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Abstract

We consider the problem of secret sharing among n rational players. This problem was
introduced by Halpern and Teague (STOC 2004), who claim that a solution is impossible for
n = 2 but show a solution for the case n ≥ 3. Contrary to their claim, we show a protocol for
rational secret sharing among n = 2 players; our protocol extends to the case n ≥ 3, where it
is simpler than the Halpern-Teague solution and also offers a number of other advantages. We
also show how to avoid the continual involvement of the dealer, in either our own protocol or
that of Halpern and Teague.

Our techniques extend to the case of rational players trying to securely compute an arbitrary
function, under certain assumptions on the utilities of the players.

1 Introduction

The classical problem of t-out-of-n secret sharing [13, 2] involves a “dealer” D who wishes to
entrust a secret s to a group of n players P1, . . . , Pn so that (1) any group of t or more players can
reconstruct the secret without further intervention of the dealer, yet (2) any group of fewer than t

players has no information about the secret. As an example, consider the scheme due to Shamir [13]:
assume the secret s lies in a finite field

�
, with |

�
| > n. The dealer chooses a random polynomial

f(x) of degree at most t−1 subject to the constraint f(0) = s, and gives the “share” f(i) to player
Pi (for i = 1, . . . , n). Any set of t players can recover f(x) (and hence s) by broadcasting their
shares and interpolating the polynomial; furthermore, no set of fewer than t players can deduce
any information about s.

The implicit assumption above is that at least t players are willing to cooperate and pool their
shares1 when it is time to recover the secret; equivalently, at least t players are honest but up to
n − t players may be arbitrarily malicious. Halpern and Teague [7] consider a scenario in which
players are neither completely honest nor arbitrarily malicious, but instead all players are assumed
to be rational (however, up to n − t players may be unavailable at the time the secret is to be
recovered). Depending on the utility functions of the players, Shamir’s protocol may no longer
succeed in this scenario [7]. Specifically, assume that all players prefer to learn the secret above
all else, but otherwise prefer that the fewest number of other players learn the secret. (We will
treat the utilities of the players more precisely later in the paper.) Given these utility functions, no
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player has any incentive to reveal their share. Consider P1: if strictly fewer than t−1 other players
reveal their shares to the rest of the group, then no one learns the secret regardless of whether
P1 reveals his share or not. If more than t − 1 players reveal their shares, then everyone learns
the secret and P1’s actions again have no effect. On the other hand, if exactly t− 1 other players
reveal their shares, then P1 learns the secret (using his share) but P1 can prevent other players
from learning the secret by not publicly revealing his share.

Let t, n be as above, and let t∗ ≥ t denote the number of players present when the secret is
to be reconstructed. Given the above discussion, we can thus conclude the following about the
game-theoretic equilibria of “standard” Shamir secret sharing in the above situation (definitions of
Nash equilibria and weakly dominating strategies are given in Section 2):

• For any t, n, t∗, it is a Nash equilibrium for no one to reveal their share.

• If t∗ > t, it is a Nash equilibrium for all t∗ participating players to reveal their shares.
However, as discussed above, it is a weakly dominating strategy for each player not to reveal
his share; thus, the Nash equilibrium likely to be reached is the one mentioned earlier in
which no one reveals their share.

• If t∗ = t, then having all t∗ participating players reveal their shares is not even a Nash
equilibrium, since each player can profitably deviate by not revealing his share.

Thus, Shamir’s protocol with the trivial reconstruction procedure does not suffice in the presence
of rational players. Does there exist any protocol for reconstructing the secret in which it is in
rational players’ best interests to follow the protocol? Generalizing the argument above, Halpern
and Teague rule out any protocol terminating in a fixed number of rounds. (Essentially, the above
argument is applied to the last round and then backwards induction is used.) This leaves open the
possibility of probabilistic protocols without a fixed upper bound on their round complexity, and
indeed Halpern and Teague show the existence of such protocols for t, n ≥ 3. In contrast, they
claim a solution is impossible for n = 2 even if probabilistic protocols are allowed.

1.1 Our Results

We revisit the question of rational secret sharing, in the model of Halpern and Teague [7]. As
perhaps our most surprising result, we show a simple, probabilistic protocol for n = 2 parties to
reconstruct a shared secret, thus disproving the claim of Halpern and Teague mentioned earlier.
Interestingly, the proof given by Halpern and Teague appears to be correct; the problem is that
their assumptions regarding the types of protocols that might be used are too restrictive (and are
not implied by the model). By relaxing their assumptions in a manner consistent with the model
of rational secret sharing they introduce, we are able to circumvent their impossibility result.

Our protocol generalizes in a straightforward way to the case of n ≥ 3 and arbitrary t. Although
Halpern and Teague also claim a general solution of this sort, our solution is much simpler. Fur-
thermore, for n > 3 our solution has a number of advantages as compared with the solution offered
by Halpern and Teague; perhaps most importantly, our solution eliminates a second (undesirable)
equilibrium that is present in the Halpern-Teague protocol. Other advantages of our approach are
summarized in Section 3.3.

Both the Halpern-Teague protocol and our protocol (as initially described) require the continual,
periodic involvement of the dealer. At best, this is inconvenient; at worst, this calls into question
the motivation for the problem in the first place. We show in Section 4 an intuitively simple way
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to avoid the involvement of the dealer (after the initial share distribution phase) that applies in all
scenarios considered here.

As in [7], our techniques extend to the more general case of rational players trying to securely
compute an arbitrary function of their inputs, under certain assumptions on the utilities of the
players. See Section 5 for further details.

1.2 Related Work

There has been much interest of late in bridging cryptography (in which guarantees are provided
in the face of worst-case adversarial behavior) and game theory (which concerns itself only with
rational deviations). A point to bear in mind is that neither the cryptographic or the game-
theoretic model is strictly stronger than the other: typical cryptographic protocols tolerate arbitrary
malicious behavior under the assumption that some fraction of the players will follow the protocol
exactly as specified; game-theoretic protocols are designed to tolerate “only” rational behavior but
do not assume any completely honest players.

Besides the work of Halpern and Teague, the most relevant prior work is the recent sequence of
papers by Lepinski, et al. [9, 10] and Izmalkov, et al. [8]. Lepinski, Micali, Peikert, and Shelat [9]
show a protocol for completely fair secure function evaluation (SFE), in which all players receive
output if any player receives output, even if up to n − 1 players are malicious. In “standard”
communication networks this is known to be impossible [3], and therefore Lepinski, et al. rely on
the physical assumption of “secure envelopes” (see the discussion in [9] for the exact properties these
should satisfy) to achieve their result. They then show how to use any protocol for completely fair
SFE to implement cheap talk in the presence of malicious coalitions; basically, this enables players
to reach a correlated equilibrium without having to rely on any external trusted party.

The work of Lepinski, Micali, and Shelat [10] and Izmalkov, Micali, and Lepinski [8] deals
(directly or indirectly) with mechanisms for preventing coalitions in the first place. More specifically,
these works are concerned with eliminating covert (e.g., steganographic) channels in the secure
computation protocol itself so as to prevent signaling between players. Again, they achieve this by
relying on physical assumptions (secure envelopes and, in the case of [8], ballot boxes) in addition
to standard communication channels. A consequence of the work of Izmalkov, et al. (indeed, the
main motivation for their work) is a protocol Π for securely implementing any mediated game Γ
such that (informally) any equilibrium in Γ corresponds to an equilibrium in Π, and vice versa.

Comparison to our work. The work of Lepinski, et al. [9] as well as that of Izmalkov, et al. [8]
both offer different solutions to the problems we consider here. Specifically:

• Completely fair SFE [9] guarantees (roughly speaking) that all players learn the output if any
player learns the output. This clearly implies a solution for rational secret sharing (even in
the presence of collusion), and can also be used to solve the problem of rational SFE2 under
certain assumptions on player utilities.

• Since rational secret sharing can be implemented as a mediated game, the work of [8] gives a
solution to the problem (without any mediator). Their work is in fact much more general, as
it implies a protocol for rational SFE for arbitrary player utilities and even in the presence
of coalitions.

The main difference in our work is that we give intuitively-simple and/or very efficient protocols
at the expense of providing weaker guarantees. Specifically, we focus only on single-player deviations

2There are numerous definitions of rational SFE, and so everything we say in this section is somewhat informal.
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(and do not handle collusion), and also make specific assumptions regarding the utilities of the
players. Under these assumptions, our protocol for general secure function evaluation in Section 5
can be viewed as either a weak form of rational SFE, or completely fair SFE in the presence of
rational (rather than arbitrarily malicious) parties.

An additional important difference between our work and that of [9, 10, 8] is that we rely on
weaker assumptions with respect to the model of communication. Instead of relying on “secure
envelopes” and “ballot boxes” as in [9, 10, 8] — which seem to be difficult primitives to realize
unless parties are physically co-located — our solutions rely on standard communication channels
with the exception that, as in [7], we assume simultaneous broadcast whereby each party broadcasts
a message at the same time. (Equivalently, we do not allow “rushing.”) Whether one finds the
assumption of simultaneous broadcast realistic or not, we note that it is a strictly weaker assumption
than secure envelopes or ballot boxes since simultaneous broadcast can be constructed from either
of the latter but not vice versa.

Concurrent work. Concurrently and independently of our own work, Abraham, et al. [1] and
Lysyanskaya and Triandopoulos [11] consider problems related to those considered here. Abraham,
et al. define a notion of resistance to coalitions of rational players and show a coalition-resistant
protocol; we note that our protocols are resistant to coalitions as well. Lysyanskaya and Trian-
dopoulos examine the case of “mixed” security when both arbitrarily malicious and rational players
might be present. Both papers also show, under certain conditions, how protocols can be designed
without exact knowledge of players’ utilities (though utilities are still assumed to have a certain
form). Interestingly (and somewhat serendipitously!), both of those works, as well as our own, rely
on essentially the same underlying techniques.

2 Definitions for Rational Secret Sharing

We briefly review the model of rational secret sharing we assume in this paper. Our model is
intended to match the model used by Halpern and Teague, though there are many details they do
not make explicit.

As discussed earlier, we have a dealer D holding a secret s, and n players P1, . . . , Pn. There is
also a threshold t ≤ n, known to all players, which is fixed at the outset. A protocol proceeds in a
sequence of iterations, where each iteration may consist of multiple communication rounds. At the
beginning of each iteration, D distributes some information (privately) to each of the n players; at
this point, no subset of fewer than t players should have any information about s. During an itera-
tion, the dealer does not take part in the protocol. Instead, some set of t∗ ≥ t players, all of whom
are assumed to be rational, run the protocol amongst themselves by simultaneously broadcasting
messages in a series of rounds. (Halpern and Teague additionally allow private communication
between the players but we do not need this.) For simplicity, we assume the same set of t∗ players
runs the protocol in every iteration. At the end of an iteration, the protocol either terminates
or proceeds to the next iteration. We assume the dealer is honest, and follows the protocol as
specified. To rule out trivial protocols, we require that if t∗ ≥ t players follow the protocol in each
iteration, then the secret is eventually reconstructed (with probability 1).

We stress that broadcast in a given round is assumed to occur simultaneously for all players;
that is, we do not allow “rushing” as in the standard literature on secure multi-party computation.
Rational secret sharing is easily seen to be impossible if rushing is allowed: all players will simply
wait to see what other players do, and no one will ever broadcast anything.

In the above description, as in [7], the dealer is assumed to be involved at the beginning of each
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iteration. In Section 4, we show that it is possible for the dealer to be involved only once at the
beginning of the protocol.

We let σi denote the (possibly randomized) strategy employed by player Pi, and let ~σ =
(σ1, . . . , σn) denote the vector of players’ strategies. Following standard game-theoretic notation,

we let (σ′
i
, ~σ−i)

def
= (σ1, . . . , σi−1, σ

′
i
, σi+1, . . . , σn); that is, (σ′

i
, ~σ−i) denotes the strategy vector ~σ

with Pi’s strategy changed to σ′
i
.

Let µi(o) denote the utility of player Pi for the outcome o. For a particular outcome o of the
protocol, we let δi(o) be a bit denoting whether or not Pi learns the secret, and let num(o) =∑

i
δi(o); i.e., num(o) is simply the number of players who learn the secret. Following [7], we make

the following assumptions about the utility functions of the players:

• δi(o) > δi(o
′)⇒ µi(o) > µi(o

′).

• If δi(o) = δi(o
′), then num(o) < num(o′)⇒ µi(o) > µi(o

′).

That is, player Pi first prefers outcomes in which he learns the secret; as long as δi remains constant,
player Pi prefers strategies in which the fewest number of other players learn the secret. We let
Ui(~σ) denote the expected value of the utility of Pi under strategy vector ~σ, and assume that
rational players wish to maximize this value.

Our notion of a protocol corresponds to a game along with a prescribed strategy vector ~σ. As
in [7], we are interested in protocols whose prescribed strategy vector ~σ corresponds to a Nash equi-
librium that survives iterated deletion of weakly dominated strategies. We review these definitions
briefly, and refer the reader to [12, 7] for more extensive discussion.

Definition 1 A vector of strategies ~σ is a Nash equilibrium if the following holds for all i: for any
σ′

i
6= σi, we have Ui(σ

′
i
, ~σ−i) ≤ Ui(~σ). ♦

That is, given that all other players are following ~σ−i, there is no incentive for Pi to deviate and
follow any strategy other than σi.

In general, multiple Nash equilibria may exist. An inherently “unstable” Nash equilibrium (i.e.,
one unlikely to be reached) is one in which any of the players’ strategies are weakly dominated by
other strategies. Informally, a strategy σi of player Pi is weakly dominated by another strategy σ ′

i

if (1) Pi is sometimes better off playing σ′
i
than playing σi, and (2) Pi is never worse off playing σ′

i

than playing σi. Recalling the example from the introduction, say a secret is shared using t-out-
of-n secret sharing (with t < n) and consider the strategy vector in which all n players reveal their
shares. This is a Nash equilibrium: the secret is reconstructed even if any single player deviates.
On the other hand, for each player Pi, revealing the share is weakly dominated by not revealing
the share: if fewer than t − 1 other players or more than t − 1 other players reveal their shares,
then nothing changes; if exactly t− 1 other player reveal their shares then Pi learns the secret but
no one else does. Formal definitions follow.

Definition 2 Let Si denote a set of strategies for Pi, and let S−i

def
= S1×· · ·×Si−1×Si+1 · · · ×Sn.

A strategy σi ∈ Si is weakly dominated by a strategy σ′
i
∈ Si with respect to S−i if (1) there

exists a ~σ−i ∈ S−i such that Ui(σi, ~σ−i) < Ui(σ
′
i
, ~σ−i) and (2) for all ~σ−i ∈ S−i, it holds that

Ui(σi, ~σ−i) ≤ Ui(σ
′
i
, ~σ−i).

Strategy σi is weakly dominated with respect to S−i if there exists a σ′
i
∈ Si such that σi is weakly

dominated by σ′
i
with respect to S−i. ♦

Definition 3 Let DOMi(S1×· · ·×Sn) denote the set of strategies in Si that are weakly dominated
with respect to S−i. Let S0

i
denote the initial set of allowable strategies of Pi. For all k ≥ 1, define

Sk
i

inductively as Sk
i

def
= Sk−1

i
\ DOMi(S

k−1
1 × · · · × Sk−1

n ). Let S∞
i

def
= ∩kS

k
i
.

5



We say σi survives iterated deletion of weakly dominated strategies if σi ∈ S∞
i

. ♦

3 Protocols for Rational Secret Sharing

We review the Halpern-Teague solution, and then describe our protocol. We conclude with some
discussion of the relative merits of our approach.

3.1 The Halpern-Teague Solution

We provide a high-level overview of the solution of Halpern and Teague for 3-out-of-3 secret sharing.
We later discuss how they propose to generalize their solution for n > 3 and t ≥ 3.

The Halpern-Teague protocol in the 3-out-of-3 case proceeds as follows: at the beginning of
each iteration, the dealer runs a fresh invocation of the Shamir secret-sharing scheme and sends the
appropriate shares to each player. (Actually, a simpler additive secret-sharing scheme could also
be used.) During an iteration, each player Pi flips a biased coin ci which is equal to 1 with some
probability α. The players then run what is essentially an information-theoretically secure multi-
party computation protocol to compute the value c∗ =

⊕
ci. (Here is where Halpern and Teague

need to assume the existence of private channels between the players.) In particular, it is impossible
for any player to cheat (except for aborting the protocol; see below), or to learn information about
the {ci} values of the other parties that is not implied by c∗. If c∗ = ci = 1, player Pi broadcasts
his share. If all shares are revealed, the secret is reconstructed and the protocol ends. If c∗ = 1
and either no shares or exactly two shares are revealed, or if the secure computation of c∗ was
aborted, then all players refuse to run the protocol from then on (and so, effectively, the protocol
is terminated). In any other case, players proceed to the next iteration.

Note that the secret is only reconstructed if c1 = c2 = c3 = 1. Thus, assuming players act
honestly, the expected number of iterations until the protocol terminates is α−3.

To see intuitively why the above gives a Nash equilibrium, assume P1, P2 follow the protocol
and consider whether P3 should deviate. First note that there is no incentive for P3 to bias c3 to
be 0 with higher probability, since when c3 = 0 at least one of P1, P2 will not broadcast their shares
in that iteration. There is also no incentive for P3 to bias c3 to be 1 with higher probability, either:
although this may cause the secret to be reconstructed sooner, it will have no effect on P3’s utility.
It is also easy to see that, given c∗ = 0 or c3 = 0, there is no incentive for P3 to deviate from the
protocol. Finally, when c∗ = c3 = 1, player P3 does not know whether c1 = c2 = 1 (which occurs

with probability α
2

α2+(1−α)2
) or c1 = c2 = 0 (which occurs with the remaining probability). Thus,

if P3 does not broadcast its share it runs the risk of having the protocol terminate without ever
learning the secret. If α is set appropriately based on P3’s utility function, it can be shown that it
is not in P3’s best interest to deviate.

For n > 3 and t ≥ 3, Halpern and Teague suggest the following: of the t∗ ≥ t players who
are present, t players are designated. Players are split into 3 groups, such that there is at least
one designated player in each group. One designated player in each group is chosen as a leader.
The designated players send their shares to the leader of their group, and then the leaders run
essentially the 3-out-of-3 solution described above. (When the leaders are supposed to broadcast,
they broadcast the shares of all the players in their group in such a way that all t∗ players can
hear.)

Halpern and Teague also describe a solution for 2-out-of-n secret sharing for n ≥ 3, but in this
case they require that the number of participating players t∗ is strictly greater than 2 (and so this
solution does not satisfy the model as we have described it here).
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3.2 Our Solution

Recall that Halpern and Teague claim that rational secret sharing is impossible when n = 2. In
their impossibility proof, however, they implicitly assume that the dealer is limited to sending
valid shares of the secret to the players at the beginning of each iteration. They therefore focus
only on possible actions of the players during an iteration. We see no reason to impose any such
restriction on the dealer’s actions; note that the model, as described earlier, does not impose any
such restriction. As we show in this section, once this assumption is removed a solution is possible
even when n = 2, and things become simpler in the case of general t, n.

Specifically, consider the following protocol: say the dealer holds a secret s which lies in a strict
subset S of a finite field

�
(if s lies in some field

� ′ , this is easy to achieve by taking a larger field
�

containing
� ′ as a subfield). We assume players know S. At the beginning of each iteration, with

probability β the dealer generates a random Shamir sharing of s, and with probability 1 − β the
dealer generates a random Shamir sharing of an arbitrary element ŝ ∈

�
\ S; we describe how β is

chosen below. These shares are distributed to the players. Note that no player can tell from their
share whether the players were given a share of ŝ or the true secret s.

During an iteration, the players simply broadcast their shares. If in any iteration some player
does not broadcast his share, the other players all refuse to participate in all subsequent iterations
(and, effectively, the protocol is terminated). Otherwise, all shares were broadcast and the players
can reconstruct some value s′. If s′ ∈ S then the players know that this is the true secret, and can
terminate the protocol successfully. If s′ ∈

�
\ S, the players know this is an invalid secret and

proceed to the next iteration.

Theorem 1 For appropriate choice of β, the above protocol constitutes a Nash equilibrium for
t-out-of-n secret sharing that survives iterated deletion of weakly dominated strategies.

Proof We first consider the case of t = n = 2, and then discuss how to generalize the proof for
arbitrary t, n. It is not hard to see that the protocol is a Nash equilibrium for appropriate choice
of β: Say P2 acts according to the protocol and consider whether P1 has any incentive to deviate.
Without loss of generality, consider a deviation in the first iteration. The only possible deviation is
for P1 to refuse to broadcast his share. In this case, he learns the secret (while P2 does not) with
probability β, but with probability 1− β he will never learn the secret.

Say P1’s utility is U+ if he learns the secret but P2 does not; U if both players learn the secret;
and U− if neither player learns the secret, where U+ > U > U−. If P1 follows the protocol, his
expected utility is U . If P1 deviates, his expected utility is β · U+ + (1− β) · U−. So as long as

U > β · U+ + (1− β) · U− ,

it is in P1’s best interest to follow the protocol. For appropriate β ∈ (0, 1), then, the strategy profile
in which both parties follow the protocol is a Nash equilibrium.

It is immediate that the same analysis holds for general t, n, regardless of the number of par-
ticipating players t∗.

We next prove that our protocol survives iterated deletion of weakly dominated strategies by
showing that no strategies are weakly dominated. We again begin with the case t = n = 2. We
show that for all deterministic strategies σ, σ ′ of P1, there exist strategies τ, τ ′ of P2 such that
U1(σ, τ) > U1(σ

′, τ) but U1(σ, τ ′) < U1(σ
′, τ ′). This proves that all deterministic strategies of P1

are incomparable, and so none are ever deleted (and thus no randomized strategies are deleted
either).
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Let hi(σ, τ) denote the history of actions (by both players) through iteration i given the indicated
strategies σ and τ , with h0(σ, τ) denoting the empty (starting) history. Let Ai(σ, τ) denote the
action taken by P1 in iteration i, again for the indicated strategies. We say a player cooperates in
some iteration if they reveal their share, and defects if they do not.

Now take arbitrary deterministic strategies σ 6= σ ′ for P1. Let τ0 be a strategy of P2 and i ≥ 1
be an integer such that

hi−1(σ, τ0) = hi−1(σ
′, τ0) (1)

but
Ai(σ, τ0) 6= Ai(σ

′, τ0); (2)

i.e., iteration i is the first iteration in which the actions of P1 differ. (Note that some such τ 0, i

must exist or else σ = σ′.) Without loss of generality, assume Ai(σ, τ0) is to defect and Ai(σ
′, τ0)

is to cooperate.
Consider the following strategy τ of P2: (1) act identically to τ 0 through iteration i− 1; (2) in

iteration i, defect; (3) in all subsequent iterations: if P1 defected in iteration i, then cooperate; if
P1 cooperated in iteration i, defect. Since Ai(σ, τ) = Ai(σ, τ0) = “defect,” it is fairly immediate
that U1(σ, τ) > U1(σ

′, τ).
Next consider the following strategy τ ′: (1) act identically to τ 0 through iteration i− 1; (2) in

iteration i, cooperate; (3) in all subsequent iterations: if P1 defected in iteration i, then defect; if
P1 cooperated in iteration i, cooperate. Exactly as when we argued earlier that our protocol was
a Nash equilibrium, we have U1(σ, τ ′) < U1(σ

′, τ ′).
The same argument extends to the case of general t, n, regardless of the number of participating

players t∗. We simply replace τ 0 with a strategy profile of n− 1 strategies such that Equations (1)
and (2) above are still valid, and then define τ and τ ′ as above, but modifying the strategies of all
other players.

We remark that when t∗ = t our protocol has no additional Nash equilibrium which is preferred,
by any player, to the prescribed equilibrium.

3.3 Discussion

Our approach has a number of advantages as compared to [7]:

• Most obvious, we circumvent their impossibility result for the case n = 2. We also show an
admissible solution for the 2-out-of-n case.

• Our protocol is (in our opinion) much simpler than the Halpern-Teague protocol. This is
true for all settings of t, n, but is especially true for the case of n > 3, t ≥ 3 where the
Halpern-Teague protocol requires players to somehow delegate specific roles and select group
leaders.

• Our protocol requires only a broadcast channel, in contrast to the Halpern-Teague protocol
which relies on private channels in addition to broadcast.

• At least for the case t∗ = t (which is always the case when t = n), our protocol has no
“undesirable” Nash equilibria. This is in contrast to the Halpern-Teague solution for general
n, where there is the undesirable equilibrium in which the three “group leaders” pool the
shares they receive from all the designated players and reconstruct the secret only amongst
themselves.
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4 Removing the Dealer

A drawback of both our protocol (as described in the previous section) as well as that of Halpern
and Teague is that the dealer must be involved at the beginning of every iteration. It would be
much nicer to have a solution that works exactly like standard secret sharing, where the dealer is
involved only once at the beginning of the protocol.

We sketch here a conceptually simple (though inefficient) way to avoid continual involvement of
the dealer while still ensuring that parties eventually reconstruct the secret with probability 1. Our
idea applies both to our protocol and that of Halpern and Teague, but for simplicity we describe
it in the context of our protocol only. The protocol proceeds as follows:

Setup: To share a secret s, the dealer prepares a valid t-out-of-n Shamir sharing {si} of s. The
dealer also generates a signature σi on each share si with respect to a publicly-known verification
key PK (alternately, PK can simply be sent to each player). The dealer sends (si, σi) to player Pi.

The protocol: At the beginning of each iteration, the players proceed as follows:

1. The t∗ participating parties run a secure computation protocol [15, 6, 5] secure against one
malicious player. The protocol computes the following probabilistic functionality:

• Each party inputs the values (si, σi) received from the dealer. The functionality checks
that each σi is a valid signature on si (with respect to the dealer’s public key PK), and
aborts if this is not the case.

• The t∗ ≥ t input shares define a secret s. With probability β, the functionality generates
a fresh t-out-of-n Shamir sharing {s′

i
} of s, and each player Pi receives output s′

i
.

• With probability 1−β, the functionality generates a fresh t-out-of-n Shamir sharing {s ′
i
}

of a bogus secret ŝ ∈
�
\ S, and each player Pi receives output s′

i
.

2. If cheating is detected in the secure computation protocol above (i.e., the secure computation
protocol is aborted), then parties terminate the overall protocol without ever reconstructing
the secret.

3. Next, parties proceed as in the previous section; specifically, each player Pi broadcasts the
output s′

i
they received from the secure computation protocol.3 If this enables reconstruction

of a secret s ∈ S, the protocol terminates and the true secret has been reconstructed. If some
player refused to broadcast their output share, then parties terminate the protocol without
reconstructing the secret. In any other case, players erase the {s′

i
} and proceed to the next

iteration (using (si, σi) as before).

A subtlety (which applies also in the following section) is the question of whether security of
the secure computation protocol used above should hold information-theoretically or computation-
ally. In the former case, an argument similar to that used in the previous section shows that —
under appropriate conditions on β — the above protocol is a Nash equilibrium surviving iterated
domination of weakly dominated strategies. To implement such a solution, however, we need the
additional assumption of private channels between the players.

3Actually, to prevent players from broadcasting a modified value for s
′
i, it is necessary to have the functionality

authenticate the {s′i} in some way. There are many ways to do this. Perhaps the conceptually-simplest solution is
to have the dealer also distribute shares of his secret signing key in a t-out-of-n manner among the players. Then
the functionality can also generate valid dealer signatures on the {s′

i} (the iteration number should also be signed to
prevent replay of an earlier output value). We omit any further details for simplicity.
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If a computationally-secure protocol is used, one way to proceed is to work in a concrete setting:
that is, assume all players are limited to running for at most t steps (in some fixed computational
model); assume the protocol is secure (defined appropriately) except with some (small) probability
ε against adversaries running in time t; and then modify the analysis appropriately. Rigorously
formalizing this is left for future work. See [11] for a slightly different approach.

5 General Secure Function Evaluation

The techniques outlined above generalize to the case of the secure computation of an arbitrary
function f . In this sense, they yield a protocol for a weak notion of completely fair SFE [9]
requiring that (1) all players are rational; and (2) players’ utility functions are such that they all
prefer to learn the output. (In contrast, the work of [9] shows a protocol for completely fair SFE
tolerating malicious players, but under a stronger assumption on the available communication. See
Section 1.2.) We also assume (as in [7, 1, 11]) that players prefer that their own inputs remain
private (other than what is leaked by evaluation of f).

To compute the (possibly randomized) single-output function f :

1. Let f ′ be the following (multi-output, randomized) function: on inputs x1, . . ., xn, compute
y ← f(x1, . . . , xn). Then generate a random t-out-of-n Shamir sharing (s1, . . . , sn) of the
result y, and give output si to player Pi.

2. Players run a secure computation protocol for f ′, and obtain outputs s1, . . ., sn. If this proto-
col is aborted, all players terminate the entire protocol and the output is never reconstructed.

3. As in the previous section, players compute a functionality that takes as input4 (s1, . . . , sn)
and, with probability β computes a random Shamir sharing {s′

i
} of the value y these shares

define, and with probability 1 − β computes a random Shamir sharing {s′
i
} of some default

value not in the range of f . Each player Pi receives output s′
i
. If this protocol is aborted, all

players terminate the entire protocol and the output is never reconstructed.

4. Players simultaneously broadcast the s′
i

and reconstruct the value s′ these shares define. If
some player did not broadcast a (valid) share, then all players terminate the protocol and do
not participate in any future iterations. If s′ is in the range of f then y = s′ is the desired
output and the protocol is done; in any other case, players proceed to the next iteration.

The protocol can be suitably generalized for the case where f outputs a vector of values, one for
each player.

We remark that, as in standard formulations of secure multi-party computation, players who
choose not to follow the protocol may change their “true” inputs to an arbitrary other value. (I.e.,
a player Pi with “true” input xi may cause f(x1, . . . , x

′
i
, . . . , xn) to be evaluated for arbitrary x′

i
.)

For rational players, this may occur if a player would prefer to change his input value even if a
completely incorruptible third party were to evaluate f based on inputs given to it by the players.
Shoham and Tennenholtz [14] define the class of NCC functions and argue that if f is an NCC
function then no rational player has any incentive to modify their inputs. It seems to us, however,
that there are some subtle problems with the way NCC functions are defined there. We leave
further exploration of this issue for future study.

4As before, there is the issue of authenticating the shares s1, . . . , sn provided as input to this functionality. This
can be handled in a similar manner as before.
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6 Conclusions

We have provided a new approach to rational secret sharing and secure computation that improves,
in many respects, on an earlier solution of Halpern and Teague. Our work also offers an alternate
approach to the generic (and more powerful) solutions of [9, 8]: our protocols are simpler, and rely
on weaker assumptions regarding the communication between players.
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