
Pairings for Cryptographers ?

Steven D. Galbraith1, Kenneth G. Paterson1, and Nigel P. Smart2

1 Information Security Group,
Royal Holloway, University of London,

Egham, Surrey, TW20 0EX,
United Kingdom.

{steven.galbraith,kenny.paterson}@rhul.ac.uk
2 Department of Computer Science,

University of Bristol,
Merchant Venturers Building, Woodland Road,

Bristol, BS8 1UB,
United Kingdom. nigel@cs.bris.ac.uk

Abstract. Many research papers in pairing based cryptography treat
pairings as a “black box”. These papers build cryptographic schemes
making use of various properties of pairings. If this approach is taken,
then it is easy for authors to make invalid assumptions concerning the
properties of pairings. The cryptographic schemes developed may not be
realizable in practice, or may not be as efficient as the authors assume.
The aim of this paper is to outline, in as simple a fashion as possible, the
basic choices that are available when using pairings in cryptography. For
each choice, the main properties and efficiency issues are summarized.
The paper is intended to be of use to non-specialists who are interested
in using pairings to design cryptographic schemes.

1 Introduction

The use of pairings in cryptography has developed at an extraordinary pace since
the publication of the paper of Joux, [10]. For example, there have been papers on
identity based encryption [4, 14–16, 2, 8], short signatures [5], group signatures
[7, 3], and many more. Many research papers in the field treat pairings as a
“black box” and then proceed to build various cryptographic schemes making
use of assumed properties of the pairings. This is not necessarily a bad approach,
since the details of pairings, particularly their selection and implementation, can
be quite complex. As an approach, it allows one to ignore mathematical and
algorithmic subtleties and focus on purely cryptographic aspects of the research.

However, if this approach is taken, then it is easy for authors to make as-
sumptions concerning the properties of pairings which are not necessarily correct,
? The work described in this paper has been supported in part by the European Com-

mission through the IST Programme under Contract IST-2002-507932 ECRYPT.
The information in this document reflects only the author’s views, is provided as is
and no guarantee or warranty is given that the information is fit for any particular
purpose. The user thereof uses the information at its sole risk and liability.



and hence develop cryptographic schemes which cannot realized in practice, or
which cannot be implemented as efficiently as the authors assume. Some common
assumptions of this type are as follows:

– One can efficiently hash onto groups associated with the pairing.
– Operations in groups associated with the pairing can be efficiently imple-

mented.
– Elements of one or more groups associated with the pairing have a “short”

representation.
– One can construct suitable system parameters for pairing-based cryptosys-

tems in polynomial time for any security level.
– The pairing can be computed efficiently.
– There are efficiently computable homomorphisms between various groups

associated with the pairing.

In general, it is easy to set up systems satisfying some of these assumptions.
But, as we shall see, it is not true that pairings can be constructed so that all
of these assumptions hold simultaneously.

Certainly, many researchers in pairings and pairing-based cryptography are
aware of these difficulties, but it appears that many more are not.1 The aim,
then, of the present article is to give a summary of the different ways that pair-
ings can be implemented, along with the properties of each choice (with respect
to the above list of assumptions) and the pros and cons of each choice. To make
the article accessible to as large an audience as possible, we attempt to keep the
presentation largely free of technical jargon. However, some technicalities will be
necessary in order to explain the choices that are available to cryptographers,
and we do provide brief explanatory notes justifying our ratings. For a full pre-
sentation of the details of pairing-based cryptography we recommend consulting
[1, Chapters IX and X].

Two final caveats need to be stated. Firstly, our recommendations are a
simplification of a complicated subject that is still in a state of flux. It is very
likely that the future will bring new methods to deal with the issues raised here.
Furthermore, reaching a consensus on the relative merits of one implementation
of pairings over another is very difficult. Hence, our findings should be considered
more as a summary of the limitations of present methods, rather than as a recipe
for the ‘best’ way to implement pairings in practice.

Secondly, this article attempts neither to introduce new research, nor to act
as a survey of the area. Our goal is to present in a simple manner the distinct
choices which need to be made when designing systems based on pairings. We
have been led to write this article by the large number of questions we have had
from protocol designers in the last few years who have had problems in this area.
This problem arises due to the plethora of papers in the area, which use a variety
of slightly different assumptions about the underlying pairing groups. Some of
these different assumptions are made for good technical reasons, and others are
just for presentational purposes. In this paper we have attempted to present, in
1 It is not our intention to “name and shame” such researchers, though it is tempting!

2



the simplest manner possible, the basic choices which a cryptographic designer
needs to make.

The remainder of this article is organized as follows. In the next section, we
provide further introductory background, then give a classification of the main
ways of realizing pairings for cryptographic applications along with the main
properties of each choice. Section 3 develops the analysis to include more refined
implementation issues (bandwidth usage, efficiency of implementation and their
relationships with security). We use a simple but subjective rating system to
score each option at a variety of different security levels. The appendix contains
technical notes justifying the ratings in Section 3.

2 Background

There are two forms of pairings used in the cryptography literature. The first
are of the form

e : G1 ×G1 −→ GT

where G1 and GT are groups of prime order l. (See note 2 of the Appendix for
the case of composite group order.) The second form is

e : G1 ×G2 −→ GT

where G1, G2 and GT are groups of prime order l. (See note 1 of the Appendix
for another variant.) We will always use the second form, and we consider the
first form to be just the special case G2 = G1. Of course this important special
case may yield advantages in practice (but as we shall see, it is actually one of
the least flexible options).

One of the main goals of the paper is to explore various issues which arise
depending on the choices of groups and pairing. We comment that the groups
G1, G2, GT and the pairing e(·, ·) often form part of the system parameters of
a cryptosystem and may be used by a large number of users. For example,
in many identity-based encryption schemes, the trusted authority sets up the
system parameters which includes descriptions of groups and a pairing, and all
users’ public keys are defined with respect to these parameters.

It turns out to be appropriate to separate different possible pairing instanti-
ations into three basic types:

Type 1: G1 = G2;
Type 2: G1 6= G2 but there is an efficiently computable homomorphism

φ : G2 → G1;
Type 3: G1 6= G2 and there are no efficiently computable homomorphisms

between G1 and G2.

We should clarify that in all cases, there exist homomorphisms between G1

and G2 (this is trivially true since they are cyclic groups of the same order) but
that computing these homomorphisms is presumably as hard as computing dis-
crete logarithms in the groups. Type 2 is when there is an efficiently computable

3



homomorphism from G2 to G1 and there is not an efficiently computable homo-
morphism from G1 to G2. The situation where G1 6= G2 but there are efficiently
computable homomorphisms in both directions can be re-interpreted as Type 1,
so we do not consider it separately.

This distinction into types is relevant for the design of cryptographic schemes.
In particular, the existence of maps between G2 and G1 is sometimes required to
get a security proof to work (see for example [6] and [17] for a general discussion
on this point). There exist many primitives in pairing-based cryptography whose
security proof does not apply if the cryptosystem is implemented using pairings
of the third type.

We now focus on several of the frequently made assumptions about pairings
when they are treated as black boxes.

– One can hash to G2.
– There is a (relatively) short representation for elements of G1.
– There is an efficiently computable homomorphism from G2 to G1.
– One can generate system parameters (including groups and a pairing) achiev-

ing at least κ bits of security, where κ is a security parameter, in time poly-
nomial in κ.

Many authors assume that some or all of these properties can easily be
achieved. However, it is not true that all these properties can simultaneously
be achieved.

We briefly summarise what is possible in Table 1, but first we should mention
some technical properties of pairing implementations (it is not necessary for the
reader to understand what these terms mean). The Type 1 case G1 = G2 is im-
plemented using supersingular curves. The supersingular curves can be separated
into two sub-classes: those over fields of characteristic 2 or 3 (with embedding
degree 4 or 6 respectively), and those over fields of large prime characteristic
(with embedding degree 2). The curves of Type 2 are ordinary and the homo-
morphism from G2 to G1 is the trace map. The curves of Type 3 are ordinary,
and G2 is typically taken to be the kernel of the trace map.

A X in Table 1 indicates that there exist implementations of pairings for
which the property holds. A × indicates that there is no known method to im-
plement pairings of the stated type which achieve the required property (though
a × in the Type 1 (small characteristic) row denotes the slightly weaker claim
that there is no good solution for almost all security levels).

A more detailed analysis of these issues will be given below. The most im-
portant message is that it is currently impossible to simultaneously have all the
frequently used features of pairings. We hope that Table 1 will be useful for
cryptographic designers working with pairings. Once the designer has identified
the required properties for their system, they can consult the table to determine
the possible (if any) instantiations of their system.

2.1 Issues Related to Provable Security

Provable security typically studies the asymptotic security of cryptosystems as
a security parameter κ goes to infinity. Hence, to apply the provable security

4



Table 1. Properties of the types of pairing groups.

Type Hash to G2 Short G1 Homomorphism Poly time generation

1 (small char) X × X ×
1 (large char) X × X X
2 × X X X
3 X X × X

paradigm it is necessary that there is an algorithm to generate system parameters
which takes as input a security parameter κ and runs in time polynomial in κ.

As we have noted above, the existence of a polynomial time algorithm for the
generation of system parameters is not automatic. Hence, asymptotic security
results for cryptographic schemes only give heuristic evidence for security when
the scheme is implemented using general pairings.

None of this is necessarily a problem in practice, since it is usually possible
to generate parameters offering a required level of security efficiently and with
a reasonable degree of flexibility. We will study in the next part the question of
whether there are sufficiently many curves available and whether key generation
is a problem in practice.

3 Efficiency and Bandwidth Considerations

Once one has decided, with the help of Table 1, whether a proposed scheme
can be implemented, it is natural to ask about the speed and storage require-
ments of the system. We discuss these issues in this section. It turns out that
these properties can change as the security level increases. The results depend
on specific implementation details of the relevant group operations and pairing
calculation, and so this section requires a little bit more technical discussion
than the previous sections.

It is necessary to discuss, for each of the three types defined above, how to
ensure an appropriate security level is attained.

First we note that all practical pairings are based on the Weil pairing or
Tate pairing on elliptic (or hyperelliptic) curves over finite fields. In this paper
we restrict to elliptic curves. The groups G1 and G2 are groups of points on the
curve and the group GT is a subgroup of the multiplicative group of a related
finite field. We write l for the (common) order of these three groups. If q denotes
the size of the field over which our elliptic curve E is defined, then G1 is a
subgroup of E(Fq), G2 is usually a subgroup of E(Fqk), and GT is a subgroup of
F∗qk . Here k is a parameter usually called the embedding degree in pairing-based
cryptography. There are then three main parameters that one needs to keep in
mind: the base field size q, the embedding degree k and the group size l.

Secondly, we note that in order to achieve a particular level of security, it
is necessary that the discrete logarithm problems (DLPs) in G1, G2 and GT be

5



adequately hard. Thus we need to consider (as a first step) what minimum sizes
we need our base field Fq and our extension field Fqk to be in order to make the
relevant DLPs sufficiently hard. Even this is a complicated question, particularly
with regard to selecting Fqk , as there is a variety of algorithms for solving the
DLP, and these algorithms have complicated asymptotic running times.

We can simplify the discussion by referring to Table 2, which shows roughly
equivalent parameter sizes at a variety of security levels from three different
sources, NIST [18], Lenstra [11], and ECRYPT [19]. The first column in this
table shows the security level κ. Roughly speaking, 2κ is the number of basic
operations (block cipher encryptions, say) needed to break a block cipher with
a κ-bit key. The second column represents the size of an elliptic curve group
needed to provide κ bits of security (again, meaning that 2κ basic operations are
needed to solve the DLP in the group). Note the simple relationship between κ
and the group size 22κ. The third column shows the size of RSA keys needed to
provide κ bits of security. This can be roughly equated to the size of field needed
to attain a given level of security for the DLP in Fqk .

Table 2. Recommend Key Sizes

Author κ ECC-style RSA-style

NIST[18] 80 160 1024
128 256 3072
256 512 15360

Lenstra[11] 80 160 1329
128 256 4440
256 512 26268

ECRYPT[19] 80 160 1248
128 256 3248
256 512 15424

An important point, which some researchers in pairing based cryptography
may not be aware of, is that the efficiency of systems using pairings scales more-
or-less like RSA rather than like ECC. Hence, cryptosystems using pairings often
do not have the same advantages over RSA as one might expect from a cryp-
tosystem using elliptic curves.

For example, if we decide to use NIST’s figures, then to achieve 256 bits of
security, we will need to select a subgroup of E(Fq) having size at least 512 bits.
This means that q will be at least 512 bits in size. We also need to ensure that
Fqk is at least 15360 bits in size. It follows that any protocol which computes or
transmits pairing values will have performance constrained by the operations in
the 15360-bit finite field.

Another subtle point is that it is often difficult to generate appropriate system
parameters for pairing based schemes. Continuing the above example, one might

6



assume that l and q can be chosen to be of 512 bits in size, and so k would
be chosen to be 15360/512 = 30. However, there is currently no way known to
generate elliptic curves with embedding degree 30 and with l ≈ q ≈ 2512. A full
discussion of these issues is beyond the scope of the present paper.

In Table 3 we answer the following questions, at the 80-bit and 256-bit secu-
rity levels. (Notes to the table can be found in the appendix.)

H1: Can one hash to G1 efficiently?
H2: Can one hash to G2 efficiently?
S1: Is there a short representation for elements of G1? (Meaning, in a system

with security level κ, can elements of G1 be represented with roughly the
minimum number, say ≤ 2κ + 10, of bits?)

S2: What is the ratio of the size of the representation of elements of G2 to the
size of the representation of elements of G1?

E1: Are group operations in G1 efficient? (Meaning, in a system with security
level κ, are operations in G1 efficient when compared with usual elliptic curve
cryptography in a group with security level κ?)

E2: What is the ratio of the complexity of group operations in G2 to the com-
plexity of group operations in G1?

E3: What is the ratio of the complexity of group operations in GT to the com-
plexity of those in G1?

P: Is the pairing efficient? (Meaning, how does the speed of pairing computation
compare with alternative groups of the same security level?)

F: Is there wide flexibility in choosing system parameters? (Meaning, is it nec-
essary for all users to share one curve, or is there plenty of freedom for users
to generate their own curves of any desired security level κ?)

Questions H1, H2, S1, E1, P and F will be answered by a rating of 0 to 3 stars.
Zero stars means that the operation is impossible, 1 star means the operation
is possible but that there is some significant practical problem with it, 2 stars
means there is a satisfactory solution, 3 stars means the question is answered as
well as could be expected.

For Type 3 curves it is necessary to define the quantity e. Let D be the
CM discriminant used to construct the elliptic curve. If D = −4 then set e =
k/ gcd(k, 4), if D = −3 then set e = k/ gcd(k, 6), while if D < −4 then set
e = k/ gcd(k, 2) = k/2.

Note that since we have not given absolute times/sizes in the starred columns
it is difficult to compare the various types of pairing groups. This is a deliberate
choice on our part, since the type of pairing group one chooses is dictated more
by the scheme and hence by Table 1. Thus Table 3 is primarily meant to indicate
what happens as the security level increases for a particular type of curve.

Some particular phenomena are clearly indicated in the tables. For example,
Type 3 is the only choice which offers good performance and flexibility for high
security parameters, and yet this choice does not permit a homomorphism from
G2 to G1. Hence, it would be desirable if protocol designers could prove the
security of their schemes without requiring such a homomorphism.

7



Table 3. Comparison of efficiency and bandwidth properties.

Type κ H1(3) H2(3) S1 S2(4) E1 E2(5) E3(6) P F

Type 1 (char 2) 80 ??? ??? ?? 1 ?? 1 8/7 ??? ?
256 ? ? ? 1 ? 1 8/7 ? ?

Type 1 (char 3) 80 ??? ??? ??? 1 ??? 1 3 ??? ?
256 ? ? ? 1 ? 1 3 ? ?

Type 1 (char p) 80 ?? ?? ? 1 ? 1 1/4 ??? ???
256 ? ? ? 1 ? 1 1/4 ? ???

Type 2 80 ??? ??? k ??? k2 k2/16 ?(10) ???

256 ??/???(7) ?/???(8) k ??/???(9) k2 k2/16 ?(10) ???

Type 3 80 ??? ? ??? e ??? e2 k2/16 ??? ???

256 ??/???(7) ? ?/???(8) e ??/???(9) e2 k2/16 ??? ???

4 Conclusions

Tables 1 and 3 give a brief and non-technical guide to the black boxes which are
available for protocol designers who want to use pairings. We hope that they
will be useful to the designers of cryptographic schemes.

Acknowledgements

We would like to thank Dan Boneh, Eike Kiltz and Hovav Shacham for useful
comments and suggestions.

References

1. I. Blake, G. Seroussi and N. P. Smart (eds.). Advances in elliptic curve cryptography.
Cambridge University Press, 2005.

2. D. Boneh and X. Boyen. Efficient selective-ID secure identity-based encryption
without random oracles. In Advances in Cryptology - Eurocrypt 2004, Springer-
Verlag LNCS 3027, 223–238, 2004.

3. D. Boneh, X. Boyen and H. Shacham. Short group signatures. In Advances in
Cryptology – CRYPTO 2004, Springer-Verlag LNCS 3152, 41–55, 2004.

4. D. Boneh and M. Franklin. Identity-based encryption from the Weil pairing. In
Advances in Cryptology – CRYPTO 2001, Springer-Verlag LNCS 2139, 213–229,
2001.

5. D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing. In
Advances in Cryptology – ASIACRYPT 2001, Springer-Verlag LNCS 2248, 514–532,
2001.

6. D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing. J. of
Cryptology, 17, 297–319, 2004.

7. D. Boneh and H. Shacham. Group signatures with verifier-local revocation. In ACM
CCS 2004, 168-177, ACM Press, 2004.

8



8. L. Chen and Z. Cheng. Security proof of Sakai-Kasahara’s identity-based encryption
scheme. In Proceedings of Cryptography and Coding 2005, Springer-Verlag LNCS
3796, 442–459, 2005.

9. G. Frey, H.-G. Rück. A remark concerning m-divisibility and the discrete logarithm
in the divisor class group of curves. Math. Comp., 62, 865–874, 1994.

10. A. Joux. A one round protocol for tripartite Diffie–Hellman. In Algorithmic Number
Theory Symposium – ANTS IV, Springer-Verlag LNCS 1838, 385–394, 2000.

11. A.K. Lenstra. Key lengths. In Handbook of Information Security, Vol 2, 617–635,
Wiley, 2005.

12. F. Luca and I. Shparlinski. Elliptic curves with low embedding degree. To appear
J. of Cryptology.

13. A. J. Menezes, T. Okamoto and S. A. Vanstone. Reducing elliptic curve logarithms
to logarithms in a finite field. IEEE Trans. Inf. Theory, 39, 1639–1646, 1993.

14. R. Sakai, K. Ohgishi and M. Kasahara. Cryptosystems based on pairing. In
The 2000 Symposium on Cryptography and Information Security, Okinawa, Japan,
January 2000.

15. R. Sakai, K. Ohgishi and M. Kasahara. Cryptosystems based on pairing over elliptic
curve (in Japanese). In The 2001 Symposium on Cryptography and Information
Security, Oiso, Japan, January 2001.

16. R. Sakai and M. Kasahara. ID based cryptosystems with pairing on elliptic curve.
Cryptology ePrint Archive, Report 2003/054. 2003.

17. N.P. Smart and F. Vercauteren. On computable isomorphisms in efficient pairing
based systems. Cryptology ePrint Archive, Report 2005/116. 2005.

18. NIST Recommendation for Key Management Part 1: General, NIST Spe-
cial Publication 800-57. August, 2005. Available from http://csrc.nist.gov/

publications/nistpubs/800-57/SP800-57-Part1.pdf.

19. ECRYPT Yearly Report on Algorithms and Keysizes (2004), March 2005, Available
from http://www.ecrypt.eu.org/documents/D.SPA.10-1.1.pdf

A Notes

Here we give technical details to justify the claims in the sections above.
For Type 1 we only consider supersingular elliptic curves with embedding

degree k = 6 (in characteristic 3), k = 4 (in characteristic 2), or k = 2 (for large
prime characteristic). Hence we do not consider the cases k = 1 or k = 3 with
large prime characteristic (these cases are not very thoroughly studied, but it is
clear that from a high-level view their behaviour is broadly comparable to the
case k = 2). Similarly, we do not consider supersingular hyperelliptic curves, as
from a high-level point of view their performance characteristics are similar to
the case of supersingular elliptic curves.

For Types 2 and 3 we consider ordinary curves which will be generated using
the CM method. There are many papers in the literature on this topic, and a
wide choice of curves is available. The main focus of research has been trying to
get l ≈ q so that one can represent elements of G1 in an optimal way. This has
not been achieved for all values of k and more research on this topic is welcome.
But we feel that a sufficiently flexible array of curves is available nowadays so
that implementors could get an acceptable size of elements of G1 for any large

9



security level. A point however which is overlooked is that for large security levels
and certain choices of (k, q) it is not always the case that l ≈ q is the optimal in
terms of efficiency.

Among the various methods for generating ordinary curves, some simply
require evaluating one or more polynomials at integer values until primes are
found, while others require the solution of Pell equations or finding large prime
factors of lk − 1. Any method for generating system parameters which involves
solving Pell equations has dubious theoretical merits, since only finitely many
solutions will be expected [12]. Similarly, any method that requires factoring will
not be polynomial time. Hence, to ensure flexibility in the choice of parameters
we assume that curves are generated using methods which only require that
certain polynomials represent primes.

1. One can choose G2 to be the full l-torsion subgroup of the curve. In other
words, we have a group of exponent l rather than order l. In such a setting
one obtains a tick in every column of Table 1, however this is at the expense
of having a pairing between groups which has a probability of 1/l of being
trivial on random non-trivial input elements. In addition such pairing sys-
tems consume more bits to represent the elements in G2 compared to our
other systems.

2. In a number of recent papers, pairings have been used on groups of composite
order where the factors of group order are kept secret. We do not focus on
these groups in this paper. However, we note that currently the only known
way to generate such groups is in the Type 1 setting. In addition, such groups
necessarily comsume greater bandwidth and computational resources than
the “traditional” pairing systems considered in this paper.

3. Hashing into G1 and G2 usually involves multiplication by the cofactor,
though in many cases this will be chosen to be small. In some schemes the
need for this multiplication can be effectively removed by taking care of it
through other operations at a later stage in the operation of a scheme, for
example through the final powering in the Tate pairing algorithm. In these
columns we assume that the cofactor multiplication is carried out.

4. We assume that G1 ⊂ E(Fq) and G2 ⊂ E(Fqk) and so the standard repre-
sentation of elements of G2 will be k times longer than the standard rep-
resentation of elements of G1. This memory requirement can be reduced in
the case where G2 is the trace zero subgroup by using twists. This is why
the smaller ratio e appears for Type 3 groups. We assume for Type 3 groups
that the embedding degree k is always even, so e is at most k/2.

5. We assume projective coordinates are used in the group G2, rather than
affine coordinates. This might not be the most efficient in any given imple-
mentation, but does give a rough order of magnitude difference.
As explained in point 4 above, the ratio of the size of elements of G2 to G1

for Type 2 and 3 curves is k or e. Since multiplication is quadratic we make
the naive calculation that the cost of operations in G2 is either k2 or e2 the
cost of operations in G1.

10



If one is using pairing friendly fields, which are fields of degree k = 2i3j ,
then the value of k2 (respectively e2) can be replaced by 3i5j (respectively
3i−25j or 3i−15j−1 or 3i−15j).

6. We assume a standard naive implementation as we only aim to give a rough
estimate. Thus multiplication in Fqk costs k2-multiplications in Fq, whereas
projective coordinate addition in G1 ⊂ E(Fq) cost roughly
– For Type 1 curves in characteristic 2 at most 14-Fq operations.
– For Type 1 curves in characteristic 3 at most 12-Fq operations.
– For Type 1 curves in characteristic p at most 16-Fq operations.
– For Type 2 and Type 3 curves at most 16-Fq operations.

Hence the ratio of the cost of an operation in Fqk to the cost of an operation
in G1 is k2/16, for Type 2 and Type 3 curves. The values for Type 1 curves
are obtained as 42/14, 62/12 and 22/16.
A similar comment related to pairing friendly fields as in point 5 can also be
applied here.
A common operation in the groups is exponentiation/point multiplication.
Comparing the relative costs of these methods is less easy, since there are a
number of special tricks available, the exact trick which is used depends on
the relative cost of operations in the group, the amount of available memory,
and the size of the exponent/multiplier being used.

7. When hashing into G1 this will be efficient when k is chosen so that q ≈ l,
but when q is much larger than l then this will become progressively more
expensive. Hence, this depends on k and whether curves can be generated
with the correct parameter sizes.

8. This too depends on whether q ≈ l, and hence depends on the choice of k
and whether curves can be generated with the correct parameter sizes.

9. Again this depends on whether q ≈ l, and hence depends on the choice of k
and whether curves can be generated with the correct parameter sizes.

10. One can reduce a Type 2 pairing computation to that of a Type 3 pairing
at the cost of an extra multiplication in G1. One uses the following property
of the pairing, if P ∈ G1 and Q ∈ G2 in the Type 2 situation then

e(P,Q) = e(P,Q− 1
k

Tr(Q))

where Tr is the trace function from E(Fpk) down to E(Fp), i.e. the function
φ. The pairing on the right is such that its arguments are values of the
pairing in the Type 3 situation.

11


