
Trace Driven Cache Attack on AES

Onur Acıiçmez1 and Çetin Kaya Koç2

Abstract

Cache based side-channel attacks have recently been attracted sig-
nificant attention due to the new developments in the field. In this
paper, we present a trace-driven cache attack on a widely used im-
plementation of the AES cryptosystem. We also evaluate the cost of
the proposed attack in detail under the assumption of a noiseless en-
vironment. We develop an accurate mathematical model that we use
in the cost analysis of our attack. We use two different metrics, specif-
ically, the expected number of necessary traces and the cost of the
analysis phase, for the cost evaluation purposes. Each of these metrics
represents the cost of a different phase of the attack.

1 Introduction

Implementations of cryptosystems may leak information through side chan-
nels due to the properties and physical requirements of the device, e.g.,
power consumption, electromagnetic emanation and/or execution time. In
side-channel attacks, the information obtained from one or more side chan-
nels is used to reveal the key of a cryptographic algorithm. Power, electro-
magnetic, and timing attacks are well-known side-channel attacks studied
in the past [10, 8, 11, 3, 1]. In this paper, we focus on a type of side-channel
cryptanalysis that takes advantage of the information, which leaks through
the cache architecture of a CPU.

The feasibility of the cache based side-channel attacks, abbreviated to
“cache attacks” from here on, was first mentioned by Kocher and then Kelsey
et al. in [9, 10]. D. Page described and simulated a theoretical cache at-
tack on DES [14]. Actual cache based timing attacks were implemented by
Tsunoo et al. [15, 16]. The main focus of those papers was on DES[6].
Tsunoo et al. claimed that the search space of the AES key could be nar-
rowed to 32 bits using cache based timing attacks; however they did not give
the details of such an attack.

1Oregon State University, School of EECS, Corvallis, OR 97331, USA,
aciicmez@eecs.oregonstate.edu

2Information Security Research Center, Istanbul Commerce University, Eminönü, Is-
tanbul 34112, TURKEY, koc@cryptocode.net

1



Bernstein showed the vulnerability of AES by performing a cache based
timing attack on OpenSSL’s AES implementation [4]. Efficient cache based
timing attacks on AES were presented by Osvik et al. in [13]. They described
and simulated several different methods to perform local cache attacks. They
made use of a local array and exploited the collisions between the table
lookups and the access operations to this array.

Theoretical cache attacks were first described by Page in [14]. Page
characterized two types of cache attacks, namely trace-driven and time-
driven. In trace-driven attacks, the adversary is able to obtain a profile
of the cache activity of the cipher. This profile includes the outcomes of
every memory access the cipher issues in terms of the cache hits and misses.
Therefore, the adversary has the ability to observe if the second access to a
lookup table yields a hit, and can infer information about the lookup indices,
which are key dependent. This ability gives an adversary the opportunity
to make inferences about the secret key.

Time driven attacks, on the other hand, are less restrictive since they
do not rely on the ability of capturing the outcomes of individual memory
accesses. Adversary is assumed to be able to observe the aggregate profile,
i.e., total numbers of cache hits and misses or a value that can be used to
approximate these numbers. For example, the total execution time of the
cipher can be measured and used to make inferences about the number of
cache misses in a time-driven cache attack. Time-driven attacks are based on
statistical inferences, and therefore require much higher number of samples
than trace-driven attacks.

In this paper, we will focus only on trace driven attacks. The trace of
an encryption can be captured by measuring power consumption during the
encryption as shown in [5]. We will not give details of how to capture these
traces, but assume that an adversary is able to do it. We will analyze a trace-
driven attack on AES under the assumption that the adversary can capture
the traces of AES encryption during the first two rounds. This assumption
corresponds to clean measurements in a noiseless environment. In reality,
an adversary may have noise in the measurements in some circumstances,
in which case the cost of the attack increases depending on the amplitude
of the noise. However, an analysis under the above assumption results a
more clear understanding of the attack cost. Assumption of a noiseless
environment also enables us to make more reliable comparison of different
attacks. Comparison of different attacks on a specific platform is not very
reliable, because the cost of any side-channel attack depends on the noise
in the measurements and the amplitude of the noise significantly differs
between different platforms.

In a side-channel attack, there are essentially two different phases:

• Online Phase: consists of the collection of side-channel information of
the target cipher. This phase is also known as the sampling phase of

2



the attack. The adversary encrypts or decrypts different input values
and measures the side-channel information, e.g., power consumption
and execution time of the device.

• Offline Phase: is also known as the analysis phase. In this phase, the
adversary processes the data collected in the online phase and makes
predictions and verifications regarding the secret value of the cipher.

An adversary usually performs the former phase completely before the latter
one. However, in some cases, especially in adaptive chosen-text attacks,
these two phases may overlap and may be performed simultaneously.

We will present and analyze a trace driven attack on AES below. We will
use two different metrics to evaluate the cost of our attack. The first metric
is ıthe expected number of traces that we need to capture to narrow the
search space of the AES key down to a certain degree. The second metric
is ıthe average number of operations we need to perform to analyze the
captured traces and eliminate the wrong key assumptions. These metrics
basically represent the cost of the online and offline phases of our attack.
In other words, the first metric gives the cost of the online phase and the
second gives that of the offline phase. As the reader will see in this paper,
there is a trade-off between the costs of these two phases.

2 The Basics of a Trace Driven Cache Attack

A cache is a small and fast storage area used by the CPU to reduce the
average time to access main memory. It stores copies of the most frequently
used data.3 When the processor needs to read a location in main memory,
it first checks to see if the data is already in the cache. If the data is already
in the cache (a cache hit), the processor immediately uses this data instead
of accessing the main memory, which has a longer latency than a cache.
Otherwise (a cache miss), the data is read from the memory and a copy of
it is stored in the cache. The minimum amount of data that can be read
from the main memory into the cache at once is called a cache line or a
cache block, i.e., each cache miss causes a cache block to be retrieved from
a higher level memory.

Cryptosystems have data-dependent memory access patterns. Cache ar-
chitectures leak information about the cache hit/miss statistics of ciphers
through side channels, e.g., execution time and power consumption. There-
fore, it is possible to exploit cache behavior of a cipher to obtain information
about its memory access patterns, i.e. indices of S-box and table lookups.

Cache attacks rely on the cache hits and misses that occur during the
encryption or decryption process of the cryptosystem. Even if the same

3Although it depends on the particular data replacement algorithm, this assumption
is true almost all the time for current processors.

3



instructions are executed for any particular (plaintext, cipherkey) pair, the
cache behavior during the execution may cause variations in the program
execution time and power consumption. Cache attacks try to exploit such
variations to narrow the exhaustive search space of secret keys.

In trace driven cache attacks, the adversary obtains the traces of cache
hits and misses for a sample of encryptions and recovers the secret key of a
cryptosystem using this data. In this paper, we define a trace as a sequence
of cache hits and misses. For example,

MHHM,HMHM, MMHM,HHMH,MMMM, HHHH

are examples of a trace of length 4. Here H or M represents a cache hit or
miss respectively.

The trace of an encryption can be captured by the use of power con-
sumption measurements. Bertoni et al. performed a cache based power
attack on AES[5]. This attack is not indeed a trace driven cache attack.
Instead of capturing the traces, Bertoni et al. determined the particular
cache lines, content of which were overwritten by AES table lookups. Fur-
thermore, they could determine exactly which table access overwrites which
particular cache line.

3 Trace Driven Cache Attack on the AES

In this paper, we present a trace driven attack on a widely used implemen-
tation of AES [2], and calculate its cost. We assume that the cache does not
contain any AES data prior to each encryption, because the captured traces
will not be accurate otherwise. Therefore, the adversary needs to clean the
cache (e.g., by loading some garbage data) before the encryption process
starts.

The implementation we will analyze is described in [7] and it is suitable
for 32-bit architectures. It employs 4 different lookup tables in the first 9
rounds and a different one in the last round. In this implementation, all
of the component functions, except AddRoundKey, are combined into four
different tables and the rounds turn to be composed of table lookups and
bitwise exclusive-or operations. Before the first round, there is a round key
addition, which adds the cipherkey to the state that has the actual plaintext.
In other words, the input to the first round is the bitwise addition of the
plaintext and the cipherkey. We want to mention that only 128-bit block
and key sizes will be considered. Although the idea we will present below
can be extended to cases of larger block and key sizes, we will omit these
cases due to space limitations.

Our attack consists of two parts. In the first part, we analyze the out-
comes of the accesses of the first round. The second part takes also the

4



second round accesses into consideration. We will describe both parts in the
following subsections.

3.1 First Round Attack

The AES implementation described in [7] uses 5 tables: T0, T1, T2, T3,
and T4; each has 256 many 32-bit values. In each round, except the last
one, it makes 4 references to each of the first 4 tables. The first 4 references
to the first table, T0, are:

P0 ⊕K0, P4 ⊕K4, P8 ⊕K8, P12 ⊕K12 .

The outcome of the second access to T0 gives information about K0 and
K4. For example, if the second access results a cache hit, we can directly
conclude that the indices P0 ⊕K0 and P4 ⊕K4 are equal in case of a cache
line contains a single element of T0. If it is a cache miss, then the inequality
of these values becomes true. We can use this fact to find the correct key
byte difference K0 ⊕K4.

However, in a real environment, even if the latter access is to a different
element other than the target of the former access, a cache hit may still
occur. Any cache miss results the transfer of an entire cache line, not only
one element, from the main memory. Therefore, if the former access has a
target, which lies in the same cache line of the previously accessed data, a
cache hit will occur. In that case, we can still obtain the key byte difference
partially as follows:

Let δ be the number of bytes in a cache line and assume that each element
of the table is k bytes long. Under this situation, there are δ/k elements
in each line, which means any access to a specific element will map to the
same line with (δ/k − 1) different other accesses. If two different accesses
to the same array read the same cache line, the most significant parts of
their indices, i.e., all of the bits except the last ` = log2(δ/k) bits, must be
identical. Using this fact, we can find the difference of the most significant
part of the key bytes using the equation:

〈P0〉 ⊕ 〈P4〉 = 〈K0〉 ⊕ 〈K4〉 ,

where 〈A〉 stands for the most significant part of A.
We can also find the other key byte differences εi,j = 〈Ki ⊕ Kj〉, where

i,j ∈ {0,4,8,12}, using the same idea. We can further reduce the search
space by considering the accesses to other three tables. In general, we can
obtain 〈Ki ⊕ K4∗j+i〉, where i,j ∈ {0,1,2,3}, and it is enough to find the
entire 128-bit key by searching only 32 bits in case ` is zero. Recall that
(8− `) is the size of the most significant part of a table entry in terms of the
number of bits, where ` = log2(δ/k). First round attack allows us to reduce
the search space by 12 ∗ (8− `) bits. ` can be as low as zero bits, in which

5



case the search space becomes only 32 bits. For ` = 4 the search space is
reduced by 48 bits yielding an 80 bit problem.

We want to emphasize that a length of 32 bits is a theoretical lower
bound for the exhaustive search space. The realistic space length depends
on the actual cache architecture, i.e., ` value, and is either 68, or 80 for
128-bit keys on most widely used processors.

In our attack, we consider each access separately, starting from the sec-
ond one. The first access is always a miss because of the cache cleaning as
explained above. Outcome of the second access to , e.g., T0 allows us to
eliminate the wrong key byte differences for 〈K0 ⊕ K4〉. After we find the
correct values for 〈Ki ⊕ K4+i〉, where i ∈ {0,1,2,3}, we extend our attack
considering the third accesses, and so on. Therefore, there are different steps
in the attack and each further step considers one more access than the num-
ber of accesses considered in the previous step. Each step has a different set
of wrong key hypothesis. We eliminate all of the key hypothesis that do not
obey the captured trace in each step. In this sense, our decision strategy is
optimal, because it eliminates maximum possible number of hypothesis.

3.2 Second Round Attack

Using the guesses from the first round, a similar guessing procedure can be
derived in the second round in order to obtain further key bits. We describe
a sample attack that uses only accesses to T0, i.e., the first table. Recall
that AES implementation we work on uses 5 different tables with 256 entries
in each.

Let ∆i represent Pi ⊕ Ki. The index of the first access to T0 in the
second round is:

2 • s(∆0)⊕ 3 • s(∆5)⊕ s(∆10)⊕ s(∆15)⊕ s(K13)⊕K0 ⊕ 01 .

Here s(x) stands for the result of AES S-box lookup with the input value x
and • is the finite field multiplication used in AES.

Therefore, only using the first 5 accesses to T0, i.e., up to fourth step
of the attack, and searching through 5 key bytes, K0, K5, K10, K15, and
K13, we can recover the values of these bytes and the most significant parts
of all of the other key bytes. This guessing problem has a key space of
240−`, at least one being the correct value. If there is an x value such that
〈s(x)〉 = 〈s(K13)〉, 〈x〉 = 〈K13〉, and x 6= K13, then the key space can only
be reduced to the number of different such x values plus one. However,
we will ignore this detail since the maximum number of different x values
is small. Moreover, when we extend the attack considering further access
indices, we can eliminate all of these x values.

Notice that we can already recover 〈K5⊕K13〉 by applying the first round
attack on T1. The indices of the first accesses to each of the lookup tables
are functions of different key bytes in the second round and these functions

6



covers each 16 key bytes. Hence, we can recover the entire key using only
the outcomes of the first 5 accesses to each of the four tables.

Although knowing only the outcomes of the first 5 accesses is sufficient to
recover the key, extending the attack by taking advantage of further accesses
reduces the number of required traces. We want to mention that only the
accesses of the first two rounds can be used in this attack. The reason is
the number of key bytes that determines the indices of the later round’s
accesses. Starting from the third round, the indices become functions of the
entire key, making an exhaustive search as efficient as our attack.

The second access to T0 in the second round is:

2 • s(∆4)⊕ 3 • s(∆9)⊕ s(∆14)⊕ s(∆3)⊕ s(K13)⊕K0 ⊕K4 ⊕ 01 .

For a particular combination K0, K5, K10, K15, and K13 values, we can
search the lower bits of K3, K4, K9, K14 in order to reveal four more key
bytes in the fifth step of the attack. The size of search space in the fifth step
is 2(4∗`). Applying all seven steps of this attack to accesses to a single table
is sufficient to recover the entire key. However, we can reduce the necessary
number of traces if we consider each of the four tables and merging the final
results that come from each single table. The following table shows the
search space size in each step for each table. Recall that we assume to know
the results of the first round attack.

Step T0 and T2 T1 and T3
1-3 2(8−`)

4 2(32+`) 232

5 2(4∗`) 2(4∗`)

6 2(3∗`) 2(4∗`)

7 2(4∗`) 2(4∗`)

4 The Cost of the Attack

In this section we will calculate the number of traces we need to capture
to recover the secret key or reduce the exhaustive search space as much as
possible. In other words, we will determine the cost of the attack presented
above.

In the following subsections, we will present the cost results of both parts
of the attack. The online cost, i.e. average number of necessary traces, of
the first round attack was determined empirically. However, we did not
determine that of the second round via the same technique. The main
reason is the large size of the search space. Therefore, we will develop an
accurate model of the attack and calculate the cost based on it. We verified
the accuracy of our model experimentally. We performed our experiments
under the setup explained in the next section.

7



Let m be 2(8−`), i.e. the number of blocks in a table. A block of elements
of a lookup table that are stored in a single cache line together is defined
as a block of this table. The two most common values of m are 16 and 32
today. We will evaluate the cost of the attack for these two values of m.

4.1 First Round Attack

The following table shows the average number of traces, denoted as E, that
are needed to be captured in order to reveal the key byte differences as ex-
plained in the previous section. The bottleneck of the first round attack is
the first step. If the adversary collects enough number of traces to success-
fully apply the first step, this number will most likely be sufficient to obtain
〈Ki ⊕K4∗j+i〉, for i,j ∈ {0,1,2,3}.

In the following subsections, we will assume that 31 and 15 traces are
sufficient to find all of these key byte differences for m = 32 and m = 16,
respectively.

E
Step m = 32 m = 16

1 31.0 15.0
2 20.1 10.0
3 15.2 7.9

4.2 Second Round Attack

In this subsection, we will develop an estimation model to determine the cost
of the second round attack. We want to mention that this model, as well
as the previous results, is experimentally verified. The difference between
the calculated and empirical values of the second round attack is less than
0.4% in average. We present the calculated values, which are the core of the
model, in a table at the end of this subsection.

In order to calculate the expected number of traces, first we need to
find an equation that gives us the expected number of table blocks that are
loaded into the cache after the first k accesses. We denote this expected
number as #k.

The probability of being a single table block not loaded into the cache
after k accesses is (m−1

m )k. The expected number of blocks that are not
loaded becomes m ∗ (m−1

m )k. Therefore,

#k = m−m ∗ (
m− 1

m
)k .

If the adversary captures the outcome of the first k accesses (5 ≤ k ≤ 8)
to a lookup table during a single encryption, she can eliminate (1−Rk

expected)

8



fraction of the wrong key hypothesis in the (k−1)th step of the attack, where

Rk
expected =

#(k−1)

m
∗

#(k−1)

m
+ (1−

#(k−1)

m
) ∗ (1−

#(k−1)

m
) , 5 ≤ k ≤ 8 .

Notice that Rk
expected is not kth power of a constant Rexpected here, but it is

defined as a variable that is specified by the parameter k. The left (right)
side of the above summation is the product of the probability of a cache hit
(miss, resp.) and the expected ratio of the wrong hypothesis that remains
after eliminating the ones that does not cause a hit (miss, resp.).

The following table presents the values of Rk
expected and #k for different

values of k and m. We want to mention again that these values are exper-
imentally verified. We can use these values to find the expected number of
remaining wrong key hypothesis after t measurements or the expected num-
ber of measurements to reduce the key space down to a specific number or in
any such calculations. For example, we can calculate the expected number
of remaining wrong key hypothesis in fourth step of the attack on T0 after
t = 20 measurements for m = 16 as (0.648487)20 ∗ (236− 1) ≈ 223.5. Assume
that we want to reduce the wrong hypothesis space to x = 0.1 many wrong
hypothesis in the fifth step of the attack on T0 for given K0, K5, K10, K15,
and K13 values when m = 32. The expected number of measurements for
this is

E = Expected number of measurements = log(Rexpected)(
x

2(4∗`) − 1
)

= log(Rexpected)(x)− log(Rexpected)(2
12 − 1) = 36.84 ,

where Rexpected = 0.749522 for k = 6 and ` = 3.

Step k m=32 m=16
Rexpected #k Rexpected #k

4 5 0.789923 3.816376 0.648487 3.640381
5 6 0.749522 4.697114 0.600528 4.412857
6 7 0.713273 5.550329 0.564035 5.137053
7 8 0.680868 6.376881 0.537265 5.815988

4.3 Online versus Offline Cost of the Attack

The attack on a single table gives us a subset of the entire key space, which
we call initial subset, and the correct key value always belongs to this subset.
The entire attack consists of single attacks on each of the four lookup tables.
After collecting these 4 initial subsets and finding the intersection of them,
the final subset becomes the result of the entire attack. We give the expected
size of these subsets for different number of captured traces in the following
tables.

9



Approximate Size of the Initial Subsets
Number of m=16 Number of m=32

traces T0 and T2 T1 and T3 traces T0 and T2 T1 and T3
15 235.2 234.1 31 225.1 222.3

16 232.9 231.3 32 224.6 221.7

17 230.7 228.7 33 224.2 221.3

18 228.8 226.3 34 223.7 220.8

19 227.1 224.2 35 223.3 220.4

Heuristic approaches show that 15 and 31 traces are sufficient to reveal
the entire key for m = 16 and m = 32, respectively. The number of remain-
ing wrong key hypothesis becomes less than 10−60 for each case. However,
the offline cost of the attack, i.e., the number of operations in the analy-
sis phase, is reduced when we increase the number of traces. Eliminating
more wrong hypothesis in early steps reduces the cost of the later steps.
The change of the offline cost with the number of traces can be seen in the
following table.

m=16 m=32
Number of traces Cost ≈ Number of traces Cost ≈

15 250.1 31 239.3

16 248.4 32 239.0

17 246.8 33 238.6

18 245.4 34 238.3

19 244.1 35 238.0

20 243.0 36 237.8

22 241.1 38 237.3

24 239.7 40 237.0

26 238.6 42 236.7

28 237.9 44 236.5

30 237.5 46 236.4

≥35 < 237.1 ≥50 < 236.2

5 Experimental Details

We performed experiments to test the validity of the values we presented
above. The results show a very close correlation between our models and
empirical results that confirms the validness of the models and calculations.

Bertoni et al. showed that the cache traces could be captured by measur-
ing power consumption [5]. In our experimental setup, we did not measure
the power consumption, instead we assumed the correctness of their argu-
ment.

We simply modified the AES source code of OpenSSL[12], which is ar-
guably the most widely used open source cryptographic library. The purpose

10



of our modifications was not to alter the execution flow of the cipher, but
to store the values of the access indices. These index values were then used
to generate the cache traces. This process allowed us to capture the traces
and obtain the empirical results presented below.

Due to the lack of space, we cannot present the complete experimental
results in this paper. Therefore, we restrict ourselves only to indicate the
difference between the calculated and empirical values of the second round
attack, which is less than 0.4% in average. We believe this shows enough
accuracy to validate our model.

The online cost of the first round attack was determined empirically by
applying the attack on one million randomly chosen cipherkeys. For each
of these keys, we performed the attack by encrypting random plaintext and
eliminating wrong key hypothesis by capturing the traces of the encryption.
We determined the number of traces/plaintext that were processed to elim-
inate all of the wrong key hypothesis for each of these random keys. The
results presented in Subsection 4.1 are the averages of these numbers.

We did not use the same technique for the second round attack due to
the large size of the search space. But, we developed an accurate model of
the attack and calculated the cost based on it. We verified the accuracy
of our model experimentally. Again, we generated one million randomly
chosen cipherkeys and encrypted 20 many random plaintext under each of
these keys. In other words, we performed the second round steps with 20
random plaintext. After each encryption, we determined the ratio of the
number of remaining wrong key hypothesis to the number of wrong key
hypothesis that were present before the encryption. We call this ratio the
reduction ratio, which is denoted as Rexpected. We calculated the average of
these measured values. Our results show very close correlation between the
measured and calculated values. The calculated Rexpected values are given in
Subsection 4.2. In our experiments, we performed all second round guessing
problems with only 24 different key hypotheses for each key byte, one of
them being the correct value. Our intention was to validate the general
principle but to save many operations.

6 Conclusion

We have presented a trace driven cache attack on a widely used implementa-
tion of AES cryptosystem. We have also developed a mathematical model,
accuracy of which is experimentally verified, to evaluate the cost of the pro-
posed attack. We have analyzed the cost using two different metrics, each
of which represents the cost of a different phase of the attack.

Our analysis shows that such trace driven attacks are very efficient and
require very low number of encryptions to reveal the secret key of the ci-
pher. To be more specific, an adversary can break the cipher using around

11



250 operations by capturing only 15 encryption traces. Having more traces
reduces the total cost of the attack significantly. Our results also show this
trade-off between the online and offline cost of the attack in detail.

References

[1] O. Acıiçmez, W. Schindler, and Ç. K. Koç. Improving Brumley and
Boneh Timing Attack on Unprotected SSL Implementations. Proceed-
ings of the 12th ACM Conference on Computer and Communications
Security, pages 139-146, Alexandria, Virginia, November 7-11, 2005.

[2] Advanced Encryption Standard (AES). Federal Information
Processing Standards Publication 197, 2001, available at
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

[3] D. Agrawal, B. Archambeault, J. R. Rao, and P. Rohatgi. The EM Side-
Channel(s). Cryptographic Hardware and Embedded Systems - CHES
2002, B. S. Kaliski, Ç. K. Koç, and C. Paar, editors, pages 29-45,
Springer-Verlag, LNCS Nr. 2523, 2003.

[4] D. J. Bernstein. Cache-timing attacks on AES. April, 2005. Available
at: http://cr.yp.to/antiforgery/cachetiming-20050414.pdf

[5] G. Bertoni, L. Breveglieri, M. Monchiero, G. Palermo, and V. Zaccaria.
AES Power Attack Based on Induced Cache Miss and Countermeasure.
International Conference on Information Technology: Coding and Com-
puting - ITCC05, IEEE Computer Society, 2005.

[6] R. H. Brown, M. L. Good, and A. Prabhakar. Data Encryption Stan-
dard (DES) (FIPS 46-2). Federal Information Processing Standards
Publication (FIPS), Dec 1993. http://www.itl.nist.gov/fipspubs/fip46-
2.html (initial version from Jan 15, 1977).

[7] J. Daemen, and V. Rijmen. “The Design of Rijndael”. Springer-Verlag,
2002.

[8] K. Gandolfi, C. Mourtel, and F. Olivier. Electromagnetic Analysis:
Concrete Results. Cryptographic Hardware and Embedded Systems -
CHES 2001, Ç. K. Koç, D. Naccache, and C. Paar, editors, pages 251-
261, Springer-Verlag, LNCS Nr. 2162, 2001.

[9] J. Kelsey, B. Schneier, D. Wagner, and C. Hall. Side Channel Crypt-
analysis of Product Ciphers. Journal of Computer Security, vol.8, pages
141-158, 2000.

[10] P. C. Kocher. Timing Attacks on Implementations of Diffie–Hellman,
RSA, DSS, and Other Systems. Advances in Cryptology - CRYPTO ’96,

12



N. Koblitz, editors, pages 104-113, Springer-Verlag, LNCS Nr. 1109,
1996.

[11] P. C. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. Ad-
vances in Cryptology – CRYPTO ’99, M. Wiener, editors, pages 388-
397, Springer-Verlag, LNCS Nr. 1666, 1999.

[12] OpenSSL Project. Openssl. http://www.openssl.org

[13] D. A. Osvik, A. Shamir, and E. Tromer. Cache Attacks and
Countermeasures: the Case of AES. August, 2005. Available at:
http://eprint.iacr.org/2005/271

[14] D. Page. Theoretical Use of Cache Memory as a Cryptanalytic Side-
Channel. Technical Report CSTR-02-003, Department of Computer
Science, University of Bristol, June 2002.

[15] Y. Tsunoo, T. Saito, T. Suzaki, M. Shigeri, and H. Miyauchi. Crypt-
analysis of DES Implemented on Computers with Cache. Cryptographic
Hardware and Embedded Systems - CHES 2003, C. D. Walter, Ç. K.
Koç, and C. Paar, editors, pages 62-76, Springer-Verlag, LNCS Nr.
2779, 2003.

[16] Y. Tsunoo, E. Tsujihara, K. Minematsu, and H. Miyauchi. Cryptanal-
ysis of Block Ciphers Implemented on Computers with Cache. ISITA
2002, 2002.

13


