2, upper bound of free start collision
resistant of F is smaller than max

xm,xh,y
{
√

2κ

(qxh
−1) ,

√
2n

(qxm−1) ,
√

2n+κ

(qy−1)}, which im-

plies the best design of F should satisfy y is uniformly distributed in {0, 1}n for
each k ∈ {0, 1}κ and for each x ∈ {0, 1}n.

Theorem 2. F is not invertible for xh and xm then

CF = max
xm,xh,y

{
√

2κ

(qxh
− 1)

,

√
2n

(qxm − 1)
,

√
2n+κ

(qy − 1)
} (2)

Proof. The collision can be get only by exhaustive search.

– The fastest way to search for collision is the way based on birthday para-
dox. For random selected xh searching xm1 , xm2 , . . . xmt

finding collision of
F (xh, xmi) = F (xh, xmj ). The max probability of success is

p = 1−
2κ(2κ − 2κPY |Xh=xh

(y1)) . . . (2κ −
t−1∑

i

(2κPY |Xh=xh
(yi))

(
2κ

t

)
t!

Let denote qxh

4
= 2κ maxy PY |Xh=xh

(y) then

p ≤ 1− (2κ)(2κ − qxh
) . . . (2κ − qxh

(t− 1))
(2κ)(2κ − 1) . . . (2κ − t + 1)

= 1−
t−1∏

i=0

n− iqxh

2κ − i
= 1−

t−1∏

i=0

(1− iqxh
− i

2κ − i
) = 1−

t−1∏

i=0

(1− i

2κ − i
(qxh

− 1))

≈ 1−
t−1∏

i=0

exp
i

2κ−i (qxh
−1) ≈ 1−

t−1∏

i=0

exp( i
2κ + i2

2κ2 )(qxh
−1)

Same as birthday paradox, when t ≥
√

2κ/(qxh
− 1), qxh

> 1 the suc-
cess probability of collision is bigger than 1/2. We get the complexity is
min
xm

√
2κ

qxh
−1 .

– similar as item 1, we get for selectedxm the complexity is
√

2n

qxm−1 ;

– similar as item 1, we get for searching xm, xh the complexity is
√

2n+κ

qy−1 . ut

3.3 Fix Start Preimage Resistance

The conclusions of this subsection are Theorem3.
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Theorem 3. Let y = F (xm, xh), Λ ⊂ {0, 1}n then:

– If F is invertible for (y, xh) then

PF
Λ = 1.

– If F is invertible for (y, xm) and fix start preimage resistant then

PF
Λ ≥ 2κ

∑
xh∈Λ

qxh

Proof. If F is invertible for (y, xh), make notation of xm = F−1(y, xh).

– select xh ∈ Λ, compute xm0 = F−1(xh, y), get xm0 , So PF
Λ = 1.

– there are two ways to search the preimage:
• select xh ∈ Λ, search xm satisfy y0 = F (xm, xh), the complexity is

min
x∈Λ

2κ

qxh

• for y0, select xm search xh, for random selected xm, the maximum prob-
ability of success is

p =
∑
xm

∑

xh∈Λ

PXh
(xh)PXm

(xm)PY |Xm=xm,Xh=xh
(y0 = F (xm, xh))

the minimum requirement of computation times are 2κ∑
x∈Λ

qxh

.

ut

3.4 Fix Start Collision Resistance

The conclusion of this subsection are Theorem4 , which tell us the best design of
F also should satisfy Y is uniformly distributed in {0, 1}n for each k ∈ {0, 1}κ

and for each x ∈ {0, 1}n.

Theorem 4. Let y = F (xm, xh), Λ ⊂ {0, 1}n then:

– If F is invertible for (y, xh) then

CF
Λ =

{
2 |Γ | > 1 or qxm > 1
0 else

(3)

– If F is invertible for (y, xm) and fix start preimage resistant then

CF
Λ ≥ min

xh∈Λ
{
√

2κ

(qxh
− 1)

,
2κ

∑
xh∈Λ

qxh
− 1

,

√√√√ 2κ|Λ|
∑

xh∈Λ

qxh
− 1

}. (4)

Proof. If F is invertible for (y, xh), make notation of xm = F−1(y, xh).
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– select xh ∈ Λ, and xm compute F (xm, xh), select x′h ∈ Λ, get x′m =
F−1(x′h, F (xm, xh)), so CF

Λ = 2.
– The collision can be found in following ways:

• Since F is fix start preimage resistant, for selected xh ∈ Λ, the fastest
way to get collision of xm, x′m is random select a xm1 , . . . , xmt

getting
y = F (xh, xmi

, checking F (xh, xmi
) = F (xh, xmj

) equals or not, simi-
lar as proof of Theorem2, the minimum requirement of computation is√

2κ

(qxh
−1) .

• if |Λ| > 1, for given xh, x′h ∈ Λ the fastest way to find xm, x′m is random
select xm1 , . . . , xmt

, compute yi = F (xh, xmi
) and y′j = F (xh, xmj

) then
check yi equals y′j or not, since from Theorem2 we get the minimum

requirement of computation is
√

2κ|Λ|∑
xh∈Λ

qxh
−1

.

• for selected xh ∈ Λ,xm, get F (xm, xh), then minimum computation re-
quired for finding x′h ∈ Λ with F (xm, xh) = F (x′h, x′m) is

∑
x∈Λ

qxh
−1

2κ .

ut

4 The Security of M-D Structure

In this section, we give the proves of that if the compression function is free
start preimage resistant and collision resistant, then the hash function is free
start preimage resistant and but not free start collision resistant, if the com-
pression function is fix start collision resistant and preimage resistant then the
hash function is fix start collision resistant and preimage resistant, and also the
upper bounds of collision resistance and preimage resistance are given based on
the condition probabilities PY |Xh=xh

(y) and PY |Xm=xm
(y). And also if the com-

pression function is not immune to free start preimage resistant, then the com-
pression function should be designed with minimum value of maxy PY |Xh=xh

(y)
and maxy PY |Xm=xm

(y), which imply the best design require the Y is uniformly
distributed in {0, 1}n for each xh and each xm, if n = κ then the best design of
compression function is permutation for each xh and each xm.

Let F : {0, 1}κ×{0, 1}κ → {0, 1}n is a compression function of hash function
H, the H with M-D construction is defined as(Figure illustration is given in
Fig1):

H : {0, 1}κ·∗ × {0, 1}n → {0, 1}n

H(m,xh)
4
= H(m∗‖ . . . ‖m1, x) = F (m∗, F (m∗−1, . . . (F (m1, xh)) . . .))

where xh ∈ {0, 1}n, y = F (xm, xh), y ∈ {0, 1}n, m ∈ {0, 1}κ·∗, m = m∗‖ . . . ‖m1,
z = F (m∗, . . . F (m1, xh) . . .).

Lemma 1. Let F : {0, 1}κ×{0, 1}n → {0, 1}n, H : {0, 1}κ·t×{0, 1}n → {0, 1}n,
z = F (mt, . . . F (m1, x) . . .), and m1, . . . , mt are independent from each other
then:
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x

m1

h1

m2

...

ht-1

mt

ht

Fig. 1. The M-D Hash

– PZ|M=m(z) ≤ qt
xm

2n

– PZ|Xh=xh
(z) ≤ qxh

2κ .

Proof. It is clear t = 1 the inequality is correct, when t = 2:

PZ|M=m(z) = PZ|M=m2‖m1(z)

=
∑
xh

PXh
(xh)PZ|M=m2‖m1,Xh=xh

(z = F (m2, F (m1, xh)))

=
∑
xh

∑
u

PXh
(xh)PZ|M=m2‖m1,Xh=xh

(z = F (m2, u), u = F (m1, xh))

=
∑

u

PZ|M2=m2,U=u(z = F (m2, u))
∑
xh

PXh
(xh)PU |M1,Xh

(u = F (m1, xh))

=
∑

u

PZ|M2=m2,U=u(z = F (m2, u))PU |M1=m1(u)

≤ qxm

∑
u

1
2n

PZ|M2=m2,U=u(z = F (m2, u)) ≤ qxm
PZ|M2=m2(z)

PZ|Xh=xh
(z)

=
∑

m1,m2

PM (m1)PM (m2)PZ|M=m2‖m1,Xh=xh
(z = F (m2, F (m1, xh)))

=
∑

m1,m2

∑
u

PM (m1)PM (m2)PZ|M=m2‖m1,Xh
(z = F (m2, u), u = F (m1, xh))

=
∑
m2

∑
u

PM (m2)PZ|M2,U (z = F (m2, u))
∑
m1

PM (m1)PU |M1,Xh
(u)

=
∑
m2

∑
u

PM (m2)PZ|M2,U=u(z = F (m2, u))PU |Xh=xh
(u)

=
∑

u

PZ|U=u(z)PU |Xh=xh
(u) ≤ qxh

2κ

∑
u

PU |Xh=xh
(u) = qxh

/2κ.

Let assume when t ≤ l − 1 the inequality is true, when t = l

PZ|M=m(z)
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=
∑
xh

PXh
(xh)PZ|M ′=m′‖m1,Xh=xh

(z = H(m′, F (m1, xh)))

=
∑

u

PZ|M ′=m′,U=u(z = HXh
(m′, u))PU |M1=m1(u)

≤ qxm

∑
u

1
2n

PZ|M ′=m′,U=u(z = HXh
(m′, u)) ≤ qxm

l2−n

PZ|Xh=xh
(z)

=
∑

m′,m1

PM (m′)PM (m1)PZ|M=m′‖m1,Xh=xh
(z = H(m′, (F (m1, xh)))

=
∑

m′,m1,u

PM ′(m′)PM (m1)PZ|M=m′‖m1,Xh,U (z = H(m′, u), u = F (m1, xh))

=
∑

m′

∑
u

PM ′(m′)PZ|M ′=m′,U=u(z = H(m′, u))PU |Xh=xh
(u)

=
∑

u

PZ|U=u(z)PU |Xh=xh
(u) ≤ qxh

2κ

∑
u

PU |Xh=xh
(u) =

qxh

2κ
.

From induction principle we get the conclusions. ut
Theorem 5. If F : {0, 1}κ × {0, 1}n → {0, 1}n is preimage resistant and colli-
sion resistant, H : {0, 1}κ·t × {0, 1}n → {0, 1}n, x ∈ {0, 1}n,m ∈ {0, 1}κ·t, y ∈
{0, 1}n, z ∈ {0, 1}n, y = F (xm, xh) and z = F (mt, . . . F (m1, x) . . .) then:

– if F is preimage resistant and collision resistant

PH ≥ min
xm,xh

{ 2κ

qxh

,
2n

qxm

} (5)

CH = 2 (6)

– If F is invertible for (y, xh) then

PH
Λ =

|M |
κ

CH
Λ =

|M |+ |M ′|
κ

– If F is invertible for (y, xm) and fix start preimage resistant then

PH
Λ ≥ min{ 2κ

∑
x∈Λ

qxh

,

√
2κ

qxh

,
2n

q
|M|

κ
xm

} (7)

CH
Λ ≥ min

xh∈Λ,xm

{ 2n

q
|M|

κ
xm

,

√
2κ

(qxh
− 1)

,
2κ

∑
x∈Λ

qxh
− 1

,

√√√√ 2κ|Λ′|
∑

x∈Λ′
qxh

− 1
} (8)
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– If F preimage resistant and collision resistant then

PH
Λ ≥ min

k∈Γ
{ 2n

qxm

,
2n

q
|M|

n
xh

} (9)

CH
Λ ≥ min

k∈Γ,x
{ 2n

q
|M|

n
xh

,

√
2n

(qxm
− 1)

,

√√√√ 2n|Γ ′|
∑

k∈Γ ′
qxm

− 1
} (10)

Proof. If F is invertible, then denote xm = F−1(y, xh).

– If F is preimage resistant and collision resistant:
• Let assume for given y find m,x satisfying H(mt‖ . . . ‖m1, x) = y then we

find H(mt−1‖ . . . ‖m1, x),mt satisfying F (mt,H(mt−1‖ . . . ‖m1, x)) = y,
from Theorem1 we get the conclusion.

• Since H(m2‖m1, x) = H(m2,H(m1, x)), then we find collision.

– If xm = F−1(y, xh) then: The conclusions PH
Λ = |M |

κ , CH
Λ = |M |+|M ′|

κ can be
get by the direct computation, since xm = F−1(y, xh).

– If F is fix start preimage resistant and fix start collision resistant:
• there are two ways to find the preimage:

∗ Case 1 : Using directly search way to find the preimage of z, directly
searching m ∈ {0, 1}κ·∗ satisfying z = H(m,x) where x ∈ Λ. F is
fix start preimage resistant, which implies for given z, x the only
way of finding m satisfying z = H(m,x) is exhaustive search, more
precisely, From Lemma1 and Theorem3 we get the requirement of
minimum computation is min{ 2κ

qxh

|M |
κ ,

∑
x∈Λ

2κ

qxh
.

∗ Case 2 : Using meet in middle attack way to find the preimage,
for given z, search m′ ∈ {0, 1}κ·t′ , m′′ ∈ {0, 1}κ·t′′ , satisfying z =
H(m′′, u) and u = H(m′, x) where x ∈ Λ:

· Select m′ randomly, searching m′′, let Λ′
4
= {H(m′, x), x ∈ Λ},

the problem become case 1;
· Select m′′ randomly, get u from z = H(m′′, u), then searching

m′ satisfying u = H(m′, x), equals finding the preimage of u;
· Guessing m′ and m′′, compute u and u′ from u = H(m′, x) and

z = H(m′′, u′), let t = |m′′|, the probability of u = u′ smaller
than[?]

√
2κ

qxh
,

· if the compression function is designed with property of that,
∃ż ∈ {0, 1}n, ṁ ∈ {0, 1}κt satisfy PZ|M=ṁ(ż) = qt

xm
and qxm

>

1, then the complexity of finding preimage of ż is 2n

qt
xm

, where we
search m satisfy ż = H(ṁ‖m,x).

From Case 1 and Case 2, we get the conclution.
• there are three ways to find the collision :
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∗ Case 1: Directley finding collision of H: that means search m′ ∈
{0, 1}κ·t′ , m′′ ∈ {0, 1}κ·t′′ satisfying H(m′, x) = H(m′′, x) with x ∈
Λ. F is preimage resistant implies for given z, x the only way of
finding m satisfying z = H(m,x) is exhaustive search. From Lemma1
and Theorem4 we get by directly search the minimum requirement

of computation is min
xh∈Λ

{
√

2κ

(qxh
−1) ,

2κ∑
x∈Λ

qxh
−1

,
√

2κ|Λ|∑
x∈Λ

qxh
−1
}.

∗ Case 2: search m ∈ {0, 1}κ·t, m′ ∈ {0, 1}κ·t′ , m′′ ∈ {0, 1}κ·t′′ , satis-
fying H(m,x) = H(m′′, u) and u = H(m′, x) where x ∈ Λ:
· if we randomly select m searching m′,m′′, the problem becomes

finding a primage of z = H(m,x);
· If we randomly select m′ get u from u = H(m′, x), then search m

and m′′ satisfying H(m,x) = H(m′′, u), let Λ′
4
= {H(m′, x), x ∈

Λ} ∪ Λ, the problem become case 1 where x ∈ Λ′;
· If randomly select m′′ search m,m′ check H(m′′,H(m′, x)) =

H(m,x) being satisfied or not, which needs more computation
than given m′′ finding z and m′ satisfying z = H(m′′,H(m′, x)).

∗ Case 3: search m ∈ {0, 1}κ·t, m′ ∈ {0, 1}κ·t′ , m̄ ∈ {0, 1}κ·t̄, m̄′ ∈
{0, 1}κ·t̄′ satisfy H(m′,H(m,x)) = H(m̄′,H(m̄, x) where x ∈ Λ,
similar as case 2, case 3 needs more computation than case 2.

From Case 1, Case 2 and Case 3, we get the conclusion.
– if F is preimage resistant and collision resistant then the conclusion can be

get directly from previous item. ut
Theorem5 tell us on condition of the compression function F is free start

preimage resistant and free start collision resistant, the best design of H and
HK have properties of qxm

= 1 and qxh
= 1.

5 Conclusion

The main conclusion of this paper is that if no way to design the compression
F (k, x) immune to free start preimage resistant, then the best design of compres-
sion function is a block cipher with perfect key distribution and perfect security
where the hash function has M-D structure. So the design of block cipher and
hash function can be one problem and the design of key schedule algorithm of
block cipher become important than before.
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