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2 Dept. of Computer Science, Columbia University. 3 Google Inc.

e-mails: fstandae@uclouvain.be, tal,moti@cs.columbia.edu

Version 2.1, February 8, 2008.

Abstract. The fair evaluation and comparison of side-channel attacks
and countermeasures has been a long standing open question, limiting
further developments in the field. Motivated by this challenge, this work
proposes a framework for the analysis of cryptographic implementations
that includes a theoretical model and an application methodology. The
model is based on weak and commonly accepted hypotheses about side-
channels that computations give rise to. It allows quantifying the effect
of practically relevant leakage functions with a combination of security
and information theoretic metrics, respectively measuring the quality of
an implementation and the strength of an adversary. From a theoretical
point of view, we demonstrate formal connections between these metrics
and discuss their intuitive meaning. From a practical point of view, the
model implies a unified methodology for the analysis of side-channel
key recovery. The proposed solution allows getting rid of most of the
subjective parameters that were limiting previous specialized and often
ad hoc approaches in the evaluation of physically observable devices. It
typically determines the extent to which basic (but practically essential)
questions such as “How to compare two implementations?” or “How to
compare two side-channel adversaries?” can be fairly answered.

1 Introduction

Traditionally, cryptographic algorithms provide security against an adversary
who has only black box access to cryptographic devices. That is, the only thing
the adversary can do is to query the cryptographic algorithm on inputs of its
choice and analyze the responses, which are always computed according to the
correct original secret information. However, such a model does not always cor-
respond to the realities of physical implementations. During the last decade,
significant attention has been paid to the physical security evaluation of cryp-
tographic devices. In particular, it has been demonstrated that actual attackers
may be much more powerful than what can be captured by the black box model.
In this paper, we investigate the security of cryptographic implementations with
respect to side-channel attacks, in which adversaries are enhanced with the pos-
sibility to exploit physical leakages such as power consumption [18] or electro-
magnetic radiation [2]. A large body of experimental work has been created on
the subject and although numerous countermeasures are proposed in the liter-



ature, protecting implementations against such attacks is usually difficult and
expensive. Moreover, most proposals we are aware of only increase the difficulty
of performing the attacks, but do not fundamentally prevent them.

As a consequence of this state-of-the art, our following work was first mo-
tivated by theoretical concerns. Perhaps surprisingly (and to the best of our
knowledge), there have been only a few attempts to model physical attacks
properly, and to provably address their security. A notable example is the work
of Micali and Reyzin who initiated an analysis of side-channels taking the mod-
ularity of physically observable computations into account. It notably defines
the notion of physical computer that is the combination of an abstract computer
(i.e. a Turing machine) and a leakage function. The model in [25] is very general,
capturing almost any conceivable form of physical leakage. However, arguably
because of the great generality of the assumptions, the obtained positive results
(i.e. leading to useful constructions) are quite restricted in nature, and it is not
clear how they apply to practice. This is especially true for primitives such as
modern block ciphers for which even the black box security cannot be proven.
Thus, the study of more specialized contexts and specific scenarios which may
lead to practical applications was suggested as a scope for further research.

But most importantly, our work was motivated by practical issues in the
analysis of side-channel attacks. In particular, the difficulty of comparing differ-
ent implementations or adversaries (e.g. mentioned in [22], page 163) was the
main starting point of our investigations. As a matter of fact, the evaluation cri-
teria in physically observable cryptography should be unified in the sense that
they should be adequate and have the same meaning for analyzing any type
of implementation or adversary. This is clearly opposed to the combination of
ad hoc solutions relying on specific ideas designers have in mind. As a typical
illustration, let us consider the comparison of two implementations X and Y of
the same algorithm. Let us also assume that one protects X by randomizing its
computations (e.g. with [15]) and protects Y by making its leakage as constant
as possible (e.g. with [33]). Good evaluation metrics should allow the comparison
of both countermeasures. But former techniques for their analysis do not provide
such metrics, thus limiting in the same time the understanding of side-channel
attacks and the ability to trade performance for security on a fair basis.

As far as comparing different implementations is concerned, present solutions
for the analysis of side-channel attacks typically allow the statement of claims
such as: “An implementation X is “better” than an implementation Y against
an adversary A”. The results in this paper aim to discuss the extend to which
more meaningful (adversary independent) statements can be claimed such as:
“An implementation X is “better” than an implementation Y ”. We show that
such claims can actually be stated in practically meaningful contexts. As far as
evaluating different adversaries is concerned, present solutions for the analysis
of side-channel attacks typically allow the statement of claims such as: “An
adversary A successfully recovers one key byte of an implementation X after
the observation of q measurement queries.”. But such a hard definition for a
success may not be adapted to model any type of adversarial strategy. And in

2



practice, it may also be interesting to evaluate how the security evolves with
respect to the number of observations q. The metrics introduced in this paper
consequently allows the claim of more flexible statements such as: “An adversary
A has probability p to have the target key byte of an implementation X rated 1st

(resp. 2nd, 3rd, . . . ) among the possible key candidates after the observation of
q measurement queries”. We note that if obtained through statistical sampling,
these claims have to come with a certain confidence interval (that is frequently
neglected in the present literature on physically observable cryptography).

Following these examples, our results aim to get rid of previous limitations
in the evaluation of side-channel attacks. For this purpose, we restrict the most
general model of Micali and Reyzin to reasonable (i.e. practically relevant) adver-
saries. Namely, and as a first step in the investigation of physically observable
devices, we focus on the side-channel key recovery problem that is the most
frequently considered in practice. Then, we argue that the evaluation of side-
channels actually requires two metrics. First, an information theoretic metric
(also denoted as asymptotic security metric) is used to measure the amount
of information that is provided by a given implementation. Second, an actual
security metric is used to measure how this information can be turned into a
successful attack. We show that these metrics allow comparing different imple-
mentations or adversaries. We also demonstrate some important formal connec-
tions between them and discuss their intuitive meaning. Eventually, we move
from formal definitions towards practice-oriented definitions in order to intro-
duce a unified evaluation methodology for side-channel attacks. We also provide
exemplary applications of the model in a number of practical contexts.

Related works mainly include a large literature on side-channel issues, rang-
ing from attacks to countermeasures and including statistical analysis concerns.
The side-channel lounge [11], DPA book [22] and the CHES series of workshops
[8] respectively provide a good list of reference, a state-of-the art view of the field
and some recent developments. Most of these previous works can be included in
the following framework. It generally provides an improvement of their under-
standing. The goal of this report is therefore to facilitate the interface between
theoretical and practical aspects in physically observable cryptography.

Finally, the following modelling exploits several ideas from the classical com-
munication theory [10, 28, 29]. But while source and channel coding attempt to
put the information in an efficient format for its transmission, cryptographic
engineers have the opposite goal to make their circuit’s internal configurations
as unintelligible as possible to the outside world. This analogy provides a back-
ground and rationale for our metrics. We mention that different measures of
uncertainty have also been used in [19] to quantify the effectiveness of adaptive
strategies in side-channel attacks. These results nicely illustrate that various so-
lutions can be considered in the evaluation of side-channel attacks. Our line of
research follows a slightly different approach in the sense that we assign specific
tasks to different metrics. Namely, we suggest to evaluate asymptotic security
(hence, implementations) with the conditional entropy and to evaluate actual
security (hence adversaries) with either a success rate or the guessing entropy.
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Otherwise said, we bring motivation and analysis for these three metrics. In
our model, the use of an average metric (over a uniform key space) to com-
pare implementations is justified by the need of adversary independence. By
contrast, specific (e.g. worst case) strategies can be quantified with the security
metrics. This does not prevent other solutions to be meaningful, depending on
the applications. However, we believe the following approach provides sound and
necessary tools for a better understanding of physically observable cryptography.

The rest of the paper is structured as follows. Section 2 contains the back-
ground necessary for the understanding of our results. Section 3 provides an
intuitive description of our model and terminology. Section 4 introduces the
main assumption for the analysis of side-channel attacks with the conditional
entropy. Section 5 defines our evaluation metrics formally and Section 6 demon-
strates some important connections between these metrics, with their intuitive
consequences. Sections 7 and 8 respectively contain the practice-oriented defini-
tion of a side-channel adversary and an evaluation methodology for physically
observable cryptographic devices. Finally, some exemplary applications of the
model are referred to in Section 9 and conclusions are in Section 10.

2 Background

In order to enable the analysis of physically observable cryptography, Micali
and Reyzin introduced a model of computation of which we recall certain def-
initions of interest with respect to our following results. It is based on the five
informal axioms given in Appendix A. From these axioms, an abstract computer
was defined in [25] as a collection of special Turing machines, which invoke each
other as subroutines and share a special common memory. Each member of the
collection is denoted as an abstract virtual-memory Turing machine (abstract
VTM or simply VTM for short). One writes α = (α1, α2, ..., αn) to mean that
an abstract computer α consists of abstract VTMs α1, α2, ..., αn. All VTM in-
puts and outputs are binary strings always residing in some virtual memory.
Abstract computers and VTMs are not physical devices: they only represent
logical computation and may have many different physical realizations.

Then, to model the physical leakage of any particular instantiation of an
abstract computer, the notion of physical VTM was introduced. A physical VTM
is a pair (Li, αi), where αi is an abstract VTM and Li is a leakage function. If α =
(α1, α2, ..., αn) is an abstract computer, then ϕi = (Li, αi) represents one physical
realization of αi and ϕ = (ϕ1, ϕ2, ..., ϕn) is defined as a physical realization of the
abstract computer α, also called physical computer for short. It can be denoted
as the combination ϕ = (α, L) with L = (L1, L2, . . . , Ln). In these definitions, the
relation between an abstract computing machine and a physical realization is
only determined by the leakage function that is qualitatively defined as a function
of three inputs, L(Cα, M, R). The first input is the current internal configuration
Cα of an abstract computer α, which incorporates anything that is in principle
measurable. The second input M is the setting of the measuring apparatus (i.e.
a specification of what and how the adversary chooses to measure). The third
input R is a random string to model the randomness of the measurement process.
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3 Intuitive description of the model and terminology

As a matter of fact, the previous definition of leakage function models the phys-
ical observations of a target device. But it does not specify how an adversary
could exploit this side-channel information. This section consequently intends to
intuitively describe the side-channel key recovery attacks that will be formally
investigated in the rest of the paper, with the metrics used to quantify them.

A generic side-channel key recovery is pictured in Figure 1 that we detail as
follows. First, the term primitive is used to denote cryptographic routines cor-
responding to the practical instantiation of some idealized functions required to
solve cryptographic problems. For example, the AES Rijndael is a cryptographic
primitive. With respect to the model of Micali and Reyzin, cryptographic prim-
itives are abstract computers. They can be viewed as black boxes, parametrized
by some secret argument. Second, the term device is used to denote the phys-
ical realization of a cryptographic primitive. For example, a smart card or and
FPGA running the AES Rijndael can be the target devices of a side-channel
attack. With respect to the model of Micali and Reyzin, a device corresponds to
the division of an abstract computer or primitive into different abstract VTMs.
A side-channel is an unintended communication channel that leaks some infor-
mation from a device through a physical media. For example, the power con-
sumption or the electromagnetic radiation of a target device can be used as
side-channels. The output of a side-channel is a physical observable. Then, the
leakage function is an abstraction used to model all the physical specificities
of a side-channel adversary, up to the measurement setup used to monitor the
physical observables (the leakage function output equals this setup output). An
implementation (or physical computer) is the combination of an abstract com-
puter (or primitive) and a leakage function. Finally, a side-channel adversary
is composed of a physical part (the measurement setup included in the leakage
function abstraction) and an algorithmic part (sometimes denoted as a distin-
guisher) that turns these physical leakages into a guess for the target signal.

Figure 1 suggests that, similarly to the classical communication theory, two
metrics are needed to quantify the effectiveness of a side-channel attack. First,
an information theoretic metric (also denoted as asymptotic security metric)
evaluates the amount of information in the side-channel leakages. It aims to
measure what is achievable by an unbounded adversary. Since it purposely relates
the the strongest possible adversarial context, it can be used to answer our
first question, namely: “how to compare different implementations?”. Second, an
actual security metric evaluates to which extent an adversarial strategy can turn
the side-channel information into a successful attack. It is the typical counterpart
of the Bit-Error-Rate in communication problems and can therefore be used to
answer our second question: “how to compare different adversaries?”.

Compared to the original work of Micali and Reyzin, we add a description of
the side-channel adversary to the model (Section 7), define metrics to quantify
the attacks (Sections 5, 6) and derive an evaluation methodology (Section 8).
For these purposes, we will require one main assumption that we now detail.
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4 Model assumption

One important goal of the information theoretic metric is to allow a sound eval-
uation of a given implementation, if possible independently of an adversary’s
algorithmic details. Therefore, the strategy we propose in this paper can be sum-
marized as: “consider the strongest possible adversary and give him unbounded
means in terms of measurement queries”. As a matter of fact, this raises the
question of which is the most powerful side-channel distinguisher.

Let S and L be two random variables respectively denoting the target signal
in a side-channel attack and the corresponding leakage (to be defined formally
in Section 5). Let s and l denote the realizations of these random variables.
Assuming that an adversary has access to different leakages and knows the con-
ditional probabilities Pr[L = l|S = s∗], or Pr[l|s∗] for short, the best strategy
would be to use a Bayesian distinguisher and to select the key candidate as
argmaxs∗ Pr[s∗|l]. Unfortunately, there are two caveats in application of this
optimal strategy which implies the need of an assumption in our model.

First, the conditional probability distribution Pr[L|S] cannot be known by
the adversary. They can only be approximated through physical observations.
This is the reason for the leakage function abstraction in the model of Micali
and Reyzin. It informally states that the only way an adversary knows a leakage
function is through actual measurements. As a consequence, actual attacks have
to exploit approximated distribution P̂r[L|S] rather than actual one Pr[L|S].

Second, actual leakages may have very large dimensions since they are typi-
cally the output of a high sampling rate acquisition device like an oscilloscope.
As a consequence, the approximation of the probability distributions for all the
leakage samples is computationally intensive. Practical attacks usually approxi-
mate the probability distribution of a reduced set of samples, denoted as P̂r[L̃|S].

Side-channel attacks that apply a Bayesian classifier and exploit the approx-
imated probability distributions of a reduced set of leakage samples are known
as template attacks [7]. It directly leads to our main assumption:

Assumption: template attacks are the strongest possible side-channel attacks.

We note that this is a very common hypothesis in the side-channel literature.
However, the generic term of template hides a certain amount of complexity. For
example, the question of how to select the relevant leakage samples to approx-
imate is an important one from a practical point of view [3]. In general, the
better practical template attacks perform against an implementation, the more
relevant the evaluation of the information theoretic metric will be. We also men-
tion that the security metrics in Section 5.1 do not depend on this assumption.
Only their relation with the information theoretic metric does. We note finally
that stochastic models can be used as an alternative to template attacks for the
leakage probability distribution approximation [14, 27].
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Before moving to the formal definitions of our different metrics, we introduce
a last notion related to Figure 1. More specifically, we consider the “theory”
and “practice” arrows leading to the information theoretic metric. These ar-
rows underline the fact that one can always assume a theoretical model for the
side-channel and perform a simulated attack. If the model is meaningful, so the
simulated attack will be. But such simulations always have to be followed by an
experimental attack in order to confirm the relevance of the model. Experimental
attacks exploit actual leakages obtained from a measurement setup.

5 Formal definitions

In this section, we formally define the metrics that we suggest for the evaluation
of a side-channel key recovery adversary. We first consider the actual security
and detail two possible metrics, corresponding to different (more or less flexible)
computational strategies. Then, following the standard approach in information
theory, we propose the use of Shannon’s definition of entropy to quantify the
amount of information leaked by a cryptographic device.

5.1 Actual security metrics

Success rate of the adversary. As most cryptanalytic techniques, side-channel
attacks are usually based on a divide-and-conquer strategy in which different
(computationally tractable) parts of a secret key are recovered separately. In
general, the attack defines a function δ : K → S which maps each key k onto an
equivalent key class s = δ(k), such that |S| ≪ |K|.

Let EK = {Ek(.)}k∈K be a family of cryptographic abstract computers in-
dexed by a variable key K. Let (EK , L) be the physical computers corresponding
to the association of EK with a leakage function L. We define a side-channel
key recovery adversary as an algorithm AEK ,L with time complexity τ , mem-
ory complexity m and q queries to the target physical computer. The aim of
a side-channel adversary is to guess a key class s = δ(k) with non negligible
probability. For this purpose, we assume that the output of the adversary AEK ,L

is a guess vector g = [g1, g2, . . . , g|S|] with the different key candidates sorted ac-
cording to their likelihood: the most likely candidate being g1. Finally, we define
a side-channel key recovery of order o with the experiment:

Experiment Expsc-kr-o
AEK ,L

k
R
←− K;

s = δ(k);
g← AEk,L;
if s ∈ [g1, . . . , go] then return 1;

else return 0;

The oth order success rate of the side-channel key recovery adversary AEK ,L

against a key class variable S is straightforwardly defined as:

Succsc-kr-o,S
AEK,L

(τ, m, q) = Pr [Expsc-kr-o
AEK ,L

= 1] (1)

8



Intuitively, a success rate of order 1 (resp. 2, . . . ) relates to the probability
that the correct key is sorted first (resp. among the two first ones, . . . ) by the
adversary. When not specified, a first order success rate is assumed.

Computational restrictions. Similarly to black box security, computational
restrictions have to be imposed to side-channel adversaries in order to capture
the reality of physically observable cryptographic devices. This is the reason
for the parameters τ, m, q. Namely, the attack time complexity τ and memory
complexity m (mainly dependent on the number of key classes |S|) are limited by
present computer technologies. The number of measurement queries q is limited
by the adversary’s ability to monitor the device.

However, additionally to the computational cost of the side-channel attack
itself, another important parameter is the remaining workload after the attack.
For example, considering a success rate of order o implies that the adversary
still has a maximum of o key candidates to test after the attack. If this has to
be repeated for different parts of the key, it may become a non negligible task.
As a matter of fact, the previously defined success rate measures an adversary
with a fixed maximum workload after the side-channel attack.

A more flexible metric that is also convenient in our context is the guessing
entropy [6]. It measures the average number of key candidates to test after the
side-channel attack. The guessing entropy was originally defined in [23] and has
been proposed to quantify the effectiveness of adaptive side-channel attacks in
[19]. It can also be related to the notion of gain that has been used in the
context of multiple linear cryptanalysis to measure how much the complexity of
an exhaustive key search has been reduced thanks to an attack [4].

Guessing entropy. Using the same notations as for the success rate, we can
define a side-channel key guessing experiment:

Experiment Expsc-kg
AEK ,L

k
R
←− K;

s = δ(k);
g← AEk,L;
return i such that gi = s;

The guessing entropy of the side-channel key recovery adversary AEK ,L against
a key class variable S is then defined as:

GE sc-kr-S
AEK,L

(τ, m, q) = E
(
Expsc-kg

AEK,L

)
, (2)

Interestingly, while a low success rate of order o does not prevent having large
success rates of orders o + 1, o + 2, . . ., the guessing entropy directly indicates
the average remaining workload of the side-channel adversary.

We now define the information theoretic (or asymptotic security) metric.
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5.2 Information theoretic (or asymptotic security) metric

Let S be the previously used target key class discrete variable of a side-channel
attack and s be a realization of this variable. Let Xq = [X1, X2, . . . , Xq] be a vec-
tor of variables containing a sequence of inputs to the target physical computer
and xq = [x1, x2, . . . , xq] be a realization of this vector. Let Lq be a random
vector denoting the side-channel observations generated with q queries to the
target physical computer and lq = [l1, l2, . . . , lq] be a realization of this random
vector, i.e. one actual output of the leakage function L corresponding to the
input vector xq. Let finally Pr[s|lq] be the conditional probability of a key class
s given a leakage lq. We define the conditional entropy matrix as:

Hq
s,s∗ = −

∑

lq

Pr[lq|s] · log2 Pr[s∗|lq], (3)

from which we derive Shannon’s conditional entropy1:

H[S|Lq] = −
∑

s

Pr[s]
∑

lq

Pr[lq|s] · log2 Pr[s|lq] = E
s

Hq
s,s (4)

We note that this definition is equivalent to the classical one since:

H[S|Lq] = −
∑

lq

Pr[lq]
∑

s

Pr[s|lq] · log2 Pr[s|lq]

= −
∑

s

Pr[s]
∑

lq

Pr[lq|s] · log2 Pr[s|lq]

Then, we define an entropy reduction matrix: H̃
q

s,s∗ = H[S]−Hq
s,s∗ , where H[S]

is the entropy of the key class variable S before any side-channel attack has been
performed: H[S] = Es − log2 Pr[s]. It directly yields the mutual information:

I(S;Lq) = H[S]−H[S|Lq] = E
s

H̃
q

s,s (5)

Let us finally mention that in the context of simulated attacks where an analyt-
ical model for the leakage probability distribution is known, the previous sums
can be turned into integrals, e.g. we have for the conditional entropy:

H[S|Lq] = −
∑

s

Pr[s]

∫ +∞

−∞
Pr[lq|s] · log2 Pr[s|lq] dlq

In the next section, we investigate the formal connections between the different
metrics that we introduced for the analysis of side-channel attacks.

1 With Pr[s|lq] =
Pr[lq|s]·Pr[s]∑

s∗ Pr[lq|s∗]·Pr[s∗]
.
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6 Relations between the evaluation metrics

6.1 Asymptotic meaning of the conditional entropy

In this first subsection, we show how the information theoretic metric is related
to the strongest possible adversarial context for a side-channel attack. For sim-
plicity, we make no distinction between the real probability distribution Pr[Lq|S]

and the approximated one P̂r[L̃q|S], i.e. we use our assumption of Section 4. The
consequences of this assumption are discussed in Section 6.3.

We start with three definitions.

Definition 1. The asymptotic success rate of a side-channel adversary AEK ,L

against a key class variable S is its success rate when the number of measure-
ment queries q tends to the infinity. It is denoted as: Succsc-kr-o,S

AEK ,L
(q →∞).

Definition 2. Given a leakage probability distribution Pr[Lq|S] and a num-
ber of side-channel queries stored in a leakage vector lq, a Bayesian side-channel
adversary is an adversary that selects the key as argmaxs∗ Pr[s∗|lq].

Definition 3. We say that a leakage probability distribution Pr[Lq|S] is sound
if the first-order asymptotic success rate of a Bayesian side-channel adversary
exploiting this leakage distribution against the key class variable S equals one.

We now demonstrate the relation between the information theoretic metric and
the asymptotic success rate of a Bayesian adversary.

Theorem 1. Under the condition of independent leakages for a fixed key (i.e.
Pr[l1, l2|s] = Pr[l1|s] · Pr[l2|s]), a leakage probability distribution is sound if and

only if argmins∗ H
1

s,s∗ = s (or argmaxs∗ H̃
1

s,s∗ = s), ∀s ∈ S.

Proof. let us consider a target key class s and a leakage vector lq. A Bayesian
adversary having access to these leakages is successful if and only if:

s = argmax
s∗

Pr[s∗|lq]

s = argmax
s∗

Pr[lq|s
∗] · Pr[s∗]

Pr[lq]

Assuming that the probabilities Pr[s∗] are equal and since Pr[lq] is independent
of s∗ (it only depends on the correct class s), it directly yields:

s = argmax
s∗

Pr[lq|s
∗]

Since we have independent leakages for different queries by hypothesis, we find:

s = argmax
s∗

q∏

i=1

Pr[li|s
∗]
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When considering an asymptotic attack, each query to the target physical com-
puter determines a leakage trace li picked up from a leakage distribution Pr[Li|S].
Therefore, an asymptotic attack is successful if and only if:

s = argmax
s∗

∏

li

Pr[li|s
∗]Pr[li|s]

s = argmax
s∗

∏

li

Pr[s∗|li]
Pr[li|s]

s = argmax
s∗

∑

li

Pr[li|s] · log2 Pr[s∗|li] (6)

Finally, we just observe that the sum in Equation (6) is equivalent to Equation
(3) when q = 1 but for their sign. Therefore, if the previous condition holds for all
classes s, the Bayesian side-channel attack is asymptotically successful. ⊓⊔

There are three important remarks:

1. q queries to a target device can be seen both as q realizations of a single query
leakage vector L1 or as a single realization of a q-query leakage vector Lq.

2. The condition on the entropy matrix H1
s,s∗ is stated for q = 1 since a leakage

trace li in Equation (6) corresponds to a single query vector l1. The condition
for q = 1 straightforwardly involves the condition for any q > 1.

3. Most importantly: since the condition of independent leakages is conditional
to the key classes s, it only requires that the noise in the observations is
independent of these classes. With respect to the definition of a leakage
function, it means that we assume L(Cα, M, R) = L’(Cα, M) + L”(R), i.e.
the leakage function is the sum of a deterministic part and a random part.
We note that this condition is expected to hold to a sufficient degree for our
proof to remain meaningful in most applications.

We mention that a sound leakage probability distribution could be equivalently
defined as giving rise to an asymptotic guessing entropy of one. It would yield a
similar theorem. Also, Theorem 1 only considers a first order asymptotic success
rate. A more general corollary is as follows:

Corollary. For a given key class variable S, probability distribution Pr[Lq|S]
and under the same condition of independent leakages as in Theorem 1, the
asymptotic success rate of order o and the asymptotic guessing entropy equal
one against this key class variable if and only if H

1

s,s is the oth smallest value of

the entropy matrix line H
1

s,s∗ , for all the key classes s.

We omit the proof of the corollary for conciseness and because it follows exactly
the same line of reasoning as Theorem 1. In the next subsection, we investi-
gate the non-asymptotic meaning of the information theoretic metric. It allows
discussing the extend to which it can be used to answer the question: “how to
compare two implementations?” that is one motivation of the metric.
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6.2 Non-asymptotic meaning of the conditional entropy

Let us write an exemplary conditional entropy matrix as follows:

Hq
s,s∗ =




h0,1 h0,2 ... h0,|S|
h1,1 h1,2 ... h1,|S|
... ... ... ...

h|S|,1 h|S|,2 ... h|S|,|S|




Theorem 1 states that if the diagonal values of this matrix are minimum for all
key classes s ∈ S, then these key classes can be asymptotically recovered by a
Bayesian adversary. As a matter of fact, it gives rise to a binary conclusion about
the leakage probability distributions. Namely, Theorem 1 answers the question:
“Do the leakages provide enough information to carry out an attack?”.

Let us now assume the answer is positive (i.e. there is enough information
in the leakages) and denote each element hs,s as the residual entropy of a key
class s. In this subsection, we are rather interested in the values of these entropy
matrix elements. In particular, we aim to highlight the relation between these
values and the effectiveness of a side-channel attack, measured with the success
rate. Otherwise said, we are interested in the question: “Does less entropy sys-
tematically implies a faster convergence towards a 100% success rate?”. Since
general conclusions for arbitrary leakage distributions are not possible to obtain,
our following strategy if to first consider simple Gaussian distributions and to
extrapolate the resulting conclusions towards more complex cases.

We start with three definitions.

Definition 4. An |S|-target side-channel attack is an attack where an adversary
tries to identify one key class s out of |S| possible candidates.

Definition 5. An univariate (resp. multivariate) leakage distribution is a proba-
bility distribution predicting the behavior of one (resp. several) leakage samples.

Definition 6. A Gaussian leakage distribution is the probability distribution of
a leakage function L(Cα, M, R) such that L(Cα, M, R) = L’(Cα, M)+ L”(R) and
the random part of the leakages L”(R) is a normally distributed random noise2

with mean zero and standard deviation σ.

Finally, since we plan to consider the entropy matrix Hq
s,s∗ line by line and

therefore, the residual entropy of the different key classes s, we also need a more
specific definition of the success rate against a given key class s:

Experiment Expsc-kr-o,s
AEK ,L

g← AEk,L;
if s ∈ [g1, . . . , go] then return 1;

else return 0;

2 Experimentally observed in a number of works, e.g. [22], Section 4.2.

13



0
0

0.5

1

1.5

2

leakage values

le
ak

ag
e 

pd
f

0
1

2
3

0
1

2
3

0

0.5

1

1.5

2

2nd leakage sample1st leakage sample

le
ak

ag
e 

pd
f

0 1
0

0.5

1

1.5

2

leakage value

le
ak

ag
e 

pd
f

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

1st leakage sample

2n
d 

le
ak

ag
e 

sa
m

pl
e

δ

δi

Fig. 2: Illustrative leakage probability distributions Pr[Lq|S].

The oth order success rate of the side-channel key recovery adversary AEk,L

against a key class s (i.e. a realization of the variable S) is then defined as:

Succsc-kr-o,s
AEk,L

(τ, m, q) = Pr [Expsc-kr-o,s
AEK,L

= 1] (7)

Examples. Figure 2 illustrates several Gaussian leakage distributions. The up-
per left picture represents the univariate leakage distributions of a 2-target side-
channel attack, each Gaussian curve corresponding to one key class s. The upper
right picture represents the bivariate leakage distributions of a 2-target side-
channel attack. The lower left picture represents the univariate leakage distribu-
tions of an 8-target side-channel attack. The same picture could also represent
the leakage distributions of a 2-target side-channel attack protected by a mask-
ing scheme. In this latter context, each key class can give rise to four (equally
likely) Gaussian events. Finally, the lower right picture represents the bivariate
leakage distributions of an 8-target side-channel attack.

Lemma 1. In a 2-target side-channel attack exploiting a sound univariate Gaus-
sian leakage distribution, the residual entropy of a key class s is a monotonously
decreasing function of the single query (hence multi-queries) success rate against s.

Proof. Let us consider the Gaussian univariate leakage distributions of the 2-
target side-channel attack in the upper left part of Figure 2. Without loss of
generality, we assume the correct key class to have mean zero and the wrong
key class to have mean δ. Let us also assume a noise standard deviation σ. Let
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us finally denote the probability density function of a Gaussian random variable

X as Nx(µ, σ) = 1
σ
√

2π
· exp

(−(x−µ)2

2σ2

)
. According to the definitions of Section 5,

the single query success rate and the residual entropy of the key class s equal:

Succsc-kr-o,s
AEk,L

(δ, σ) =

∫ δ/2

−∞
Nx(0, σ) dx

hs,s(δ, σ) = −

∫ +∞

−∞
Nx(0, σ) · log2

Nx(0, σ)

Nx(0, σ) + Nx(δ, σ)
dx

By applying a change of variable u = x/σ, we can rewrite:

Succsc-kr-o,s
AEk,L

(δ, σ) =

∫ δ
2σ

−∞
Nu(0, 1) du

hs,s(δ, σ) = −

∫ +∞

−∞
Nu(0, 1) · log2

Nu(0, 1)

Nu(0, 1) + Nu(δ/σ, 1)
du

Defining a variable z = δ/σ, we finally have:

Succsc-kr-o,s
AEk,L

(z) =

∫ z/2

−∞
Nu(0, 1) du

hs,s(z) = −

∫ +∞

−∞
Nu(0, 1) · log2

Nu(0, 1)

Nu(0, 1) + Nu(z, 1)
du

Then, we just observe that Succsc-kr-o,s
AEk,L

and hs,s are respectively monotonously

increasing and decreasing functions of z, which completes the proof. ⊓⊔

We now extrapolate this lemma towards the multivariate case. For conciseness
purposes, we only provide a sketch for the following proof.

Lemma 2. In a 2-target side-channel attack exploiting a sound multivariate
Gaussian leakage distribution, with independent leakage samples having the same
noise standard deviation, the residual entropy of a key class s is a monotonously
decreasing function of the single query (hence multi-queries) success rate against s.

Proof sketch. We just move to a multivariate case such as the bivariate example
of the upper right picture in Figure 2. Since the covariance matrix is diagonal,
the success rate and the residual entropy only depend on the ratio between:

1. The Euclidean distance δ between the multivariate Gaussian mean values.
2. The leakage noise standard deviation σ.

By defining a variable z = δ/σ, the same reasoning as in Lemma 1 applies. ⊓⊔

We now discuss the context of |S|-target side-channel attacks.
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Fig. 3: Perfect leakage distribution and leakage distributions having constant condi-
tional entropy with their associated success rates and guessing entropy .

The previous lemmas essentially state that (under certain conditions) the
entropy and success rate in a 2-target side-channel attack only depend on the
normalized distance δ/σ. It implies the straightforward intuition that more en-
tropy means less success rate. Unfortunately, when moving to the |S|-target case
with |S| > 2, such a perfect dependency does not exist anymore. It is easily ob-
served in the lower right part of Figure 2 where the entropy and success rate
not only depend on the normalized distances δi/σ but also on how the keys are
distributed within the leakage space. Therefore, we now define a more specific
context in which formal statements can be proven. Thereafter, we discuss the
limitations of the entropy vs. success rate dependencies in a general setting.

Definition 7. A perfect Gaussian leakage distribution Pr[Lq|s] for a key class s
is a Gaussian leakage distribution with independent leakage samples having the
same noise standard deviation such that the Euclidean distance between each
key class candidate mean value and the correct key class candidate mean value
is equal and the residual entropy of the key class s is maximum.

An example of perfect leakage distribution is in the upper left part of Figure 3.

Definition 8. We say that we have side-channel key equivalence for a key class
s if the average probabilities Elq|s Pr[s∗|lq] and Elq|s Pr[s∗∗|lq] are identical for
all wrong key candidates s∗, s∗∗ such that s∗ 6= s∗∗, s∗ 6= s, s∗∗ 6= s.

We note that key equivalence is a usual assumption in cryptanalysis. In the
context of side-channel attacks, it is usually better verified when the number of
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queries q increases. It is straightforward to see that perfect leakage distributions
imply side-channel key equivalence. By contrast, side-channel key equivalence
does not imply perfect leakage distributions, as discussed in Appendix B. These
definitions directly lead to our second theorem.

Theorem 2. For any side-channel attack exploiting a perfect Gaussian leakage
distribution, the residual entropy of a key class s is a monotonously decreasing
function of the single query (hence multi-queries) success rate against s.

Proof sketch. In perfect leakage distributions, the Euclidean distance between
each key class candidate mean value and the correct key class candidate mean
value is equal. Additionally, the distribution of the different key classes is fixed in
the leakage space in order to maximize the residual entropy of s. Therefore, the
residual entropy and the success rate against s only depend on the ratio between
this Euclidean distance and the noise standard deviation which implies that The-
orem 2 is a straightforward consequence of Lemma 2. ⊓⊔

Theorem 2 constitutes our main positive result for the use of the conditional
entropy as a comparison metric for different implementations. Interestingly, in
the context of perfect leakage distributions, increasing the entropy involves a
reduction of the success rates of every order. We also have the following corollary.

Corollary. For any side-channel attack exploiting a perfect Gaussian leakage
distribution, the residual entropy of a key class s is a monotonously increasing
function of the single query (and hence multi-queries) guessing entropy against s.

By contrast, in the most general context of non perfect leakage distributions,
those general statements do not hold. In the remaining of this section, we point
out two important facts that highlight the limitations of the conditional entropy.

Fact 1. In the context of non-perfect and sound Gaussian leakage distributions,
the constant residual entropy of a key class does not imply a constant success rate
(or guessing entropy) against this key class. This is illustrated in Figure 3 for a
3-key system. The upper right part of the figure shows different positions of the
right key candidate leading to a constant residual entropy. They are obtained by
changing the angle φ and reducing the distance δ accordingly, starting from a
perfect distribution. The lower parts of the figure show the corresponding success
rates and guessing entropy. As a matter of fact, they are not constant.

Fact 2. There exist leakage distributions Dx, Dy such that the residual entropy
for a class s corresponding to Dx is higher than the residual entropy for a class s′

corresponding to Dy and the success rate of every order for a Bayesian adversary
exploiting Dx is higher than the success rate for the same adversary exploiting
Dy. This is illustrated by the small reduction of the first order success rate in
the lower left part of Figure 3, for φ ≃ 1 and further discussed in Appendix C.

These facts essentially underline that there are no generally true dependencies
between the conditional entropy and the success rate in the general setting.
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6.3 Intuition of the metrics

In this section, we detail a number of important intuitions that can be extracted
from the previous theory. We also discuss how they can be exploited in practical
applications and highlight some of their limiting features.

Intuitions related to Theorem 1.

1.1 Theorem 1 tells if an approximated leakage probability distribution is sound.
That is, when moving to practical applications, one no longer consider the
ideal leakage probability distributions Pr[Lq|S] but their approximated coun-

terparts P̂r[L̃q|S]. Theorem 1 allows verifying that this approximation is
meaningful. Otherwise said, the assumption in Section 4 states that tem-
plate attacks are the most powerful. Theorem 1 checks if they are powerful
enough to lead to a successful key recovery. If they are not...

1.2 Theorem 1 tells if an implementation is secure. That is, if one cannot build
a sound approximation of the leakage probability distribution, even with in-
tensive efforts, then the 1st-order asymptotic success rate of the Bayesian
side-channel adversary equals zero. It means that a certain level of security
against key recovery attacks is achieved by the implementation. One must
then look at the position of the correct key classes in the entropy matrix. If a
class is rated second, the 2nd-order asymptotic success rate against this class
equals one. It corresponds to a weak security level that additional computa-
tional power may be able to break. If a key class is badly rated, then physical
and computational security may be both achieved by the implementation.

Intuitions related to Theorem 2.

2.1 The conditional entropy allows comparing different implementations. Theo-
rem 2 states that under the assumption (introduced in Section 4) that tem-
plate attacks are the strongest ones and within the theoretical limits detailed
in the previous section, less residual entropy implies a more efficient Bayesian
side-channel attack (i.e. an attack that requires less measurement queries).
“How much more efficient?” has to be quantified with a security metric.
In general, the better one approximates the leakage probability distribution
Pr[Lq|S], the better is the comparison of different implementations.

2.2 Theorem 2 only applies to sound leakage distributions. Intuitively, it means
that comparing the conditional entropy provided by different leakage func-
tions only make sense if the corresponding approximated leakage probability
distributions lead to asymptotically successful attacks.

2.3 The conditional entropy does not directly translate into actual security met-
rics. This is an important feature of the information theoretic (or asymptotic
security) metric that relates to the following observations:
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(a) For a given amount of information leaked by a target implementation,
different side-channel distinguishers could be considered (see Section 7).
For example, the template attacks that closely relate to the definition of
mutual information are not the most practical ones in terms of adversar-
ial context. Suboptimal distinguishers are frequently used in practice.

(b) In the context of |S|-target side-channel attacks with |S| > 2, Theorem 2
assumes perfect leakage distributions that may not be observed in actual
measurements. In most practical applications, more residual entropy im-
plies that there is at least one order for the success rate to be decreased.
But this order can only be found by investigating the actual leakage
probability distributions and the complete entropy matrix3. Addition-
ally, Fact 2 in Section 6.2 highlights that there exist counterintuitive
implementations for which a higher residual entropy hs,s could also lead
to a higher success rate of every order for the Bayesian adversary.

(c) Theorem 2 considers the residual entropies of individual key classes hs,s.
The conditional entropy is the average of the residual entropies over the
key classes. Therefore it only provides an average evaluation criteria.

2.5 Theorem 2 is meaningful for both simulated and experimental attacks. It al-
lows measuring the effectiveness of an abstract leakage model (independently
of its practical significance) and the quality of an actual implementation.

Importantly, the observations 2.4 (a) and (b) emphasize that there is a cer-
tain degree of independence between the conditional entropy and the actual
security metrics. It implies that the information theoretic metric always has to
be completed with an actual security analysis (using the success rate or guessing
entropy). First because it is the only way to determine the number of queries
required for an attack to succeed. Second because in the context of non perfect
leakage distributions, one has to verify that the investigated device does not fall
into the previously mentioned counterintuitive category. Additionally, observa-
tion 2.4 (c) suggests the following practice-oriented definition:

Definition 9. We say that a side-channel attack attack against a key class vari-
able S is a weak template attack if all the key classes s have the same residual
entropy hs,s and each line of the entropy matrix Hq

s,s∗ is a permutation of an-
other line of the matrix. We say that a side-channel attack is a strong template
attack if at least one of the previous conditions does not hold.

Intuitively, a weak template attack can be straightforwardly analyzed with the
conditional entropy. The evaluation of a strong template attack requires to con-
sider every key class independently. The terms weak and strong relate to the
ability of the adversary to characterize key-specific features in his templates.

3 We mention that this is not a negative feature in itself. The aim of the information
theoretic metric is to be independent of an adversary’s algorithmic details. Being
independent of the success rate order implies that the conditional entropy does not
relate to one particular computational strategy either.
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7 Practice-oriented definitions

From the definition of Section 5.1, a side-channel key recovery adversary is de-
fined as an algorithm trying to recover a key class s from a number of queries to
an implementation (EK , L). In this section, we aim to give a more detailed de-
scription of such an adversary, considering the different steps in the side-channel
attack illustrated in Figure 4. It actually consists in two phases that we respec-
tively denote as the exploitation phase (which is the main core of the attack)
and the preparation phase (which is the counterpart of the learning phase in
artificial intelligence problems). We first describe the exploitation phase:

1. Input selection. The adversary selects its (possibly adaptive) q queries xq

(defined in Section 5.2) to the target device thanks to an algorithm I.

2. Values derivation. For each key class candidate s∗, the adversary predicts
some values within the target device using an algorithm V. As a result, it
obtains |S| vectors vq

s∗ = V(s∗,xq) containing Nv-element predictions vi
s∗ ,

i ∈ [1, q], where Nv is the number of internal values predicted per query.

3. (a) Leakages modelling. For each key class candidate s∗, the adversary mod-
els a part/function of the actual leakage emitted by the target device. De-
pending on the attacks, the model can be the approximated probability
density function of a reduced set of leakage samples denoted M(s∗, l̃q) =

P̂r[s∗ |̃lq], as when using templates [7]. In this context, l̃q = [l̃1, l̃2, . . . , l̃q]
is the vector of leakage samples that are actually modelled by the ad-
versary and l̃i is an Nm-element trace corresponding to the ith query to
the target device (Nm is the number of samples modelled per query). Or
the model is a deterministic function (e.g. the Hamming weight) of the
previously defined values: M(s∗,vq

s∗), as in correlation attacks [5]. We
denote attacks exploiting a model as comparison attacks.

(b) Leakages partitioning. If no leakage model is available, the adversary
can define partitions (for each key class candidate s∗) according to a
function of the previously defined values that we denote as P(s∗,vq

s∗).
This is typically what was proposed in Kocher’s original DPA in which
the leakages are partitioned according to the value of one bit in the
implementation [18]. We denote such attacks as partition attacks.

4. Leakages observation (or measurement). The adversary monitors the leak-
ages of the target device containing the correct key class s. He stores these
observations in the previously defined vector lq containing Nl-sample traces
li, i ∈ [1, q], where Nl is the number of leakage samples stored per query.

5. Leakages reduction. In comparison attacks, the leakages and predictions pos-
sibly have different number of samples Nl 6= Nm. Therefore, a mapping R is
used to transform the leakages such that R(li) is a Nm-sample trace. Addi-
tionally, the mapping possibly includes the post-processing of the traces, e.g.
filtering, averaging. In the context of partition attacks, the reduction simply
determines the leakage samples for which the partition will be tested.
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6. Statistical test. For each key class candidate s∗, the adversary applies a sta-
tistical test T to either compare a model M(s∗, .) with the transformed leak-
ages or to check if a partition P(s∗, .) is meaningful. It obtains an |S|-element
vector gq = T(M(s∗, .), R(lq)) or gq = T(P(s∗, .), R(lq)) containing the attack
result, as in Section 5.1. Typical statistical tools include the difference of
mean test [24], the correlation coefficient and the Bayesian classifier.

7. Decision: from the previous result, the adversary selects a key candidate (i.e.
does a hard decision) or a list of key candidates (i.e. does soft decision) and
stores them in a Nd-element vector dq = D(gq).

8. Offline computation: if a soft strategy is applied, the adversary finally tests
the remaining candidates by a number of executions of the target algorithm.

Input selection1 <= I

Values derivation2 <= V Leakage observation4

Leakage modeling

Leakage partitioning
3

<= M

<= P

Leakage reduction5 <= R

Statistical test6 <= T

Decision7 <= D

Offline computation8

Leakage characterization

Time profiling
=> M,R

if adaptive

Preparation  phase Exploitation phase

<= L

: Algorithmic parts of the adversary

: Physical parts of the adversary

Fig. 4: Practical side-channel adversary.

Preliminary to the exploitation phase, the preparation phase produces the
leakage model M and reduction mapping R, e.g. by profiling and characterizing
the device. In the context of template attacks, the result of this preparation
phase is the approximated leakage probability distributions of a reduced set of
leakage samples P̂r[L̃q|S]. However, simpler leakage models may take advantage
of profiling and characterization as well. As a matter of fact, deriving these
functions sometimes involves the same steps as the exploitation phase. But since
the preparation can be performed once and then used in several exploitations, it
is interesting to separate the complexities for both phases. We note that one could
also design attacks in which preparation and exploitation are closely connected
and therefore, only the overall complexities are relevant in the evaluations.
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As previously detailed, a side-channel adversary is composed of a physical
part modelled by the leakage function and an algorithmic part (sometimes de-
noted as the distinguisher) modelled by all the steps but the 4th in Figure 4.
Since the definition of a leakage function in [25] includes measurement setups,
it depends on the adversary’s ability to perform good measurements. In this
practice-oriented view, the leakage function is not an oracle accessed by the ad-
versary (as in the more theoretical view of Section 5.1) but a part of it. But this
is not in contradiction with Micali and Reyzin: once the leakage function has
been determined, the adversary’s algorithmic part in Figure 4 can theoretically
access it as an oracle which makes the previous definitions meaningful.

8 Evaluation methodology

Following the definitions in the previous sections, an evaluation methodology for
side-channel attacks intends to analyze both the quality of an implementation
and the strength of an adversary. It involves the five steps illustrated in Figure 5:
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Fig. 5: Evaluation methodology for side-channel attacks.

22



1. We define the target implementation as modelled by Micali and Reyzin. That
is, we define the combination of an abstract computer and a leakage function.
In practice, the target implementation is a physical object, e.g. a smart card,
FPGA or ASIC running some cryptographic primitive associated with some
measurement setup. This determines the physical part of the adversary.

2. We define the target secret class s for the side-channel attack.
3. Once the target has been specified, we answer the first question in our evalu-

ation, namely: “What is the amount of information contained in the physical
observations obtained from a leaking device?”. For this purpose, we use the
mutual information or entropy matrix. As previously mentioned and pictured
on the figure arrows, it can only be approximated from a number of leak-
age samples, through an actual (template-like) adversary’s measurements.
Alternatively and as a preliminary step in the evaluations, it can also be es-
timated theoretically by using a model M(s, .) (e.g. Hamming weight-based,
SPICE simulations, . . . ) in place of the actual leakage function.

4. We complete the definition of the side-channel adversary (i.e. with its al-
gorithmic part) and specify its black box adversarial context and physical
potential. The latter are actually the most delicate parts of an evaluation
and will be shortly discussed in the following of the section.

5. We finally answer the second question in our evaluation, namely: “How suc-
cessfully can an adversary turn this information into a practical attack?”.
For this purpose, we use the success rate of the side-channel key recovery
adversary (or the guessing entropy) defined in Section 5.1.

Figure 5 again indicates that the information theoretic (or asymptotic se-
curity) metric can be used to measure an adversary’s physical part while the
actual security metrics are rather useful to evaluate its algorithmic part. Impor-
tantly, the mutual information is an average metric computed over an uniform
key space. It is meaningful to compare implementations since this goal requires
to be independent of a given adversary. By contrast, worst case behaviors are
typically dependent on the adversarial strategy (e.g. adaptive). They can conse-
quently be quantified with the security metrics in order to discriminate different
distinguishers for a given implementation. Additionally, it is often interesting to
define a Signal-to-Noise Ratio (SNR) in order to determine the amount of noise
in the physical observations. Since noise insertion is a generic countermeasure
to improve resistance against side-channel attacks, it can be used to plot the
information theoretic and security metrics with its respect.

As already mentioned, the most delicate part in this methodology is to
describe the black box adversarial context and physical potential of a side-
channel adversary. Black box assumptions relate to the adversary’s abilities to
monitor and tamper with the primitives inputs and outputs. For this purpose,
we refer to classical notions (e.g. non adaptive/adaptive, known/chosen, plain-
text/ciphertext, . . . ) with the additional possibility to have known or chosen
keys during the preparation phase. The physical potential of an adversary re-
lates to its level of expertise, the cost of its equipment, . . . Since quantifying such
potential is typically the tasks assigned the standardization bodies, we refer to
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the common criteria [9] and FIPS 140-2 documents [12] (or alternatively to the
IBM taxonomy [1]) for these purposes. In general, the benefit of the presently
introduced model is not to solve these practical issues but to state the side-
channel problem in a sound framework for its analysis. Namely, it is expected
that the proposed security and information theoretic metrics can be used for
the fair analysis, evaluation and comparison of any physical implementation or
countermeasure against any type of side-channel attack.

Let us finally mention that any information theoretic or security analysis of
actual devices has to come with a good statistical evaluation with confidence
intervals for the estimated evaluation criteria. Section 4.6 in [22] provides a
good introduction to these issues. By contrast, the evaluation of simulated at-
tacks where sums are turned into integrals do not require statistical sampling.
Approximations through statistical sampling are denoted with a hat.

9 Applications of the model

Before to conclude this paper, this section aims to come back on our initial
claims. Namely, we summarize the extend to which the proposed metrics and
methodology allow the comparison of implementations and adversaries.

Starting with the comparison of different implementations, our results essen-
tially suggest that an implementation X is “better” than an implementation Y
if it is more secure against the (strongest possible) Bayesian side-channel adver-
sary (formally defined in Section 6.1). But this raises the question: “Why do we
need two metrics for this purpose?”. Otherwise said: cannot one just compare
the success rates of this Bayesian adversary? The main answer to this question
relates to the independence of the mutual information on the number of queries
q. As Theorem 1 in Section 6 details, the mutual information allows determining
if there is enough information in the leakages, by exploiting a fixed number of
queries (in general, q=1). When comparing two implementations, this indepen-
dence is a very desirable property that is nicely illustrated in [30].

In this reference, the effectiveness of two countermeasures against side-channel
attacks (namely, noise addition and masking) is evaluated with our methodol-
ogy. The upper parts of Figure 6 illustrate the results of this comparison: both
the success rate and the mutual information are computed for the two counter-
measures, in function of the measurement noise (quantified with an SNR). The
single-query success rate (Figure 6.a) suggests that the noisy implementation
is always easier to target than the masked one. By contrast, the mutual infor-
mation (Figure 6.b) suggests that for high SNRs, the masked information leaks
more information than the noisy one; the conclusion is inverted when decreasing
the SNR. Interestingly, the mutual information highlights a certain SNR value
for which masking becomes a better countermeasure than noise addition (corre-
sponding to the intersection of the curves in Figure 6.b). It is confirmed by the
success rate when you increase the number of queries, as illustrated in the lower
parts of the figure. Left of the intersection (e.g. SNR=10), masking is a better
countermeasure, right of the intersection (e.g. SNR=11), noise addition is!
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Fig. 6: Success rate and mutual information for the comparison of two countermeasures.

In summary, if the analyzed implementations have a leakage probability dis-
tribution sufficiently close to perfect as in the previous example, the mutual
information or entropy matrix allows their fair comparison. It leads to design
criteria (e.g. the intersection of the curves in Figure 6.b) that are not directly pro-
vided by security metrics (although computing success rates can confirm these
criteria). If the leakage probability distributions are not sufficiently perfect, the
entropy matrix is useful to determine if an attack of a given order is asymptoti-
cally successful, before performing the attack and evaluate its efficiency.

As far as implementation contexts are concerned, the security analysis in
[30] considers an abstract (Hamming weight-based) leakage model. In [20], an
information theoretic analysis is performed in order to compare different side-
channel resistant logic styles, exploiting gate-level simulated leakage traces. This
analysis is extended in [21] towards multivariate leakages, more complex circuits
and combined with a security analysis. In [31], a practical information theo-
retic and security evaluation is applied to actual measurements obtained from
different circuit-level side-channel countermeasures. Those results illustrate the
applicability of the framework to a wide variety of contexts and platforms.

Finally, the comparison of different side-channel adversaries (or distinguish-
ers) using our security metrics is extensively exemplified in [32].
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10 Conclusions and open problems

A unified framework for the analysis of cryptographic implementations against
side-channel key recovery is introduced as a specialization of Micali and Reyzin’s
“physically observable cryptography” paradigm. It is based on a theoretical
model in which the effect of practically relevant leakage functions is evaluated
with a combination of security and information theoretic metrics. The frame-
work allows both the practical evaluation of actual side-channel attacks and the
understanding of the underlying tradeoffs in physically observable cryptography,
namely “flexibility vs. efficiency” and “information vs. computation”.

The flexibility vs. efficiency tradeoff typically relates to the adversarial con-
text considered. As a matter of fact, an adaptive adversary using a carefully
profiled leakage model will generally exploit the available physical information
(much) more efficiently than a non-adaptive one, using a non profiled leakage
model. However, simpler prediction models do not only involve a sub-optimal
information extraction from side-channel traces. They may also be more easily
reproducible to different devices. As a typical example, Kocher’s original Differ-
ential Power Analysis only assumes that somewhere in a physical observation,
the leakage will depend on a single bit value. The simplicity of this assump-
tion made it straightforwardly applicable to a wide range of platforms, without
any adaptation. Correlation attacks, template attacks or stochastic models are
trading some of this flexibility for a more efficient information extraction.

By contrast, the information vs. computation tradeoff rather relates to the
computational strategy considered. As a matter of fact, for comparable amounts
of side-channel queries q, a soft strategy trying to extract a list of key candidates
including the correct one will generally have a higher success rate than a hard
strategy, trying to extract the correct key value only. However, if this list of
candidates can be tested with some computational power, it can be turned into
a successful key recovery. Otherwise said, a lack of information can be overcome
by a more computationally intensive adversarial strategy.

In summary, as an interface between theory and practice, our framework
allows putting forward properly quantified weaknesses in physically observable
devices. As a consequence, these weaknesses can be either feeded back to hard-
ware designers in order to reduce the physical leakages or sent to cryptographic
designers in order to conceive schemes that can cope with physical leakage.

Open questions derive from this model in different directions. A first one
relates to the best exploitation of large side-channel traces, i.e. to the construc-
tion of (ideally) optimal distinguishers. This requires to investigate the best
heuristics to deal with high dimensional leakage data in order to confirm the
model assumption that template attacks are the strongest form of side-channel
attacks. A second one relates to the investigation of stronger security notions
than side-channel key recovery. That is, the different security notions considered
in the black box model (e.g. the undistinguishability from an idealized primi-
tive) should be considered in the physical world, as initiated in [25]. A third
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directions relates to the construction of implementations with provable (or ar-
guable) security against side-channel attacks, e.g. as proposed in [26]. Finally the
extension to other physical adversaries is a long term scope for cryptographic
research. With this respect, the present work appears as a complement to other
approaches for modelling physical attacks such as [13, 16, 17].
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A Micali & Reyzin’s informal axioms

Axiom 1. Computation and only computation leaks information.

That is, we assume that it is possible to store some secret information securely
in a cryptographic device. No leakages will compromise this secret as long as it
is not used in any computation. This implies that probing attacks are out of the
scope of our analysis and we rely on physical protections to prevent them.

Axiom 2. The same computation leaks different
information on different computers.

In other words, an algorithm is an abstraction: a set of general instructions whose
physical implementation may vary. As a result, the same elementary operation
may leak different information on different platforms.

Axiom 3. The information leakage depends on the chosen measurement.

The amount of information that is recovered by an adversary during a side-
channel attack depends on the measurement process, that possibly introduces
some randomness due to the presence of noise.

Axiom 4. The information leakage is local.

In other words, the maximum amount of information that may be leaked by a
physically observable device is the same in any execution of the algorithm with
the same inputs, since it relates to the target device’s internal configuration.

Axiom 5. All the information leaked through physical observations can
be efficiently computed from a target device’s internal configuration.

That is, given a physical computer, the information leakage is a polynomial time
computable function of (1) the computer’s internal configuration (because of
Axiom 4), (2) the chosen measurement (because of Axiom 3), and possibly (3)
some randomness outside anybodys control (also because of Axiom 3).

We note that, from the practical point of view, these axioms may not reflect
the entire physical phenomenons observed. For example, as far as Axiom 1 is
concerned, volatile memories such as RAMs regularly require a small amount of
energy to refresh their values and this could be used to mount a side-channel
attack. However, such leakages are significantly more difficult to exploit than
computational leakages. Our expectation is therefore that these axioms approx-
imates the physical reality to a sufficient degree.
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B Key equivalence ; perfect leakage distributions
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Fig. 7: Non-perfect leakage distributions with key equivalence.

We illustrate that for bivariate leakage distributions, it is always possible to
build a non-perfect distribution with key equivalence. Figure 7 illustrates this
claim for |S| = 3, 4, 5, 6. Perfect leakage distributions are in the upper part of
the figure. Non-perfect leakage distributions with key equivalence are in its lower
part. As previously, we denote the position of the Gaussian mean values with
their distance δi and angle φi with respect to the correct key class.

1. In the 3-key example (left part of the figure), one can change the position of,
e.g. s2 by keeping δ2 constant and only changing the angle φ2. The resulting
leakage distribution is not perfect and still has key equivalence.

2. For any larger |S|. We can transform the distributions as follows. Let us say
we move k1 by changing φ1. The first step in the transform is to change the
other angles such that we again obtain an axial symmetry among an hori-
zontal axis. Then, the distances δ1 and δ2 have to be reduced identically in
order to have Elq

Pr[s1|lq] = Elq
Pr[s2|lq] and this average probability equal

to the average probability of another pair of symmetrical classes (e.g. s3 and
s5 in the right part Figure 7). Finally, we successively reduce the distances
of any other pair of symmetric classes in order to have key equivalence4.

4 The distances δi have been increased in Figure 7 to emphasize their variations.

30



C More entropy sometimes means more success rate
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Fig. 8: Finding leakage distributions with more entropy and more success rate.

Figure 8 illustrates the search for leakage distributions having both less resid-
ual entropy and less success rate of every order for the Bayesian adversary. It
considers a 3-key system such as the one in the upper right part of Figure 3.

Let us assume we first modify the angle φ from 0 to π/4, without changing
the distance δ. As illustrated in the upper part of Figure 8, it implies both a
reduction of the residual entropy and an increase of the (first order) success rate
against the central key class. We store the maximum and minimum value for
the residual entropy. Then, we reduce the distance δ without changing the angle
φ. As illustrated in the lower part of the figure, it implies both an increase of
the residual entropy and a reduction of the (first order) success rate against the
central key class. We store the distance were the residual entropy is back to its
initial value. This distance is represented in the lower parts of the figure with
a vertical line. But at this distance, the success rate is smaller than its initial
value. So, there are points were reducing the residual entropy also reduces the
(first order) success rate. Since changing the angle straightforwardly implies a
reduction of the second order success rate, we have a reduction of the success
rate for every meaningful order (the third order success rate is stuck at one).
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D Notation index

In general and excepted if explicitly mentioned otherwise, capital letters repre-
sent variables X , small letters represent particular values of the variables x and
sets or alphabets are denoted with calligraphic letters X . Bold letters denote vec-
tors and matrices X. Sans serif fonts are used for algorithms and functions X,x.

α Abstract computer/cryptographic primitive pp 4, sec 2
αi Virtual Memory Turing Machine (VTM) pp 4, sec 2
AEK ,L Side-channel key recovery adversary pp 8, sec 5.1
δ Key classification function pp 8, sec 5.1
D Decision function pp 21, sec 7
E(X) The expected value of a random variable X pp 9, sec 5.1
EK Family of cryptographic abstract computers pp 8, sec 5.1

indexed by a variable key K

GEsc-kr-S
AEK ,L

Guessing entropy of a side-channel key recovery pp 9, sec 5.1

adversary against a key class variable S
Hq

s,s∗ Conditional entropy matrix pp 10, sec 5.2

H̃
q

s,s∗ Entropy reduction matrix pp 10, sec 5.2
hs,s Residual entropy of a key class s pp 13, sec 6.2
H[S|Lq] Conditional entropy pp 10, sec 5.2
I Input selection algorithm pp 20, sec 7
I(S;Lq) Mutual information pp 10, sec 5.2
L(Cα, M, R) Leakage function pp 4, sec 2
Lq, lq Side-channel observations vector pp 10, sec 5.2
M(s∗, .) Leakage model for a key class s∗ pp 20, sec 7
P(s∗, .) Leakage partition for a key class s∗ pp 20, sec 7
ϕ Physical computer/cryptographic implementation pp 4, sec 2
ϕi Physical Virtual Memory Turing Machine pp 4, sec 2
Pr[s|lq] Probability of a key class s given a leakage lq pp 10, sec 5.2
Pr[S|Lq] Probability distribution of a key class variable S

given a leakage variable Lq pp 7, sec 4
R Leakage reduction mapping pp 20, sec 7

Succsc-kr-o,S
AEK,L

oth-order success rate of a side-channel key pp 8, sec 5.1

recovery adversary against a key class variable S

Succsc-kr-o,s
AEk,L

oth-order success rate of a side-channel key pp 14, sec 6.2

recovery adversary against a key class s
T Statistical test in a side-channel attack pp 21, sec 7
V Values derivation algorithm pp 20, sec 7

Additionally, any quantity estimated through statistical sampling is represented
with a hat, e.g. a sample mean is denoted as Ê(X), as sample variance as σ̂2(X),

as sample success rate as Ŝucc
sc-kr-o,S

AEK ,L
, . . .
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