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Abstract. Formal models that allow one to understand side-channel attacks
and are also directly meaningful to practice have been an open question. Mo-
tivated by this challenge, in this work we propose an information theoretic
framework for the analysis and design of cryptographic implementations secure
against such attacks. It is illustratively applied to block ciphers, although it
could be used to analyze a larger class of cryptosystems. The model is based
on weak and commonly accepted hypotheses about side-channels that compu-
tations give rise to. It allows us to quantify the effect of practically relevant
leakage functions as reductions of certain entropy measurements on the secret
parameters in a cryptographic implementation. We then demonstrate that clas-
sical attacks such as Differential Power Analysis are easily integrated into the
model. Our analysis results in basic design principles for side-channel resistant
ciphers and in a formal definition of leakage proofness. Thus, our investigations
provide, both, a theoretical underpinning of leakage resistance and meaningful
guidelines for actual practical designs. We employ these principles in designing
what we call “re-keying based pseudo random number generators” that are the
first designs proven secure against side-channel attacks.

1 Introduction

Traditionally, cryptographic algorithms provide security against an adversary who has
only black box access to cryptographic devices. That is, the only thing the adversary
can do is to query the cryptographic algorithm on inputs of its choice and analyze the
responses, which are always computed according to the correct original secret infor-
mation. However, such a model does not always correspond to the realities of physical
implementations, and actually very rarely does. During the last decade, significant at-
tention has been paid to the physical security evaluation of cryptographic devices. In
particular, it has been demonstrated that actual attackers may be much more powerful
than what can be captured by the black box model.

In this paper, we investigate the security of cryptographic implementations with re-
spect to side-channel attacks, in which adversaries are enhanced with the possibility to
exploit physical leakages such as power consumption or electromagnetic radiation. A
large body of experimental work has been created on the subject, e.g. [1, 2, 4, 5, 10, 16,
20, 21, 25, 31], and although numerous countermeasures are proposed in the literature,
e.g. [3, 8, 11, 15, 18, 22–24, 34, 37, 38], protecting implementations against such attacks
is usually difficult and expensive. Moreover, all proposals we are aware of only increase
the difficulty of performing the attacks, but do not fundamentally prevent them.



Perhaps surprisingly (and to the best of our knowledge), there have been only a few at-
tempts to model side-channel attacks properly, and to provably address their security.
A notable example is the work of Micali and Reyzin [26] who initiated a theoretical
analysis of side-channels. The model they suggest is very general, capturing almost any
conceivable form of physical leakage. However, arguably because of the great generality
of their model, the obtained positive results (i.e. leading to useful constructions) are
quite restricted in nature, and it is not clear how they apply to practice. This is espe-
cially true for primitives such as modern block ciphers (e.g. the DES or AES Rijndael)
for which even the black box model does not provide provable security. Thus, they sug-
gested as an open question the study of more specialized contexts and specific scenarios
which may lead to practical applications. Motivated by this challenge, we propose to
analyze side-channel attacks in a model of computation that captures the structure
and operations of modern block ciphers. Still, the model is general and can be used to
analyze other cryptosystems. Given a cryptographic primitive (such as a block-cipher)
which is secure against a traditional (black-box limited) adversary, we study how to
modify it to be secure against side-channel attacks based on signal leakages. Our model
is based on an information theoretic framework, in which the leakages are quantified
as reductions of certain entropy measurements (defined in the paper) on the secret
parameters in a cryptographic implementation. We use weak and commonly admitted
hypotheses such as “only computation leads to leakage” and address a number of well
known side-channel attacks, e.g. where the Hamming weight of a computed value is
leaked. Other assumptions on the leakages obtained by an attacker could easily be
considered since the quantity of information delivered by a single point of computation
is a parameter of our framework. Also, the information theoretic nature of the model
implies that proving the security of a construction yields real world security and does
not relate to any specific kind of attack. By contrast, an insecurity in our model may
or may not be secure in the real world, depending on whether or not the information
available can be exploited algorithmically.

More specifically, our results are:

1. We make hypotheses about side-channels to describe the behavior of actual leakages
and quantify them with sound entropy measurements.

2. We investigate general properties that can be used to analyze a wide variety of
cryptographic designs, and summarize them into basic lemmas.

3. We show that classical attacks such as Differential Power Analysis (DPA) can easily
be integrated in our framework.

These investigations give rise to concrete design principles we put forward1:

– the “re-keying design principle” indicates that having a 2-input function with one
secret input and performing multiple traces repeatedly, each time revealing further
partial knowledge of the secret value, can eventually reveal the secret completely. It
implies that it is preferable to re-key the secret value between various computations.

– the “bit-chunk design principle” indicates that side-channel measurements deliver
more information if an adversary can focus his observations on small parts of a
computation than if he is forced to consider the global leakage of large chunks of
bits. It involves that parallel computing is preferred for side-channel resistance.

1 We note that large parts of these principles were implicitly used and/or intuitively known
in previous works on practical side-channel attacks.
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– the “table lookup design principle” indicates that (under certain assumptions) it
is less leaky to have a design based on table lookup operations than employing
switching network logic, since the former is more uniform and less sensitive to the
input values, i.e. gives rise to less computations.

4. Then, we provide a formal definition of security against side-channel adversaries
that we denote as leakage proofness (i.e. intuitively, a leakage proof implementation
is the one for which the physical leakages are not exploitable by the adversary).

5. Based on our analysis and the derived principles, we propose two block cipher based
pseudo random number generators secure against side-channel attacks (the precise
class of attacks against which they are secure is defined later in the paper). We stress
that this result is of both theoretical and practical interest as the security parameter
used in the proofs can be kept sufficiently low to allow efficient implementations.

The rest of the paper is structured as follows. Section 2 discusses the relation between
this work and the model of [26] and provides details about our hypotheses, assumptions
and claims. Section 3 presents our model including the target circuit, block cipher
and hypotheses about side-channel leakages. Section 4 provides basic lemmas allowing
to analyze cryptographic implementations with respect to side-channel attacks and
investigates a classical DPA attack in our model. The analysis results in our definition
of security against side-channel attacks. Section 5 finally applies our model and analysis
tools to new constructions proven secure against a class of side-channel adversaries.
Concluding remarks are in Section 6 and open research problems in Section 7.

3



2 Preliminary remarks

In this section we introduce the relation between our results and the previous work of
Micali and Reyzin. We also introduce the hypotheses, assumptions and claims that will
be carefully discussed in the paper.

The traditional cryptographic model considers only abstract notions of computation,
and hence cannot protect against attacks that exploit the information leakage (via
electromagnetic fields, power consumption, ...) inherent in the physical execution of
any cryptographic algorithm. By opposition, the aim of physically observable cryptog-
raphy is to integrate adversaries possibly enhanced with these physical observations.
In [26], a model of computation is consequently introduced that takes the modularity
of physically observable computations into account. It notably defines the notion of
physical computer that is basically the combination of an abstract computer (i.e. a
Turing machine) and a leakage function. With many respects, our following results can
be viewed as a specialization of this previous model with four distinct objectives:

1. To meaningfully restrict the general (worst possible) setting of [26] to reasonable
(i.e. practically relevant) adversaries and leakage functions.

2. To relate the abstract (i.e. Turing machine-based) computation model of [26] to
more intuitive physical notions (e.g. circuits, signals and operations).

3. To quantify the effect of physical leakages with a well defined entropy measurement.
4. To apply this framework to actual cryptographic primitives like block ciphers.

As a matter of fact, the aim of this specialization is to reduce the gap between the
previously introduced theoretical notions of physical security and the actual attacks
performed and understood by cryptographic engineers. So basically, we would like to
trade some theoretical generality for more efficiency (and possibly intuition).

For this purpose, we clearly distinguish between hypotheses and working assumptions.
Hypotheses are required for the model to be meaningful and are fundamental building
blocks in our framework. They roughly correspond to the informal axioms introduced
in [26] with two additional items:

1. We require a notion of entropy to evaluate the information leakages.
2. We require some read-only memory in the device.

We note that the definition of entropy suggested in the paper is proposed and justified
as a reasonable abstraction of certain side-channel adversaries behavior. On the other
hand, the point on read-only memories is rather a requirement to circuit designers, if
security against side-channel attacks (as modeled in our framework) is wanted.

Next to the hypotheses, we introduce a number of working assumptions through the
paper of which the objective is generally to simplify our explanations or to restrict
an adversarial context. None of the working assumptions have to be considered as
fundamentally correct. They only aim to characterize a target implementation or an
adversary as easy to manipulate objects.
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A consequence is that our results can be improved and tighter bounds of security could
be obtained by relaxing these working assumptions. This is the starting point of our
concluding list of open problems in Section 7. A typical example of working assumption
is to consider that the measurements obtained by a side-channel adversary are perfect
(i.e. not affected by noise). Other examples will be detailed in the paper.

Based on this hierarchy of assumptions, our claims are, as stated in the introduction:

1. The development of simple tools for the analysis of side-channel attacks.
2. The integration of DPA-like attacks in our framework.
3. The derivation of a formal definition of security.
4. The design of provably secure pseudo-random number generators.

We note finally that any attempt to model side-channel attacks properly is obviously
dependent on possible improvements of the state of the art physical attacks. Positive
results in our model do not mean that side-channel attacks are prevented in all possible
physical contexts, against any possible adversary. What is proposed in this paper is
rather to analyze a number of realistic adversaries, corresponding to the present state-
of-the-art attacks. For this purposes, we illustrate our hypotheses and framework with
a number of reasonable leakage functions and then determine how the entropy of secret
parameters in actual implementations is affected by the resulting physical leakages.
Improved attacks (if there are) could obviously be modeled with more severe entropy
losses (that possibly would not provide enough security anymore). Otherwise said, our
model determines what are the maximum leakages that one can tolerate if security
against side-channel attacks is required.
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Notations

- A := {A1, A2, ..., An}: an abstract computer composed of n
abstract virtual Turing machines (VTMs).

- Advna−sca
fK ,ÃL (τ, q): the side-channel advantage of a cryptographic

implementation fK against non adaptive adversaries
enhanced with a leakage function ÃL.

- C(z = f(x, y), Nx, Ny, 2n): the average number of possible outputs
of an n-bit 2-input function z = f(x, y) if the inputs
x, y are affected by two leakages giving rise to
respectively Nx and Ny candidates.

- C = EK(P ): the encryption of a plaintext P under a key K.
- D: a diffusion layer in a block cipher.
- DH(x, y): the Hamming distance between two bit-vectors x, y.
- DS(x, y): the signed distance between two bit-vectors x, y.
- F : a fault insertion function.
- F0: an exemplary signal leakage function defined in Figure 3.
- F1(δ): an exemplary signal leakage function defined in Figure 3.
- H[S]: the Shannon entropy of a signal S.
- H∞[S]: the minimum entropy of a signal S.
- H[S|L]: the conditional entropy of a signal S given a leakage L.
- H∞[S|L]: the average minimum entropy of a signal S given a leakage L.
- H∝[S|L]: the average secrecy of a signal S given a leakage L.
- I(S, L): the mutual information between a signal S and a leakage L.
- KRi: the ith key round in a block cipher.
- L(CA,M, R): a general leakage function with inputs:

- CA: internal configuration of the abstract computer A,
- M : setting of the measuring apparatus,
- R: random string to model randomness in the measurements.

- ÃL(y, n, nobs): the single point leakage due to the computation of
an n-bit value y, assuming that the adversary is
able to observe sets of nobs bits (l for short).

- L(Σ): a signal leakage function.
- L(Ω): an operation leakage function.
- O: the set of all the black box oracles in a physical implementation.
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- P∞(z = f(x, y), Nx, Ny): the probability of the most likely output of a
2-input function z = f(x, y) if the inputs x, y are affected by
two leakages giving rise to respectively Nx and Ny candidates.

- ωj
i : an elementary operation in a physical implementation.

- Ωi: a black box oracle in a physical implementation.
- Φj

i : a side-channel oracle in a physical implementation.
- R: a probing read function.
- Ri: the ith round in a block cipher.
- S: a substitution box layer in a block cipher.
- σi(t): a time-dependent signal in a physical implementation.
- Σ(t): the set of all the time-dependent signals in a physical implementation.
- W: a probing write function.
- WH(x): the Hamming weight of a bit-vector x.
- ⊕: the bitwise XOR .
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3 Model

In this section we present our model. First, we recall certain definitions introduced in
[26]. Then, we give an intuitive description of our target circuit for physically secure
applications and provide details about the class of attacks we want to prevent. We also
discuss how this intuitive description can be translated into the more formal model of
Micali and Reyzin. Third, we detail the block cipher to which security against side-
channel attacks is to be added. We note that the target block cipher is described for
concreteness, but much of our work is independent of these details. As will become clear
later in the paper, the main requirement of a given cryptographic design to be analyzed
is that it has clearly specified elementary operations and points of computation (repre-
senting potential leakage points), so that the overall leakage can be quantified using our
framework. Fourth, we present our hypotheses about side-channel leakages. Finally, we
illustrate these hypotheses and their consequences for two exemplary leakage functions.

3.1 Micali-Reyzin computational model

In order to enable the analysis of physically observable cryptography, Micali and Reyzin
introduced a model of computation of which we recall certain definitions of interest with
respect to our following results. It is based on five informal axioms:

Axiom 1. Computation and only computation leaks information.

That is, we assume that it is possible to store some secret information securely in a
cryptographic device. No leakages will compromise this secret as long as it is not used
in any computation. As a matter of fact, this implies that probing attacks are out of
the scope of our analysis and we rely on physical protections to prevent them.

Axiom 2. The same computation leaks different information on different computers.

In other words, an algorithm is an abstraction: a set of general instructions whose
physical implementation may vary. As a result, the same elementary operation may
leak different information on different platforms.

Axiom 3. The information leakage depends on the chosen measurement.

The amount of information that is recovered by an adversary during an actual attack
depends on the chosen measurement, that possibly introduces some randomness.

Axiom 4. The information leakage is local.

In other words, the maximum amount of information that may be leaked by a physically
observable device is the same in any execution of the algorithm with the same inputs,
since it relates to the computer’s internal configuration.

Axiom 5. All the information leaked through physical observations can
be efficiently computed from a computer’s internal configuration.

That is, given an algorithm and its physical implementation, the information leakage
is a polynomial time computable function of (1) the algorithms internal configuration
(because of Axiom 4), (2) the chosen measurement (because of Axiom 3), and possibly
(3) some randomness outside anybodys control (also because of Axiom 3).
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We note that, from the practical point of view, these axioms may not reflect the entire
physical phenomenons observed. For example, as far as Axiom 1 is concerned, volatile
memories such as RAMs regularly require a small amount of energy to refresh their
values and this could be used to mount a side-channel attack. However, such leakages
are significantly more difficult to exploit than computational leakages. Our expectation
is therefore that these axioms approximates the physical reality to a sufficient degree.

From these axioms, an abstract computer is defined as a collection of special Turing
machines, which invoke each other as subroutines and share a special common mem-
ory. Each member of the collection is denoted as an abstract virtual-memory Turing
machine (abstract VTM or simply VTM for short). One writes A := {A1, A2, ..., An}
to mean that an abstract computer A consists of abstract VTMs A1, A2, ..., An. All
VTM inputs and outputs are binary strings always residing in some virtual memory.
Abstract computers and VTMs are not physical devices: they only represent logical
computation and may have many different physical implementations.

Then, to model the physical leakage of any particular implementation, the notion of
physical VTM is introduced. A physical VTM is a pair (Li, Ai), where Ai is an abstract
VTM and Li is a leakage function. If A := {A1, A2, ..., An} is an abstract computer then
Pi = (Li, Ai) represents one physical implementation of Ai and P := {P1, P2, ..., Pn}
is defined as a physical implementation of the abstract computer A.

Finally, in these definitions, the relation between an abstract computing machine and
a physical implementation is only determined by the leakage function that is defined
as a function of three inputs, L(CA,M, R):

– The first input is the current internal configuration CA of an abstract computer A,
which incorporates anything that is in principle measurable.

– The second input M is the setting of the measuring apparatus (in essence, a spec-
ification of what the adversary chooses to measure).

– The third input R is a random string to model the randomness of the measurement
process, e.g. typically, R models the noise that affect the useful leakage signal.

In the following section, we aim to describe a target circuit for physical attacks and
relate this more intuitive view to the previous definitions.
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3.2 Target circuit

Our target cryptographic implementation is schematized in Figure 1.
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Fig. 1. Circuit model including physical threats.

It is defined as a combination of signals and operations. First, the set of all signals
in the circuit is denoted as:

Σ := {σ1, σ2, σ3, ..., σs},

where s is the total number of signals in the device. As physical signals are usually
binary coded, we generally have σi ∈ Z2. In certain contexts, it may also be interesting
to consider subsets of signals Θj := {σl, σm, σn, ...} ⊂ Σ. In practice, the signal values
are time-dependent and we have:

Σ(t) := {σ1(t), σ2(t), σ3(t), ..., σs(t)}

Second, the cryptographic device can apply operations to the signals. A number of
operations are actually included in the black box model. For example, if we consider
a block cipher implementation, an attacker can query the block cipher and obtain
plaintext/ciphertext pairs. As a circuit could contain several such operations, we define
the set of oracles O as the set of operations that one can query in the black box model:

O := {Ω1, Ω2, Ω3, ..., Ωo}

Then, in actual implementations, these oracles are made of several elementary opera-
tions that cannot be queried by the black box attacker (but possibly by the side-channel
one) because they apply to the circuit inner signals. For every oracle Ωi, we have:

Ωi := {ω1
i , ω2

i , ω3
i , ..., ωpi

i }
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We mention that we make no hypothesis about the actual form of the elementary oper-
ations ωj

i ’s, although Figure 1 suggests that they represent logic gates. For clarity pur-
poses, we represented our cryptographic implementation as a hardware circuit where
every ωj

i is physically implemented. However, in practice, different operations could
be performed by the same hardware resource. This is typically the case in software-
programmed processors and in this latter context, the ωj

i ’s represent instructions ap-
plied sequentially to the signals rather than physical resources.

Based on these definitions, we can consider different types of physical opponents. For
example, an invasive probing attack gives read/write access to a limited subset of sig-
nals in the device (i.e. the functions R and W in the figure). A fault attack applies
some probabilistic function F to the signals or operations (it is probabilistic in the
sense that a signal or operation is affected by the fault function with a certain prob-
ability). Finally, side-channel attacks enhance the opponent with a leakage function.
In the following, we only consider these side-channel opponents. More specifically, we
will investigate the signal leakage function L(Σ). Attacks based on the operation leak-
age function L(Ω) (i.e. typically timing attacks or simple power and electromagnetic
analysis) are not considered in this paper. As a matter of fact, in the context of block
ciphers that will be our running example, preventing the operation leakages is usually
much easier than preventing the signal leakages.

It is important to observe that such a description can be efficiently translated into
the formalism of [26]. Basically, our oracles Ωi’s can be simulated with abstract com-
puters and the elementary operations ωj

i ’s with VTMs. Also, our signals are simply the
inputs and outputs of the VTMs. At this point, the only significant difference between
the models relates to the specialization of the leakage function. While this function was
kept totally general in [26], we introduce certain restrictions on its inputs CA,M and R.

Formally, these restrictions are summarized in two first working assumptions:

WA.1: We only investigate the signal leakage function L(Σ). That is,
we consider an adversary that will not take advantage of the complete
internal configuration of an abstract computer, but a part of it. Note that
a signal leakage function can simply be defined as a surjective function
from some secret signal space to a smaller leakage space.

WA.2: We assume perfect measurements. That is, we consider that the
measurements are not affected by the randomness modeled by the leak-
age function’s R input and therefore are perfectly (deterministically)
predicted with the leakage function.

On the other hand, we do not restrict leakage function’s M input and assume that the
adversary potentially measures any information available in a physical implementation.
This will be re-stated later in the paper.
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3.3 Target block cipher

A block cipher transforms a plaintext block P of a fixed bit length nb into a ciphertext
block C of the same length, under the influence of a cipher key K, of bit length nk.
We denote the forward operation of a block cipher as the encryption: C = EK(P ) and
the reverse operation as the decryption: P = DK(C).

In practice, modern block ciphers are usually composed of several identical transforms,
denoted as the encryption (resp. decryption) rounds. If such a product cipher applies
the same round function r times to the cipher state, it is necessary to expand the cipher
key K into different round keys ki. This is done by means of a key round. The round
and key round functions are respectively denoted as:

pi+1 = R(pi, ki),
kj+1 = KR(kj),

where the pi’s represent the cipher state, with p0 = P , pr+1 = C and k0 = K.

Finally, we model our round and key round functions as made of 3 different opera-
tions: a non-linear substitution layer, a linear diffusion layer and a bitwise XOR layer.
Those are usual components of present block ciphers, e.g. the AES Rijndael [14].

More specifically, the substitution layer S consists of the parallel application of substi-
tution boxes s to the b-bit blocks of the state:

S : (Z2b)
nb
b → (Z2b)

nb
b : x → y = S(x) ⇔ yi = s

(
xi

)
, 0 ≤ i ≤ nb

b
− 1,

where xi is the ith b-bit block of the state vector x. The small S-boxes s are assumed to
have good non-linearity, differential profile, non-linear order etc. As will be discussed
later, we only address security against side-channel attacks, and thus need to assume
that the given primitive is “good” in the traditional sense of security.

The linear diffusion layer D applies to the whole state and is assumed to have good
diffusion properties (e.g. avalanche effect, high branch number, etc.):

D : Z2nb → Z2nb : x → y = D(x)

Finally, the bitwise XOR layer ⊕ is denoted as:

⊕ : Znb
2 × Znb

2 → Znb
2 : x, y → z ⇔ z(i) = x(i)⊕ y(i), 0 ≤ i ≤ nb − 1

where x(i) is the ith bit of the state vector x. For example, a 3-round block cipher,
is represented in Figure 2. With respect to the model of Section 3.2, the complete
block cipher is an oracle Ω1 and a possible division in elementary operations would
be Ω1 := {R1,R2, R3,KR1, KR2, KR3}. Another division (with smaller operations) is
Ω1 := {⊕1, ...,⊕4, SA, ..., SF, D1, ..., D6}. As already mentioned, the choice of elemen-
tary operations is let open in our model and they can be as small as logic gates.
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Fig. 2. A 3-round block cipher

3.4 Hypotheses

Our hypotheses are in two parts. First, we use the informal axioms of Micali and
Reyzin, introduced in Section 3.1. Second, we add two new hypotheses that we detail
more carefully in this section. Beforehand, we introduce a third working assumption in
order to clearly specify the adversarial context of the side-channel attacks we consider:

WA.3: We consider a side-channel adversary that only perform non
adaptive queries. That is, if an adversary is allowed to query some ora-
cle, the queries are non adaptive if they do not depend to the previous
answers of the oracle; the queries are adaptive if they do depend on the
previous answers of the oracle. In our context, it means that we con-
sider an adversary that can observe an arbitrary number of side-channel
leakages, but cannot choose its queries in function of these leakages.

A note on the definitions of entropy: In the following of the paper, we aim to
evaluate the effect of physical leakages as entropy reductions on the secret data manip-
ulated in a device. As a consequence, we start with a brief discussion on the definition
of entropy to use in this context. Let S and L be two random variables in the discrete
domains S and L, respectively denoting a secret signal and its corresponding leakage.
The entropy of S is defined as the expectation H[S] = Es←S [− log2 P[S = s]]. The
conditional entropy of S given L is written H[S|L] = El←LH[S|L = l]. The notion of
entropy designates the “expected randomness” of a random variable.

To quantify the cryptographically more robust notion of “worst-case randomness”,
one generally considers the minimum entropy of S (see [7, 13] for recent uses), which is
defined as H∞[S] = − log2 maxs∈S P[S = s]. It corresponds to the negative logarithm
of the most likely element in a distribution. For conditional distributions, the notion of
average minimum entropy is used, defined as H∞[S|L] = − log2 El←L[maxs∈S P[S =
s|L = l]]. This is not the expected minimum entropy of S given L but rather the neg-
ative logarithm of the average probability of the most likely value of S given L. It is
more pessimistic than the entropy since H∞[S|L] ≤ El←LH[S|L = l].
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In addition to these common notions, we finally propose to define the average secrecy
of a conditional distribution as follows:

H∝[S|L] = − log2 El←L[Es←S|L=lP[S = s|L = l]]

Informally, this is the negative logarithm of the average predictability (where pre-
dictability means average probability to predict) of S given L. We note that, for a
fixed L value, if the random variable S has the uniform distribution, then the average
minimum entropy and the average secrecy are the same. Also, the average secrecy only
differs from the regular conditional entropy by the place of the negative logarithm.
Therefore, thanks to Jensen’s inequality, we have that H∝[S|L] ≤ El←LH[S|L = l].

Hypothesis 1: The side-channel leakages obtained from non adaptive
queries to a physically observable device reveal an average amount of
information correctly measured by the definition of average secrecy.

In other words, we assume that the effect of any leakage function is to reduce the space
of the secret values in an implementation and we use the average secrecy to quantify
the probability that an adversary can predict these secret values given the obtained
leakages. This is a very important hypothesis with respect to our following results.
Therefore, we discuss the consequences of the hypothesis in this section. It will be fur-
ther illustrated with respect to a practical example, in Sections 4.1, 4.2.

Looking at the previous definitions, a first (known) observation is that Shannon entropy
does measure the amount of information contained in a random variable and therefore
says nothing about the security of this random variable. In general, cryptographers are
rather interested in the a-posteriori probability to predict some secret data given some
obtained information. For example, an encryption scheme C = EK(P ) satisfies perfect
secrecy [35] if P[P = pi|C = ci] = P[P = pi]. Similarly, in side-channel attacks, we
would like to quantify the probability that an adversary can predict some secret data
given some obtained leakages. It yields the following question: “given some leakage,
should one evaluate the security of a secret parameter with its worst case probability
of prediction or its average probability of prediction?”. That is, should we use average
minimum entropy or average secrecy in our discussions?

As already mentioned, in case of uniform conditional distributions, these notions are
identical. The difference between minimum entropy and secrecy is best understood
through a simple example with non uniform distributions. Say we consider 3-bit sig-
nals and an obtained leakage L1 such that a secret signal S1 is distributed according
to S1 ← {1, 2, 2, 2, 3, 4, 5, 6}. Applying our definitions, we find:

maxP[S1|L1] = 3
8 ' 1

2.67

E[P[S1|L1]] = 5
8 · 1

8 + 3
8 · 3

8 ' 1
4.57

Let us also consider a leakage L2 such that S2 ← {1, 2, 2, 2, 3, 3, 3, 6}. It now yields:

maxP[S2|L2] = 3
8 ' 1

2.67

E[P[S2|L2]] = 2
8 · 1

8 + 6
8 · 3

8 ' 1
3.2
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Clearly, the consequence of considering a worst case probability (i.e. minimum entropy)
is the impossibility to distinguish between these two practically different situations.
However, in a maximum likelihood recovery of a signal S given some leakage L (sug-
gested e.g. in [9]), the probability of success not only depends on the worst case, but
on the probability to distinguish the secret signal S from possible wrong candidates
(i.e. false alarms). Similarly, our approach considers the average (and indeed, not worst
case) security against side-channel attacks. Otherwise said, the average secrecy mod-
els the average success rate of a maximum likelihood adversary and this is the main
motivation and meaning of our hypothesis. We note that, as will be detailed later,
this notion of average security only makes sense in the context of non adaptive adver-
saries (involving the restriction of our hypothesis). We remark finally that this does
not mean that worst case situations are out of the scope of our investigations. In fact,
these worst cases can actually happen and will be included in our definition of security
against side-channel adversaries, i.e. in Section 4.3.

Hypothesis 2: There is sufficient read-only memory in the device.

In other words, there is some data that can be stored in the circuit and cannot be
overwritten by potential attackers (but can be read). A similar hypothesis has been
made in the algorithmic tamper-proofness work of [17].

As already said, this hypothesis is mainly a requirement to circuit designers that is
necessary for the construction of security proofs in Section 5. But the analysis of side-
channel attacks in our model does not require the hypothesis.

3.5 Illustrations and consequences

We use the following definitions and symbols: (1) the Hamming weight of a n-bit vec-
tor x ∈ Zn

2 is denoted as WH(x), (2) the Hamming distance between two n-bit vectors
x, y ∈ Zn

2 is denoted as DH(x, y) = WH(x⊕ y), (3) we also define the notion of signed
distance between two n-bit vectors x, y ∈ Zn

2 as DS(x, y) =
∑n−1

i=0 (y(i) − x(i)), where
x(i) is the ith bit in the vector x and we have −n ≤ DS(x, y) ≤ n.

Our two exemplary leakage functions are represented in Figure 3. They were selected
both for their generality and because they correspond to usual assumptions made in
practical side-channel attacks, as we briefly justify in the following.

These leakage functions are general since they can be explained by the physical origin
of the leakages. As a matter of fact, physically observable phenomena always relate
to data manipulations (e.g. energy or power is only consumed to alter a system state,
electromagnetic radiation only happens if current flows in the circuit, etc.). Since most
electronic devices work at the bit level, more bit modifications mean more power con-
sumption or more electromagnetic radiation, thus more physically observable leakage.
As for Section 3.1’s first axiom, one may argue that small amounts of energy are also
required to refresh the unmodified values during a computation. Again, we suppose
that they are significantly harder to exploit. We therefore have to determine what are
the possible bit modifications and how they affect the external leakages. Clearly, there
are only two possible cases, denoted as the leakage functions F0 and F1. They differ by
their ability (or lack thereof) to distinguish between 0 → 1 and 1 → 0 bit transitions.
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Fig. 3. Leakage functions.

More important, these functions are of practical interest with respect to the present
side-channel attacks described in the literature. The leakage function F0 corresponds to
a usual assumption in power analysis against CMOS circuits, where only the amplitude
of the currents in a device is exploited. It is generally denoted as the Hamming weight
or distance leakage model [5, 21, 25, 36]. The leakage function F1 corresponds to more
powerful opponents. For example, if δ = 2, it actually relates to an electromagnetic
analysis, where not only the amplitude of the currents is leaked, but also their direction
[19, 28]. In this context, the signed distance is revealed. We remark that both functions
are idealized and an attacker will rarely recover exact Hamming or signed distances in
one single leakage measurement (although he can be very close to). Of course, those are
not the only possible leakage functions to mount a side-channel attack. They only con-
stitute a reasonable starting point with respect to practical adversaries. As mentioned
in the preliminary remarks, more powerful attacks potentially exist, e.g. using space or
time localization. These enhanced adversaries can be modeled in our setting with more
severe secrecy losses. For simplicity, we only considered the leakage functions F0 and
F1 with δ = 2 (i.e. the signed distance model). As a matter of fact, the efficiency of a
leakage function depends on the number of discrete values the leakages are distributed
on. For example, the Hamming and signed distances of an n-bit data respectively yield
n+1 and 2n+1 possible discrete values for the leakage functions. Considering leakage
function F1 with δ 6= 0, 2 would involve even stronger secrecy losses and is a scope for
further research, from the theoretical and practical point of view.

Consequences: Let us now consider a computation (typically involving key bits)
producing a value y with secrecy n (before any side-channel attack has been applied),
meaning that the probability to predict y is 2−n. Let us also assume that the compu-
tation result y overwrites some other value yp previously stored in the circuit. That
is, there is a signal in the circuit that switches from the value yp to the value y. For
simplicity, we take y, yp to be uniform n-bit values, rather than longer strings with n
bits of secrecy. Depending on the leakage function, the maximum leakage will be either
DH(yp, y) or DS(yp, y). As the possible Hamming distances h ∈ [0, n] and the possible
signed distances s ∈ [−n, n], we have:
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P[DH(yp, y) = h] =

(
n
h

)

2n

P[DS(yp, y) = s] =

(
2n

s + n

)

22n

According to the previous discussion, we can evaluate the security of this value y
manipulated in a leaking device by computing its average secrecy. We derived the
average secrecies in three different implementation contexts: known preliminary values,
random preliminary values and deterministic preliminary values (i.e. when y and yp

are both unknown but relate to the same n bits of secrecy). For this purpose, we need
an additional working assumption and definition.

WA.4: We assume a side-channel adversary that takes advantage of all
the available information. That is, if one obtains the leakage of an n-
bit value, we consider the secrecy reduction on all the n bits. This is a
strong assumption since actual adversaries usually only target some of
these bits. Otherwise said, we consider an adversary that is not restricted
by a key guess strategy. With respect to the model in [26], it means that
we don’t restrict the leakage function’s M parameter.

Definition 1: A leakage table is the 22n-element table containing the leakages for all
possible y and yp values. A leakage sub-table is any 2n-element part of the leakage
table having fixed yp values.

An example with n = 2 is given in Table 1.

Transition DH DS

yp → y (δ = 2)

00 → 00 0 0

00 → 01 1 1

00 → 10 1 1

00 → 11 2 2

01 → 00 1 -1

01 → 01 0 0

01 → 10 2 0

01 → 11 1 1

Transition DH DS

yp → y (δ = 2)

10 → 00 1 -1

10 → 01 2 0

10 → 10 0 0

10 → 11 1 1

11 → 00 2 -2

11 → 01 1 -1

11 → 10 1 -1

11 → 11 0 0

Table 1. Leakage table and sub-tables for n = 2.
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The derivation of the average secrecy values is as follows:

1. Known preliminary values typically relate to the physical context of buses pre-
charged with fixed values in microprocessors. In this context, the average secrecy is
computed in a sub-table determined by the preliminary value yp that is considered
as a part of the leakage. Consequently, for the leakage function F0, the adversary
actually gets an information equivalent to the Hamming weight of y (since the
Hamming distances are distributed identically in any subtable and if yp = 0, we
have DH(y, yp) = WH(y)). It yields the following average secrecy:

H∝[y|DH(yp, y), yp] = H∝[y|WH(y)] = − log2

n∑

h=0

(
n
h

)

2n
· 1(

n
h

) = n− log2(n + 1)

In fact we obtain exactly the same expression when considering the leakage func-
tion F1 with δ = 2 since in any subtable, the Hamming and switching distances
are distributed identically as well. Therefore: H∝[y|DS(yp, y), yp] = n− log2(n+1).

Note: It is interesting to observe the information theoretic analogy of this
definition of average secrecy. Say we have a communication channel of which
the input is an n-bit secret variable S and the output is a leakage variable L.
The mutual information between these variables is:

I(S, L) = H[S] + H[L]−H[S, L],
= H[L]−H[L|S],
= H[L],

since H[L|S] = 0 (i.e. knowing the S, there is nothing to gain in knowing L).

The channel capacity then corresponds to the maximum of the mutual
information among all the possible probability distributions for L. It is
obtained for the uniform distribution. As the number of possible leakage
values is n + 1, we find I(S, L) = − log2

1
n+1

= log2(n + 1). In our context,
the mutual information also corresponds to the leakage (i.e. to the secrecy
reduction) since we have I(S, L) = H[S] −H[S|L]. We see that the channel
maximizing the mutual information also yields a leakage of log2(n + 1) bits.
We stress that the Shannon entropy and average minimum entropy or secrecy
are different (although sometimes close) notions. For example, they would be
differently affected by noise addition. Therefore, this is just an analogy that
can help the understanding of our model but only the definition of average
secrecy is relevant in our context.

2. Random preliminary values typically correspond to a physical context where the
buses are precharged with random values. That is, yp is an unknown random data,
independent of y. In this case, the combined secrecy of y and yp is initially 2n. It
yields combined average secrecies for the vector (yp, y):

H∝[yp, y|DH(yp, y)] = − log2

n∑

h=0

2n ·
(

n
h

)

22n
· 1

2n ·
(

n
h

) = 2n− log2(n + 1)
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H∝[yp, y|DS(yp, y)] = − log2

n∑
s=−n

(
2n

s + n

)

22n
· 1(

2n
s + n

) = 2n− log2(2n + 1)

Remark that in practice, an adversary will usually only be interested in the infor-
mation on y (i.e. the secret signal) and not care about the knowledge of yp (that is
just a temporary random number). The leakage function F0 would not be useful in
this context because it only delivers combined information on y and yp, but nothing
on y alone. Otherwise said, the leakage cannot be predicted with it2.

3. Deterministic preliminary values finally correspond to a general hardware context
where both y and yp are unknown but relate to the same n bits of secrecy, e.g.
if y = f(x, k), yp = f(xp, k) where x, xp denote known inputs, k denotes a secret
key and f is the function used to combine x and k, e.g. a bitwise XOR . It means
that the secrecy is computed from a 2n-element set containing elements from every
sub-table. Assuming that fX(k) = f(X, k) is a bijection (i.e. the knowledge on y
is the same as the knowledge on k), it yields the bounds:

H∝[k|DH(yp, y)] ≥ − log2

∑n
h=0

#(k|DH(yp,y)=h)
2n · 1

#(k|DH(yp,y)=h)

= n− log2(n + 1)

H∝[k|DS(yp, y)] ≥ − log2

∑n
s=−n

#(k|DS(yp,y)=s)
2n · 1

#(k|DS(yp,y)=s)

= n− log2(2n + 1)

Obviously, the second expression (with leakage function F1(2)) is only meaningful
for n ≥ 3, since for smaller n’s, there are more possible leakage values (i.e. 2n + 1)
than elements in the set in which we compute the average secrecy (i.e. 2n). It is
important to remark that in this physical context, the leakage function F1(2) may
deliver more information than F0. However, this evaluation is pessimistic since we
consider that the sets in which we compute the average secrecy contains all the
possible n + 1 or 2n + 1 leakage values and that these leakages depend on the key.
It may not be the case in practice, depending on the function used to combine
x, xp and k. For example, it is well known that the Hamming distance of a key
addition does not reveal anything on the key. Indeed, assuming xp⊕k → x⊕k, the
observation of WH(xp⊕k⊕x⊕k) = WH(xp⊕x) does not leak any key information.

2 For example, looking at Table 1, the observation of DH(yp, y) = 0 or 2 does not allow to
reject any candidate for y. On the other hand, the observation of DS(yp, y) = −2 or 2
results in only one possible candidate for y. See [28] for more details.
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As the data bit-size n is an important parameter of the leakage function, it is finally
worth noting that attackers not always have to observe all the n bits at once. They
may also repeatedly observe smaller sets of nobs bits. There are two physical factors to
take into account with this respect.

1. The implementation type and size of data buses. For example, an 8-bit processor
for which nobs = 8 potentially leaks much more information than a hardware archi-
tecture dealing with 128-bit data in parallel for which nobs = 128. Pipelining may
yield even lower leakages, e.g nobs = np × 128 where np is the number of pipeline
stages. This is a first part of the bit-chunk design principle.

2. The attacker capabilities. For example, while power analysis generally leaks an
image of the whole device state, certain improved (e.g. electromagnetic) attacks
allow focusing the measurement onto specific parts of the computation. This reduces
nobs to less than the implementation type specifies.

Notice that small nobs values nearly correspond to probing attacks rejected by Hypoth-
esis (e.g. if nobs = 1, we have WH(y) = y). Note also that in the three investigated
contexts, the definitions of average minimum entropy and average secrecy result in the
same expressions, because the conditional distributions are uniform.

4 Analysis

In this section, we present our tools for the analysis of cryptographic implementations
against side-channel attacks. We start by considering single point leakages. These in-
vestigations give rise to two exemplary lemmas about the average secrecy of one-input
and two-input functions affected by some leakages. That is, typically, we will consider
the two following questions:

1. Assuming y1 = f1(x) and y2 = f2(x) to be two leaking computations such that,
e.g. one knows WH(y1) and WH(y2), what is the resulting knowledge on x?

2. Assuming z = f(x, y) to be a leaking computation such that, e.g. one knows WH(x)
and WH(y), what is the resulting knowledge on z?

We show in the section that such questions can be formally answered by applying our
definition of average secrecy. On the other hand, the resulting analysis is typically de-
pendent on the cryptographic functions and leakage functions considered. Therefore,
for simplicity and generality reasons, we also introduce two additional working assump-
tions that corresponds to simple bounds to approximate these formal lemmas, when
assuming that cryptographic functions behave as random functions. Then, we study the
application of these principles to real constructions, considering multiple points/traces
leakages. We finally show that, under certain conditions on the behavior of the block
cipher components, it is possible to integrate DPA in our framework and to derive
(first and indeed not tight) bounds for the actual complexity of the attack. From these
additional assumptions, we define the context of “exclusive side-channel attacks” and
finally provide a formal definition of security against such adversaries.
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4.1 Analysis of single point leakages

We start with a few definitions.

Definition 2: The single point leakage of a n-bit vector y ∈ Zn
2 with an attacker

capability of nobs bits, denoted as ÃL(y, n, nobs) (or l for short) is the average number
of bits leaked by one single point of computation in an implementation, if the attacker
is able to observe sets of nobs bits.

In the following sections, we will only illustrate our analysis with the leakage function
F0 and assume the context of known preliminary values, i.e. we consider a Hamming
weight leakage function. The previous working assumptions involve that nobs ≤ n since
we assume noise-free measurements. Typically, nobs > n would mean that some of the
bits are not targeted by the adversary and therefore produce what is usually referred
to as algorithmic noise. According to the previous discussions, it yields:

ÃL(y, n, nobs) = log2(nobs + 1)× n

nobs

The multiplicative law holds because the different sets of nobs bits are observed in-
dependently. Again, it is important to have in mind that considering other leakage
functions would be straightforward. Indeed, any leakage assumption can be considered
in our framework as long as it is expressed in such information theoretic terms.

Definition 3: A 1-input b-wise function is a bijection of n-bit inputs acting on b-
bit blocks f : (Z2b)

n
b → (Z2b)

n
b : x → y = f(x) ⇔ yi = f i(xi), 0 ≤ i ≤ n

b − 1, where
any f i(xi) is a bijection.

Definition 4: A 2-input b-wise function is a function of n-bit inputs acting on b-
bit blocks f : (Z2b)

n
b × (Z2b)

n
b → (Z2b)

n
b : (x, y) → z = f(x, y) ⇔ zi = f i(xi, yi),

0 ≤ i ≤ n
b −1, where fX(y) = f(X, y), fY (x) and any f i

Xi(yi)’s, f i
Y i(xi)’s are bijections.

The substitution layer or diffusion layer defined in Section 3.3 are examples of 1-input
b-wise functions. The bitwise XOR or addition modulo 2n are examples of 2-input b-
wise functions. Intuitively, the significance of the b parameter relates to the maximum
diffusion (or algebraic complexity) of a function. Using a b-wise function implies that
changing one input bit of the function will result in the change of at most b output bits.
We note that the b parameter is mainly important with respect to key guess strategies
since it determines the computational complexity of a key guess. Because of our fourth
working assumption, most of our following analysis will be independent of b.

Based on these definitions, we now investigate the situation in which an adversary
obtains several leakages related to the same secret value x. For this purpose, we first
state an exemplary formal lemma allowing to derive the remaining secrecy of x given
two Hamming weight-based leakages.
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Lemma 1: Let f1, f2 be two 1-input n-bit functions. Let y1 = f1(x), y2 = f2(x) be
two computations performed within a leaking device with nobs = n. Assuming that a
Hamming weight leakage function that only affects the function’s outputs (i.e. y1 and
y2), the average secrecy of x equals3:

H∝[x|WH(f1(x)),WH(f2(x))] = − log2

n∑

h1=0

n∑

h2=0

(
n
h1

)

2n

(
n
h2

)

2n
· E

x|h1,h2

P[x|h1, h2]

ut
In this expression, the predictability E

x|h1,h2

P[x|h1, h2] can be computed for any pair of

functions f1, f2. Basically, the lemma just applies our definition of average secrecy. It
can be easily extended to various numbers of obtained leakages, each of those adding a
new sum in the expression of x’s average secrecy. However, as already mentioned, this
computation is typically dependent on the cryptographic function considered. There-
fore, for simplicity purposes, we first modeled f1 and f2 as random4 functions and
stated a naive bound for the secrecy reduction on x as follows:

WA.5: Attack against 1-input random functions. Let f1, f2 be two 1-input
random functions and y1 = f1(x), y2 = f2(x) be computations performed
within a device with a single point leakage on y1, y2 of respectively l1, l2
bits. Then, the average secrecy reduction on x is bounded by l1 + l2 bits.

It is obvious that such an assumption defines the worst possible adversary. Indeed,
it involves that a combination of leakages delivers new information, no matter what
the adversary already knows. This means that the secrecy reductions due to multiple
leakages will be linear in the number of leakage points observed. However, in practice,
after an adversary gets several leakages, an additional one will always contain some
redundant information. Also, typically, the secrecy of x cannot be lower than zero.

In fact, the theoretical meaning of this working assumption is straightforward. We just
consider that the leakages give rise to sets of candidates of respective size 2n−l1 , 2n−l2 .
If f1(x) and f2(x) are random functions, then these sets of candidates are indepen-
dent and their intersection has size 2n−l1 ·2n−l2

2n = 2n−(l1+l2). That is, the following
approximations are hidden in WA.5:

1. It considers the average number of x candidates rather than the average predictabil-
ity of x. These notions are strongly correlated since increasing the number of x
candidates reduces its predictability.

2. It neglects the impossibility of an empty intersection between the sets of x candi-
dates generated by the leakages. In practice, there always remains one candidate in
this intersection, corresponding to the secret signal used to generate the leakages.
Therefore, WA.5 upper bounds the efficiency of the leakage combination.

3 Since f1 and f2 are bijections, the secrecy of x, y1 and y2 are the same.
4 This is an important assumption that will be discussed further for practical attacks.
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We mention again that we considered this assumption for simplicity reasons and be-
cause it gives a good intuition of how a side-channel attack proceeds. As an illustration,
in Figure 4 we compared the behavior of WA.5 with an evaluation of the average secrecy
of an 8-bit value x, assuming that the different functions yi = fi(x) were random. It
clearly suggests that an actual combination of leakages will be less efficient than what
is bounded by our working assumption.
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Fig. 4. Comparison between Lemma 1 and WA.5 for of an 8-bit value x.

Note: The information theoretic analogy of the working assumption is
straightforward: we just consider a (side) channel with two independent
outputs for which we have the additivity of the mutual information.

We now investigate the case of 2-input functions. For this purpose, we start with the
following example. Let z = f(x, y) be the result of such a function with inputs x and y.
Let Nx be the number of possible x values and Ny be the number of possible y values
after some leakage has been obtained by an adversary. Say we consider a 2-input 3-wise
function for which we have Nx = 4, Ny = 2 and we find the following possible z values:
z ← {0, 1, 1, 2, 4, 5, 5, 6}. This is a typical example where average minimum entropy
and average secrecy differ, since the distribution of z is not uniform. The minimum
entropy of z is worth the negative logarithm of 2

8 = 1
4 while the secrecy of z is the

negative logarithm of its predictability:

Ez|Nx,Ny
[P[z|z = f(x, y), Nx, Ny]] =

4
8
× 1

8
+

4
8
× 2

8
=

1
5.33

As for Lemma 1, it is interesting to get an intuitive understanding of a 2-input func-
tion’s behavior by thinking about number of candidates (i.e. 6 in our example) rather
than predictabilities and assuming random functions. In this context, one can evaluate
an average expression for the number of possible z values as follows.
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Fact: Let f be a 2-input n-bit random function. Let x and y be two values computed
in a leaking device such that the respective number of x, y candidates5 is Nx, Ny. If
z = f(x, y), then the average number of possible z values is worth:

Nz = C(z = f(x, y), Nx, Ny, 2n) = −2n ·
(
1− Nx

2n

)Ny

+ 2n, with Nx ≥ Ny

Proof. Initially, we fix the number of possible z values to zero: C(z, Nx, 0, 2n) = 0.
Then, each candidate for y will add a list of Nx new candidates to the possible values
of z minus the ones already found before: C(z, Nx, i + 1, 2n) = C(z, Nx, i, 2n) + Nx −
C(z,Nx,i,2n).Nx

2n . This holds because fX(y), fY (x) are random permutations generating
independent sets of candidates. Also, since fX(y) and fY (x) are bijections, the best
estimation holds for Nx ≥ Ny (i.e. the only collisions are between the lists of Nx

candidates, not within them). It yields the following recurrence equation: C(z, Nx, i +
1, 2n) = C(z,Nx, i, 2n).(1− Nx

2n ) + Nx that has solution:

C(z, Nx, i, 2n) = −2n ·
(
1− Nx

2n

)i

+ 2n

The number of possible z values Nz therefore equals C(z,Nx, Ny, 2n). ut
Note that the same result can be obtained by solving the sum:

C(z, Nx, Ny, 2n) =
Ny∑

i=1

(−1)i−1

(
Ny

i

)
N i

x

2n(i−1)

From this expression, an interesting quantity to measure is the logarithm of the av-
erage number of z candidates per bit, i.e. log2(Nz)/n. It is illustrated in Figure 5 for
different bit sizes n ∈ [5, 20] and different input leakages per bit on x, y: l

n ∈ [ 12 , 1
5 ]. One

observation is that for fixed input leakages per bit, log2(Nz)/n is an increasing function
of n. Since lower Nz values implies z candidates with higher multiplicities, it involves
the important consequence that, for fixed input leakages per bit, the average secrecy
of z is also an increasing function of n. This is a good news since present block cipher
work on large bit sizes, e.g. n = 128. However, as already mentioned, the actual size
we are interested in is nobs rather than n, e.g. in an 8-bit processor implementation,
the size of the 2-input functions will be 8, regardless the actual block cipher size. This
yields the second part of the bit-chunk design principle.

In appendix A, the average minimum entropy of a 2-input random function’s output
affected by some Hamming weight-based leakage on its inputs is analyzed. It illustrates
why it is preferable to use average secrecy in the context of side-channel attacks, as
assumed by Hypothesis 1. We now derive a second exemplary formal lemma allowing
to derive the average secrecy of a 2-input function’s output.

5 Note that the leakages give to uniform lists of candidates for x, y because of the surjective
nature of the signal leakage function.
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Fig. 5. Average number of output values of a non-leaking 2-input random function (in log
scale, per bit), considering different input leakages per bit on x, y and different bit sizes n.

Lemma 2: Let f be a 2-input n-bit function. Let x and y be two values computed in a
leaking device with nobs = n and the leakages on x, y be measured with the Hamming
weight function. Let z = f(x, y) be a non-leaking computation (meaning that there is
no direct leakage on z but only on x, y). The average secrecy of z equals:

H∝[z|z = f(x, y),WH(x),WH(y)] = − log2

n∑

hx=0

n∑

hy=0

(
n
hx

)

2n

(
n
hy

)

2n
· E

z|hx,hy

P[z|hx, hy]

ut
Again, we simply apply our previous definition of average secrecy and the predictabil-
ity E

z|hx,hy

P[z|hx, hy] can be computed for any particular function f .

We remark that this lemma considers z = f(x, y) to be a non-leaking computation.
This is just an abstraction allowing to evaluate the additional leakage on z from a
partial knowledge of x and y. In practice, z will be manipulated in a leaking device as
well. The combination of the leakages resulting from the computation of z itself and
from the partial knowledge of x and y is obtained from Lemma 1. We remark also that
if one input is known, e.g. x, the function z = f(X, y) = fX(y) acts like a 1-input
function and can be analyzed using Lemma 1.

Note: This latter point suggests that the secrecy of a 2-input function also
has an information theoretic analogy. We are actually in the context of a
cascade of two channels, corresponding to the two inputs of the function. If an
input is known, the corresponding channel is noiseless and the output is only
determined by the knowledge of the second input.

As for Lemma 1, the computation of Lemma 2 depends on the 2-input function f .
Therefore, we similarly assume f to be random in order to provide a simple and intuitive
bound for the efficiency of this formal lemma.
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WA.6: Attack against 2-input random functions. Let z = f(x, y) be a
2-input random function computation performed within a device with
a single point leakage on x, y of lx, ly bits. Then, the average secrecy
reduction on z due to the knowledge on x, y is bounded by lx·ly

n bits.

The assumption considers a too-powerful adversary since it supposes the knowledge
on x, y to be physical bits of which the indices are randomly distributed among their
n possible positions rather than bits of secrecy. Again, the only aim of this working
assumption is to provide a simple to manipulate and intuitive view of the behavior
of 2-input functions affected by side-channel leakages. The important consequence of
Lemma 2 (that is also understood through WA.6) is that, for reasonable input leakages
(e.g. less than half the bits have been leaked), the output leakage of a 2-input function
will be even smaller. Note that the assumption is specially pessimistic for large n val-
ues since it considers that the average secrecy per bit of z is independent of the bit size.

To conclude this section on the analysis of single point leakages, we illustrate the
difference between Lemma 1 and Lemma 2 with a simple example. Let us first consider
Lemma 1. That is, we have two 1-input 3-bit functions y1 = f1(x) and y2 = f2(x)
that respectively give rise to the following sets of possible x values: x ← {0, 2, 4, 6} and
x ← {2, 3, 4, 5}. When combining the two leakages, one finds x ← {2, 4}. So, basically,
the combination of different leakages results in a reduction of secrecy by rejecting cer-
tain of the key candidates. Let us now consider Lemma 2, with a function z = f(x, y)
and input leakages such that x ← {0, 2, 4, 6} and y ∈ {2, 3, 4, 5}. Let us also assume that
the 2-input function is such that we obtain z ← {0, 1, 1, 1, 2, 3, 3, 4, 5, 5, 5, 5, 6, 6, 7, 7}.
In this sequence, the number of possible z values is 8, i.e. none of the key candidates
can be rejected at this point. However, the secrecy has been reduced because certain
of the key candidates are less likely.

This example stresses that Lemma 1 basically corresponds to the behavior of a first
order side-channel attack like the DPA in which (if we assume perfect measurements,
i.e. no noise) the secrecy reduction is deterministic. On the other hand, if the input
leakages are reasonable (i.e. typically, less than half the bits have been leaked), Lemma
2 corresponds to the behavior of a higher order side-channel attack in which (even if
the measurements are perfect), the secrecy reduction is probabilistic [24, 29, 38].

In the following sections, we apply the previous working assumptions to discuss the
security of an idealized implementation against DPA-like attacks. In this context, it is
important to note that obtaining tighter bounds for Lemmas 1 and 2, possibly dedi-
cated to specific classes of functions, would allow to refine our analysis and is therefore
a scope for further research. As underlined in this section, WA.5 and WA.6 both corre-
spond to bounds of efficiency for side-channel attacks. Therefore, the following analysis
is conservative and our main purpose is to initiate a formal treatment of physical secu-
rity within our model, from a general point of view. As for [26], further specialization
is still required to close the gap between theory and practice.
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4.2 Towards the analysis of real constructions

The previous lemmas provide tools for the analysis of a large number of encryption
schemes. In this section, we use the target block cipher described in Section 3.3 to il-
lustrate how DPA can be integrated in our framework. For this purpose, we need some
last definitions that gives rise to the “table lookup design principle”.

Definition 5: Let a side-channel oracle be an operation of which only the inputs/outputs
are physically observable (i.e. it has no observable intermediate values).

From this definition, one could for example assume that the block cipher operations
(i.e. substitution, diffusion and bitwise XOR) are side-channel oracles. That is: “only
the leakages due to the inputs/outputs of the block cipher operations can be used
by a potential attacker”. Although it may not always be the case in practice (e.g.
gate-level description of S-boxes have intermediate values), this assumption reasonably
corresponds to the limitations of actual adversaries for at least two reasons:

– Most present attacks use one single leakage point per measurement, e.g. a substitu-
tion box output. This is notably because it makes the key guess strategy easy and
the non-linearity of the S-box provides good separation between key candidates.

– Not all the leakage points are as easily observable. Actual attacks target values
stored in a register or loaded on a data bus (because of their large capacitances
and easy synchronization). Targeting intermediate values is significantly harder.

Anyway, the number of leaking points in a device is as a parameter in our framework.
Looking back at the model of Section 3.2, this actually relates to the smallest opera-
tions that are considered to be observable by an opponent. Clearly, the most powerful
adversary is even able to distinguish the outputs of any logic gate. Again, such outputs
usually exhibit much lower correlations with the leakages than, e.g. data loaded on a
bus. Based on these observations, we now define two classes of adversaries that we will
consider in the following: limited adversaries and unlimited adversaries.

Definition 6: Let Ωi be an oracle (as defined in Section 3.2), physically realized
by side-channel oracles Φj

i ’s: Ωi := {Φ1
i , Φ

2
i , Φ

3
i , ..., Φ

q
i }. That is, we re-define Ωi, with

the set of operations that are actually observable through side-channel measurements.
We say that an adversary is {nobs, t}-limited if: (1) he can observe the leakages of at
most t side-channel oracles between any two 2-input functions in the oracle Ωi; (2) the
smaller sets of bits he can observe have size nobs; (3) the leakage on the output of a 2-
input function due to some partial knowledge on its inputs is considered negligible. We
say that an adversary is {nobs, t}-unlimited if he is not limited by the third condition.

Informally, the limited adversary is simply the one that can only take advantage of
Lemma 1, i.e. the one for which the leakages on a 2-input function’s output due to par-
tial knowledge of its inputs is not exploited. As a matter of fact, any actual adversary
is unlimited and we only use the abstraction of limited adversaries for the purposes of
our analysis. The consequences of this abstraction will be detailed in Section 5.4.
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Definition 7: The single-trace leakage of an {nobs, t}-adversary with single point leak-
age l is the leakage obtained from the combination of t leaking points.

In practice, the parameters nobs and t can be viewed respectively as the size gran-
ularity and the time granularity of the adversary. Clearly, a powerful attacker has
small nobs and large t values. We mention that in the context of block ciphers, t
represents the number of leaking points per round. As an illustration of these defini-
tions, implementations using precomputed memory tables are particularly interesting,
if we assume these tables to be side-channel oracles. It directly gives rise to the “table
lookup design principle”. Note that this is not in contradiction with efficiency con-
straints as table lookup based designs are commonly used in cryptographic hardware
and software implementations [30, 33]. We now analyze two basic side-channel attacks
against the block cipher of Figure 2 assuming three side-channel oracles per round
(i.e. the substitution layer, diffusion layer and key addition layer). That is, we con-
sider a {nobs, 3}-limited adversary with the following division in side-channel oracles:
Ω1 := {⊕1, ...,⊕4,SA, ..., SF,D1, ..., D6}. For the purposes of our analysis, we assume
that the working assumptions of the previous section apply to real block cipher com-
ponents, i.e. that these components behave like random functions.

Attacking the key scheduling: Let us consider a single point leakage of l bits.
Using WA.5 and the previously defined adversary, the execution of the key scheduling
yields a secrecy reduction bounded to 6l bits (as there are only two side-channel oracles
per key round and three key rounds are implemented).

Attacking the rounds: Under the same hypotheses as for the key scheduling, we
can attack the round functions. Let us for example target the first round of Figure 2
in a known plaintext attack. The encryption device is feeded with plaintexts P ’s, and
produces first round outputs p1’s. For each pair (P, p1), we have full knowledge of P
and a secrecy reduction on k0 of 3l bits. This is because the 2-input function with a
known input fP (k0) = p1 is analyzed as a 1-input function. Assuming an initial secrecy
H

init

∝ (k0) ≥ n−6l or H
init

∝ (k0) = n (i.e. with or without the key scheduling attack), we
find H∝(k0) ≥ H

init

∝ (k0)−i×3l, where i is the number of plaintexts used in the attack.

Remark 1: It is important to note that the non adaptive nature of the queries (as-
sumed in WA.3) is fundamental in our analysis of multiple trace leakages. Looking at
the previous section’s first lemma, it is assumed that an adversary is provided with
two leakages corresponding to computations y1 = f1(x) and y2 = f2(x). However, in
the more practical case investigated above, the adversary would rather obtain leakages
corresponding to two different plaintexts, i.e. y1 = fP1(k) and y2 = fP2(k). As the
adversary cannot control the functions f1 and f2 in Lemma 1, it should not be able
to do it when attacking the block cipher rounds. That is, in the context of block ci-
phers, our average analysis is only meaningful if the input messages are selected before
the observation of the leakages. As a matter of fact, an adversary capable of adaptive
queries would be more efficient than what is measured by the average secrecy. We note
that we are not aware of side-channel attacks taking advantage of adaptive queries in
the present literature and such a context is a scope for further context
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Remark 2: As a matter of fact, the data complexity of the presented attack is (bounded
to) linear in the number of side-channel measurements. However, it is important to ob-
serve that we only consider information theoretic arguments and that our assumptions
are weak compared to what an actual adversary can achieve. Therefore, deriving prac-
tical attacks from actual leakages may not be as efficient and the time complexity may
be a concern as well (e.g. typically, practical side-channel attacks only target the first
and last encryption rounds). In other words, constructions could be proven insecure in
our model and still achieve a relatively high level of actual security. Positively, proving
the security of a construction in this model would not relate to any specific attack.

4.3 Definition of security against side-channel attacks

As already mentioned, an important feature of Section 4.1’s working assumptions and
Section 4.2’s idealized block cipher attack is the randomness of the investigated func-
tions or side-channel oracles. More precisely, the required property in our average se-
crecy bounds is that, given a number of computations involving a value x, for example
yi = fi(x)’s, the obtained leakages give rise to independent sets of candidates for x. It
consequently requires that the block cipher components (or more generally the side-
channel oracles that are considered in an attack) fulfill this condition. In practice, this is
what was meant in Section 3.3, when requiring that the underlying primitive is “good”
in the traditional sense of security.

It is interesting to observe that in Lemma 1 (i.e. when considering 1-input functions),
the smaller the intersection between the sets of candidates is, the more leakage we have
(since the remaining secrecy corresponds to an intersection of sets generated by these
functions). On the other hand, in Lemma 2 (i.e. when considering 2-input functions),
the smaller these intersections are, the more secrecy we have (since the remaining se-
crecy corresponds to an union of sets generated by the 2-input function). Looking at
present block ciphers, the boolean functions used for e.g. the S-boxes generally provide
less independence than a random function. This is notably known in the literature as
the “ghost peaks” problem. Since the analysis of the DPA is only based on our fifth
working assumption (because the only 2-input function considered in the scheme has a
known input and is consequently analyzed as a 1-input function), it again corresponds
to a worst case prediction. Note that the parameter t depends on this randomness as-
sumption as well. Indeed for taking advantage of multiple leakage points, it is necessary
that these leakages give rise to independent information. In practice, this is another
reason why t is usually limited to small values.

This discussion leads to the following informal definition:

Definition 8: An exclusive side-channel attack (xsca) against a cryptographic im-
plementation is an idealized side-channel attack in which we assume the side-channel
oracles to behave like perfect random functions.

This is actually the side-channel counterpart of the random oracle model. Otherwise
said, exclusive side-channel attacks can be seen as side-channel attacks in the random
side-channel oracle model. Such a context has two important consequences:
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1. It allows us to use the previous working assumptions to evaluate the security of
idealized implementations against side-channel attacks.

2. It does not include black box attacks nor any possible combination between side-
channel and black box attacks.

The second point is fundamental since the objective of our framework is to analyze the
security of a construction with respect to side-channel attacks only. Of course, for care-
fully designed algorithms, the expectation is that exclusive side-channel attacks and
side-channel attacks will be roughly as powerful. As already mentioned, the algebraic
nature of actual block cipher components even involves that the efficiency of exclusive
side-channel attacks is an upper bound on what can be obtained in practice as long as
the target block cipher does not contain any obvious black box weakness.

Comparing exclusive side-channel attacks with real attacks based on actual statisti-
cal tools and applied to concrete block ciphers is another scope for further research.

We next present our definition of security against side-channel attacks.

Definition 9: Let fK be a cryptographic primitive implementation embedding a se-
cret key K with security parameter k, i.e. K ∈ {0, 1}k. Let Aτ,q

fK ,ÃL(F,L) be a PPT
algorithm representing a side-channel distinguisher with time complexity τ , having
access to q non adaptive black box queries to the primitive fK and their respective
side-channel queries to a leakage function ÃL (the black box and side-channel queries
being respectively stored in the sets B and S). We consider two experiments:

Experiment Exp0 Experiment Exp1

K0
R←− {0, 1}k K1,K2

R←− {0, 1}k

B0 ← fK0(., ., .) B1 ← fK1(., ., .) ; black box queries
B2 ← fK2(., ., .) ; black box queries

S0 ← ÃL(B0) S2 ← ÃL(B2) ; side-channel queries
d ← Aτ,q

fK ,ÃL(B0, S0) d ← Aτ,q
fK ,ÃL(B1, S2)

return d return d

The advantage of the side-channel distinguisher Aτ,q
fK ,ÃL is defined as:

AdvAτ,q

fK ,ÃL =| P [Exp0 = 1]− P [Exp1 = 1] |

For any t, q, we define the side-channel advantage of a cryptographic implementation
fK against non adaptive adversaries6 enhanced with a leakage function ÃL as:

Advna−sca
fK ,ÃL (τ, q) = max

A
{AdvAτ,q

fK ,ÃL}

Informally, the first experiment provides the distinguisher with a set of black box
queries and the corresponding set of leakages. The second experiment provides the dis-
tinguisher with a set of black box queries generated with a random key K1 and a set
of leakages generated with another random key K2. The advantage of the adversary is
the probability that it can distinguish between these experiments.

6 Here meaning that the adversaries only perform non adaptive queries.
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As an illustration, the previously described attack against the rounds of the block ci-
pher in Figure 2 results in a side-channel advantage: Advna−sca

fK ,ÃL (τ, q) ≤ c1 · τ
2k + c2 ·

1
2k−qλ + c3 · q

2nobs
. In this expression, the first term corresponds to an exhaustive key

search. In the second term, λ ≤ t · l is a single trace leakage and the denominator 2k−qλ

relates to the linear bound for the secrecy reduction during the attack. Finally, the
third term suggests the possibility of a worst case leakage happening in some query,
e.g. an “all zeroes” Hamming weight that would reveal a secret key in one trace. This
situation is actually the side-channel counterpart of an exhaustive key search. It is an
important point with respect to our definition of average secrecy since it introduces
the possibility of a worst case situation in our analysis, as required in Section 3.4. This
term typically indicates that our average analysis is only meaningful as long as the
side-channel adversary observes large nobs values.

Definition 10: A cryptographic implementation fK with security parameter k is
(k − λ)-leakage proof with time complexity τ and q side-channel queries if its side-
channel advantage Advna−sca

fK ,ÃL (τ, q) is negligible in k − λ.

An important point of this definition is that is takes into account the fact that side-
channels will always involve a reduction of the complexity of a distinguishing attack.
A secure implementation is therefore the one for which this reduction of complexity
only comes from a single trace leakage λ, i.e. when having access to multiple traces
does not improve the efficiency of the attack (or does it with a negligible effect). Re-
mark that this notion of security is only meaningful with respect to the definition of
an adversary’s capabilities (i.e. for fixed nobs and t values).

As already mentioned, we will investigate the security against exclusive side-channel
attacks rather than side-channel attacks. For this purpose, a similar definition can
be obtained by just replacing the side-channel advantage function Advna−sca

fK ,ÃL (τ, q) by
an exclusive side-channel advantage function Advna−xsca

fK ,ÃL (τ, q). Again, the question of
modeling adaptive adversaries is a scope for further research.

We remark that this definition says nothing about the black box security of a cryp-
tographic primitive and therefore corresponds to the notion of durable function given
by Micali and Reyzin in [26]. According to our definition, proving an implementation
to be leakage proof only means that the leakage “does not significantly help” to break
it, although the underlying primitive can still be weak with other respects. The reason
why we used this notion of security relates to the assumptions that we need to analyze
actual primitives like block ciphers. Indeed, what we propose in this paper is:

1. To assume a very strong black box security (i.e. exclusive side-channel attacks).
2. To analyze the leakage proofness in this context.

The exclusive side-channel context is therefore required for the purposes of our theoret-
ical analysis. In practice, however, there obviously exist implementations both insecure
in the black box model and leakage proof, e.g. based on the identity function (i.e. where
the leakages do not provide any more information than the black box outputs).
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Again, it is important to remember that with respect to side-channel attacks only,
this exclusive context is conservative since it involves that every leaking point in an
implementation and trace in an attack deliver independent information. Otherwise
said, we make a strong black box assumption corresponding to a strong side-channel
adversary. To sum up, in order to analyze side-channel attacks against real world
primitives, we had to clearly separate the notion of black box security from the one
of leakage proofness. This is what allows us to obtain more positive results, as the
next section will emphasize. Therefore, the better a block cipher (and its component
functions) compares to its ideal black box counterpart, the more realistic our model is.
Note finally that anyway, in the context of block ciphers, the black box security cannot
be proven with present theory and therefore has to be assumed.

5 Design

In this section, we apply our tools and definitions in order to investigate the security
of two basic primitives against exclusive side-channel adversaries. Specifically, from the
block cipher described in Section 3.3, we will construct a pseudo random number gener-
ator (PRNG) and a publicly initialized pseudo random number generator (PIPRNG),
both leakage proof against (a class of) side-channel attacks. We start by giving some
explanations about our proof strategy. Then, we show that our two primitives can be
proven secure against {nobs, t}-limited exclusive side-channel adversaries. Finally, we
discuss the practically important case of unlimited adversaries.

5.1 Proof strategy

In the previously defined exclusive side-channel context, it is assumed that there is
no possible black box weakness in the side-channel oracles. It involves that the only
possible attack allowing to solve the challenge in Definition 9 is a prediction attack: ac-
cording to one of the leakage functions (i.e. F0 or F1(δ)), the adversary tries to predict
the measured leakage in function of the known input/output pairs that it gets thanks
to its black box queries. Then it compares these predictions with the received leakage
set and decides which prediction is relevant.

The quality of its decision is directly related to the quality of its predictions and
consequently, on the knowledge of the circuit signals. The better an adversary knows
about the values manipulated by a device, the better it can predict the leakage. By
opposition, if the adversary has only a very limited knowledge of the circuit signals, it
cannot predict anything precisely, nor make any decision. As a consequence, if we can
prove that, given the leakage function described in this paper, the average secrecy of
the inner signals in a circuit cannot be decreased more than by a single trace leakage
(plus some negligible leakage), then we have leakage proofness.

Note that, since in practice predicting any intermediate value inside an implementation
requires the knowledge of the key, the leakage proofness against exclusive side-channel
adversaries actually corresponds to security against a key recovery attack, assuming
that there are no other possible attacks.
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5.2 A PRNG provably secure against limited side-channel adversaries

We start with the following observation about the (in)security of 2-input b-wise func-
tions. Let y = f(k, x) be such a function with k the secret parameter, x a controllable
input and y a leaking output. If an attacker can obtain an arbitrary number of leakages,
with different x’s and the same k, it can discover the secret parameter. Therefore, a
secure encryption scheme requires that any such 2-input function in the scheme never
uses twice the same secret value k. We apply this principle, denoted as the “re-keying
design principle”, to build a PRNG provably secure against side-channel attacks.

Description: The PRNG is illustrated in Figure 6. It is basically a block cipher in
CBC mode, without key scheduling, where the bitwise XOR is replaced by a 2-input
b-wise function f . The initial input value x0 is public and fixed for every encrypted
block i ∈ [0, N ] (i.e. cannot be modified, thanks to Hypothesis 2) and there are r dif-
ferent initial secret round keys denoted as k0

j ∈ {0, 1}n, j ∈ [0, r], where n = nb = nk is
the block size, equals to the key size for simplicity purposes. We also define the middle
point as the value M i = xi

br/2c+2. The key update procedure is as follows:

ki+1
j = f(ki

j ,M
i)
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Fig. 6. A PRNG secure against side-channel attacks.

Theorem 1: The PRNG of Figure 6 is (n− (t+1) · l)-leakage proof7 against {nobs, t}-
limited exclusive side-channel adversaries with single point leakage l.

Proof. Initially, the average secrecy of the different parameters is as follows: (1) H∝(x0
0) =

H∝(x0
1) = H∝(x0

r+2) = 0, because the input and output values are known, (2) H∝(k0
0) =

H∝(k0
1) = ... = H∝(k0

r) = n − l, because we assume that loading the keys is a com-
putation, (3) H∝(x0

2) = H∝(x0
3) = ... = H∝(x0

r+1) ≥ n − t · l, because there are t
side-channel oracles per round (i.e. between any two 2-input function).

From these leakages, there is an additional average secrecy reduction on k0
0 and k0

r

of t · l bits because the corresponding 2-input function has one known input. It yields
H∝(k0

0) = H∝(kr
0) ≥ n − (t + 1) · l. For the other round keys, the 2-input function

has two partially known inputs of secrecy n− t · l bits each. Therefore, the additional
average secrecy reduction is negligible and cannot be used by a limited adversary.
7 Since the PRNG’s input values cannot be controlled by an adversary, it is interesting to

note that the PRNG is by nature secure against adaptive adversaries as well.
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After the first encryption cycle, the round keys are updated with ki+1
j = f(ki

j , M
i). In

the worst case, we know t · l bits of M i and (t + 1) · l bits of ki
j (this happens for the

first and last round keys). Again, the additional leakage on ki+1
j cannot be exploited

by the limited adversary. Therefore, the remaining average secrecy of the updated keys
is n−l−η, where the η is the neglected leakage due to the limited adversary assumption.

Starting the encryption of the second block, the situation is the same as initially,
i.e. known inputs and the secrecy of each updated key equals to n− l, excepted for an
additional negligible leakage η. This completes the proof. ut
Remark: It is important to remember again that our proofs only consider average se-
crecy values, which do not prevent from having a worst case happening in some query,
e.g. the previously mentioned “all zeroes” leakage. As the black box security relies
on computational assumptions, our definition of leakage proofness relies on “measure-
mental” assumptions. This means that the PRNG of Figure 6 remains secure as long
as the number of side-channel queries q is small with respect to 2nobs . Therefore, al-
though we use entropy measurements to evaluate the amount of information leaked by
an implementation, our proofs provide no information theoretic security overall.

5.3 How to initialize a PRNG securely with a public seed?

In this section, we study the possibility to initialize our PRNG with a public seed in the
side-channel context, as usually required in higher-level protocols. Looking at Figure
6, the main constraint is then that the public random seed may be under the control of
an adversary. This puts a number of obvious solutions out of the game. For example, it
is clear that XORing a random seed to the initial value x0 is not acceptable. Indeed, it
would allow one (by applying repeated reset signals) to obtain an arbitrary number of
known inputs of the scheme and therefore to reveal k0 (and all the other round keys).

Description: A possible solution, illustrated in Figure 7, is to use two initial values x0

and y0 (again, fixed ∀i ∈ [0, N ]). Then, a n-bit random number r is selected of which
we denote the different bits as r(i). This solution holds in two steps:
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Fig. 7. A PIPRNG secure against side-channel attacks.

1. Initialization: during the initialization, we encrypt n blocks with the initial value
selected as follows: xi

1 = f(x0, x
i−1
r+2) if r(i) = 0, else xi

1 = f(y0, x
i−1
r+2). Nothing is

outputted during initialization.
2. Generation: after the initial n encrypted blocks, the PIPRNG goes on encrypting

new blocks, but the xi
r+2’s are now outputted.
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Theorem 2: The PIPRNG of Figure 7 is (n − (t + 1) · 2 · l)-leakage proof against
{nobs, t}-limited exclusive side-channel adversaries with single point leakage l.

Proof. For every possible round key ki
j , and function xj

j+2 = f(ki
j , x

i
j+1), there are only

two possible values for the xi
j ’s, corresponding to r(j) = 0 or 1. As a consequence, the

previous proof (for the secure PRNG) still holds with a single point leakage of 2 · l in
place of l. We mention that the PIPRNG is correctly randomized at the end of the
initialization period, as there are 2n possible values for xn

r+2 at this time. ut
Implementation issues: Different variants of the previously described primitives can
be considered in order to allow efficient sequential or parallel implementations. The only
constraint for keeping a valid proof is that any 2-input function in the scheme is never
used more than once (for the secure PRNG) or twice (for the PIPRNG) with the same
key. Note that for pipelined PRNGs, it is additionally required that the feedback is
only activated once the pipeline is fulfilled (i.e. once the middle point is significant).

5.4 Unlimited adversaries

The previous section proved the security of two primitives against limited exclusive side-
channel adversaries. It is shown that multiple trace leakages can be kept as small as a
single trace leakage plus an additional negligible leakage. However, as already discussed,
practical adversaries are unlimited. As a consequence, this section finally investigates
the context of unlimited adversaries, for which the leakages of 2-input functions are
not considered to be negligible anymore. For this purpose, we put forward the two
assumptions allowing to expect the practical security of our PRNGs in this context.

Measuremental assumptions and the security of 2-input functions: Looking
back at Figure 5, a first observation is that there are basically two ways to reduce the
additional leakage caused by a two-input function with partially known inputs: either
by increasing the block size n or by reducing the inputs leakage per bit l/n. Therefore,
an interesting question is to know how the security of an implementation against un-
limited side-channel adversaries depends on the single point leakages, for a fixed n value.

For this purpose, we go back to the proof of Theorem 1. More specifically, let us
review again the key update procedure ki+1

j = f(ki
j ,M

i) for the key ki
0 (i.e. the worst

case). At this point the respective leakages on the inputs of the 2-input function are
t · l and (t + 1) · l. Clearly, if these actual input leakages are sufficiently small, then
the additional leakage on the 2-input function’s output will be even smaller. Otherwise
said, rather than being really negligible, it may happen that in practice, this additional
leakage is sufficiently small for being practically un-exploitable.

The question is then obviously to know what are the acceptable input leakages that
can be considered as un-exploitable. For example, using our sixth working assumption
(see Section 4.1), we have that a 2-input function z = f(x, y) with respective leakages
on x, y of lx, ly has an average secrecy reduction on z bounded to lx·ly

n bits. It clearly
suggests that as long as we have lx · ly << n, the additional leakage on the output of
a 2-input function with partially known inputs will be less than one bit on average. In
general, this additional leakage can be further decreased by increasing the size of an
implementation, i.e. applying the bit-chunk design principle.
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One more time, let us emphasize that the fundamental factor to obtain the leakage
proofness in our implementations is that, during the key update procedure ki+1

j =
f(ki

j ,M
i), the leakage only comes from the computation of ki+1

j and not from partial
knowledge on ki

j ,M
i. With respect to the previous discussion, this is obviously not

formally correct. Indeed, the average leakage on an updated key is always increased
by the partial knowledge of its generators. Assuming these leakages to be negligible
is equivalent as to say that higher-order attacks are not applicable in our context.
In fact, our expectation is that under the measuremental assumption that the single
point leakages are small, the information delivered by a 2-input function will be hardly
exploitable, as suggested by the limited adversary abstraction and therefore improve
practical security (typically as countermeasures such as making do). As a matter of
fact, this is only a qualitative argument and its quantitative evaluation is an additional
scope for further research. The next assumption is therefore of bigger importance to
justify the security against unlimited adversaries.

Computational assumptions and the security of the middle point: In addition
to the previous measuremental assumptions, one may finally observe that considering
the additional leakage of a 2-input function with partially known inputs to be negligible
also relates to a reasonable computational assumption. In practice, the strategy of most
side-channel attacks is based on the key guess strategy. That is, the useful leakages are
the ones for which the related data only depends on a limited number of key bits. This
is typically the case when applying a DPA-like attack as in Section 3.2. Because only
the first block cipher round is targeted, the diffusion is not yet complete and e.g. the
S-boxes outputs only depend on 8 key bits. Therefore, their leakage can be predicted.
On the other hand, when using a 2-input function for the key update procedure in
our PRNGs, the inputs are either depending on the whole key because of the diffusion
within the cipher (i.e. for M i) or a priori unknown (i.e. for the ki

j ’s). Therefore, the
possible additional leakage on ki+1

j is not easily exploitable, for computational reasons.
Exploiting these leakages actually corresponds to a DPA-like attack where the adver-
sary directly targets, e.g. the middle round of a block cipher. Otherwise said, by finally
removing our fourth working assumption (see Section 3.5) and reasonably restricting
the adversaries measurement capabilities (i.e. the second input of Micali and Reyzin’s
leakage function) to computable key guess strategies, it is expected that one can ob-
tain leakage proofness in practice. Note finally that this last discussion adds an actual
design requirement for the middle point in our PRNGs. That is, the diffusion within
the cipher has to be complete at this point.

5.5 A short note on template attacks

In template attacks [9], an adversary initially tries to build a model for the leakage
of a device and then uses this model to target similar implementations. The leakage
proof implementations described in this paper are the ones for which the leakage is
not sufficient to significantly reduce the secrecy of its secret parameter. Therefore, in
the context of template attacks, a leakage proof implementation is the one for which
the adversary does not have sufficient information to build a precise template for any
(part) of the secret parameters in a target device.
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6 Concluding remarks

A new framework in accordance with the physical reality of side-channel attacks is
proposed. It is based on average evaluations of certain entropy measurements on the
inner signals in a cryptographic implementation. The model allowed us to:

1. Derive practical analysis tools for side-channel attacks,
2. Evaluate existing attacks such as the Differential Power Analysis,
3. State a formal definition of security against side-channel adversaries,
4. Prove the security of two cryptographic primitives against such adversaries.

Specifically, our analysis considers a model of “measuremental complexity”, which is the
side-channel counterpart of the computational complexity. We first show that, under
certain hypotheses detailed in the paper, previously investigated side-channel attacks,
such as the Differential Power Analysis, have a linearly bounded complexity in the
number of side-channel queries obtained by an adversary. Then we formally define the
notion of leakage proof implementations (i.e. intuitively, implementations for which the
physical leakages are not exploitable by an adversary). Finally, we prove two new con-
structions to be leakage proof against the so-called “limited side-channel adversaries”.
Under a reasonable combination of measuremental and computational assumptions, it is
argued that such proofs provide real-world security against actual side-channel attacks.

More fundamentally, we consider the black box security and the physical security as
two separate worlds and try to protect against attacks taking exclusively advantage of
physical leakages, not of possible black box weaknesses. For carefully designed block
ciphers, it is expected that the hypothesis is reasonable. Positively, if a side-channel
attack targets our provably secure designs, it means either a “black box weakness” in
the underlying primitive, or that the security parameter (roughly depending on the
amount of information leaked by a single measurement) chosen was too low.

Finally, from a practical point of view, this work determines how the size of an im-
plementation relates to the amount of information leaked during a computation. In
this information theoretic framework, large parallel implementations will be preferred
to small devices, e.g. using 8-bit data buses. This also implies that adversaries’s ca-
pabilities should, as far as possible, be limited to the observation of global leakages
(e.g. the power consumption) rather than space-localized emanations (e.g. near field
EM radiations) or time-localized emanations (e.g. using the leakages phases to dis-
criminate the effect of single bits in an implementation). As a matter of fact, in these
latter contexts, it is likely that the proposed designs would not provide enough security
anymore, because too much entropy would be leaked.
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7 Open research problems

A first (and main) direction would be to study the practical consequences of the hy-
potheses and assumptions made in the paper. This includes the following questions:

1. How to relax our various working assumptions? A straightforward problem would be
to further specialize our model to specific instances of cryptographic functions and
derive tighter bounds of security. That is, to compute exact expressions for Lemmas
1 and 2 rather than bounding them with WA.5 and WA.6. Another exemplary issue
is to introduce noise in the model.

2. Can an adversary be more effective than what is measured by our definition of
average secrecy? This involves the investigation of particular attack contexts, e.g.
the use of adaptive chosen plaintexts.

3. How meaningful is the exclusive context?
(a) Comparisons between random side-channel oracles and actual block cipher com-

ponents must be performed. This involves to compare our information theoretic
bounds of security with practical attacks based on actual statistical tools.

(b) Recent publications (e.g. in [27]) suggest the combination of side-channel and
black box attacks that are typically not considered in the exclusive context and
therefore require further analysis.

4. How meaningful is a limited adversary? Side-channel attacks against the proposed
PRNG and PIPRNG for unlimited adversaries have to be evaluated in order to
determine precisely how small must the leakage be to obtain actual security.

A second direction would be to further investigate the construction of leakage proof
implementations and primitives. This includes the following problems:

1. Construction of an actual instance of PRNG, based on present block cipher com-
ponents and using the design principles proposed in this paper, with cryptanalysis
and other verifications of the black box properties (e.g. statistical tests).

2. Construction of other leakage proof cryptographic primitives. A first step would be
to build an encryption function. Longer term research should (if possible) evaluate
the possibility to build leakage proof asymmetric primitives (for which operation
leakages have to be considered).

A third direction would be to expand the model as far as it is possible. This notably
includes the following possibilities:

1. Considering other leakage functions than the simple CMOS-based models proposed.
2. Considering all the physical threats pictured in Figure 1, i.e. operation leakages,

fault attacks, probing attacks and possibly others.

Finally, practical implementations should be considered and evaluated.
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A Average minimum entropy of a 2-input function

We first need the following result. If z = f(x, y) is an n-bit 2-input function and Nx, Ny

respectively denote the number of possible x and y values, then the probability of the
most likely z value is worth P∞(z = f(x, y), Nx, Ny) = min(Nx,Ny)

NxNy
. This expression just

corresponds to the probability of the z candidate with the highest multiplicity, since
fX(y) and fY (x) are both bijections. It yields the following lemma.

Lemma 2bis: Let f be a 2-input n-bit function. Let x and y be two values com-
puted in a leaking device with nobs = n and the leakages on x, y be measured with
the Hamming weight function. Let z = f(x, y) be a non-leaking computation (meaning
that there is no direct leakage on z but only on x, y). The avg. min. entropy of z is:

H∞[z|z = f(x, y),WH(x), WH(y)] = − log2

n∑

hx=0

n∑

hy=0

(
n
hx

)

2n

(
n
hy

)

2n
· 1

max
((

n
hx

)
,

(
n
hy

))

ut
This expression simply derives from the definition of minimum entropy and the previ-
ous expression for the probability of the most likely z value.

In fact, this Lemma is too pessimistic with respect to what an actual side-channel
adversary can achieve, as the following observations underline:

1. Lemma 2bis corresponds to a strategy where the adversary would select the most
likely key only. However, in practice, the strategy of a side-channel attack is to
reduce the secrecy of the cryptographic keys by combining multiple leakages. That
is, in our example where the possible z values are {0, 1, 1, 2, 4, 5, 5, 6}, a side-channel
adversary would not reject the candidates 0,2,4,6 because they are less likely.

2. In a side-channel attack, there are no a priori means (before any leakage has been
obtained) allowing an adversary to force a worst case such that, in our example,
z = 1 or 5. This is because 2-input functions are generally used to combine the
cipher state with (secret) key material. Therefore, it is natural to consider the
average probability to predict z rather than a worst-case scenario as the average
minimum entropy involves. Since we only consider non adaptive adversaries, the
same observation remains true once a number of leakages have been observed.

3. A practical consequence of Lemma 2bis is that the minimum entropy of z is deter-
mined by only one of the function’s inputs. However, it is intuitively clear that in
practice, both the uncertainty on x and y should increase the uncertainty on z.

The definition of average secrecy therefore better corresponds to the actual behavior
of such an adversary. This justifies our hypothesis in Section 3.4.
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