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Abstract

Cache based side-channel attacks have recently been attracted sig-
nificant attention due to the new developments in the field. In this
paper, we present efficient trace-driven cache attacks on a widely used
implementation of the AES cryptosystem. We also evaluate the cost
of the proposed attacks in detail under the assumption of a noiseless
environment. We develop an accurate mathematical model that we
use in the cost analysis of our attacks. We use two different metrics,
specifically, the expected number of necessary traces and the cost of
the analysis phase, for the cost evaluation purposes. Each of these
metrics represents the cost of a different phase of the attack.
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1 Introduction

Implementations of cryptosystems may leak information through side chan-
nels due to the properties and physical requirements of the device, e.g.,
power consumption, electromagnetic emanation and/or execution time. In
side-channel attacks, the information obtained from one or more side chan-
nels is used to reveal the key of a cryptographic algorithm. Power, electro-
magnetic, and timing attacks are well-known side-channel attacks studied
in the past [14, 12, 15, 4]. In this paper, we focus on a type of side-channel
cryptanalysis that takes advantage of the information that leaks through
the cache architecture of a CPU.

There are various cache based side-channel attacks in the literature,
which are discussed in detail in the next section. Trace-driven attacks are
one of the three types of cache based attacks that had been distinguished
so far. We present different trace-driven cache based attacks on AES in this

1Oregon State University, School of EECS, Corvallis, OR 97331, USA,
aciicmez@eecs.oregonstate.edu

2Information Security Research Center, Istanbul Commerce University, Eminönü, Is-
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paper. There are already two trace-driven attacks on AES in the literature
[7, 16]. However, our attacks require significantly less number of measure-
ments (e.g. only 5 measurements in some cases) and are much more efficient
than the previous attacks. We show that trace-driven attacks have indeed
much more power than what was stated in the previous studies.

Furthermore, we present a robust computational model for trace-driven
attacks that allows one to evaluate the cost of such attacks on a given imple-
mentation and platform. Although, we only apply our model to the attacks
on AES, it can also be used for other symmetric ciphers like DES. The main
contribution of our model to the field is that it can be used to quantitatively
analyze the cost of trace-driven attacks on different implementations of a
cipher. Therefore, we can analyze the effectiveness of various mitigations
that can be used against such attacks. Thus, a designer can use our model
to determine which mitigations she needs to implement against trace-driven
attacks to achieve a predetermined security level.

2 Background and Previous Work

The feasibility of the cache based side-channel attacks, abbreviated to “cache
attacks” from here on, was first mentioned by Kocher and then Kelsey et al.
in [13, 14]. D. Page described and simulated a theoretical cache attack on
DES [23]. Actual cache based timing attacks were implemented by Tsunoo
et al. [27, 28]. The original attack on MISTY1 proposed in [28] has recently
been improved in [29].

The topic of cache based side-channel attacks has been very popular since
early 2005. Although, cache side-channel threat had been known for a couple
of years, the first efficient and realistic attacks were not developed until
2005. Bernstein showed the vulnerability of AES software implementations
on various platforms [5]. There was a common belief that Bernstein’s attack
is a realistic remote attack and it can recover an entire AES key. However,
Neve et al. showed in [17] that this is only a fallacy. They described the
circumstances in which the attack might work and also the limitations of
the Bernstein attack. The details of this analysis can also be found in [19].

Simultaneously, but independently of Bernstein’s efforts, a research team
that consists of Acıiçmez, Schindler, and Koç developed a realistic remote
attack on the AES. Although there is not any publicly available report of
their work, they presented the basics of the attack in several occasions [2].

Osvik et al. described various local cache attack variants first in [21] in
2005, then they presented their results at CT-RSA in early 2006 [22]. They
made use of a local array and exploited the collisions between the table
lookups and the access operations to this array. Neve et al. improved the
attacks in [22] by taking the last AES round into consideration [18]. The
same idea of exploiting collisions between two different processes was also

2



used by Colin Percival in [26]. He made use of simultaneous-multithreading
feature of the modern processors and developed a cache attack on RSA.

Similar to external collisions between different processes, the internal
collisions inside a cipher can also be taken advantage of. Internal cache
collisions were first used in [27] and [28]. The remote attack of Acıiçmez et al.
and Lauradoux’s attack are also based on internal collisions [2, 16]. A recent
manuscript that summarizes cache collision attacks on AES will be presented
at CHES’06 [6]. Several hardware and software based countermeasures were
proposed to prevent cache attacks in [24, 25, 21, 5, 8].

There are three different types of cache attacks, namely time-driven,
trace-driven, and access-driven. Time-driven and trace-driven attacks were
first described by Page in [23]. Access-driven attacks are relatively new and
first seen in [21, 22]. The difference between these attack types are the
capabilities of the adversary.

The adversary is assumed to be able to capture the profile of the cache
activity during an encryption in trace-driven attacks. This profile includes
the outcomes of every memory access the cipher issues in terms of cache
hits and misses. Therefore, the adversary has the ability to observe if a
particular access to a lookup table yields a hit and can infer information
about the lookup indices, which are key dependent. This ability gives an
adversary the opportunity to make inferences about the secret key.

Time-driven attacks, on the other hand, are less restrictive because they
do not rely on the ability of capturing the outcomes of individual memory
accesses. Adversary is assumed to be able to observe the aggregate profile,
i.e., total numbers of cache hits and misses or at least a value that can
be used to approximate these numbers. For example, the total execution
time of the cipher can be measured and used to make inferences about the
number of cache misses in a time-driven cache attack.

In access-driven attacks, the adversary can determine the cache sets that
the cipher process modifies. Therefore, she can understand which elements
of the lookup tables or S-boxes are accessed by the cipher. Then, the wrong
key assumptions that would cause an access to unaccessed parts of the tables
can be eliminated.

2.1 Overview of Trace-Driven Cache Attacks

Trace-driven attacks on AES were first presented in [16] and [7]. We describe
much more efficient attacks in this paper. Our two-round attack is a known-
plaintext attack and exploits the collisions among the first two rounds of
AES. A more efficient version, which we call the last round attack, considers
last round accesses and is a known-ciphertext attack.

In trace-driven cache attacks, the adversary obtains the traces of cache
hits and misses for a sample of encryptions and recovers the secret key of a
cryptosystem using this data. We define a trace as a sequence of cache hits
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and misses. For example,

MHHM,HMHM, MMHM,HHMH,MMMM, HHHH

are examples of a trace of length 4. Here H and M represents a cache hit
and miss respectively. The first one in the first example is a miss, second one
is a hit, and so on. If an adversary captures such traces, she can determine
whether a particular access during an encryption is a hit or miss.

The trace of an encryption can be captured by the use of power con-
sumption measurements as done in [7]. It is still a question if these traces
can be obtained more easily using more sophisticated methods like exploit-
ing processor specific features, e.g., by making use of performance counters.
In this paper, we do not get into the details of how to capture cache traces.

We analyze trace-driven attacks on AES under the assumption that the
adversary can capture the traces of AES encryption. This assumption cor-
responds to clean measurements in a noiseless environment. In reality, an
adversary may have noise in the measurements in some circumstances, in
which case the cost of the attack increases depending on the amplitude of
the noise. However, an analysis under the above assumption results a more
clear understanding of the attack cost. Assumption of a noiseless environ-
ment also enables us to make more reliable comparison of different attacks.
Comparison of different attacks on a specific platform is not very reliable,
because the cost of any side-channel attack depends on the noise in the
measurements and the amplitude of the noise significantly differs between
different platforms.

In a side-channel attack, there are essentially two different phases:

• Online Phase: consists of the collection of side-channel information of
the target cipher. This phase is also known as the sampling phase of
the attack. The adversary encrypts or decrypts different input values
and measures the side-channel information, e.g., power consumption
or execution time of the device.

• Offline Phase: is also known as the analysis phase. In this phase, the
adversary processes the data collected in the online phase and makes
predictions and verifications regarding the secret value of the cipher.

An adversary usually performs the former phase completely before the latter
one. However, in some cases, especially in adaptive chosen-text attacks (e.g.
[9, 1]), these two phases may overlap and may be performed simultaneously.

We use two different metrics to evaluate the cost of our attacks presented
in this paper. The first metric is the expected number of traces that we need
to capture to narrow the search space of the AES key down to a certain
degree. The second metric is the average number of operations we need
to perform to analyze the captured traces and eliminate the wrong key
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assumptions. These metrics basically represent the cost of the online and
offline phases of our attacks. In other words, the first metric gives the cost
of the online phase and the second gives that of the offline phase. As the
reader can clearly see in this paper, there is a trade-off between the costs of
these two phases.

3 Trace-Driven Cache Attacks on the AES

In this paper, we present trace-driven attacks on the most widely used im-
plementation of AES [3], and estimate their costs. We assume that the
cache does not contain any AES data prior to each encryption, because the
captured traces cannot be accurate otherwise. Therefore, the adversary is
assumed to clean the cache (e.g., by loading some garbage data as done in
[28, 27, 22, 26]) before the encryption process starts.

Another assumption we make is that the data in AES lookup tables
cannot be evicted from the cache during the encryption once they are loaded
into the cache. This assumption means that each lookup table can only
be stored in a different non-overlapping location of the cache and there
is no context-switch during an encryption or any other process that runs
simultaneously with the cipher and evicts the AES data. These assumptions
hold if the cache is large enough, which is the case for most of the current
processors. An adversary can also discard a trace if a context-switch occurs
during the measurement.

We also assume that each measurement is composed of the cache trace of
a single message block encryption. In this paper, we only consider AES with
128-bit key and block sizes. Our attacks can easily be adapted to longer key
and block sizes; however we omit these cases for the sake of simplicity.

The implementation we analyze is described in [11] and it is suitable
for 32-bit architectures. It employs 4 different lookup tables in the first 9
rounds and a different one in the last round. In this implementation, all
of the component functions, except AddRoundKey, are combined into four
different tables and the rounds turn to be composed of table lookups and
bitwise exclusive-or operations as shown in Figure 1.

In each round, except the last one, it makes 4 references to each of the
first 4 tables. The S-box lookups in the final round are implemented as
table lookups to another 1KB-large table , called T4, with 256 many 32-bit
elements. There are 16 accesses to T4 in that round. The indices of these
accesses are S10

i , where St
i is the byte i of intermediate state value that

becomes the input of round t and i ∈ {0, .., 15}. Let C be the ciphertext,
i.e. the output of the last round, and represented as an array of 16 bytes, C
= (c0, c1, ..., c15). Individual bytes of C are computed as:

ci = Sbox[S10
w ]⊕RK10

i ,

5



All rounds except the last:
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Figure 1: The round computations in the AES

where RK10
i is the ith byte of the last round key and Sbox[S10

w ] is the S-box
output for the input S10

w for a known w ∈ {0, 1, ..., 15}. The S-box in AES
implements a permutation, and therefore its inverse, i.e. Sbox−1, exists.

In this paper, we present our attacks under the assumption that the AES
memory accesses are issued by the processor in the certain order given in
Figure 1, i.e., first T0[Sr

0 ], second T1[Sr
5 ], etc. However, the actual order is

implementation specific and may differ from our assumption. Our attacks
can easily be adapted to any given order without any performance loss.

3.1 Overview of an Ideal Two-Round Attack

The access indices in the first round are in the form Pi ⊕Ki, where Pi and
Ki are the ith bytes of the plaintext and the cipherkey respectively and
i ∈ {0, 1, ..., 15}. The indices of the first 4 references to the first table, T0,
are:

P0 ⊕K0, P4 ⊕K4, P8 ⊕K8, P12 ⊕K12 .

The outcome of the second access to T0, i.e. the one with the index P4⊕K4,
gives information about K0 and K4. For example, if the second access results
a cache hit, we can directly conclude that the index P4⊕K4 has to be equal
to the index of the first access, i.e., P0 ⊕K0. If it is a cache miss, then the
inequality of these values becomes true. We can use this fact to find the
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correct key byte difference K0 ⊕K4.

P0 ⊕K0 = P4 ⊕K4 => K0 ⊕K4 = P0 ⊕ P4

P0 ⊕K0 6= P4 ⊕K4 => K0 ⊕K4 6= P0 ⊕ P4

In other words, if we capture a cache trace during the first round of AES
and the second access to T0 results in a cache hit, then we can directly
conclude that K0 ⊕K4 = P0 ⊕ P4. Recall that the plaintext is assumed to
be known to an attacker and the cache is clean prior to the first table lookup
so that the first access to a table always results in a cache miss.

On the other hand, if we see a miss, then K0 ⊕ K4 cannot be equal to
P0 ⊕ P4 and we can eliminate this wrong value. If we collect a sample of
traces, we can find the correct value of K0 ⊕ K4 by either eliminating all
possible wrong values or directly finding the correct value when we realize
a cache hit in the second access in any of the sampled traces.

We can also find the other key byte differences Ki ⊕ Kj , where i,j ∈
{0,4,8,12}, using the same idea. We can further reduce the search space
by considering the accesses to other three tables. In general, we can obtain
Ki⊕K4∗j+i, where i,j ∈ {0,1,2,3}, and it is enough to find the entire 128-bit
key by searching only 32 bits.

A final search space of 32 bits is only a theoretical lower bound in the
first round attack due to the complications explained in Subsection 3.3. We
also have to consider second round accesses to really reduce the search space
to 32 bits. The first round attack only reveals some of the bits of Ki ⊕Kj .
However, when we examine the collisions between the first and second round
accesses in the same way, i.e., in a “two-round attack”, we can reveal the
entire AES key.

3.2 Overview of an Ideal Last Round Attack

Another way to find the cipherkey is to exploit the collisions between the
last round accesses. The outcomes of the last round accesses to T4 leaks
information about the values of the last round key bytes, i.e., RK10

i where
i ∈ {0, .., 15}.

For example, if the second access to T4 results in a cache hit, we can
conclude that the indices S10

0 and S10
1 are equal. If it is a cache miss, then

the inequality of these values becomes true. We can use this fact to find the
correct round key bytes RK10

0 and RK10
1 as the following.

We can write the value of S10
w in terms of RK10

i and ci:

S10
w = Sbox−1[ci ⊕RK10

i ] ,

If S10
0 and S10

5 are equal, so are Sbox−1[c0⊕RK10
0 ] and Sbox−1[c1⊕RK10

1 ],
which also mandates the equality of c0⊕RK10

0 and c1⊕RK10
1 . This equality

7



can also be written as

c0 ⊕RK10
0 = c1 ⊕RK10

1 ⇒ c0 ⊕ c1 = RK10
0 ⊕RK10

1

Since the value of C is known to the attacker, RK10
0 ⊕RK10

1 can directly
be computed from the values of c0 and c1 if the second access to T4 results
in a cache hit. In case of a cache miss, we can replace the = sign in the
above equations with 6= and we can use the inequalities to eliminate the
values that cannot be the correct value of RK10

0 ⊕RK10
1 .

The value of RK10
2 relative to RK10

0 can also be determined by analyzing
the first three accesses to T4 after the correct value of RK10

0 ⊕RK10
1 is found.

Similarly, if we extend our focus to the first four accesses, we can find RK10
3 .

Then we can find RK10
4 and so on.

In general, we can find all of the round key byte differences RK10
i ⊕RK10

j ,
where i, j ∈ {0, 1, ..., 15}. The value of any single byte RK10

i can be searched
exhaustively to determine the entire round key. After revealing the entire
round key, it becomes trivial to compute the actual secret key, because the
key expansion of the AES cipher is a reversible function.

3.3 Complications in Reality and Actual Attack Scenarios

In a real environment, even if the index of the second access to a certain
lookup table is different than the index of the first access, a cache hit may
still occur. Any cache miss results in the transfer of an entire cache line, not
only one element, from the main memory. Therefore, if the former access
retrieves an element, which lies in the same cache line of the previously
accessed data, a cache hit will occur.

Let δ be the number of bytes in a cache line and assume that each element
of the table is k bytes long. Under this situation, there are δ/k elements
in each line, which means any access to a specific element will map to the
same line with (δ/k − 1) different other accesses. If two different accesses
to the same array read the same cache line, the most significant parts of
their indices, i.e., all of the bits except the last ` = log2(δ/k) bits, must be
identical. Using this fact, we can find the difference of the most significant
part of the key bytes using the equation:

〈P0〉 ⊕ 〈P4〉 = 〈K0〉 ⊕ 〈K4〉 ,

where 〈A〉 stands for the most significant part of A.
Therefore, we can only reveal 〈Ki⊕K4∗j+i〉, where i,j ∈ {0,1,2,3}, using

the collisions in the first round. Notice that (8 − `) is the size of the most
significant part of a table entry in terms of the number of bits, where ` =
log2(δ/k). First round attack allows us to reduce the search space by 12 ∗
(8− `) bits. In theory ` can be as low as zero bits, in which case the search
space becomes only 32 bits. The most common values of δ are 32 and 64
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in widely used processors. For δ = 64 the search space is reduced by 48
bits yielding an 80 bit final search space. This is the reason why we need to
consider the second round indices along with the first round to achieve full
key disclosure.

This complication does affect the last round attack too. We observe a
cache hit in the second access to T4 whenever

〈S10
0 〉 = 〈S10

5 〉 ,

and so
〈Sbox−1[c0 ⊕RK10

0 ]〉 = 〈Sbox−1[c1 ⊕RK10
1 ]〉 .

However due to the nonlinearity of the AES S-box, only the correct RK10
0

and RK10
1 values obey the above equation for every ciphertext sample.

Therefore, we need to find the correct RK10
0 and RK10

1 values instead of
their difference. This increases the search space of this initial guessing prob-
lem from 8 bits to 16 bits. However, once we find these round key bytes, we
only need to search through 8 bits to find each of the remaining round key
bytes.

3.4 Further Details of Our Attacks

In this subsection we explain some details of our attacks that are not men-
tioned above. To be more precise, we explain the overall attack strategy and
how to exploit second round accesses.

We call all possible values that can be the correct value of a key byte
(round key byte, respectively) as the hypothesis of that particular key byte
(round key byte, resp.) or shortly key byte hypothesis (round key byte
hypothesis, resp.). Incorrect values are called wrong hypothesis. Initially
all of the 256 values, i.e. from 0x00 to 0xff, are considered as the key byte
hypothesis for a particular key byte. During the course of the attack, we
distinguish some of these values as wrong key byte hypothesis; thus decrease
the number of hypothesis and increase that of wrong hypothesis.

In our attacks, we consider each access to a lookup table separately,
starting from the second one. The first access is always a miss because of
the cache cleaning and the assumptions explained above. We want to use
the last round attack as an example to explain the overall attack strategy.

Outcome of the second access to T4 allows us to eliminate the wrong
key hypothesis for RK0 and RK1. After we find the correct values for these
bytes, we extend our attack considering the third access to find RK2, then
fourth access to find RK3 and so on. Therefore, there are different steps in
the attack and each further step considers one more access than the number
of accesses considered in the previous step. Each step has a different set of
wrong key hypothesis. It decreases the overall attack cost if we eliminate as
many wrong key hypothesis in a step as possible before proceeding with the
next attack step.
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For example, the first step of the last round attack examines the out-
comes of the first two accesses to T4 in each captured trace in the sample
and eliminates all of the possible RK0 and RK1 values that are determined
to be wrong. The second step considers the third access to T4 and the re-
maining hypothesis of RK0 and RK1 and eliminates all of the (RK0, RK1,
RK2) triples that cannot generate the captured traces. The attack contin-
ues with the later steps and only those key hypothesis that can generate the
captured traces remain at the end. If we can capture a large enough sample
then we end up with only the correct key. If we have less number of traces,
then more than one hypothesis remain at the end of the attack and we need
to have an exhaustive search on this reduced key set.

Eliminating as many wrong key hypothesis as possible in earlier steps
reduces the cost of the later ones and therefore the total cost of this attack.
We eliminate all of the key hypothesis that do not obey the captured trace
in each step. In this sense, our decision strategy is optimal, because it
eliminates maximum possible number of hypothesis.

The two round attack is slightly different than this scheme. There are
four different lookup tables used in the first two rounds of AES. Therefore
a single step of the two-round attack considers four more accesses than the
previous step, i.e., the next unexamined access to each of the four tables.
For example, the first step considers the first 8 accesses in the first round.
These 8 accesses consist of two accesses to each of the four tables. The next
step considers the first 12 accesses and so on.

We also want to give more details of the two-round attack, especially
the second round attack, in this subsection. Using the guesses from the first
round, a similar guessing procedure can be derived in the second round in
order to obtain further key bits. We describe a possible attack that uses
only accesses to T1, i.e., the second table. Recall that AES implementation
we work on uses 5 different tables with 256 entries in each.

Let ∆i represent Pi ⊕ Ki. The index of the first access to T1 in the
second round is:

Sbox(∆4)⊕2•Sbox(∆9)⊕3•Sbox(∆14)⊕Sbox(∆3)⊕Sbox(K14)⊕K1⊕K5 .

Here Sbox(x) stands for the result of AES S-box lookup with the input value
x and • is the finite field multiplication used in AES.

Using only the first 5 accesses to T1, i.e., up to fourth step of the two-
round attack, and searching through K3, K4, K9, and K14, we can recover
these four bytes. This guessing problem has a key space of 232. Notice that
we can already recover 〈K1 ⊕K5〉 in the first round attack.

The indices of the first accesses to each of the lookup tables in the second
round are functions of different key bytes and these functions span each of
the 16 key bytes. Hence, we can recover the entire key by analyzing only
the outcomes of the first 5 accesses to each of the four tables, i.e., a total of
20 accesses.
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Although knowing only the outcomes of the first 5 accesses is sufficient to
recover the key, extending the attack by taking advantage of further accesses
reduces the number of required traces. We want to mention that only the
accesses of the first two rounds can be used in such a known-plaintext attack.
The reason is the full avalanche effect. Starting from the third round, the
indices become functions of the entire key, making an exhaustive search as
efficient as our attack.

4 Analysis of the Attacks

In this section we estimate the number of traces need to be capture to
recover the secret key. In other words, we determine the cost of the attacks
presented above.

In the following subsections, we first present a computational model that
allows us to determine the cost of trace-driven attacks and then we use this
model to perform the cost analysis of the proposed attacks. The accuracy
of our model has been verified experimentally.

4.1 Our Model

Let m be 2(8−`), i.e. the number of blocks in a table. A block of elements
of a lookup table that are stored together in a single cache line is defined
as a block of this table. The cost of a trace-driven attack is a function of
m. The two most common values of m are 16 and 32 today and thus we
evaluate the cost of the attacks for these two values of m.

In order to calculate the expected number of traces, first we need to
find an equation that gives us the expected number of table blocks that are
loaded into the cache after the first k accesses. We denote this expected
number as #k.

The probability of being a single table block not loaded into the cache
after k accesses to this table is (m−1

m )k. The expected number of blocks that
are not loaded becomes m ∗ (m−1

m )k. Therefore,

#k = m−m ∗ (
m− 1

m
)k .

Let Rk
expected be the expected fraction of the wrong key hypothesis that

obeys the captured trace in kth step of the attack. In other words, a wrong
key hypothesis that generated the same trace with the correct key in the
first k accesses of an encryption has a chance of generating the captured
outcome in the next step with a probability of Rk

expected. Therefore, if the
adversary captures the outcomes of the first (k + 1) accesses (1 ≤ k ≤ 15)
to T4 during a single encryption, she can eliminate (1 − Rk

expected) fraction
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k m=32 m=16
Rexpected #k Rexpected #k

1 0.939453 1.000000 0.882813 1.000000
2 0.884523 1.968750 0.787140 1.937500
3 0.834806 2.907227 0.709919 2.816406
4 0.789923 3.816376 0.648487 3.640381
5 0.749522 4.697114 0.600528 4.412857
6 0.713273 5.550329 0.564035 5.137053
7 0.680868 6.376881 0.537265 5.815988
8 0.652021 7.177604 0.518709 6.452488
9 0.626464 7.953304 0.507063 7.049208

10 0.603946 8.704763 0.501197 7.608632
11 0.584236 9.432739 0.500138 8.133093
12 0.567116 10.137966 0.503050 8.624775
13 0.552384 10.821155 0.509209 9.085726
14 0.539850 11.482994 0.517999 9.517868
15 0.529340 12.124150 0.528890 9.923002

Figure 2: The calculated values of #k and Rexpected for different values of
m.

of the wrong key hypothesis in the kth step of the attack, where

Rk
expected =

#k

m
∗ #k

m
+ (1− #k

m
) ∗ (1− #k

m
) , 1 ≤ k ≤ 15 .

Notice that Rk
expected is not the kth power of a constant Rexpected here, but it

is defined as a variable that is specified by the parameter k. The left (right)
side of the above summation is the product of the probability of a cache hit
(miss, resp.) and the expected ratio of the wrong hypothesis that remains
after eliminating the ones that does not cause a hit (miss, resp.).

The following figure shows the approximations of Rk
expected and #k for

different values of k and m. We want to mention again that these values
are experimentally verified. The differences between the calculated and em-
pirical values of Rk

expected are less than 0.2% in average. We can use these
values to find the expected number of remaining wrong key hypothesis after
t measurements or the expected number of measurements to reduce the key
space down to a specific number or in any such calculations.

4.2 Trade-off Between Online and Offline Cost

There is an obvious trade-off between online and offline cost of the attacks.
If an adversary can capture a higher number of traces, it becomes easier to
find the key. Eliminating more wrong hypothesis in early steps reduces the

12



m=16 m=32
Number of traces Cost ≈ Number of traces Cost ≈

15 247.47 30 236.12

20 238.88 35 234.20

25 234.45 40 233.01

30 232.54 45 232.38

35 232.07 50 232.13

≥40 < 232.01 ≥60 < 232.01

Figure 3: The cost analysis results of the two-round attack.

m=16 m=32
Number of traces Cost ≈ Number of traces Cost ≈

1 2117.74 1 2120.97

5 274.93 5 290.39

10 239.57 10 259.32

20 226.17 20 236.21

30 222.68 30 229.25

40 220.70 40 225.92

50 219.02 50 223.95

75 216.45 75 221.13

≥100 < 216.10 ≥200 < 216.10

Figure 4: The cost analysis results of the last round attack.

cost of the later steps. The change in the offline cost of the attacks with the
number of captured traces can be seen in the following figures.

As shown in Figure 4, the last round attack requires only 5 measure-
ments to reduce the computational effort of breaking the entire 128-bit key
below the recommended minimum security levels (c.f. [10]). NSA and NIST
recommends a minimum key length of 80 bits for symmetric ciphers so that
the computational effort of an exhaustive search should not be lower than
280.

5 Experimental Details

We performed experiments to test the validity of the values we have pre-
sented above. The results show a very close correlation between our models
and empirical results that confirms the validness of the models and calcula-
tions.
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Bertoni et al. showed that the cache traces could be captured by measur-
ing power consumption [7]. In our experimental setup, we did not measure
the power consumption, instead we assumed the correctness of their argu-
ment.

We simply modified the AES source code of OpenSSL[20], which is ar-
guably the most widely used open source cryptographic library. The purpose
of our modifications was not to alter the execution flow of the cipher, but to
store the values of the access indices. These index values were then used to
generate the cache traces. This process allowes us to capture the traces and
obtain the empirical results. The average difference between the empirical
and calculated values of Rk

expected, i.e, the error rate, is less than 0.2%. We
believe this shows enough accuracy to validate our model.

We generated one million randomly chosen cipherkeys and encrypted 100
random plaintext under each of these keys. In other words, we performed the
last round attack steps with 100 random plaintext. After each encryption,
we determined the ratio of the number of remaining wrong key hypothesis to
the number of wrong key hypothesis that were present before the encryption.
We call this ratio the reduction ratio, which is denoted as Rk

expected. We
calculated the average of these measured values. Our results show very close
correlation between the measured and calculated values. The calculated
Rk

expected values are given in Subsection 4.1.

6 Conclusion

We have presented trace-driven cache attacks on the most widely used soft-
ware implementation of AES cryptosystem. We have also developed a math-
ematical model, accuracy of which is experimentally verified, to evaluate the
cost of the proposed attacks. We have analyzed the cost using two different
metrics, each of which represents the cost of a different phase of the attack.

Our analysis shows that such trace-driven attacks are very efficient and
require very low number of encryptions to reveal the secret key of the cipher.
To be more specific, an adversary can reduce the strength of 128-bit AES
cipher below the recommended minimum security level by capturing the
traces of only 5 encrpytions. Having more traces reduces the total cost of
the attack significantly. Our results also show this trade-off between the
online and offline cost of the attack in detail.
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Koç, and C. Paar, editors, pages 62-76, Springer-Verlag, LNCS Nr.
2779, 2003.

[28] Y. Tsunoo, E. Tsujihara, K. Minematsu, and H. Miyauchi. Cryptanal-
ysis of Block Ciphers Implemented on Computers with Cache. ISITA
2002, 2002.

[29] Y. Tsunoo, E. Tsujihara, M. Shigeri, H. Kubo, and K. Minematsu.
Improving cache attacks by considering cipher structure. International
Journal of Information Security, February 2006.

17


