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Abstract. The fair evaluation and comparison of side-channel attacks and
countermeasures has been a long standing open question, limiting further de-
velopments in the field. Motivated by this challenge, this work makes a step in
this direction and proposes a framework for the analysis of cryptographic im-
plementations that includes a theoretical model and an application methodol-
ogy. The model is based on commonly accepted hypotheses about side-channels
that computations give rise to. It allows quantifying the effect of practically
relevant leakage functions with a combination of information theoretic and se-
curity metrics, measuring the quality of an implementation and the strength
of an adversary, respectively. From a theoretical point of view, we demonstrate
formal connections between these metrics and discuss their intuitive meaning.
From a practical point of view, the model implies a unified methodology for
the analysis of side-channel key recovery attacks. The proposed solution allows
getting rid of most of the subjective parameters that were limiting previous
specialized and often ad hoc approaches in the evaluation of physically observ-
able devices. It typically determines the extent to which basic (but practically
essential) questions such as “How to compare two implementations?” or “How
to compare two side-channel adversaries?” can be answered in a sound fashion.

1 Introduction

Traditionally, cryptographic algorithms provide security against an adversary
who has only black box access to cryptographic devices. However, such a model
does not always correspond to the realities of physical implementations. Dur-
ing the last decade, it has been demonstrated that targeting actual hardware
rather than abstract algorithms may lead to very serious security issues. In this
paper, we investigate the context of side-channel attacks, in which adversaries
are enhanced with the possibility to exploit physical leakages such as power con-
sumption [22] or electromagnetic radiation [2, 15]. A large body of experimental
work has been created on the subject and although numerous countermeasures
are proposed in the literature, protecting implementations against such attacks
is usually difficult and expensive. Moreover, most proposals we are aware of only
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increase the difficulty of performing the attacks, but do not fundamentally pre-
vent them. Eventually, due to the device-specific nature of side-channel attacks,
the comparison of their efficiency and the evaluation of leaking implementations
are challenging issues, e.g. as mentioned in [25], page 163.

Following this state-of-the art, our work is mainly motivated by the need
of having sound tools (i.e. a middle-ware between the abstract models and the
concrete devices) to evaluate and compare different implementations and ad-
versaries. As a matter of fact, the evaluation criteria in physically observable
cryptography should be unified in the sense that they should be adequate and
have the same meaning for analyzing any type of implementation or adversary.
This is in clear contrast with the combination of ad hoc solutions relying on
specific ideas designers have in mind. For example, present techniques for the
analysis of side-channel attacks typically allow the statement of claims such as:
“An implementation X is better than an implementation Y against an adver-
sary A”. But such claims are of limited interest since an unsuccessful attack may
theoretically be due both to the quality of the target device or to the ineffec-
tiveness of the adversary. The results in this paper aim to discuss the extent to
which more meaningful (adversary independent) statements can be claimed such
as: “An implementation X is better than an implementation Y ”. Similarly, when
comparing different adversaries, present solutions for the analysis of side-channel
attacks typically allow the statement of claims such as: “An adversary A suc-
cessfully recovers one key byte of an implementation X after the observation of q
measurement queries.”. But in practice, recovering a small set of key candidates
including the correct one after a low number of measurement queries may be
more critical for the security of an actual system than recovering the key itself
after a high number of measurement queries (e.g. further isolating a key from a
list can employ classical cryptanalysis techniques exploiting black box queries).
The results in this paper aim at providing tools that help claiming more flexible
statements and can capture various adversarial strategies1.

Quite naturally, the previous goals imply the need of a sound model for the
analysis of side-channel attacks. But perhaps surprisingly (and to the best of our
knowledge), there have been only a few attempts to provably address physical
security issues. A significant example is the work of Micali and Reyzin who initi-
ated an analysis of side-channels taking the modularity of physically observable
computations into account. The resulting model in [28] is very general, capturing
almost any conceivable form of physical leakage. However and as observed by
the authors themselves, this generality implies that the obtained positive results
(i.e. leading to useful constructions) are quite restricted in nature and it is not
clear how they apply to practice. This is especially true for primitives such as
modern block ciphers for which even the black box security cannot be proven.

1 We note that if obtained through statistical sampling, these claims have to come
with a certain confidence interval. This is frequently neglected concern in the present
literature on side-channel attacks where only single experiments are often provided.
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In the present work, we consequently give up a part of this generality and
concentrate on current attacks (i.e. key recovery) and adversaries (i.e. statisti-
cal procedures to efficiently discriminate the key), trying to keep a sound and
systematic approach aside these points. For this purpose, we first separate the
implementation issue (i.e. “how good is my implementation?”) and the adversar-
ial issue (i.e. “how strong is my adversary?”) in the physically observable setting.
We believe that the methodological division of both concerns brings essential in-
sights and avoids previous confusions in the analysis of side-channel attacks. As
a consequence, we introduce two different types of evaluation metrics. First, an
information theoretic metric is used to measure the amount of information that
is provided by a given implementation. Second, an actual security metric is used
to measure how this information can be turned into a successful attack. We pro-
pose candidates for these metrics and show that they allow comparing different
implementations and adversaries. We also demonstrate important connections
between them in the practically meaningful context of Gaussian leakage distri-
butions and discuss their intuitive meaning. Eventually, we move from formal
definitions to practice-oriented definitions in order to introduce a unified eval-
uation methodology for side-channel key recovery attacks. We also provide an
exemplary application of the model and discuss its limitations.

Related works include a large literature on side-channel issues, ranging from
attacks to countermeasures and including statistical analysis concerns. The side-
channel lounge [13], DPA book [25] and CHES workshops [9] provide a good list
of references, a state-of-the art view of the field and some recent developments,
respectively. Most of these previous results can be re-visited in the following
framework in order to improve their understanding. The goal of this paper is
therefore to facilitate the interface between theoretical and practical aspects in
physically observable cryptography. We mention that in parallel to our work, the
models in [3, 23] consider a restricted context of noiseless leakages. They allow
deriving formal bounds on the efficiency of certain attacks but are not aimed to
analyze actual devices (that always have to deal with noise) which is our main
goal. Finally, [29] initiated a study of forward secure cryptographic constructions
with rigorous security analysis of side-channel attacks. [12, 30] then proposed
similar constructions in a more general setting and standard model. These works
exploit assumptions such as bounded adversaries or leakages of which the validity
can be measured for different devices thanks to the methodology in this paper.

Finally, our analysis employs ideas from the classical communication theory
[11, 32, 33]. But whereas source and channel coding attempt to represent the in-
formation in an efficient format for transmission, cryptographic engineers have
the opposite goal to make their circuit’s internal configurations unintelligible to
the outside world. This analogy provides a rationale for our metrics. Note that
different measures of uncertainty have frequently been used in the cryptographic
literature to quantify the effectiveness of various attacks, e.g. in [7]. Our line of
research follows a slightly different approach in the sense that we assign specific
tasks to different metrics. Namely, we suggest to evaluate implementations with
an information theoretic metric (conditional entropy) and to evaluate attacks and
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adversaries with security metrics (success rates or guessing entropy). This allows
us to consider first implementations as non-adversarial information emitting ob-
jects where keys are randomly chosen, and then adversaries which operate under
certain (computational and access) restrictions on top of the implementations.
This duality enables our model to be reflective of the situation in the real world
and therefore to be useful beyond theoretical analysis, i.e. applicable to any sim-
ulated or actual lab data, for various cryptographic algorithms. In summary, we
provide a practical model for side-channel attacks. The model implies the need
of two different types of metrics and these metrics lead to a unified evaluation
methodology. Then, in order to allow the practical application of the proposed
framework, we suggest candidates for the metrics and discuss their relevance.

The rest of the paper is structured as follows. Section 2 contains the back-
ground necessary for the understanding of our results. Section 3 provides an
intuitive description of our model and terminology. Section 4 defines our evalu-
ation metrics formally. Section 5 discusses the practical limitations in the appli-
cation of our model and metrics to actual devices. Section 6 demonstrates some
important connections between our evaluation metrics, with their intuitive con-
sequences. Section 7 describes an exemplary application of the model. Section
8 elaborates an evaluation methodology for physically observable cryptographic
devices. Finally, conclusions and open problems are in Section 9. Additionally,
a practice-oriented definition of a side-channel adversary is in appendix.

2 Background

In order to enable the analysis of physically observable cryptography, Micali and
Reyzin introduced a model of computation of which we recall certain definitions
of interest with respect to our following results. First, an abstract computer was
defined in [28] as a collection of special Turing machines, which invoke each
other as subroutines and share a common memory. Each member of the collec-
tion is denoted as an abstract virtual-memory Turing machine (VTM for short).
One writes α = (α1, α2, ..., αn) to mean that an abstract computer α consists of
abstract VTMs α1, α2, ..., αn. All VTM inputs and outputs are binary strings re-
siding in some virtual memory. Abstract computers and VTMs are not physical
devices: they only represent logical computation and may have different physical
realizations. Then, to model the physical leakage of any particular instantiation
of an abstract computer, the notion of physical computer was introduced. A
physical computer is a pair (α, L), where L is a leakage function. In this defi-
nition, the relation between an abstract computing machine α and its physical
realization is only determined by the leakage function that depends on three
inputs: L(Cα, M, R). The first input is the current internal configuration Cα of
an abstract computer α, which incorporates anything that is in principle mea-
surable. The second input M is the setting of the measuring apparatus (i.e.
a specification of what and how the adversary chooses to measure). The third
input R is a random string to model the randomness in the measurements.
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3 Intuitive description of the model and terminology

As a matter of fact, the previous definition of leakage function models the phys-
ical observations of a target device. But it does not specify how an adversary
could exploit this side-channel information. This section consequently intends to
intuitively describe the side-channel key recovery attacks that will be formally
investigated in the rest of the paper, with the metrics used to quantify them.

A generic side-channel key recovery is pictured in Figure 1 that we explain as
follows. First, the term primitive is used to denote cryptographic routines cor-
responding to the practical instantiation of some idealized functions required to
solve cryptographic problems. For example, the AES Rijndael is a cryptographic
primitive. With respect to the model of Micali and Reyzin, cryptographic prim-
itives are abstract computers. They can be viewed as black boxes, parametrized
by some secret argument. Second, the term device is used to denote the phys-
ical realization of a cryptographic primitive. For example, a smart card or and
FPGA running the AES Rijndael can be the target devices of a side-channel
attack. With respect to the model of Micali and Reyzin, a device corresponds to
the division of an abstract computer or primitive into different abstract VTMs.
A side-channel is an unintended communication channel that leaks some infor-
mation from a device through a physical media. For example, the power con-
sumption or the electromagnetic radiation of a target device can be used as
side-channels. The output of a side-channel is a physical observable. Then, the
leakage function is an abstraction that models all the specificities of the side-
channel and the measurement setup used to monitor the physical observables
(the leakage function output equals this setup output). An implementation (or
physical computer) is the combination of an abstract computer (or primitive)
and a leakage function. Finally, a side-channel adversary an algorithm that can
query the implementation to get the leakage function results in addition to the
traditional black-box access. It has the goal to defeat a given security notion
(e.g. key recovery) within certain computational bounds and capabilities.

Figure 1 suggests that, similarly to the classical communication theory, two
aspects have to be considered (and quantified) in physically observable cryp-
tography. First, actual implementations leak information, independently of the
adversary exploiting it. The goal of our information theoretic metric is to mea-
sure the side-channel leakages in order to give a sound answer to the question:
“how to compare different implementations?”. Second, an adversary analogous
to a specific decoder exploits these leakages. The goal of our security metrics is to
measure the extent to which this exploitation efficiently turns the information
available into a key recovery. Security metrics are the counterpart of the Bit-
Error-Rate in communication problems and aim to answer the question: “how
to compare different adversaries?”. Interestingly, the figure highlights the differ-
ence between an actual adversary (of which the goal is simply to recover some
secret data) and an evaluator (of which the goal is to analyze and understand
the physical leakages). For example, comparing different implementations with
an information theoretic metric is only of interest for an evaluator.
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In practice, side-channel attacks are usually divided in two phases. First an
(optional) preparation phase provides the adversary with a training device and
allows him to profile and characterize the leakages. Second, an exploitation phase
is directly mounted against the target device and is aimed to succeed the key
recovery. Importantly, actual adversaries do not always have the opportunity
to carry out a preparation phase (in which case profiling is done on the fly).
By contrast, it is an important phase for evaluators since it allows performing
optimized attacks and therefore leads to a better analysis of the physical leakages.
Before moving to the definitions of our metrics, we finally mention the “theory”
and “practice” arrows leading to the information theoretic metric in Figure 1.
These arrows underline the fact that one can always assume a theoretical model
for the side-channel and perform a simulated attack. If the model is meaningful,
so is the simulated attack. But such simulations always have to be followed by an
experimental attack in order to confirm the relevance of the model. Experimental
attacks exploit actual leakages obtained from a measurement setup.

4 Formal definitions

In this section, we define the metrics that we suggest for the analysis of physically
observable devices. We first detail two possible security metrics, corresponding
to different computational strategies. Both metrics relate to the notion of side-
channel key recovery. Then, we propose an information theoretic metric driven
by two requirements: (1) being independent of the adversary and (2) having the
same meaning for any implementation or countermeasure. As a matter of fact
and following the standard approach in information theory, Shannon’s condi-
tional entropy is a good candidate for such a metric. Typically, the use of an
average criteria to compare implementations is justified by the need of adver-
sary independence. By contrast, the interactions of an adversary with a leaking
system (e.g. adaptive strategies) are quantified with the security metrics in our
model. We note that these candidate metrics will be justified by theoretical facts
in Section 6 and practical applications in Section 7. However, it is an interesting
open problem to determine if other metrics are necessary to evaluate side-channel
attacks (e.g. min entropy is briefly discussed in Section 7.3).

4.1 Actual security metrics

Success rate of the adversary. Let EK = {Ek(.)}k∈K be a family of crypto-
graphic abstract computers indexed by a variable key K. Let (EK , L) be the phys-
ical computers corresponding to the association of EK with a leakage function
L. As most cryptanalytic techniques, side-channel attacks are usually based on a
divide-and-conquer strategy in which different (computationally tractable) parts
of a secret key are recovered separately. In general, the attack defines a function
γ : K → S which maps each key k onto an equivalent key class2 s = γ(k), such

2 We focus on recovering key bytes for simplicity and because they are usual targets in
side-channel attacks. But any other intermediate value in an implementation could
be recovered, i.e. in general we can choose s = γ(k, x) with x the input of Ek(.).
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that |S| ≪ |K|. We define a side-channel key recovery adversary as an algorithm
AEK ,L with time complexity τ , memory complexity m and q queries to the target
physical computer. Its goal is to guess a key class s = γ(k) with non negligible
probability, by exploiting its collected (black box and physical) information. For
this purpose, we assume that the output of the adversary AEK ,L is a guess vector
g = [g1, g2, . . . , g|S|] with the different key candidates sorted according to the
attack result: the most likely candidate being g1. A practice-oriented description
of AEK ,L with a more detailed specification of its features is given in Appendix
A. Finally, we define a side-channel key recovery of order o with the experiment:

Experiment Expsc-kr-o
AEK ,L

k
R
←− K;

s = γ(k);
g← AEk,L;
if s ∈ [g1, . . . , go] then return 1;

else return 0;

The oth-order success rate of the side-channel key recovery adversary AEK ,L

against a key class variable S is straightforwardly defined as:

Succ
sc-kr-o,S
AEK,L

(τ, m, q) = Pr [Expsc-kr-o
AEK ,L

= 1] (1)

Intuitively, a success rate of order 1 (resp. 2, . . . ) relates to the probability
that the correct key is sorted first (resp. among the two first ones, . . . ) by the
adversary. When not specified, a first order success rate is assumed.

Computational restrictions. Similarly to black box security, computational
restrictions have to be imposed to side-channel adversaries in order to capture
the reality of physically observable cryptographic devices. This is the reason
for the parameters τ, m, q. Namely, the attack time complexity τ and memory
complexity m (mainly dependent on the number of key classes |S|) are limited by
present computer technologies. The number of measurement queries q is limited
by the adversary’s ability to monitor the device. In practice, these quantities
are generally separated for the preparation and exploitation phases (see Section
6). But additionally to the computational cost of the side-channel attack itself,
another important parameter is the remaining workload after the attack. For
example, considering a success rate of order o implies that the adversary still
has a maximum of o key candidates to test after the attack. If this has to be
repeated for different parts of the key, it may become a non negligible task.
As a matter of fact, the previously defined success rate measures an adversary
with a fixed maximum workload after the side-channel attack. A more flexible
metric that is also convenient in our context is the guessing entropy. It measures
the average number of key candidates to test after the side-channel attack. The
guessing entropy was originally defined in [26] and has been proposed to quantify
the effectiveness of adaptive side-channel attacks in [23]. It can be related to the
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notion of gain that has been used in the context of multiple linear cryptanalysis
to measure how much the complexity of an exhaustive key search is reduced
thanks to an attack [5]. We use it as an alternative to the success rate.

Guessing entropy. Using the same notations as for the success rate, we can
define a side-channel key guessing experiment:

Experiment Exp
sc-kg
AEK ,L

k
R
←− K;

s = γ(k);
g← AEk,L;
return i such that gi = s;

The guessing entropy of the side-channel key recovery adversary AEK ,L against
a key class variable S is then defined as:

GE sc-kr-S
AEK,L

(τ, m, q) = E
(
Exp

sc-kg
AEK,L

)
(2)

Interestingly, while a low success rate of order o does not prevent having large
success rates of orders o + 1, o + 2, . . ., the guessing entropy directly indicates
the average remaining workload of the side-channel adversary.

4.2 Information theoretic metric

Let S be the previously used target key class discrete variable of a side-channel
attack and s be a realization of this variable. Let Xq = [X1, X2, . . . , Xq] be a vec-
tor of variables containing a sequence of inputs to the target physical computer
and xq = [x1, x2, . . . , xq] be a realization of this vector. Let Lq be a random
vector denoting the side-channel observations generated with q queries to the
target physical computer and lq = [l1, l2, . . . , lq] be a realization of this random
vector, i.e. one actual output of the leakage function L corresponding to the
input vector xq. Let finally Pr[s|lq] be the conditional probability of a key class
s given a leakage lq. We define the conditional entropy matrix as:

H
q
s,s∗ = −

∑

lq

Pr[lq|s] · log2 Pr[s∗|lq], (3)

where s and s∗ respectively denote the correct key class and a candidate out of
the |S| possible ones. From (3), we derive Shannon’s conditional entropy3:

H[S|Lq] = −
∑

s

Pr[s]
∑

lq

Pr[lq|s] · log2 Pr[s|lq] = E
s

(
Hq

s,s

)
(4)

3 With Pr[s|lq] =
Pr[lq|s]·Pr[s]∑

s∗ Pr[lq|s∗]·Pr[s∗]
.
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We note that this definition is equivalent to the classical one since:

H[S|Lq] = −
∑

lq

Pr[lq]
∑

s

Pr[s|lq] · log2 Pr[s|lq]

= −
∑

s

Pr[s]
∑

lq

Pr[lq|s] · log2 Pr[s|lq]

Then, we define an entropy reduction matrix: H̃
q

s,s∗ = H[S]−H
q
s,s∗ , where H[S]

is the entropy of the key class variable S before any side-channel attack has been
performed: H[S] = −Es log2 Pr[s]. It directly yields the mutual information:

I(S;Lq) = H[S]−H[S|Lq] = E
s

(
H̃

q

s,s

)

We mention that the inputs and outputs of an abstract computer are generally
given to the side-channel adversary (but hidden in the formulas for clarity rea-
sons). Therefore, it is implicitly a computational type of entropy that is proposed
to evaluate the physical leakages. This is because divide-and-conquer strategies
target a key class assuming that the rest of the key is unknown. But from a purely
information theoretic point of view, the knowledge of a plaintext-ciphertext pair
can determine a key completely (e.g. for block ciphers). Hence and as detailed in
the next section, the amount of information extracted by a side-channel adver-
sary depends on its computational complexity. Note also that leakage functions
can be discrete or (most frequently) continuous. In the latter case, it is formally a
conditional differential entropy that is computed. Note finally that in simulated
attacks where an analytical model for a continuous leakage probability distribu-
tion is assumed, the previous sums over the leakages can be turned into integrals,
e.g. we have for the conditional entropy:

H[S|Lq] = −
∑

s

Pr[s]

∫ +∞

−∞
Pr[lq|s] · log2 Pr[s|lq] dlq

5 Practical limitations

One important goal of the present framework is to allow a sound evaluation of any
given implementation, if possible independently of an adversary’s algorithmic
details. For this purpose, the strategy we follow is to consider an information
theoretic metric that directly depends on the leakages probability distribution
Pr[Lq|S]. Unfortunately, there are two practical caveats in this strategy.

First, the conditional probability distribution Pr[Lq|S] is generally unknown.
It can only be approximated through physical observations. This is the reason
for the leakage function abstraction in the model of Micali and Reyzin. It infor-
mally states that the only way an adversary knows the physical observables is
through measurements. Therefore, practical attacks and evaluations have to ex-
ploit an approximated distribution P̂r[Lq|S] rather than the actual one Pr[Lq|S].
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Second, actual leakages may have very large dimensions since they are typically
the output of a high sampling rate acquisition device like an oscilloscope. As a
consequence, the approximation of the probability distribution for all the leakage
samples is computationally intensive. Practical attacks usually approximate the
probability distribution of a reduced set of samples, namely P̂r[L̃q|S].

We denote side-channel attacks that exploit the approximated probability
distribution of a reduced set of leakage samples as generic template attacks.
A straightforward consequence of the previous practical limitations is that for
any actual device, the mutual information I(S;Lq) can only be approximated
through statistical sampling, by using generic template attacks.

We note that these generic attacks are generally assumed to be the strongest
type of side-channel attacks in the literature. This informally confirms that they
are convenient tools to evaluate the security limits of a leaking device. However,
the term “generic template” still hides various types of techniques that can be
used to approximate the leakage distribution. For example, template attacks such
as in [8] use a Gaussian assumption for the leakages which frequently turns out
to be very efficient in practice. But this is of course not mandatory. Eventually,
if no assumptions at all can be made, it is still possible to approximate Pr[Lq|S]
with histograms. Also, there are different concerns in the application of template
attacks such as: “how to limit the number of leakage samples for which the
distribution will be estimated?” or “how to limit the number of templates to
build?”. The data dimensionality reduction techniques used in [4, 35] and the
stochastic models in [17, 31] can be used to answer these questions in a systematic
manner. But there is no general theory allowing one to decide what is the best
attack for a given device. Hence, in the following we will essentially assume that
one uses the “best available tool” to approximate the leakage distribution. Once
this assumption is made, there remains the question of “how to use these tools
to properly evaluate leaking implementations and side-channel adversaries?”.
This is the goal of the present framework. Quite naturally, the better generic
template attacks perform in practice, the better our framework allows analyzing
the causes and consequences of physical information leakages.

6 Relations between the evaluation metrics

In this section, we provide theoretical arguments that justify and connect the
previous information theoretic and security metrics. These connections allow
us to put forward interesting features and theoretical limitations of our model.
In particular, we will consider two important questions. First, as mentioned in
Section 5, generic template attacks require to estimate the leakage probability
distribution. Such a leakage model is generally built during a preparation phase
and then used to perform a key recovery during an exploitation phase (as pic-
tured in Figure 1). And as mentioned in Section 4.1, these phases have to be
performed within certain computational limits. Hence, to the previously defined
complexity values τ, m, q of the online phase, one has to add the complexities
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of the preparation phase, denoted as τp, mp, qp. The first question we tackle is:
given some bounds on (τp, mp, qp), can an adversary build a good estimation of
the leakage distribution? We show in Section 6.1 that the conditional entropy
matrix of Equation (3) is a good tool to answer this question. We also show how
it relates to the asymptotic success rate of a Bayesian adversary.

Then, assuming that one can build a good approximation for the leakage
distribution, we investigate the extent to which the resulting estimation of the
mutual information allows comparing different implementations. Otherwise said,
we analyze the dependencies between our information theoretic and security
metrics. We show that there exist practically meaningful contexts of Gaussian
side-channels for which strong dependencies can be put forward. But we also
emphasize that no general statements can be made for arbitrary distributions.
As a consequence, Section 6.2 essentially states that the mutual information is
a good metric to compare different implementations, but it always has to be
completed with a security analysis (i.e. success rate and/or guessing entropy).

Note that these two questions relate to different concerns. The first one deals
with computational aspects in statistical inference problems. It only makes sense
for experimental attacks and bounded adversaries. The second one deals with
ideal relations between the metrics that are even meaningful in simulations.

6.1 Asymptotic meaning of the conditional entropy:

“Can I approximate the leakage probability distribution?”

We start with three definitions.

Definition 1. The asymptotic success rate of a side-channel adversary AEK ,L

against a key class variable S is its success rate when the number of measure-
ment queries q tends to the infinity. It is denoted as: Succ

sc-kr-o,S
AEK ,L

(q →∞).

Definition 2. Given a leakage probability distribution Pr[Lq|S] and a num-
ber of side-channel queries stored in a leakage vector lq, a Bayesian side-channel
adversary is an adversary that selects the key as argmaxs∗ Pr[s∗|lq].

Definition 3. An approximated leakage distribution P̂r[L̃q|S] is sound if the
first-order asymptotic success rate of a Bayesian side-channel adversary exploit-
ing this leakage distribution against the key class variable S equals one.

In this section, we assume that one has built an approximated leakage dis-
tribution P̂r[L̃q|S] with some (bounded) measurement queries qp, memory mp

and time τp. We want to evaluate if this approximation is good. For theoreti-
cal purposes, we consider an adversary/evaluator who can perform unbounded
queries to the target device during the exploitation phase. We use these queries

to evaluate the entropy matrix Ĥ
q

s,s∗ defined in Section 4.2. It directly leads to
the following relation with the asymptotic success rate of a Bayesian adversary.
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Theorem 1. Assuming independent leakages for the different queries in a side-
channel attack, an approximated leakage probability distribution P̂r[L̃q|S] is sound
if and only if the conditional entropy matrix evaluated in an unbounded exploita-

tion phase is such that argmins∗ Ĥ
q

s,s∗ = s, ∀s ∈ S.

Proof. let us consider a target key class s and a leakage matrix lp,q that contains
p realizations of a q-queries leakage vector Lq. A Bayesian adversary having
access to these leakages is successful if and only if:

s = argmax
s∗

P̂r[s∗| ˜lp,q]

s = argmax
s∗

P̂r[ ˜lp,q|s
∗] · Pr[s∗]

P̂r[ ˜lp,q]

Assuming that the probabilities Pr[s∗] are equal and since P̂r[ ˜lp,q] is independent
of s∗ (it only depends on the correct class s), it directly yields:

s = argmax
s∗

P̂r[ ˜lp,q|s
∗]

Since we assume independent leakages for different queries, we also have:

s = argmax
s∗

p∏

i=1

P̂r[ ˜li,q|s
∗]

Any ˜li,q has exactly the same size as a q-element leakage vectors l̃q for which the
distribution has been approximated during the preparation phase. Additionally,
since we consider an asymptotic attack (i.e. an unbounded exploitation phase),
p is not bounded and each q queries to the target physical computer determine a
leakage trace ˜li,q picked up from the real leakage distribution Pr[Lq|s]. Therefore,
an asymptotic attack is successful if and only if:

s = argmax
s∗

∏

i

P̂r[ ˜li,q|s
∗]Pr[li,q|s]

s = argmax
s∗

∏

i

P̂r[s∗| ˜li,q]
Pr[li,q|s]

s = argmax
s∗

∑

i

Pr[li,q|s] · log2 P̂r[s∗| ˜li,q] (5)

Finally, we just observe that the sum in Equation (5) is equivalent to Equa-
tion (3) but for their sign and the approximated probability in the logarithmic
factor. That is, it exactly corresponds to how the conditional entropy matrix is
estimated in practice. Therefore, if the previous condition holds for all classes s,
the Bayesian side-channel attack is asymptotically successful. ⊓⊔

There are several important remarks:
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1. q queries to a target device can be seen both as q realizations of a single query
leakage vector L1 or as a single realization of a q-query leakage vector Lq.

2. Theorem 1 only makes sense for bounded preparation phases. For unbounded
preparations, an adversary would eventually access the exact distribution
Pr[Lq|S]. In this context, the soundness does only depend on the cardinality
of the different sets {s∗|Pr[Lq|s

∗] = Pr[Lq|s]}, ∀s ∈ S.
3. The condition of independence for consecutive leakages is not expected to

be fully verified in practice. For example, there could exist history effects in
the side-channel observations. However, it is expected to hold to a sufficient
degree for our proof to remain meaningful in most applications.

4. In practice, the exploitation phase in a side-channel attack is bounded as the
preparation. Therefore, Theorem 1 will be relevant as long as the number
of leakages used to test the approximated leakage distribution and estimate
the conditional entropy matrix is sufficient (i.e. for a large enough p).

5. Finally, the condition on the entropy matrix Ĥ
q

s,s∗ is stated for the number
of queries q for which the leakage distribution Pr[Lq|S] was approximated
during the preparation phase. In general, finding a sound approximation for
q implies that it should also be feasible to find sound approximations for
any q′ > q. But in practice, computational limitations can make it easier to
build a sound approximation for small q values than for larger ones.

We mention that a sound leakage probability distribution could be equivalently
defined as giving rise to an asymptotic guessing entropy of one.

6.2 Comparative meaning of the conditional entropy:

“Does more entropy imply more security?”

Let us write an exemplary conditional entropy matrix and its estimation as:

H
q
s,s∗ =




h1,1 h1,2 ... h1,|S|
h2,1 h2,2 ... h2,|S|
... ... ... ...

h|S|,1 h|S|,2 ... h|S|,|S|


 Ĥ

q

s,s∗ =




ĥ1,1 ĥ1,2 ... ĥ1,|S|
ĥ2,2 ĥ2,2 ... ĥ2,|S|
... ... ... ...

ĥ|S|,1 ĥ|S|,2 ... ĥ|S|,|S|




Theorem 1 states that if the diagonal values of a (properly approximated) matrix
are minimum for all key classes s ∈ S, then these key classes can be asymptot-
ically recovered by a Bayesian adversary. As a matter of fact, it gives rise to
a binary conclusion about the approximated leakage probability distribution.
Namely, Theorem 1 answers the question: “Can one approximate the leakage
probability distribution under some computational bounds τp,mp,qp?”.

Let us now assume that the answer is positive and denote each element hs,s

as the residual entropy of a key class s. In this subsection, we are rather inter-
ested in the values of these entropy matrix elements. In particular, we aim to
highlight the relation between these values and the effectiveness of a side-channel
attack, measured with the success rate. Otherwise said, we are interested in the
question: “Does less entropy systematically implies a faster convergence towards
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a 100% success rate?”. As a matter of fact and contrary to the previous section,
this question makes sense both for the ideal conditional entropy matrix that
would correspond to an exact leakage distribution and for its approximation.
Since general conclusions for arbitrary leakage distributions are not possible to
obtain, our following strategy is to first consider simple Gaussian distributions
and to extrapolate the resulting conclusions towards more complex cases.

We start with three definitions.

Definition 4. An |S|-target side-channel attack is an attack where an adversary
tries to identify one key class s out of |S| possible candidates.

Definition 5. An univariate (resp. multivariate) leakage distribution is a proba-
bility distribution predicting the behavior of one (resp. several) leakage samples.

Definition 6. A Gaussian leakage distribution is the probability distribution of
a leakage function L(Cα, M, R) such that L(Cα, M, R) = L’(Cα, M)+ L”(R) and
the random part of the leakages L”(R) is a normally distributed random noise4

with mean zero and standard deviation σ.

Finally, since we plan to consider the entropy matrix H
q
s,s∗ line by line and

therefore, the residual entropy of the different key classes s, we also need a more
specific definition of the success rate against a given key class s:

Experiment Exp
sc-kr-o,s
AEK ,L

g← AEk,L;
if s ∈ [g1, . . . , go] then return 1;

else return 0;

The oth order success rate of the side-channel key recovery adversary AEk,L

against a key class s (i.e. a realization of the variable S) is then defined as:

Succ
sc-kr-o,s
AEk,L

(τ, m, q) = Pr [Exp
sc-kr-o,s
AEK,L

= 1] (6)

Examples. Figure 2 illustrates several Gaussian leakage distributions. The up-
per left picture represents the univariate leakage distributions of a 2-target side-
channel attack, each Gaussian curve corresponding to one key class s. The upper
right picture represents the bivariate leakage distributions of a 2-target side-
channel attack. Finally, the lower left and right pictures represent the univariate
and bivariate leakage distributions of an 8-target side-channel attack. Note that
in general, the internal state of an implementation does not only depend on the
keys but also on other inputs, e.g. the plaintexts in block ciphers. Hence, the dif-
ferent dimensions in a multivariate distribution can represent both the different
samples of a single leakage trace (generated with a single plaintext) or different
traces (e.g. each dimension could correspond to a different plaintext). Eventually,
it is an adversary’s choice to select the internal states for which templates will

4 Experimentally observed in a number of works, e.g. [25], Section 4.2.
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be built. Therefore, we do not claim that these distributions always connect to
practical attacks. But as will be seen in the following, even these simple theoret-
ical contexts hardly allow simple connections between information and security.
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Fig. 2. Illustrative leakage probability distributions Pr[Lq |S].

We now discuss formally the connections between the success rate against a
key class s and its residual entropy for idealized distributions and attacks.

Definition 7. An ideal side-channel attack is a Bayesian attack in which the
leakages are exactly predicted by the adversary’s approximated probability den-
sity function P̂r[L̃q|S] (e.g. thanks to an unbounded preparation phase).

Lemma 1. In an ideal 2-target side-channel attack exploiting a univariate Gaus-
sian leakage distribution, the residual entropy of a key class s is a monotonously
decreasing function of the single query (hence multi-queries) success rate against s.

Proof. Let us consider the Gaussian univariate leakage distributions of the 2-
target side-channel attack in the upper left part of Figure 2. Without loss of
generality, we assume the correct key class to have mean zero and the wrong
key class to have mean δ. Let us also assume a noise standard deviation σ. Let
us finally denote the probability density function of a Gaussian random variable

X as Nx(µ, σ) = 1
σ
√

2π
· exp

(−(x−µ)2

2σ2

)
. According to the definitions of Section 4,

the single query success rate and the residual entropy of the key class s equal:

Succ
sc-kr-1,s
AEk,L

(δ, σ) =

∫ δ/2

−∞
Nx(0, σ) dx
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hs,s(δ, σ) = −

∫ +∞

−∞
Nx(0, σ) · log2

Nx(0, σ)

Nx(0, σ) + Nx(δ, σ)
dx

By applying a change of variable u = x/σ, we can rewrite:

Succ
sc-kr-1,s
AEk,L

(δ, σ) =

∫ δ
2σ

−∞
Nu(0, 1) du

hs,s(δ, σ) = −

∫ +∞

−∞
Nu(0, 1) · log2

Nu(0, 1)

Nu(0, 1) + Nu(δ/σ, 1)
du

Defining a variable z = δ/σ, we finally have:

Succ
sc-kr-1,s
AEk,L

(z) =

∫ z/2

−∞
Nu(0, 1) du

hs,s(z) = −

∫ +∞

−∞
Nu(0, 1) · log2

Nu(0, 1)

Nu(0, 1) + Nu(z, 1)
du

Then, we just observe that Succ
sc-kr-1,s
AEk,L

and hs,s are respectively monotonously

increasing and decreasing functions of z, which completes the proof. ⊓⊔

Lemma 2. In an ideal 2-target side-channel attack exploiting a multivariate
Gaussian leakage distribution, with independent leakage samples having the same
noise standard deviation, the residual entropy of a key class s is a monotonously
decreasing function of the single query (hence multi-queries) success rate against s.

Proof sketch. We just move to a multivariate case such as the bivariate example
of the upper right picture in Figure 2. Since the covariance matrix is diagonal,
the success rate and the residual entropy only depend on the ratio between:

1. The Euclidean distance δ between the multivariate Gaussian mean values.
2. The leakage noise standard deviation σ.

By defining a variable z = δ/σ, the same reasoning as in Lemma 1 applies. ⊓⊔

The previous lemmas essentially state that (under certain conditions) the
entropy and success rate in a 2-target side-channel attack only depend on the
normalized distance δ/σ. It implies the straightforward intuition that more en-
tropy means less success rate. Unfortunately, when moving to the |S|-target case
with |S| > 2, such a perfect dependency does not exist anymore. One can observe
in the lower right part of Figure 2 that the entropy and success rate not only de-
pend on the normalized distances δi/σ but also on how the keys are distributed
within the leakage space. Therefore, we now define a more specific context in
which formal statements can be proven. Thereafter, we discuss the limitations
of the entropy vs. success rate dependencies in a general setting.
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Definition 8. A perfect Gaussian leakage distribution Pr[Lq|s] for a key class s
is a Gaussian leakage distribution with independent leakage samples having the
same noise standard deviation such that the Euclidean distance between each
key class candidate mean value and the correct key class candidate mean value
is equal and the residual entropy of the key class s is maximum.

An example of perfect leakage distribution is in the upper left part of Figure 3.

Theorem 2. In an ideal side-channel attack exploiting a perfect Gaussian leak-
age distribution, the residual entropy of a key class s is a monotonously decreas-
ing function of the single query (hence multi-queries) success rate against s.

Proof sketch. In perfect leakage distributions, the Euclidean distance between
each key class candidate mean value and the correct key class candidate mean
value is equal. Additionally, the distribution of the different key classes is fixed in
the leakage space in order to maximize the residual entropy of s. Therefore, the
residual entropy and the success rate against s only depend on the ratio between
this Euclidean distance and the noise standard deviation which implies that The-
orem 2 is a straightforward consequence of Lemma 2. ⊓⊔

Theorem 2 constitutes our main positive result for the use of the conditional
entropy as a comparison metric for different implementations. Its relevance to
practice depends on the extent to which actual leakage distributions correspond
to the idealized Gaussian curves that we considered. As for Theorem 1, a corol-
lary could be demonstrated with the guessing entropy. Unfortunately, in the
most general context of non perfect leakage distributions, those general state-
ments do not hold. In the remaining of this section, we point out two important
facts that highlight the limitations of the conditional entropy.

Fact 1. In the context of non-perfect Gaussian leakage distributions, the con-
stant residual entropy of a key class does not imply a constant success rate (or
guessing entropy) against this key class. This is illustrated in Figure 3 for a 3-
key system. The upper right part of the figure shows different positions of the
right key candidate leading to a constant residual entropy. They are obtained
by changing the angle φ and reducing the distance δ accordingly, starting from
a perfect distribution. The lower parts of the figure show the corresponding suc-
cess rates and guessing entropy. As a matter of fact, they are not constant.

Fact 2. There exist leakage distributions Dx, Dy such that the residual entropy
for a class s corresponding to Dx is higher than the residual entropy for a class s′

corresponding to Dy and the success rate of every order for a Bayesian adversary
exploiting Dx is higher than the success rate for the same adversary exploiting
Dy. This is illustrated by the small reduction of the first order success rate in
the lower left part of Figure 3, for φ ≃ 1 and further discussed in Appendix B.

These facts essentially underline that there are no generally true dependencies
between the conditional entropy and the success rate in a general setting.
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Fig. 3. Perfect leakage distribution and leakage distributions having constant condi-
tional entropy with their associated success rates and guessing entropy .

6.3 Intuition of the metrics

In this section, we recall and detail a number of important intuitions that can be
extracted from the previous theory. We also discuss how they can be exploited in
practical applications and highlight the consequences of the previous limitations.

Intuitions related to Theorem 1.

1.1 Theorem 1 tells if it is possible to approximate a given leakage function in
a bounded preparation phase. As mentioned in Section 5, such an approxi-
mation highly depends on the actual tools that are used for this purpose. In
general, the better the tools, the better the evaluation. Hence, Theorem 1
allows checking if these tools are powerful enough. If they are not...

1.2 Theorem 1 indicates some resistance of the target implementation against
side-channel attacks. That is, if one cannot build a sound approximation of
the leakage probability distribution, even with intensive efforts, then the 1st-
order asymptotic success rate of the Bayesian side-channel adversary does
not reach one. But this does not imply security against side-channel attacks
(e.g. think about a caricatural device from which only one key could not be
recovered). In this context, it is important to evaluate the actual security
metrics for different adversaries in order to check if high success rates (possi-
bly of high orders) can still be reached. The position of the correct key class
in the entropy matrix is also informative with this respect. It can be used as
an efficient tool to check the similarities between different distributions.
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Intuitions related to Theorem 2.

2.1 Theorem 2 only applies to sound leakage distributions. Intuitively, it means
that comparing the conditional entropy provided by different leakage func-
tions only makes sense if the corresponding approximated leakage probability
distribution lead to asymptotically successful attacks.

2.2 Theorem 2 confirms that the mutual information is a relevant tool to com-
pare different implementations. It shows meaningful contexts of Gaussian
channels for which less residual entropy for a key class implies a more effi-
cient Bayesian key recovery. This strengthens the intuitive requirements of
Section 4, namely the need of an adversary independent metric having the
same meaning for any implementation. However, Section 5 and Facts 1, 2
also show that the comparisons based on the conditional entropy only can
be misleading, both for theoretical and practical reasons. Hence...

2.3 The conditional entropy is not a stand-alone metric to compare implementa-
tions and always has to be combined with a security analysis. Additionally
to the previously described limitations, this need relates to the methodolog-
ical separation of implementations and adversaries in our model. For a given
amount of information leaked by an implementation, different side-channel
distinguishers could be considered (see Appendix A). For example, template
attacks that closely relate to the definition of mutual information are not the
most practical in terms of adversarial context. Suboptimal distinguishers are
frequently used in practice. Therefore, security metrics are useful to evaluate
the number of queries for a given attack to succeed.

General remarks.

1. The limitations of the information theoretic metric should not be seen as
weaknesses in the model but as related to the inherent complexity of side-
channel attacks. Similarly, the existence of theoretical contexts for which the
conditional entropy is not perfectly meaningful to compare implementations
does not prevent it to be relevant in numerous practical contexts.

2. The mutual information, success rates and guessing entropy are average eval-
uation criteria. However in practice, the information leakages and security of
an implementation could be different for different keys. Therefore, it is im-
portant to also consider these notions for the different keys separately (e.g.
to evaluate the conditional entropy matrix rather than the mutual informa-
tion). This last remark motivates the following practice-oriented definition.

Definition 9. We say that a side-channel attack against a key class variable S
is a weak template attack if all the key classes s have the same residual entropy
hs,s and each line of the entropy matrix H

q
s,s∗ is a permutation of another line

of the matrix. We say that a side-channel attack is a strong template attack if
at least one of the previous conditions does not hold.
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Intuitively, a weak template attack can be straightforwardly analyzed with
the conditional entropy. The evaluation of a strong template attack requires to
consider every key class independently. The terms weak and strong relate to the
ability of the adversary to characterize key-specific features in his templates.

7 Applications of the model

In this section, we aim to provide paper-and-pencil examples of side-channel
attacks that confirm the previous intuitions and can be easily reproduced by
the reader. That is, we use idealized leakage functions in order to illustrate
interesting features of our model. Applications to more complex and practically
meaningful contexts can be found in other publications [24, 34, 36, 35].

For this purpose, we consider a known plaintext attack against a reduced
block cipher that we formalize as follows. Let S be a 4-bit substitution box, e.g.
the one of the AES candidate Serpent. We target the computation of y = S(x⊕k),
where x is a random plaintext and k a secret key. A Bayesian adversary is
provided with observations (x, L′(y) + r), where r is a gaussian noise with mean
0 and standard deviation σ. For any y value, the deterministic part of the leakage
L
′(y) is given by a vector Z. The adversary’s goal is to recover the key k.

7.1 Application of Theorem 1

Let us first consider the quite classical Hamming weight leakages where L
′(y) =

HW(y). Otherwise said, let us consider Z = [0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4].
We will compute three entropy matrices. In the first case (matrix A), we assume
noise-free leakages. Hence the entropy matrix is straightforward to compute and
the residual entropies all equal hs,s = −

∑4
h=0

(
4

h

)
/24 ·log2 1/

(
4

h

)
, the other ma-

trix elements being meaningless (nan). In the second case (matrix B), we have
σ = 1 and we perform a bounded preparation using 1000 measurements to ap-
proximate each element of Z. As a result, we obtain an approximated vector: Ẑ =
[0.02, 0.95, 1.03, 2.00, 1.01, 2.02, 2.02, 2.97, 1.01, 2.0, 1.99, 3.0, 1.99, 3.04, 3.0, 4.01].
We then evaluate the entropy matrix in an unbounded (i.e. in practice, suffi-
ciently sampled) exploitation phase. As a result, we observe that the diagonal
elements are still minimum in the matrix. This reveals that the approximation
of the leakage function is sound, i.e. the bounded preparation was successful.
But compared to the first example, the conditional entropy is increased. This is
caused by two reasons: (1) the approximated leakage model does not exactly cor-
respond to the actual leakage function and (2) there is noise in the leakages. Note
that the previous matrices typically correspond to a context of weak template
attacks since all the keys can be identified thanks to the same 16 plaintexts.

Ĥ
A,1
k,k∗ =

(
1.97 nan ... nan
nan 1.97 ... nan
... ... ... ...

nan nan ... 1.97

)
Ĥ

B,1
k,k∗ =

(
3.50 5.31 ... 4.58
5.11 3.50 ... 4.95
... ... ... ...

5.66 4.40 ... 3.50

)
Ĥ

C,1
k,k∗ =

(
5.19 4.55 ... 5.90
5.54 5.19 ... 4.46
... ... ... ...

5.09 4.64 ... 5.19

)
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In a third case (matrix C), we assume the same noise variance and an insufficient

preparation that leads to a bad leakage model approximated with the vector Ẑ =
[3, 1, 0, 2, 1, 3, 3, 2, 1, 2, 3, 0, 0, 1, 1, 2]. As a result, the matrix diagonal elements
are not minimum anymore which involves that using this model will not allow
a successful key recovery. These examples confirm the intuitions in the previous
section. Namely, the important question in side-channel attacks is not: “is there
information available in the physical leakages?” but rather “can I exploit it?”.
The conditional entropy matrix is a convenient tool to answer this question.

7.2 Application of Theorem 2

Let us now consider different leakage functions and assume an unbounded prepa-
ration phase (i.e. the adversary can exploit the exact leakage distribution) in
order to evaluate the extent to which more entropy leads to less success rate in
practical contexts. As in the previous section, we start the Hamming weight leak-
ages and Z1 = [0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4]. We also evaluate two other
leakage functions represented by the vectors: Z2 = [0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
3, 3, 3, 3] and Z3 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 3, 3, 4, 4].The conditional entropies
and single-query success rates with σ = 0 can be straightforwardly computed as:

H[K|LZ1

1 ] ≃ 1.97 H[K|LZ2

1 ] = 2 H[K|LZ3

1 ] ≃ 2.16

Succsc-kr

L
Z1

1

(q = 1) = 5
16 Succsc-kr

L
Z2

1

(q = 1) = 1
4 Succsc-kr

L
Z3

1

(q = 1) = 5
16

At first sight, it seems that these leakage functions exactly contradict Theorem
2. For example, when moving from Z2 to Z3, we see that both the conditional
entropy and the success rate are increased. However, the goal of side-channel
attacks is generally to reach high success rates that are not obtained with a
single query. Hence, it is also interesting to investigate the success rate for more
queries. In the left part of Figure 4, these success rates for increasing q values are
plotted. It clearly illustrates that while Z2 leads to a lower success rate than Z3

for q = 1, the opposite conclusion holds when increasing q. That is, the intuition
given by Theorem 2 only reveals itself for q > 2. Importantly, these conclusions
can vary when noise is inserted in the leakages, e.g. assuming σ = 1, we have:

H[K|LZ1

1 ] ≃ 3.50 H[K|LZ2

1 ] ≃ 3.42 H[K|LZ3

1 ] ≃ 3.22

The right part of Figure 4 plots the success rates of these noisy leakage functions.
It again highlights a context in which Theorem 2 is eventually respected. In gen-
eral, these examples underline another important feature of our metrics. Namely,
the more challenging the side-channel attack (i.e. the more queries needed to
reach high success rates), the more significant the conditional entropy is. Oth-
erwise said: the mutual information better reveals its intuition asymptotically.
And in such contexts, the single-query success rate can be misleading.

Note that the examples in this section are more directly reflective of ac-
tual side-channel attacks in which different plaintexts can generally be used to
identify a key class than the ideal contexts investigated in Section 6.2.
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Fig. 4. 1st-order success rates in function of the number of queries for the leakages
functions corresponding to Z1 (solid line), Z2 (dashed line) and Z3 (dotted line).

7.3 Summary of the important model features

Before to conclude, we briefly recall some important aspects of our model.

1. The evaluation of implementations and adversaries are different issues and
this has to be taken into account in the formalization of side-channel attacks.

2. As a consequence, two different types of metrics are required in these eval-
uations, that we denote as information theoretic and security metrics.

3. Shannon’s conditional entropy, success rates of different orders and the guess-
ing entropy are interesting candidates for such metrics.

4. Information is not equivalent to security: under certain conditions, the con-
ditional entropy can be used to compare implementations but in general,
bits of entropy cannot be translated into bits of security.

5. Intuitively, the model can be used as a middle-ware between the evalua-
tion of physical information leakages and their exploitation. It lets the best
combination of the two issues as an open algorithm-dependent question. For
example, the soundness of an approximated leakage probability distribution
is always tested for a given key class. But this still requires to find the best
key classes to target if one wants to develop optimized attacks.

With respect to the relevance of other metrics in the model, we finally men-
tion that min entropy is equivalent to a single-query success rate. Since side-
channel attacks are essentially multiple-query attacks, we believe that Shannon’s
conditional entropy better captures the information leakages in most practical
applications. For example, Figure 4 is typical of contexts where min entropy is
misleading, i.e. where the success rate for q = 1 is not very significant while the
conditional entropy nicely quantifies the evolution of this success rate for any
larger number of queries. But as already said, the information theoretic analysis
always has to be completed with a security analysis. Hence, even in contexts
where min entropy is the right metric, our model would detect it.
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8 Evaluation methodology

Following the previous sections, an evaluation methodology for side-channel at-
tacks intends to analyze both the quality of an implementation and the strength
of an adversary. It involves the five steps illustrated in Figure 5:

Define the implementation 1 (EK ,L )

Define the target 2 s, | |

Evaluate the information

3        In theory: I ( S ;  L ) ,

   In practice: I ( S ;  R ( L )) , Evaluate the security5q

Define the adversary4

   In theory In practice

   Succ          ( ,m,q) Succ          ( ,m,q)

   GE          ( ,m,q) GE          ( ,m,q) 

Signal-to-Noise Ratio

q

EK ,L
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sc-kr-o,Ssc-kr-o,S

~

H
q

s,s

H
q
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Fig. 5. Evaluation methodology for side-channel attacks.

1. We define the target implementation. That is, we define the combination of
an abstract computer and a leakage function. In practice, the target imple-
mentation is a physical object, e.g. a smart card, FPGA or ASIC running
some cryptographic primitive associated with some measurement setup.

2. We define the target secret class s for the side-channel attack.

3. Once the target has been specified, we answer the first question in our evalu-
ation, namely: “What is the amount of exploitable information contained in
the physical observations obtained from a leaking device?”. For this purpose,
we use the mutual information or entropy matrix. As previously mentioned,
in practice it can only be approximated from a number of leakage samples,
through an actual (template-like) adversary’s measurements. Alternatively
and as a preliminary step in the evaluations, it can also be estimated theo-
retically by using a simulator in place of the actual leakage function.

4. We define the adversary that is used to exploit the side-channel leakages. It
typically implies to specify all the steps of the attack described in Appendix
A that includes, e.g. leakage modeling, statistical test, . . .

5. We finally answer the second question in our evaluation, namely: “How suc-
cessfully can an adversary turn his physical information into a practical at-
tack?”. For this purpose, we use the success rate of the side-channel key
recovery adversary (or the guessing entropy) defined in Section 4.1.
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Figure 5 again indicates that the information theoretic metric can be used to
measure an implementation while the actual security metrics are rather useful
to evaluate adversaries. Additionally to these metrics, it is often interesting to
define a Signal-to-Noise Ratio (SNR) in order to determine the amount of noise
in the physical observations. Since noise insertion is a generic countermeasure
to improve resistance against side-channel attacks, it can be used to plot the
information theoretic and security metrics with its respect.

We note finally that the definition of an implementation requires to evaluate
the cost of the equipment used to monitor the leakages. Since quantifying such
costs is typically the tasks assigned the standardization bodies, we refer to the
common criteria [10] and FIPS 140-2 documents [14] (or alternatively to the
IBM taxonomy [1]) for these purposes. In general, the benefit of the presently
introduced model is not to solve these practical issues but to state the side-
channel problem in a sound framework for its analysis. Namely, it is expected
that the proposed security and information theoretic metrics can be used for
the fair analysis, evaluation and comparison of any physical implementation or
countermeasure against any type of side-channel attack.

9 Conclusions and open problems

A framework for analyzing cryptographic implementations is introduced in order
to unify the theory and practice of side-channel attacks. It is aimed to bridge the
formal understanding of physically observable cryptography to the exploitation
of actual leakages in experimental key recoveries. The framework is centered
around a theoretical model in which the effect of practically relevant leakage
functions is evaluated with a combination of security and information theoretic
metrics. It allows a fair discussion of the tradeoffs in physically observable cryp-
tography, i.e. “flexibility vs. efficiency” and “information vs. computation”.

The flexibility vs. efficiency tradeoff typically relates to the adversarial con-
text considered. As a matter of fact, an adaptive adversary using a carefully
profiled leakage model will generally exploit the available physical information
(much) more efficiently than a non-adaptive one, using a non profiled leakage
model. However, simpler prediction models do not only involve a sub-optimal
information extraction from side-channel traces. They may also be more easily
reproducible to different devices. As a typical example, Kocher’s original Differ-
ential Power Analysis only assumes that somewhere in a physical observation,
the leakage depends on a single bit value. The simplicity of this assumption made
it straightforwardly applicable to a wide range of platforms, without any adap-
tation. Correlation attacks, template attacks or stochastic models are trading
some of this flexibility for a more efficient information extraction.

By contrast, the information vs. computation tradeoff relates to the com-
putational strategy considered. As a matter of fact, for comparable amounts of
side-channel queries, a soft strategy trying to extract a list of key candidates
including the correct one will generally have a higher success rate than a hard
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strategy, trying to extract the correct key value only. However, if this list of
candidates can be tested with some computation (i.e. exploiting the black-box
access and classical cryptanalysis techniques), it can be turned into a successful
key recovery. Otherwise said, a lack of physical information can be overcome by
a more computationally intensive adversarial strategy.

As an interface between an engineering problem (i.e. how much is leaked?)
and a cryptographic problem (i.e. how to exploit it?), our framework conse-
quently helps putting forward properly quantified weaknesses in physically ob-
servable devices. The fair evaluations provided by our analysis can then be used
in two directions. Either the physical weaknesses can be fed-back to hardware
designers to reduce physical leakages. Or they can be sent to cryptographic de-
signers in order to conceive schemes that can cope with physical leakages.

Open questions derive from this model in different directions. A first one re-
lates to the best exploitation of large side-channel traces, i.e. to the construction
of (ideally) optimal distinguishers. This requires investigating the best heuristics
to deal with high dimensional leakage data (our model assumes adversaries ex-
ploiting such specialized algorithms). A second one relates to the investigation
of stronger security notions than side-channel key recovery. That is, the different
security notions considered in the black box model (e.g. the undistinguishability
from an idealized primitive) should be considered in the physical world, as initi-
ated in [28] (but again in a more specialized fashion). A third possible direction
relates to the construction of implementations with provable (or arguable) se-
curity against side-channel attacks, e.g. as proposed in [12, 30, 29]. Finally, this
work could be extended to other physical threats (e.g. fault attacks) and com-
bined with other approaches for modeling physical attacks such as [16, 20, 21].
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A Practice-oriented definitions

From the definition of Section 4.1, a side-channel key recovery adversary is de-
fined as an algorithm trying to recover a key class s from a number of queries to
an implementation (EK , L). In this section, we aim to give a more detailed de-
scription of such an adversary, considering the different steps in the side-channel
attack illustrated in Figure 6. As mentioned in Section 3, it consists of two phases
that we respectively denote as the exploitation phase (which is the main core of
the attack) and the preparation phase (which is the counterpart of the learning
phase in artificial intelligence problems). We first describe the exploitation phase
and mention that some of the described steps are facultative.

1. Input selection. The adversary selects its (possibly adaptive) q queries xq

(defined in Section 4.2) to the target device thanks to an algorithm I.

2. Values derivation. For each key class candidate s∗, the adversary predicts
some values within the target device using an algorithm V. As a result, it
obtains |S| vectors v

q
s∗ = V(s∗,xq) containing Nv-element predictions vi

s∗ ,
i ∈ [1, q], where Nv is the number of internal values predicted per query.

3. (a) Leakages modelling. For each key class candidate s∗, the adversary mod-
els a part/function of the actual leakage emitted by the target device. De-
pending on the attacks, the model can be the approximated probability
density function of a reduced set of leakage samples denoted M(s∗, l̃q) =

P̂r[s∗ |̃lq], as when using templates [8]. In this context, l̃q = [l̃1, l̃2, . . . , l̃q]
is the vector of leakage samples that are actually modelled by the ad-
versary and l̃i is an Nm-element trace corresponding to the ith query to
the target device (Nm is the number of samples modelled per query). Or
the model is a deterministic function (e.g. the Hamming weight) of the
previously defined values: M(s∗,vq

s∗), as in correlation attacks [6]. We
denote attacks exploiting a model as comparison attacks.

(b) Leakages partitioning. If no leakage model is available, the adversary
can define partitions (for each key class candidate s∗) according to a
function of the previously defined values that we denote as P(s∗,vq

s∗).
This is typically what was proposed in Kocher’s original DPA in which
the leakages are partitioned according to the value of one bit in the
implementation. We denote such attacks as partition attacks.

4. Leakages observation (or measurement). The adversary monitors the leak-
ages of the target device containing the correct key class s. He stores these
observations in the previously defined vector lq containing Nl-sample traces
li, i ∈ [1, q], where Nl is the number of leakage samples stored per query.

5. Leakages reduction. In comparison attacks, the leakages and predictions pos-
sibly have different number of samples Nl 6= Nm. Therefore, a mapping R is
used to transform the leakages such that R(li) is a Nm-sample trace. Addi-
tionally, the mapping possibly includes the post-processing of the traces, e.g.
filtering, averaging. In the context of partition attacks, the reduction simply
determines the leakage samples for which the partition will be tested.

29



6. Statistical test. For each key class candidate s∗, the adversary applies a sta-
tistical test T to either compare a model M(s∗, .) with the transformed leak-
ages or to check if a partition P(s∗, .) is meaningful. It obtains an |S|-element
vector gq = T(M(s∗, .), R(lq)) or gq = T(P(s∗, .), R(lq)) containing the attack
result, as in Section 4.1. Typical statistical tools include the difference of
mean test [27], the Pearson correlation coefficient, the mutual information
analysis [18] or the Bayesian classifier that is central in this work.

7. Decision: from the previous result, the adversary selects a key candidate (i.e.
does a hard decision) or a list of key candidates (i.e. does soft decision) and
stores them in a Nd-element vector dq = D(gq).

8. Offline computation: if a soft strategy is applied, the adversary finally tests
the remaining candidates by a number of executions of the target algorithm.

Input selection1 <= I

Values derivation2 <= V Leakage observation4

Leakage modeling

Leakage partitioning
3

<= M

<= P

Leakage reduction5 <= R

Statistical test6 <= T

Decision7 <= D

Offline computation8

Leakage characterization

Time profiling
=> M,R

if adaptive

Preparation  phase Exploitation phase

<= L

: Adversary

: Implementation

Fig. 6. Practical side-channel adversary.

Preliminary to the exploitation phase, the preparation phase produces the
leakage model M and reduction mapping R, e.g. by profiling and characterizing
the device. As a matter of fact, deriving these functions sometimes involves the
same steps as the exploitation phase. But since the preparation can be performed
once and then used in several exploitations, it is interesting to separate both
phases. Importantly, the definition of the preparation and exploitation phases
also has to include the description of the adversary’s capabilities, as in the clas-
sical black box setting, e.g. non adaptive/adaptive, unknown/known/chosen,
plaintext/ciphertext, . . . , with the additional possibility to have known or cho-
sen keys during the preparation phase. An exemplary application of the previous
definitions to a set of standard side-channel attacks can be found in [36].
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B More entropy sometimes means more success rate
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Fig. 7. Finding leakage distributions with more entropy and more success rate.

Figure 7 illustrates the search for leakage distributions having both less resid-
ual entropy and less success rate of every order for a Bayesian adversary. It
considers a 3-key system such as the one in the upper right part of Figure 3.

Let us assume we first modify the angle φ from 0 to π/4, without changing
the distance δ. As illustrated in the upper part of Figure 7, it implies both a
reduction of the residual entropy and an increase of the (first order) success rate
against the central key class. We store the maximum and minimum value for
the residual entropy. Then, we reduce the distance δ without changing the angle
φ. As illustrated in the lower part of the figure, it implies both an increase of
the residual entropy and a reduction of the (first order) success rate against the
central key class. We store the distance were the residual entropy is back to its
initial value. This distance is represented in the lower parts of the figure with
a vertical line. But at this distance, the success rate is smaller than its initial
value. So, there are points were reducing the residual entropy also reduces the
(first order) success rate. Since changing the angle straightforwardly implies a
reduction of the second order success rate, we have a reduction of the success
rate for every meaningful order (the third order success rate is stuck at one).
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C Notation index

In general and excepted if explicitly mentioned otherwise, capital letters repre-
sent variables X , small letters represent particular values of the variables x and
sets or alphabets are denoted with calligraphic letters X . Bold letters denote vec-
tors and matrices X. Sans serif fonts are used for algorithms and functions X,x.

α Abstract computer/cryptographic primitive pp 4, sec 2
αi Virtual Memory Turing Machine (VTM) pp 4, sec 2
AEK ,L Side-channel key recovery adversary pp 8, sec 4.1
D Decision function pp 30, app B
E(X) The expected value of a random variable X pp 9, sec 4.1
EK Family of cryptographic abstract computers pp 7, sec 4.1

indexed by a variable key K
γ Key classification function pp 7, sec 4.1

GEsc-kr-S
AEK ,L

Guessing entropy of a side-channel key recovery pp 9, sec 4.1

adversary against a key class variable S
H

q
s,s∗ Conditional entropy matrix pp 9, sec 4.2

H̃
q

s,s∗ Entropy reduction matrix pp 10, sec 4.2
hs,s Residual entropy of a key class s pp 14, sec 6.2
H[S|Lq] Conditional entropy pp 10, sec 4.2
I Input selection algorithm pp 29, app B
I(S;Lq) Mutual information pp 10, sec 4.2
L(Cα, M, R) Leakage function pp 4, sec 2
Lq, lq Side-channel leakage vector pp 9, sec 4.2
M(s∗, .) Leakage model for a key class s∗ pp 29, app B
P(s∗, .) Leakage partition for a key class s∗ pp 29, app B
Pr[s|lq] Probability of a key class s given a leakage lq pp 9, sec 4.2
Pr[S|Lq] Probability distribution of a key class variable S

given a leakage variable Lq pp 10, sec 5
R Leakage reduction mapping pp 29, app B

Succ
sc-kr-o,S
AEK,L

oth-order success rate of a side-channel key pp 8, sec 4.1

recovery adversary against a key class variable S

Succ
sc-kr-o,s
AEk,L

oth-order success rate of a side-channel key pp 15, sec 6.2

recovery adversary against a key class s
T Statistical test in a side-channel attack pp 30, app B
V Values derivation algorithm pp 29, app B

Additionally, any quantity estimated through statistical sampling is represented
with a hat, e.g. a sample mean is denoted as Ê(X), as sample variance as σ̂2(X),

as sample success rate as Ŝucc
sc-kr-o,S

AEK ,L
, . . .
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