
Key confirmation and adaptive corruptions
in the protocol security logic

Prateek Gupta and Vitaly Shmatikov

The University of Texas at Austin

Abstract. Cryptographic security for key exchange and secure sessionestablishment protocols is usually defined
in the so called “adaptive corruptions” model. Even if the adversary corrupts one of the participants in the middle
of the protocol execution and obtains the victim’s secrets such as the private signing key, the victim must be able to
detect this and abort the protocol. This is usually achievedby adding akey confirmationmessage to the protocol.
Conventional symbolic methods for protocol analysis assume unforgeability of digital signatures, and thus cannot
be used to reason about security in the adaptive corruptionsmodel.
We present a symbolic protocol logic for reasoning about authentication and key confirmation in key exchange
protocols. We demonstrate that the logic is cryptographically sound: a symbolic proof of authentication and secrecy
implies that the protocol is cryptographically secure in the adaptive corruptions model. We illustrate our method by
formally proving security of an authenticated Diffie-Hellman protocol with key confirmation.

1 Introduction

Cryptographic protocols have been a subject of very intensive research. The two dominant models for proto-
col analysis are the conventional cryptographic model, in which the objective of the proof is to demonstrate
that the protocol is secure against any efficient adversarial algorithm, and the so called “Dolev-Yao” model,
in which proofs are carried out in a symbolic logic or a process calculus.

Significant progress has been made in demonstrating that formany (but by no means all) cryptographic
primitives, the Dolev-Yao abstraction iscomputationally sound, that is, symbolic proofs of security for
protocols in which the primitive is replaced by its Dolev-Yao abstraction imply cryptographic security. This
has been shown for certain forms of symmetric encryption in the presence of passive [1, 25] and active [2]
attacker, for public-key encryption schemes secure against the adaptive chosen-ciphertext attack [26], and
for digital signature schemes secure against existential forgery [4, 10].

In this paper, we focus on key establishment, which is a fundamental problem in secure communications.
Intuitively, security of a key establishment protocol requires mutual authentication(upon completion of
the protocol, each participant correctly knows the other’sidentity) andkey secrecy(for anyone but the
participants, the established key is indistinguishable from a random value). Unfortunately, standard symbolic
interpretation of authentication and key secrecy is insufficient for proving cryptographically strong security
for key establishment protocols. Modern protocols such as SSL/TLS [18] and IKE [24] are designed to be
secure in the presence ofadaptive corruptions. Cryptographic definitions of security for key establishment
protocols such as those of Shoup [28] and Canetti and Krawczyk [13] also require adaptive security.

Very roughly, in the adaptive corruptions model, the adversary is permitted to corrupt one of the partic-
ipants in the middle of the protocol execution and obtain hislong-term secrets such as the signing key. (In
the strong adaptive corruptions model [28], which is beyondthe scope of this paper, the adversary obtains
the entire internal state of the corrupted participant, including ephemeral secrects.) The protocol must re-
main secure in the following sense:if both participants complete the protocol, then authentication and key
secrecy must hold. In particular, this implies that any action by the adversary that would result in a mismatch
between the participants’ respective views of the protocolexecution must be detectable by the participant

whose secret has been compromised. This is usually achievedby adding akey confirmationmessage to the
protocol. For example, a MAC (message authentication code)based on the established key can serve as the
confirmation message, enabling the recipient to verify thathe has computed the same key as the sender.

Security in the adaptive corruptions model is best illustrated by example. Consider the following two-
move authenticated Diffie-Hellman protocol, in whichA and B generate their respective Diffie-Hellman
exponents asx andy, and then carry out the following message exchange:

A
m1,sigA(m1)
−→ B ,where m1 = (gx,B)

A
m2,sigB(m2)
←− B ,where m2 = (gx,gy, i,A)

wherei is the index (randomly generated byB) of some universal hash function familyH. A andB then
derive a shared keyk asHi(gxy).

This protocol provides authentication and key secrecy under the Decisional Diffie-Hellman assumption.
Nevertheless, the standard ISO-9798-3 protocol adds the following key confirmationmessage:

A
m3,sigA(m3)
−→ B ,where m3 = (gx,gy, i,B)

B does not complete the protocol until he has received and verified this message.
Virtually all modern key establishment protocols contain similar key confirmation messages. What is

their purpose? Clearly, they arenot needed for authentication or secrecy (at least in the staticcorruptions
model). The answer is that they provide security againstadaptive corruptions[28]. SupposeB is corrupted
immediately after receiving the first message but before sending the second one. This revealsB’s private
signing key to the adversary. The adversary thus gains the ability to forge B’s signatures, and can forge
the second message as, say,sigB(gx,gz, i,A), wherez is some value known to the adversary. Without key
confirmation,B will happily complete the protocol thinking that the established key isk = Hi(gxy), while A
will complete the protocol thinking that the established key is k′ = Hi(gxz).

Adding the key confirmation message ensures that the victim of long-term key compromise will not
complete the protocol. Even ifB’s signing key has been compromised and the adversary forgedthe second
message, replacinggy with gz, B will be able to detect the inconsistency by verifyingA’s confirmation
message. Note thatB doesnot need to know whetherA has been corrupted, or vice versa. It is sufficient
to observe thateither the second message (fromB to A), or the third message (fromA to B) contains a
signature that could not have been forged by the adversary. This ensures that eitherA, or B will detect any
inconsistency between the Diffie-Hellman values that were sent and those that were received. Our objective
is to capture this reasoning in a rigorous symbolic inference system.

Authentication in the adaptive corruptions model is inherently “one-sided” because the adversary can
always impersonate the compromised participant. The other, uncorrupted participant may thus end up using
the key known to the adversary. Even in this case, we guarantee that (i) the corrupted participant detects the
attack and aborts the protocol, and (ii) the adversary’s view is fully simulatable, i.e., no efficient adversary,
even after obtaining the victim’s long-term secret, can tell the difference between the real protocol execution
and a simulation where the key has been replaced by a truly random value. This property holds regardless of
how the key is used by the uncorrupted participant,i.e., we guarantee real-or-random key indistinguishability
for any higher-level protocol that uses the key exchange protocol as a building block.

The adaptive corruptions model iscrucial to the study of key exchnage protocols in the real world, since
long-term secrets are often the most vulnerable secrets in the system. Adaptive security and key confirmation
are necessary for full universal composability of key exchange [13]. Therefore, it is impossible to reason
about cryptographically secure key exchange without considering adaptive corruptions.

2

Overview of our results. We present a protocol logic which is computationally sound for reasoning about
authentication when the long-term secret of one of the protocol participants may have been compromised.
We limit our attention to two-party protocols. Our logic is based on the protocol logic of Durgin, Dattaet
al., but the set of cryptographic primitives in our logic is substantially different, and includes Diffie-Hellman
exponentiation, digital signatures, universal one-way functions and pseudo-random functions.

We emphasize that we donot aim to provide general-purpose Dolev-Yao abstractions forthese prim-
itives. Our goal is to obtain a sound symbolic logic for reasoning about key exchange protocols with key
confirmation. We do not attempt to construct a symbolic representation for every computation performed by
the adversary; instead, we directly define computational semantics for our logic. One consequence of this is
that there may exist computationally secure protocols which cannot be proved secure in our logic. We do not
view this as a significant limitation. Soundness seems sufficient for the practical purpose of proving security
of key establishment protocols. Moreover, it is not clear whether a complete symbolic abstraction can ever
be constructed for malleable cryptographic primitives such as Diffie-Hellman exponentiation.

Our main technical result is the computational soundness theorem. As in [16] (but with a completely
different set of cryptographic primitives), we define a computational semantics for our logic,i.e., a semantics
in terms of actual cryptographic computations on bitstrings rather than abstract operations on symbolic
terms. Everyprovable symbolic theoremis guaranteed to be correct in the computational semantics under
standard assumptions about the underlying cryptographic primitives.

The semantics of real-or-random key indistinguishabilityis fundamentally different in our logic vs. [16].
Following [28], we define the distinguishing game on twotranscripts: that of the real protocol, and that of the
“ideal” protocol where all occurrences of the established keyk have been replaced with a truly random value
r. This guarantees that real-or-random indistinguishability holds even when keyk is used in a confirmation
message sent as part of the protocol: to win the game, the adversary must be able to distinguish between the
pairs (k, confirmation message computed withk) and (r, confirmation message computed withr).

The proof system of our logic is substantially changed vs. the original protocol composition logic [15,
16] to account for the possibility that the long-term secretof an (otherwise honest) participant has been
compromised. For example, standard reasoning about digital signatures based on security against existential
forgery (roughly, “If I receive a signed message from Bob andBob is honest, then Bob must have sent this
message”) is no longer sound, because the adversary may haveobtained Bob’s signing key and is capable of
forging Bob’s signature. Instead, all authentication axioms now require explicitconfirmation, i.e., a message
is considered authenticated if and only if the recipient returned some unforgeable token based on it (this
becomes clearer in the examples). In general, key confirmation (known as the ACK property in the Canetti-
Krawczyk model [13]) is a fundamental concept in adaptive security. To the best of our knowledge, it has
not beenexplicitly captured in symbolic reasoning before.

Related work.Our logic is a variant of the protocol logic of Durgin, Dattaet al. [19, 15]. The latter is sound
for reasoning about encryption [16], but only with static corruptions,i.e., a participant is either completely
controlled by the adversary, or else his long-term secrets cannot be compromised. Other models with static
corruptions appear in [21, 17]. We focus on key establishment in the presence of adaptive corruptions. This
requires acompletely new axiomatic proof systemfor reasoning about authentication. Unlike [17], our logic
guarantees that real-or-random indistinguishability is preserved forany use of the key, even if the key is
used to compute a key confirmation message or completely revealed to the adversary.

Security of cryptographic protocols in the presence of adaptive corruptions is closely related touni-
versal composability, developed by Canettiet al. [8, 9, 13, 14, 10], andreactive simulatability, developed by
Backes, Pfitzmann, and Waidner [27, 4, 5]. Both concepts ensure that security properties are preserved under
arbitrary composition. We do not explore the relationship between these concepts and adaptive security in

3

detail in this paper, but do note that one of our goals is to provide computationally sound symbolic proof
methods for universally composable notions of security.

Cryptographic key secrecy is usually modeled as the requirement that the derived key is computation-
ally indistinguishable from a true random bitstring. Connection between symbolic and cryptographic key
secrecy has been explored by Canetti and Herzog [11], who demonstrate that for protocols with universally
composable encryption (which is realized only with static corruptions) cryptographic secrecy is effectively
equivalent to Blanchet’s “strong secrecy” [7], and by Backes and Pfitzmann [3]. Our model is incomparable.
For instance, the protocol language of [11, 3] includes encryption, while our language includes a restricted
form of Diffie-Hellman exponentiation.

Organization of the paper.Cryptographic assumptions are explained in section 2. The symbolic and com-
putational protocol models are defined in, respectively, sections 3 and 4. In section 5, we describe our logic,
and its proof system in section 6. An example is in section 7, conclusions in section 8.

2 Cryptographic preliminaries

We use the standard cryptographic definitions for digital signature schemes, universal hash functions, and
pseudo-random functions. These are described in appendix A. We assume the existence of a signature
schemeDS = (K,S,V) secure against the chosen message attack (CMA); an (almost)universal hash func-
tion family H = {hi}i∈I and a family of pseudorandom functionsf = {fi}i∈I . Hash functions and pseudo-
random functions are often modeled as the same abstract primitive in symbolic models, but their purposes
are different in the protocols we consider. Universal hash functions are employed asrandomness extrac-
tors to extract an (almost) uniformly random key from a joint Diffie-Hellman value, while pseudo-random
functions are used to implement message authentication codes (MACs)after the key has been derived.

Mutual authentication and key secrecy.Our definition of mutual authentication is based onmatching
conversations[6]. The participants’ respective records of sent and received messages are partitioned into
sets of matching messages with one message from each record per set. Mutual authentication holds if for
every “receive” action by one of the participants there is a matching “send” action by another participant
and the messages appear in the same order in both records.

The cryptographic definition of key secrecy requires that the established key be indistinguishable from
a random bitstring by any probabilistic polynomial-time adversary. This definition is usually given in the so
calledsimulatabilityparadigm [28, 13]. Define anideal functionalityfor the key exchange protocol which
is secure by design: a “trusted third party” generates keys as perfect random values and securely distributes
them to protocol participants. In the real protocol, by contrast, the participants exchange messages and
compute the key according to the protocol specification.

Consider any probabilistic polynomial-time adversary, and let theRealview be the sequence of mes-
sages sent and received by the adversary during the real protocol execution. Following [28], we say that
the protocol is secure if there exists an efficientsimulator algorithm which, with access only to the ideal
functionality, generates anIdeal view such that no efficient adversary can distinguish between Ideal and
Realwith a probability non-negligibly greater than12 . Note that all occurrences of the established key or
any function thereof in theRealview are replaced with the (perfectly random) ideal key in the Ideal view.
Formal definition can be found in appendix B.

Unlike [17], we place no restrictions on how the key may be used by anarbitrary higher-layer protocol.
Even if the key is completely revealed to the adversary and the protocol contains confirmation messages
computed with this key, he still cannot tell the difference between theRealandIdeal views (see section 4).

4

Identities id ::= X (variable name)| A (constant name)
Terms t ::= x (variable)| c (constant)| id (identity) | r (random)|

i (index of hash function family)| (t, t) (pair) | d(r) (exponentialgr) |
d(r, r) (exponentialgr.r) | {t}rid (signature ofid)|
hi(t) (unary hash function)| ft(t) (pseudo-random function)|

Actions a ::= ǫ (null) | (νx) (generate nonce)| (νi) (generate index)| 〈t〉 (send termt) |
(t) (receive termt) | x = x (equality test)| (t/t) (pattern matching)|
(done) (“protocol session completed”)

AList ::= ǫ | a, AList
Thread ::= 〈 id, sessionId〉
Role ::= [AList]Thread

Fig. 1. Syntax of the symbolic model

Adaptive corruptions. In theadaptive corruptionsmodel [28], the real-world adversary may issue a special
corrupt user query to any of the honest participants at any point during the protocol execution. As a
result of this query, he obtains the victim’s long-term secrets such as the private signing key. For the purposes
of this paper, we assume that the adversary doesnot learn any ephemeral data such as Diffie-Hellman
exponents and nonces created just for this protocol execution (In appendix H, we discuss thestrongadaptive
corruptions model, in which the adversary learns ephemeraldata as well as long-term state of the corrupted
participant.). In the ideal world, corrupting a participant does not yield any information, but the simulator
can substitute the ideal, random key with any value of his choice.

The network is assumed to be controlled by the adversary, whoinvokes honest participants by deliver-
ing messages. On receiving a message, the participant performs a local computation according to his role
specification, and delivers the output to the adversary. Each participant terminates by either outputting the
established key, or aborting the protocol. As mentioned above, the adversary can also issue acorrupt
user query to either protocol participant at any point during theexecution. In this paper, we are not inter-
ested in denial-of-service attacks, and assume that the corrupted participant follows the protocol faithfully
even after his long-term secrets have been compromised (this is a standard assumption [28]).

In the proofs, we assume that at most one of the two participants has been corrupted. From the symbolic
perspective, it is not clear what authentication means in a two-party protocol whenboth participants have
been compromised. From the cryptographic perspective, simulatability is vacuous in this case: the simulator
corrupts both participants in the ideal world and substitutes the random ideal-world key with the real-world
key. This ensures that the adversary’s view is identical in both worlds.

3 Symbolic model

We extend the symbolic protocol logic of Dattaet al. [15] to include Diffie-Hellman exponentiation, unary
hash functions and a pseudo-random function family. The syntax of terms and actions is given in fig. 1.

We use a simple “programming language” to specify the protocol as a set of roles.X,Y, . . . denote the
names of protocol participants. Athreadis a pair〈X, s〉, wheres is asessionIddenoting a particular session
being executed byX. For simplicity, we will omit thesessionIdand denote a thread simply byX. Each role
is a sequence of actions (AList) associated with a single thread. A role specifies the actions that an honest
participant must do, and can be thought of as astrand in the Strand Space Model [29].

Symbolic actions include nonce generation, index generation, pattern matching (which subsumes equal-
ity tests and signature verification), sending and receiving actions. Receiving a message(t) always involves
pattern matching whent is not a variable. Actions include outputting a special markerdone, which is always
the last action of the role.

5

A protocolΠ is a set of two roles (we limit our attention to two-party protocols), together with a basic
term representing the initial attacker knowledge. We definethenormal executionof Π to be the matching of
the two roles that would occur if the protocol were executed in a secure communication environment with
perfect message delivery. In the normal execution, every send action by one of the roles is matched up with
a receive action by the other role, and there exists a substitution match from variables in received messages
to terms such that the sent and received terms are equal afterapplying the substitution. Intuitively, for every
receive action(x) wherex is a variable,match(x) is the “intended” term sent by the other role.

Distinct signatures assumption.To simplify proofs, we impose a simple syntactic constrainton protocols.
We require that all signatures received by the role be syntactically distinct, i.e., for signatures{t1}

l1
X , . . . ,

{tn}
ln
X received by some role, for any substitutionτ from variables to ground terms, it must be thatτ(ti) 6=

τ(tj) for i, j ∈ [1..n] and i 6= j. This can be ensured by adding a unique “tag” to the plaintextof each
signature,i.e., replacing each signature{ti}

li
X in the role specification with{(ti, ci)}

li
X whereci ’s are

distinct symbolic constants. Observe that the unique matching of sent and received signatures also imposes
a unique matching on the subterms of signed terms. For the rest of this paper, we will assume thatΠ satisfies
this constraint and is associated with somematch describing the “intended” matching of the roles.

Definesymbolic traceof Π asExecStrandΠ ::= Start(Init), AList, whereInit is some initial configu-
ration, andAList is the sequence of actions which respects the partial order imposed by the roles ofΠ.

4 Computational model

In the computational model, abstract symbolic terms are replaced with actual bitstrings, and symbolic role
specifications are instantiated as stateful oracles, following the standard model for cryptographic proto-
cols [6]. For the latter, every symbolic term sent by a honestparticipant isinstantiatedto a bitstring, and
every term received by an honest participant from the adversarially controlled network isparsedto match
the symbolic term expected by this participant according tohis role specification.

Initialization. We fix the protocolΠ (assume that we are given its symbolic specification), security pa-
rameterη1, probabilistic polynomial-time (inη) adversaryA, and some randomnessRof size polynomially
bounded inη, which is divided intoRΠ = ∪Ri (for protocol participants) and andRA (for internal use of
the adversary). Each principal (Ui) and each thread is assigned a unique bitstring identifier chosen from a
sufficiently large polynomially bound setI ⊆ {0, 1}η . We run the key generation algorithmK of the dig-
ital signature schemeDS = (K,S,V) on 1η for each principalUi using randomnessRi , and produce a
public/private key pair(pki, ski).

The correct public keys of all participants are assumed to beknown to everybody, includingA (i.e., we
assume the existence of trusted certification authority). We assume that a family of large cyclic groups, in-
dexed byη, in which the Decisional Diffie-Hellman problem is presumedhard, has been chosen in advance,
and that both participants know the correct values of the group parameters, including the generatorg. (For
simplicity, in the description below, we will assume that a Diffie-Hellman group refers to a member of a
family Diffie-Hellman groups, indexed byη). We will also assume that every signed message consists of the
message itself and the signature,i.e., participants simply reject signatures that arrive without a plaintext.

Interpretation of sent and received terms.Honest participants in the computational model are modeledas
stateful oracles. The state of each oracle is defined by an interpretation function,σ : t → bitstrings from
ground terms to bitstrings (of size polynomially bounded inη), and the counterc, which is initially set to0
and increases by1 for each executed action. We fix the mapping from symbolic constants to bitstrings prior

1 In cryptography, the security parameter measures the size of the input problem,e.g., the size of the key in bits.

6

to protocol execution. This includes identities of participants, public/private key pairs for each participant,
publicly known constants,etc.. Abstract Diffie-Hellman valuesd(x) andd(x, y) are mapped togx andgxy,
whereg is the generator of the Diffie-Hellman group.

During protocol execution, oracles are activated by the adversary who communicates with them by
sending and receiving messages. Each oracle proceeds in steps according to the sequence of actions in the
role’s symbolic specification, when activated by the adversary. Instantiation of symbolic actions to concrete
operations on bitstrings is performed by substituting ground terms with their interpretation and incrementing
the counterc for every symbolic action [26, 16].

Let a denote the current action in theAList defining some role of participanti in sessions, i.e., the sym-
bolic thread is(i′, s′) wherei = σ(i′) ands = σ(s′). For example, actiona = (νx) is executed by updatingσ
so thatσ(x) = v wherev is a random bitstring chosen fromRi . We omit the (standard) details for other oper-
ations including signature generation and verification, pairing, unpairing, equality test,etc.. We inductively
extend the interpretation functionσ to all ground terms,e.g., σ({t}lX) = (σ(t),SskX(σ(t), σ(l))), whereS
is the signing algorithm of the digital signature schemeDS, skX is the private key of principalX, σ(l) is the
randomness of the signing algorithm. Note that the signature{t}lX is interpreted as a pair(b, sigX(b)) where
b is the plaintext corresponding to termt andsigX(b) is the signature obtained from the signing algorithm
of the signature scheme usingX’s private key.

Every bitstringreceivedby an honest participant from the adversary isparsedto match it up against the
symbolic term expected according to the role specification,and assigned some symbolic label. This parsing
need not be precise: bitstrings which cannot be parsed (e.g., hash of an unknown valueh(a) received when
the recipient expects a variablex) are labeled by fresh symbolic constants, as in the originalpaper by
Micciancio and Warinschi [26]. The parsing algorithm is given in appendix C.

Generating computational traces.For a given protocolΠ, letOΠ denote the oracle environment for the
protocol participants. Acomputational traceis generated by the interaction ofOΠ with the adversaryA by
sending and receiving messages. The initial state ofOΠ is defined by the initialization procedure. During
the protocol execution,OΠ is activated by the adversaryA on some inputx. On activation,OΠ parsesx
(according to the symbolic input it expects to receive), performs the honest participant’s actions according to
the role specification, and obtains their computational instantiation by applying the interpretation function
σ ∈ {σr , σi} to the result.OΠ halts and its output is given toA. This process is repeated until the protocol
completes or one of the honest participants aborts prematurely. Since we are working in the adaptive cor-
ruptions model, the adversary is allowed to corrupt any participant and obtain his private signing key at any
point in the protocol by performing thecorrupt user operation. We emphasize that no short-term secrets
(such as Diffie-Hellman exponents) are given to the adversary (but see also appendix H).

Definition 1. (Computational Traces) Given a protocolΠ, an adversaryA, a security parameterη, and a
sequence of random bits R∈ {0, 1}p(η) (R = RΠ ∪RA) used by honest participants (RΠ) and the adversary
(RA), a computational trace of the protocol is the tuple(ts, σ,R) (σ ∈ {σr , σi}) , where ts is the sequence of
symbolic actions executed by honest participants,σ is the interpretation function and R is the randomness
used in the protocol run. Let CExecStrandΠ be the set of all computational traces ofΠ.

5 Protocol logic

Our protocol logic is inspired by the logic of [15, 16], but has been extended with several new predicates and
axioms to model cryptographic primitives such as signatures and Message Authentication Codes (MAC).
To the best of our knowledge, ours is the first logic to presenta cryptographically sound proof system for
reasoning about authentication in the presence of adaptivecorruptions.

7

a ::= Send(X, m) | Receive(X, m) | VerifyMAC(X, t) | New(X, t) | VerifySig(X, t)
ϕ ::= a | Has(X, t) | Fresh(X, t) | FollowsProt(X) | Done(X) | Contains(t1, t2)

Start(X) | IndistRand(t) | ϕ ∧ ϕ | ¬ϕ | ∃ x.ϕ | −3ϕ | ©©−©ϕ | ϕ ⊃ ϕ | ϕ ⇒ ϕ
ψ ::= ϕρϕ

Fig. 2. Syntax of the protocol logic

Syntax.The syntax of the logic appears in fig. 2. Formulasϕ andψ denote predicate formulas,ρ denotes a
role, whilet, m andX denote a term, message and a thread, respectively.

For every protocol action, there is a corresponding action predicate which asserts that the action has
occured in the run. For example,Send(X, m) holds in a run where the threadX has sent the messagem.
FollowsProt(X) means thatX faithfully executes the actions in its role specification (we prefer not to use
the termhonestbecauseX’s private key may have been compromised by the adversary).Done(X) means that
the threadX has successfully completed the protocol session and outputthe key.IndistRand(t) means,
informally, that no probabilistic polynomial-time algorithm can distinguisht from a random value (the
precise semantics is defined below). Modal formulas of the form θ[s]Xϕ are used in the proof system. The
formula states that in a threadX after actionss ∈ AList are executed, starting from a state in which the
formulaθ was true, formulaϕ is true in the resulting state.

In the adaptive corruptions model, it is no longer possible to assume that every participant’s signatures
are trustworthy. This requires a complete revision of the authentication formulas and axioms, which is the
main contribution of this paper. We start by introducing twonew formulas.VerifySig(X, {t′}lY) means that
threadX verified signaturesigY(σ(t′)) using the public key of participant (thread)Y. As mentioned above,
we assume that every signature is accompanied by its plaintext, i.e., termt′ is Dolev-Yao computable from
the signature{t′}lY. Similarly, VerifyMAC(X, ft′(c)) means thatX has verified the MAC by re-computing
the keyed pseudo-random functionf with keyσ(t′) on inputσ(c).

Following [16], we use two forms of implication: classical implication⊃ and conditional implication
⇒. Conditional implicationθ ⇒ ϕ is defined¬θ OR the conditional probability ofϕ givenθ. Conditional
implication is useful for proving cryptographic reductions: for example, we show that if the attacker violates
IndistRand(t) wheret is the symbolic term representing the key, then this attacker can be used to break
the Decisional Diffie-Hellman assumption.

Defineclosureof a termt as the least set of terms derivable using the following rules:
t ∈ closure(t)
t ∈ closure((t, s)), s ∈ closure((t, s))
t ∈ closure({t}lX), d(x, y) ∈ closure(d(y, x))
r ∈ closure(s)∧ s ∈ closure(t) ⊃ r ∈ closure(t)

Define a relation
wcr
−→⊆ t× t on the set of terms as follows:t′

wcr
−→ t iff there exists ann-ary functionf

such thatt = f (t′, t1, . . . , tn−1), and, given valuesx, x1, . . . , xn−1, it is computationally infeasible to find
x′ 6= x such thatf (x′, x1, . . . , xn−1) = f (x, x1, . . . , xn−1) holds. We say thatt is a weakly collision-resistant
function oft′.

Computational semantics. We define the semantics of formulas oversetsof computational traces. For
most formulas, the definition is straightforward:ϕ holds over an individual trace if the action described byϕ
occurred in that trace (e.g., theSend action predicate is true in the trace if the corresponding sending action
occurred in the trace), and for a set of tracesT, the semantics[ϕ](T) is the subsetT′ ⊆ T consisting of traces
on whichϕ holds. The formulaϕ holds for protocolΠ, denoted asΠ |=c ϕ, if it holds for the overwhelming
majority of traces in the entire set of computational tracesCExecStrandΠ . The precise inductive definition
has been removed to appendix D, due to lack of space.

8

The only challenging formula is the indistinguishability predicateIndistRand(t). Intuitively, this pred-
icate should hold when the value oft (typically, the key established in the protocol) is indistinguishable from
random by any efficient adversary. Unlike other models of real-or-random indistinguishability [17], our def-
inition preserves indistinguishability regardless of howthe value is used in the protocol: for example, the
key remains indistinguishable from random even when used tocompute a key confirmation message. This
is achieved by defining the distinguishing game on entire protocol transcriptsrather than standalone keys.
This technique is similar to [28].

Given a protocolΠ (between rolesX andY), computational tracet = (ts, σ,R) and termt, lett1, . . . , tn
be the symbolic terms in the role specifications ofX andY whose interpretation is the same as that oft, i.e.,
σ(t1) = . . . = σ(tn) = σ(t). Define a substitution̺t as:

̺t = [t1 → r, . . . , tn → r]; wheret is not a Diffie-Hellman term
[t1 → d(r), . . . , tn → d(r)]; t is of the formd(x) or d(x, y)

wherer a fresh symbolic constant. LetΠideal = ̺t(Π). Let tideal denote the computational trace generated
by runningΠideal with the same adversarial algorithmA and using the same randomnessR as used int.
The randomness needed to instantiater is drawn fromR \ RA. Intuitively, in tideal all occurences of the
real-world key are replaced by random value. This includes key confirmation messages: in the real world,
they are computed withσ(t); in the ideal world, withσ(r).

Let adv(t) denote the adversaryA’s view, i.e., the sequence of send and receive actions in the tracet.
Given a set of computational tracesT = {t}R (parameterized by randomnessR), define:

– T̂ = {adv(t).σ(t)}R
– T̂ideal = {adv(tideal).σ(r)}R

We explicitly append the value of termt to each trace of the “real” protocol, and its random equivalent to
each trace of the “ideal” protocol. We say that[IndistRand(t)](T) = T if T̂ andT̂ideal are computationally
indistinguishable, else it is the empty setφ.

Semantics ofIndistRand can be understood in terms of a game played by the adversaryA. Fix ran-
domnessRassociated with the protocol participants andA at the start of the game. A random bitb is tossed.
If b = 1, participants follow the real protocol, in which the key is generated according to protocol specifica-
tion. If b = 0, the key is generated as a true random value and “magically” distributed to participants (i.e.,
the value of the key is independent of protocol execution); all protocol messages involving the key are com-
puted using this random value. To modelarbitrary usage of the key by a higher-layer protocol, we explicitly
reveal the key toA in each world.A wins the game if he guesses bitb with a probability non-negligibly
greater than12 , i.e., if A can tell whether he is operating in the real or ideal world.[IndistRand(t)](T) = T
iff no probabilistic polynomial-time adversary can win theabove game, else it isφ.

6 Symbolic proof system

Our logic inherits some axioms and proof rules from the original protocol composition logic of Durgin, Datta
et al.[19, 15, 16], and the axioms for reasoning about Diffie-Hellman exponentiation from our previous work
on key exchange protocols in the static corruptions model [22, 21].

The significant new additions are the axioms and rules for reasoning about authentication in the presence
of adaptive corruptions, and pseudo-randomness axioms forreasoning about message authentication codes
(MACs). The main philosophical change is that the new authentication axioms require an explicit confirma-
tion message for every term sent by an honest participant. Our VER axiom models confirmation with digital
signatures: roughly, “Alice knows that Bob has received hersigned term correctly if she receives a signed

9

VER FollowsProt(X) ∧ FollowsProt(Y) ∧ (X 6= Y)∧ [NEW]
−3(VerifySig(X, {m2}kY)∧ (−3VerifySig(Y, {m1}lX))) ∧ SendAfterVer(Y, t′)∧
ContainedIn(m2 , t) ∧ ContainedIn(m1 , t

′)) ∧ (t = match(t′)) ⊃
∃ l′.∃ k′.∃ m′1 ∃ m

′

2.

ActionsInOrder(Sendterm(X, {m′1}
l′

X), VerifySig(Y, {m1}lX),

Sendterm(Y, {m′2}
k′

Y), VerifySig(X, {m2}kY))∧
ContainedIn(m′1 , t) ∧ ContainedIn(m′2 , t

′) ∧ (t = t′)

AUTH FollowsProt(X) ∧ FollowsProt(Y) ∧ (X 6= Y)∧ [NEW]
−3(VerifyMAC(X, ft(c)) ∧ (−3Receive(Y,m))) ∧ IndistURand(t) ∧ NotSent(X, ft(c))∧
ContainedIn(m, t′′) ∧ SendMACAfterVer(Y,ft(c), t′′) ∧ t

′ = match(t′′) ∧ (t′
wcr
−→ t) ⇒

∃ l′.∃ m′.
ActionsInOrder(Sendterm(X, m′), Receive(Y, m),
Sendterm(Y,ft(c)), VerifyMAC(X, ft(c)) ∧ ContainedIn(m′ , t′) ∧ (t′ = t′′)

ContainedIn(m, t) ≡ t ∈ closure(m)
SendAfterVer(Y, t) ≡ ∀ m.(Sendterm(Y,m) ∧ ContainedIn(m, t)) ⊃

∃ m1, l.−3VerifySig(Y, {m1}lX) ∧ ContainedIn(m1 , t)
Sendterm(X, t) ≡ ∃ m.Send(X, m) ∧ ContainedIn(m, t)
SendMACAfterVer(Y,ft(c), t′) ≡ ∀ m′.(Sendterm(Y,m′) ∧ ContainedIn(m′ , ft(c))) ⊃

∃ m, l.−3VerifySig(Y, {m}lX) ∧ ContainedIn(m, t′)
NotSent(X, t) ≡ ∀ a.(−3a ∧ a = 〈m〉) ⊃ t 6∈ closure(m)
IndistURand(t) ≡ IndistRand(t)∧ t is not of the formd(x), d(x, y) andc is a public constant

Fig. 3. Axioms for authentication

WCR1 d(x)
wcr
−→ d(x, y) [NEW]

WCR2 d(y)
wcr
−→ d(x, y) [NEW]

WCR3 ∀ i.t
wcr
−→ hi(t) [NEW]

WCR4 t1
wcr
−→ t2 ⊃ ∀ i.t1

wcr
−→ hi(t2) [NEW]

WCR5 (t1
wcr
−→ t2) ∧ (t2

wcr
−→ t3) ⊃ t1

wcr
−→ t3 [NEW]

WCR6 ∃X.FollowsProt(X) ∧ −3[νk]X ⊃ k
wcr
−→ hk() [NEW]

Fig. 4. Axioms for weak collision resistance

message from Bob containing the same term” (intuitively, this reasoning is sound even if either party’s sign-
ing key has been compromised). TheAUTH axiom models confirmation with message authentication codes
(MACs): roughly, “Alice knows that Bob has received her termcorrectly if she receives a MAC computed
as a pseudo-random function of some public constant with thesecret key derived in part from Alice’s term.”

Looking at theVER axiom in detail, it says termt sent fromX to Y has been transmitted correctly if (i)
bothX andY follow the protocol, (ii)Y received a term containingt that was signed byX, (iii) Y verifiedX’s
signature, (iii)Y sent a signed term containingt to X (this is the confirmation message), and (iv)X verified
Y’s signature. Observe that ifX’s long-term key has been compromised, the adversary will beable to forge
X’s signature and substitute a different term in the message received byY, butX will detect the compromise
after receivingY’s confirmation message.

We focus on the new axioms only. The complete set of axioms andproof rules is given in appendix 5.
We sayΠ ⊢ ϕ if ϕ is provable using this system.

Theorem 1 (Computational soundness).
LetΠ be a protocol satisfying the distinct signatures assumption, and letϕ be a formula. If the protocol

is implemented with a digital signature scheme which is secure against existential forgery under the adaptive
chosen message attack and assuming the exsistence of a universal family of hash functions and pseudo-

10

DDH1 Fresh(Y,y) ∧ NotSent(Y, d(x, y)) ∧ FollowsProt(Y) ∧ (∃X. (X 6= Y) ∧ FollowsProt(X)
∧Fresh(x,X)) ∧ NotSent(X, d(x, y)) ⇒ IndistRand(d(x, y))

DDH2 IndistRand(d(x, y))[a]XIndistRand(d(x, y)), where ifa = 〈t〉 then
d(x, y), x, y 6∈ closure(t)

LHL IndistRand(d(x, y)) ∧ ∃X.FollowsProt(X) ∧ −3[νk]X ⇒ IndistRand(hk(d(x, y)))
PRF IndistURand(t) ∧ NotSent(X, t) ∧ NotSent(Y,t) ⇒ IndistURand(ft(c)) [NEW]

NotSent(X, t) ≡ ∀ a.(−3a ∧ a = 〈m〉) ⊃ t 6∈ closure(m)

Fig. 5.Axioms for Diffie-Hellman, hash functions and pseudo-random functions

random functions and that the Decisional Diffie-Hellman assumption holds, then

Π ⊢ ϕ ⊃ Π |=c ϕ

Proof. The proof follows from the computational soundness of all axioms and proof rules, which is
proved in appendix F. To illustrate our proof techniques, wegive the soundness proof of theVER axiom,
which models confirmation with digital signatures. As mentioned in section 2, we will only consider the
case when at most one of the two participants has been corrupted by the adversary.

Soundness of VER axiom.The informal intuition behind the proof is as follows. According to the precon-
dition of theVER axiom,X sent a signed termt to Y, Y signed whatever he received and returned it toX,
who verified that the signed value is equal tot. Suppose the adversary hasX’s signing key, and causesY to
receive somet′ 6= t. In this case,Y sendst′ to X in the second message, yet we knowX receives signedt. This
means that the adversary forgedY’s signature on the message containingt, even though he does not know
Y’s signing key. Now suppose the adversary hasY’s signing key. IfY receivest′ 6= t in the first message
(signed byX), then the adversary forgedX’s signature on the message containingt′, even though he does
not knowX’s signing key. In both cases, we conclude that eitherY receivedt in the first message, or the
adversary forged a signature of the participant whose signing key he does not know.

We now give the formal proof. Fix protocolΠ, adversaryAc and a signature schemeDS = (K,S,V)
secure against existential forgery,i.e., CMA-secure. The structure of the proof is as follows. Suppose that the
computational trace doesnotsatisfy the axiom. We then use the adversaryAc to construct a forgerB against
the CMA security of the digital signature schemeDS. Since the forgery can only succeed with negligible
probability, we will conclude that the axiom must hold over the computational trace.

Let tc ∈ CExecStrandΠ denote a computational trace such thattc = (ts, σ,R). The forgerB runs the
adversaryAc in a “box” and simulates the oracle environment to him. More formally, whenAc makes a
queryq while running as a subroutine forB,B gets hold ofq and performs the desired action. The details of
the simulation are standard and not presented here.

Recall the CMA game. For a signature schemeDS = (K,S,V), PPT adversaryB, security parameter
η, run the key generation algorithm to generate a key pair(s, v) and givev to B. The adversary can query
(sign,m) for any messagem and obtainSs(m). The adversary wins the game if he produces a signatureσ
on messagemwhich he did not use in the query phase such thatVv(σ,m) = 1. A signature scheme isCMA-
secureif no probabilistic polynomial-time adversary can win thisgame with non-negligible probability.

Let X andY be the names of protocol participants. Assume the existenceof signing oraclesSX andSY

for participantsX,Y, respectively. ForgerB is constructed as follows.B faithfully simulates execution of
the protocol toAc. Consider the sequence of queriesq1, . . . ,qn (i.e., messages sent to protocol participants)
made byAc. WheneverAc produces a queryqi , B performs the required actions on behalf of the protocol
participant. Whenever an honest participantX is required to produce a signature on some termm, B obtains
the required signature from the signing oracleSX by issuing a query of the form(sign,m) to SX. When a

11

participant is corrupted, his signing key is given toAc. To win the CMA game,Bmust forge a valid signature
of the uncorrupted participant (recall that at most one participant can be corrupted).

Suppose the computational trace does not satisfyVER. This implies that the precondition of the axiom
is true, but the postcondition is false. The precondition states that the following actions happened in the past
in sequence:Y verified a signature ofX on some term containingt′, then signed a term containingt′ and
sent it toX. We consider several cases, depending on when the adversarycorrupted one of the participants.

Case I.This is the simplest case, where we assume that both participants are still uncorrupted whenX
verified the signature ofY on some term containingt. There are two possibilities depending on whether
t = t′ or not. We first consider the simpler case wheret = t′. Since the trace does not satisfy the axiom,
and both participants are still uncorrupt, it is easy to see that there must exist some queryQi which contains
the signature{m′1}

l′

X (wherem′1 containst) which did not appear in a previous message, or (previously
unseen) signature{m′2}

k′

Y wherem′2 containst′.
Without loss of generality, we assume that queryqi contains the signature ofX on termm′1 such that no

earlier message contains the signature of the same term under the same signing key (even with a different
label l). ThenB simply outputs the signature{m′1}

l′

X sent by the adversaryAc and wins the CMA game.
This is a valid forgery becauseX has not been corrupted andB successfully produced a signature ofX on a
term whichX did not previously sign before. (Note thatB knows whenAc first produced a valid signature
of some honest participant which has not been seen before becauseB can verify the signature himself.)

We now consider the case whent 6= t′. Recall that we imposed a syntactic constraint on the pro-
tocol specification which requires that all received signatures in a role specification are distinct,i.e., for
{t1}

l1
X , . . . , {tn}

ln
X received by some role, for any substitutionτ from variables to ground terms, it must be

that τ(ti) are all distinct. The precondition of the axiom states thatX correctly verified a signature ofY
on the term containingt and previouslyY verified a signature ofX on a term containingt′ 6= t. Since all
signatures received by participantY from X are required to be distinct,i.e., for any valid signature received
by participantY there exists exactly one signature sent byX, there must exist some queryqi made byAc

which contains the signature{m′}l
′

X (wherem′ containst′) under the private signing key ofX, but no earlier
message containsX’s signature on termm′. Therefore, the adversary made a query which contains a valid
signature of an honest participant, but no earlier message contains this participant’s signature on the same
term. The forgerB simply outputs this signature as in the previous case and wins the CMA game.

Case II.Suppose the adversary corrupts participantX beforeY receivedX’s signature on a term containing
t. The adversary can now produce a valid signature ofX on a message containing a different termt1 (which
was not signed byX in the past) and deliver it toY. Y correctly verifiesX’s signature on the message
containingt1 and receives the value of the term int′. Because we limit our attention to the case whenAc

can corrupt at most one participant during the protocol execution (see section 2),Y remains uncorrupted
throughout the protocol execution. Let us assume that participantX obtains a signatureα from the adversary
sent byY. It follows from the precondition thatX accepts the signature iffα is a valid signature byY on a
term containingt. We know from the distinct signatures assumption and the fact thatt = match(t′) that
the only sent term in the role specification ofY which matches the signatureα received by participantX is
a signature on a term containingt′ in the same position whereα containst. Recall that the value received
in termt′ equalst1 (6= t). Therefore, there exists some queryqi made by the adversary which contains a
signature of uncorrupted participantY on a message containing termt which was not previously signed by
Y. B outputs this signature and wins the CMA game. Otherwise, we must conclude thatt = t1 andt = t′.
The postcondition follows.

The proof for the case where the adversary corruptsY beforeX receivesY’s signature on a message
containingt is similar and omitted.

12

Init ::= {(A1 A2)[(νx).〈A1,A2, d(x), {d(x),A2}
l′1
A1
〉.

(A2,A1, d(x), y
′, k′, z).(z/{d(x), y′, k′,A1}

l2
A2

) .(create).〈A1,A2, fκ(c)〉.(done)]A1
}

Resp ::= {(A1 A2)[(νy).(νk).(A1,A2, x
′, z). (z/{x′,A2}

l1
A1

).

〈A2,A1, x
′, d(y), k,{x′, d(y), k,A1}

l′2
A2
〉.(connect).(A1,A2, z′).(z′/fκ(c)).(done)]A2

}

andmatch(x′) = d(x), match(y′) = d(y), match(k′) = k, match(z′) = fκ(c),
wherek is a hash function index andf is a family of pseudo-random functions;
the derived key isκ = hk(d(x, y)) for hash functionh indexed byk and
c is a public constant.

Fig. 6. Symbolic specification of the DHKE-1 protocol.

7 Example

We illustrate the use of the logic by proving security for a three-move authenticated Diffie-Hellman protocol
(DHKE-1), which is essentially the same as the protocol described in section 2, except that PRFs instead of
signatures are used in the key confirmation message.

In the symbolic protocol specification shown in fig. 6,Init andRespdenote the initiator and responder
roles in the protocol, respectively. LetA1 andA2 denote the names of the initiator and the responder of the
protocol, respectively. We assume that the public signature verification keys of all participants are known in
advance and not sent as part of the protocol.

Below, we specify the authentication property for the initiator role of the protocol (specification for
the responder is similar). The property is proved using the formulationpre [actions] post, wherepre is the
precondition before the actions in theactionslist are executed andpostis the postcondition. Note that mutual
authentication is conditional onA2 actually completing the protocol.

We emphasize that this doesnot mean thatA1 can verify the state of theA2. As explained in section 1,
this simply means that ifA2’s key is compromised, then the adversary can successfully impersonate compro-
misedA2 to A1 and authentication ofA2’s messages cannot be guaranteed. This isinevitablein the presence
of adaptive corruptions. The protocol must guarantee, however, thatA2 detects that it has been compromised
and doesnot complete the protocol, thusA1 andA2 never communicate using a key known to the adversary.
As our proofs in appendix G show, the protocol indeed satisfies this property.

pre ::= Fresh(A1, x) ∧ FollowsProt(A1)
actions::= [Init]A1

post ::= FollowsProt(A1) ∧ FollowsProt(A2) ∧ Done(A2) ⊃ ∃ l1.l
′
2.

ActionsInOrder(Send(A1, {A1,A2, d(x), {d(x),A2}
l1
A1
})

Receive(A2, {A1,A2, x
′, {x′,A2}

l′1
A1

)})

Send(A2, {A2,A1, x
′, d(y), k, {x′, d(y), k,A1}

l′2
A2
})

Receive(A1, {A2,A1, d(x), y
′, k′, {d(x), y′, k′,A1}

l2
A2
})

Send(A1, {A1,A2, fκ(c)})
Receive(A2, {A1,A2, fκ(c)})),

wherec denotes a symbolic constant,x′ = d(x), y′ = d(y), k′ = k and
κ = hk(d(x, y)).

The secrecy property is specified symbolically as follows:

pre ::= FollowsProt(A1) ∧ Fresh(A1, x)
actions::= [Init]A1

post ::= FollowsProt(A2) ∧ −3[νk]A2
⇒ IndistURand(hk(d(x, y)))

wherehk is some hash function andr denotes a random term

13

The postcondition ensures that, ifA2 is honest, too, then the value of the established key is indistinguish-
able from a uniform random value. Proofs are in appendix G.

8 Conclusions

We presented a symbolic logic which is sound for reasoning about authentication in key establishment
protocols even when if the signing key of one of the participants has been compromised by the adversary.
Future work involves extending the model to universally composable key exchange, which requires security
in the presence of strong adaptive corruptions (i.e., when the adversary obtains the entire internal state of the
corrupted participant, including short-term secrets suchas Diffie-Hellman exponents). In appendix H, we
give a sketch of computationally sound symbolic reasoning in the presence of strong adaptive corruptions,
but leave its rigorous formalization to future work.

References

1. M. Abadi and P. Rogaway. Reconciling two views of cryptography (the computational soundness of formal encryption).J.
Cryptology, 15(2):103–127, 2002.

2. P. Adão, G. Bana, and A. Scedrov. Computational and information-theoretic soundness and completeness of formal encryption.
In Proc. 18th IEEE Computer Security Foundations Workshop (CSFW), pages 170–184. IEEE, 2005.

3. M. Backes and B. Pfitzmann. Relating symbolic and cryptographic secrecy. InProc. IEEE Symposium on Security and Privacy,
pages 171–182. IEEE, 2005.

4. M. Backes, B. Pfitzmann, and M. Waidner. A composable cryptographic library with nested operations. InProc. 10th ACM
Conference on Computer and Communications Security (CCS), pages 220–230. ACM, 2003.

5. M. Backes, B. Pfitzmann, and M. Waidner. A general composition theorem for secure reactive systems. InProc. 1st Theory of
Cryptography Conference (TCC), volume 3378 ofLNCS, pages 336–354. Springer, 2004.

6. M. Bellare and P. Rogaway. Entity authentication and key distribution. InProc. Advances in Cryptology – CRYPTO 1993,
volume 773 ofLNCS, pages 232–249. Springer, 1993.

7. B. Blanchet. Automatic proof of strong secrecy for security protocols. InProc. IEEE Symposium on Security and Privacy,
pages 86–100. IEEE, 2004.

8. R. Canetti. Security and composition of multiparty cryptographic protocols.J. Cryptology, 13(1):143–202, 2000.
9. R. Canetti. Universally composable security: a new paradigm for cryptographic protocols. InProc. 42nd Annual Symposium

on Foundations of Computer Science (FOCS), pages 136–145. IEEE, 2001. Full version athttp://eprint.iacr.org/
2000/067.

10. R. Canetti. Universally composable signature, certification, and authentication. InProc. 17th IEEE Computer Security Foun-
dations Workshop (CSFW), pages 219–233. IEEE, 2004. Full version athttp://eprint.iacr.org/2003/329.

11. R. Canetti and J. Herzog. Universally composable symbolic analysis of mutual authentication and key-exchange protocols. In
Proc. 3rd Theory of Cryptography Conference (TCC), volume 3876 ofLNCS, pages 380–403. Springer, 2006.

12. R. Canetti and H. Krawczyk. Analysis of key-exchange protocols and their use for building secure channels. InProc. Advances
in Cryptology - EUROCRYPT 2001, volume 2045 ofLNCS, pages 453–474. Springer, 2001.

13. R. Canetti and H. Krawczyk. Universally composable notions of key exchange and secure channels. InProc. Advances in
Cryptology - EUROCRYPT 2002, volume 2332 ofLNCS, pages 337–351. Springer, 2002. Full version athttp://eprint.
iacr.org/2002/059.

14. R. Canetti and T. Rabin. Universal composition with joint state. InProc. Advances in Cryptology – CRYPTO 2003, volume
2729 ofLNCS, pages 265–281. Springer, 2003.

15. A. Datta, A. Derek, J.C. Mitchell, and D. Pavlovic. A derivation system for security protocols and its logical formalization. In
Proc. 16th IEEE Computer Security Foundations Workshop (CSFW), pages 109–125. IEEE, 2003.

16. A. Datta, A. Derek, J.C. Mitchell, V. Shmatikov, and M. Turuani. Probabilistic polynomial-time semantics for a protocol
security logic. InProc. 32nd International Colloquium on Automata, Languages and Programming (ICALP), volume 3580 of
LNCS, pages 16–29. Springer, 2005.

17. A. Datta, A. Derek, J.C. Mitchell, and B. Warinschi. Computationally sound compositional logic for key exchange protocols.
In Proc. 19th IEEE Computer Security Foundations Workshop (CSFW). IEEE, 2006.

18. T. Dierks and C. Allen. The TLS protocol Version 1.0. Internet RFC:http://www.ietf.org/rfc/rfc2246.txt,
January 1999.

14

19. N. Durgin, J.C. Mitchell, and D. Pavlovic. A compositional logic for proving security properties of protocols.J. Computer
Security, 11(4):677–722, 2003.

20. S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme secure against adaptive chosen-message attack.SIAM J.
Computing, 17(2):281–308, 1988.

21. P. Gupta and V. Shmatikov. Towards computationally sound symbolic analysis of key exchange protocols.http://eprint.
iacr.org/2005/171, 2005.

22. P. Gupta and V. Shmatikov. Towards computationally sound symbolic analysis of key exchange protocols (extended abstract).
In 3rd ACM Workshop on Formal Methods in Security Engineering (FMSE). ACM, November 2005.

23. R. Impagliazzo and D. Zuckerman. How to recycle random bits. InProc. 30th Annual Symposium on Foundations of Computer
Science (FOCS), pages 248–253. IEEE, 1989.

24. C. Kaufman (ed.). Internet key exchange (IKEv2) protocol. Internet draft: http://www.ietf.org/
internet-drafts/draft-ietf-ipsec-ikev2-17.txt, September 2004.

25. D. Micciancio and B. Warinschi. Completeness theorems for the Abadi-Rogaway language of encrypted expressions.J.
Computer Security, 12(1):99–130, 2004.

26. D. Micciancio and B. Warinschi. Soundness of formal encryption in the presence of active adversaries. InProc. 1st Theory of
Cryptography Conference (TCC), volume 3378 ofLNCS, pages 133–151. Springer, 2004.

27. B. Pfitzmann and M. Waidner. A model for asynchronous reactive systems and its application to secure message transmission.
In Proc. IEEE Symposium on Security and Privacy, pages 184–200. IEEE, 2001.

28. V. Shoup. On formal models for secure key exchange (version 4). Technical Report RZ 3120, IBM Research, November 1999.
http://shoup.net/papers/skey.pdf.

29. F. Thayer, J. Herzog, and J. Guttman. Strand spaces: proving security protocols correct.J. Computer Security, 7(1):191–230,
1999.

A Cryptographic primitives

Computational indistinguishability . We say that two ensemblesX = {Xn}n∈N and Y = {Yn}n∈N are
(computationally)indistinguishable in polynomial timeif for every probabilistic polynomial time algorithm,
A, every polynomialp(.) and all sufficiently largen’s

| Pr(A(Xn, 1
n) = 1)− Pr(A(Yn, 1

n) = 1) |<
1

p(n)

Digital signature schemes. A digital signature scheme is a triple of probabilistic polynomial-time algo-
rithmsDS = (K,S,V) on a finite domainD ⊆ {0, 1}∗. For security parameterη, algorithmK on inputη,
generates a pait of keys(s, v). The deterministic verification algorithm on inputm, signatureσ and verifi-
cation keyv produces a one bit output. The signing and verificaiton algorithmsS andV have the property
that on any messagem ∈ D, Vv(Ss(m),m) = 1 holds, except with negligible probability. The range of the
verificaiton algorithm includes a special symbol⊥6∈ D.

We adopt the standard notion of security of signature schemes, i.e., security against chosen message
attack (CMA) [20]. The notion of CMA security is defined with respect to the following game: For a sig-
nature schemeDS = (K,S,V), PPT adversaryA, security parameterη, run the key generation algorithm
to generate a key pair(s, v) and givev toA. The adversary can query(sign,m) for any messagem∈ D. In
response to the query returnSs(m). The adversary wins the game if he can produce a bitstringσ which he
did not obtain in the query phase such thatVv(σ,m) = 1. We say that a signature scheme isCMA-secureif
no probabilistic polynomial-time adversary has wins the above game with non-negligible probability.

DDH assumption. Let G be a member of a large family of groups, indexed byη, of prime orderq and
generatorg. Denote byODH a “Diffie-Hellman” oracle. The security is defined with respect to the following
game: Fix a PPT adversaryA. A operates in two phases: thelearning phaseand thetesting phase. In the

15

learning phase,A makes queries of the form(i, j) (i 6= j) toODH. In response to a query, the oracle returns
the (gxi ,gxj ,gxi xj), wherexi , xj are chosen uniformly at random fromZq. In the testing phase,A makes a
distinct query(i, j) (i 6= j) which he did not make in the learning phase. A coinb is tossed. Ifb = 0, ODH

returns(gxi ,gxj ,gxixj), else it returns(gxi ,gxj ,gzij), wherezij is random. The DDH assumption states that any
probabilistic polynomial time adversaryA outputs a correct guess of the bitb with probability only negligi-
bly greater than one half.

One way functions and weak collision resistance

Definition 2. (One-way function):A function f : {0, 1}∗ → {0, 1}∗ is called aone-wayfunction if the
following two conditions hold: 1. There exists a deterministic polynomial-time algorithm A, such that on
input x algorithm A ouputs f(x). 2. For every probabilistic polynomial-time algorithm A′, polynomial p(.) ,
and sufficiently large n’s

| Pr(A′(f (Un), 1
n) ∈ f−1(f (Un))) |<

1

p(n)

where Un denotes a random variable uniformly distributed over{0, 1}n.

A function f : {0, 1}∗ → {0, 1}∗ is calledweakly collision resistant, if given input x it is computa-
tionally infeasible to find a differentx′ such thatf (x) = f (x′). We note that the definition of one-wayness
implies weak collision resistance.

Universal hash functions. Let H be a family of functions mapping{0, 1}n(η) to {0, 1}l(η), whereη is the
security parameter.H is called (almost)universal if for every x, y ∈ {0, 1}n, x 6= y, the probability that
hi(x) = hi(y), for an elementhi ∈ H selected uniformly fromH, is at most 1

2l + 1
2n . The leftover hash

lemma [23] states that the distribution{hi(x)} is statistically indistinguishable from the uniform distribution
for a uniformly random hash function indexi.

Pseudo-random functions.

Definition 3. (pseudo-random function ensembles):A function ensemble f= {fn}n∈I , is calledpseudo-
randomif for every probabilistic polynomial time oracle machine M, every polynomial p(.) and all suffi-
ciently large n’s

| Pr(Mfn(1n) = 1)− Pr(Mhn(1n) = 1) |<
1

p(n)

where h= {hn}n∈N is the uniform function ensemble.

In simple terms, the pseudo-randomness assumption states that for a uniformly random indexκ ∈ I ,
the functionfκ : {0, 1}L(η) → {0, 1}l(η) is computationally indistinguishable from a random function onL
bitstrings.

To make proofs simpler, we define security of PRFs in terms of agame. For a family of pseudorandom
functionsf, adversaryA, uniformly random indexκ, let F denote an oracle for producing pseudorandom
values. The adversary can query(prf , i) on anyn-bit string i. In response to the query, the oracle returns
fκ(i) . The adversary wins the game if he can produce a pair(i, j) such thatj = fκ(i) andj was not one of
the values produced by the oracle in the query phase. We say that the pseudorandomness assumption holds
if no probabilistic polynomial-time adversary wins the above game with non-negligible probability.

16

B Universal composability

In this section, we review the universal composability framework [9]. We explain the model of computation,
ideal protocols, and what it means to securely realize an ideal functionality.

Protocol Syntax. A protocol is represented as a system of interactive Turingmachines (ITMs), where each
ITM represents the program to be run within a party when this party is participating in some protocol
instance. Specifically, theINPUT andOUTPUT TAPESmodel inputs and outputs that are received from and
given to other programs running within the same party, and the COMMUNICATION TAPES model messages
sent to and received from the network. Adversaries are also modeled as ITMs. Each ITM has a session-
identifier(SID) that identifies which session (i.e., protocol instance) the ITM belongs to. It also has a party
identifier (PID) that typically identifies the party within which the programis being executed. The pair
(SID,PID) is a unique identifier of the ITM in the system. In the case of mutual authentication and key
exchange protocols, each ITM will also have a role identifier(RID) which will determine whether the ITM
is an initiator or a responder in the protocol.

We assume that all ITMs run in probabilistic polynomial time(PPT). An ITMM is PPT if there exists a
constantc > 0 such that, at any point during its run, the overall number of steps taken byM is at mostnc,
wheren is the overall number of bits written on the input tape ofM in this run, plusk, wherek is the security
parameter.

Real-world model for protocol execution.We sketch the process of executing a given protocolΠ with an
adversaryA and an environment machineZ with input z. All parties have a security parameterk ∈ N. The
execution consists of a sequence of activations, where in each activation a single participant (eitherZ,A, or
some party) is activated, and may write on a tape of at most oneother participant, subject to the rules below.
Once activation of a participant is complete (i.e., once he enters a special waiting state), the participant
whose tape was written on is activated next. (If no such partyexists, then the environment is activated next.)

The environment is the first to be activated. In each activation, it may read the contents of the output
tapes of all parties, it may invoke a new party that runs the current instance of the protocol, or it may write
information on the input tape of either one of the parties or of the adversary.

Once the adversary is activated, it may read its own tapes andthe outgoing communication tapes of
all parties. It may either deliver a message to some party by writing this message on the party’s incoming
communication tape or report information toZ by writing this information on its output tape. The delivered
messages need not bear any relation to the messages sent by the parties. (This essentially means that the
underlying communication model is unauthenticated.)

Once a party is activated (either due to an input given by the environment or due to a message delivered
by the adversary), it follows its code and possibly writes a local output on its output tape or an outgoing
message on its outgoing communication tape.

The protocol execution ends when the environment halts. Theoutput of the protocol execution is the
output of the environment. Without loss of generality we assume that this output consists of only a single
bit.

Let EXECΠ,A,Z (k, z, r) denote the output of environmentZ when interacting with parties running pro-
tocolΠ on security parameterk, input z and random inputr = rZ , rA, r1, r2, . . . as described above (z and
rZ for Z; rA for A, r i for partyPi); EXECΠ,A,Z (k, z) denote the random variableEXECΠ,A,Z (k, z, r) when
r is uniformly chosen;EXECΠ,A,Z denote the ensemble{EXECΠ,A,Z (k, z)}k∈N,z∈{0,1}∗ .

Ideal-world model for protocol execution. The ideal protocol consists of anideal functionalitythat realizes
the particular functionality (this functionality is secure by design,i.e., it behaves as if the trusted third party

17

executed the protocol – for example, in the case of secure keyexchange the ideal functionality creates the
key as a true random value and securely distributes it to protocol participants), an ideal adversary called the
simulatorand protocol participants who hand their inputs to the idealfunctionality and obtain their outputs
from the ideal functionality. Let us denote byF ,S, respectively, the ideal functionality and the simulator.
We will call the parties in the ideal protocoldummy parties.

Let IF be the ideal protocol for functionalityF . Let IDEALF ,S,Z(k, z) be the random variable describing
EXECIF ,S,Z(k, z), and letIDEALF ,S,Z be the ensemble{IDEALF ,S,Z (k, z)}k∈N,z∈{0,1}∗ .

Securely realizing an ideal functionality.We say that a protocolΠ securely realizes an ideal functionality
F if there exists an ideal adversaryS such that no environmentZ, on any input, can tell with non-negligible
probability whether it is interacting withA and parties runningΠ, or it is interacting withS and parties run-
ning IF . Intuitively, a protocol is secure if no environment can tell the difference between the real execution
and a simulation carried out with access only to the ideal functionality, which is secure by design.

Definition 4. Let n∈ N. LetF be an ideal functionality and letΠ be an n-party protocol. We say thatΠ
securely realizesF if there exists a simulatorS such that for any environmentZ

IDEALF ,S,Z ≈ EXECΠ,A,Z

where for two binary ensembles X and Y, X≈ Y means that the ensembles are computationally indistin-
guishable.

The definition is quite strong and implies that a protocol is “universally composable,”i.e., it can be used
as a subprotocol by anarbitrary higher-level protocol with no harmful effects on security.More specifically,
suppose that a protocolΠ securely realizes a functionalityF as defined above, andP is some higher-level
protocol. Then the case whereP callsΠ as a sub-protocol is indistinguishable from the case whereP uses
the secure-by-design functionalityF , even whenP uses multiple instances ofΠ orF .

Adaptive corruptions and universal composability. In the adaptive corruption model, the adversary is
allowed to corrupt any of the parties throughout the protocol execution by issuing a specialcorrupt user i
operation. We have two notions of adaptive corruption:strongandweak. Under strong adaptive corruptions,
upon corruption, the adversary receives the party’s internal state and then controls the party for the remainder
of the computation. Under weak adaptive corruptions, the adversary only learns the party’s long term secrets
such as private signing keys andnotshort term secrets such as Diffie-Hellman values. For the purposes of this
paper, we focus on weak adaptive corruptions (if this seems too restrictive, see appendix H for generalization
to the full model). Also, we assume that the parties continueto follow their protocol specification even after
corruption under weak adaptive corruptions. In the ideal world the adversary receives no information upon
corrupting a participant. The adversary delivers all the standard and ideal messages by copying them from
outgoing communication tapes to incoming communication tapes. The honest parties always follow the
specification of protocol. Specifically, upon receiving a message (delivered by the adversary), the party
reads the message, carries out a local computation as instructed byΠ , and writes standard and/or ideal
messages to its outgoing communication tape, as instructedbyΠ . At the end of the computation, the honest
parties write the output value prescribed byΠ on their output tapes, the corrupted parties output a special
“corrupted” symbol and the adversary outputs an arbitrary function of its view. LetS denote the ideal world
simulator,A denote the adversary,Z, the environment. We say that a protocolΠ securely realizes an ideal
functionalityF (under adaptive corruptions) if for everyA there exists an ideal adversaryS such that for
any environmentZ, IDEALF ,S,Z ≈ EXECΠ,A,Z .

18

C Parsing messages received by honest participants

Let OΠ denote the oracle environment for the adversaryA, and letγ be the parsing function that labels
bitstrings received byOΠ from the adversary with symbolic terms. We defineγ inductively on the sequence
of bitstrings received from the adversary during protocol execution. Letb denote the current adversarial
bitstring and letts be the symbolic trace constructed so far. Recall that every receive action in the symbolic
role specification includes a symbolic termt to be received (this term may contain variables). Letλ be
the function from symbolic variables to symbolic constants. The input toγ is a 6-tuple(b, ts, t, σ, λ,R).
The output is an updated tuple(t′s, σ

′, λ′). If σ′ or λ′ are unchanged when parsing the current bitstringb,
we omit them in the description of the output. The obtained symbolic term is pattern-matched against the
expected termt. If the match is successful,(t) is appended tots. Otherwise, the symbolic trace is terminated
prematurely,i.e., without establishing the key. This means that the bitstring sent by the adversary does not
match what the participant expects. We assume that the participant quits the protocol in this case.

Before the procedure starts, we initializeγ by mapping all symbolic terms sent by honest participants to
the corresponding bitstrings.

1. t is a constant such thatσ(t) = b′ (Note that all symbolic constants have an interpretation which
is defined when the constant is first created). Ifb = b′, update the symbolic trace by appending(t).
Mappingsσ andλ remain unchanged since a symbolic label forb already exists. Ifb 6= b′, terminate the
symbolic tracets. Note that the honest participant would terminate the protocol in this case because the
received constant is not equal to the expected value.

2. t a variable such thatλ(t) = t′ for some ground termt′, andσ(t′) = b′. If b′ = b, append(t) to the
symbolic trace; otherwise, terminate the trace.

3. t = (t1, t2). Apply γ recursively on bitstringsb1,b2 such thatb = (b1,b2), obtaining(t1, σ1, λ1) and
(t2, σ2, λ2), respectively. Letσ′ = σ1 ∪ σ2 andλ′ = λ1 ∪λ2.

4. t is a signature{t′}lX. Let b = (b′,b′′) for someb′,b′′ (recall that every signature must be accompanied
by its plaintext; if not, the message is rejected and trace terminated). If there exists an interpretation oft′

andσ(t′) = b′ then verify thatb′′ is a valid signature ofX on b′. If verification suceeds, appendt to ts;
otherwise terminatets. If σ(t′) 6= b′, terminatets. If there exist no interpretation oft′ in σ, then applyγ
recursively on termt′ and bitstringb′ (other parameters are implicit). Note that the recursive call would
either updateσ′, λ′ such thatσ(t′) = b′, or the trace would be terminated prematurely. If recursivecall
successfully returns and ifb′′ is a valid signature onb′ then appendt to ts; else terminatets.

5. t is a Diffie-Hellman termd(t′), wheret′ is a ground term andσ(d(t′)) = b′. If b′ = b, append(t) to
the symbolic trace; else terminate the trace.

6. t is a Diffie-Hellman termd(x), wherex is a variable such thatλ(x) = t′ andσ(d(t′)) = b′. If b 6∈ G
(G is the Diffie-Hellman group), then terminatets. If b ∈ G andb = b′ then updatets accordingly, else
terminatets. If there exists no symbolic termt′ such thatλ(x) = t′, then create a new symbolic constant
t′′, updateλ(x) = t′′ (i.e., λ(t) = d(t′′)) andσ(d(t′′)) = b.

7. t = h(x) andx is a constant term such thatσ(x) = b′. If b = h(b′), then appendt to ts; otherwise
terminatets. If x is a variable such thatλ(x) = t′ andσ(t′) = b′, then perform the same check as above.
If x is a free variable such that it has no mapping inλ, then create a new symbolic constantt′′, update
λ(x) = t′′ andσ(h(t′′)) = b

8. The case wheret = fx(y) is handled similar to the case above.
9. t = x is a free variable,i.e., t does not have a mapping inλ. We recall that the oracle environmentOΠ

maintains computational instantiations of all terms previously sent by honest participants given by the
interpretation functionσ. In this case, the parser checks if the value ofb matches the value of any term

19

previously sent by any honest participant. If the match suceeds, labelb with the corresponding term and
updatets. If the match fails, check whetherb is a member of the Diffie-Hellman groupG. If b ∈ G,
then create a symbolic constantt′, updateλ(t) = d(t′) andσ(d(t′)) = b. Else, create a new symbolic
constantt′′, updateλ(t) = t′′ andσ(t′′) = b.

D Computational Semantics

We define the semantics[ϕ](T) of formulaϕ over a set of tracesT, inductively, as follows. The set of traces
T = CExexStrandΠ is initialized to the set of all traces of the protocolΠ with adversaryA and randomness
R. For formulas which do not not involve any occurence of the predicateIndistRand, the semantics is
straightforward. For example, an action predicate such asSend selects a set of traces in which send occurs.

1. [Send(X, u)](T) is the collection of all(ts, σ,R) ∈ T such that some action in the tracets has the
form Send(X′, v) with σ(X′) = X andσ(v) = u. Recall thatσ is the interpretation function which
assigns computational bitstrings to symbolic terms. The computational semantics of other predicates
(exceptIndistRand) is similar (see [16]). We provide the semantics of new predicatesVerifySig and
VerifyMAC which are introduced in this paper.

2. [VerifySig(X, u)](T) is the collection of all(ts, σ,R) ∈ T such that some action (executed by symbolic
thread X’) in the tracets has the formm/{t}lX′ (pattern matching), such thatσ(X′) = X andσ(m) = u,i.e.,
m is a valid signature on termt under the private signing key ofX′.

3. [VerifyMAC(X, u)](T) is the collection of all(ts, σ,R) ∈ T such that some action (executed by symbolic
thread X’) in the tracets has the formm/ft(c) (pattern matching), such thatσ(X′) = X andσ(m) = u,i.e.,
m is a pseudorandom value on some constantc using termt as the key.

4. IndistRand(t)(T) = T, whereT = {t}R (parameterized by randomnessR), if the two familiesT̂,
T̂ideal:
– T̂ = {adv(t).σ(t)}R
– T̂ideal = {adv(tideal).σ(r)}R

are computationally indistinguishable, else it is the empty setφ.
5. [θ ∧ ϕ](T) = [θ](T) ∩ [ϕ](T)
6. [θ ∨ ϕ](T) = [θ](T) ∪ [ϕ](T)
7. [¬ϕ](T) = T\[ϕ](T)
8. [∃ x.ϕ](T) = ∪β[ϕ](T[x→ β]), whereT[x→ β] denotes the substitution ofx by bitstringβ in T andβ

is any bitstring of polynomial size.
9. [θ ⊃ ϕ](T) = [¬θ](T) ∪ [ϕ](T)

10. [θ ⇒ ϕ](T) = [¬θ](T) ∪ [ϕ](T′), whereT′ = [θ](T).
11. [θ[P]Xϕ](T) = T¬P ∪ [¬θ](Pre(TP)) ∪ [ϕ](Post(TP)) whereT¬P = {t ∈ T : t = t0t1t2 whereP

does not matcht1|X}, Pre(TP) = {t0 : t ∈ T ∧ t = t0t1t2 ∧ ∃ substitutionσ s.t. P = σ(t1|X)} and
Post(TP) = {t2 : t ∈ T ∧ t = t0t1t2 ∧ ∃ substitutionσ s.t.P = σ(t1|X)}

We say that a formulaϕ holds for protocolΠ in the computational model, denoted byΠ |=c ϕ, if [ϕ](T),
whereT = CExecStrandΠ is the set of all computational traces of protocolΠ, is an overwhelming subset
of T. More precisely,Π |=c ϕ, if, by definition, | [ϕ](CExecStrandΠ) | / | CExecStrandΠ |≥ 1 − ν(η),
whereν is some negligible function in the security parameterη.

E Symbolic proof system

The axioms and proof rules of the logic are shown in figs. 7 10.

20

AA1 ϕ[a]X−3a

AA2 Fresh(X,t)[a]X−3(a ∧©©−©Fresh(X, t))
AN2 ϕ[νn]XHas(Y,n) ⊃ (Y = X)
AN3 ϕ[νn]XFresh(X, n)
ARP −3Receive(X, x)[(x/t)]X−3Receive(X, t)
ORIG −3New(X, n) ⊃ Has(X, n)
REC −3Receive(X, n) ⊃ Has(X, n)
TUP Has(X, x) ∧ Has(X, y) ⊃ Has(X, (x, y))
PROJ Has(X, (x, y)) ⊃ Has(X, x) ∧ Has(X, y)
N1 −3New(X, n) ∧ −3New(Y,n) ⊃ (X = Y)
N2 After(New(X, n1), New(X,n2)) ⊃ (n1 6= n2)
F1 −3Fresh(X, t) ∧ −3Fresh(Y,t) ⊃ (X = Y)
CON1 Contains((x, y), x) ∧ Contains((x, y), y)
CON2 Contains({t}lX, t)

After(a, b) ≡ −3(b ∧©©−©−3a)
ActionsInOrder(a1 , . . . , an) ≡ After(a1, a2)∧ . . . ∧ After(an−1, an)

Fig. 7.Basic axioms and axioms for protocol actions

P1 Persist(X, t)[a]XPersist(X, t)
P2 Fresh(X, t)[a]XFresh(X, t), where ifa = 〈m〉 thent 6∈ closure(m)
P3 HasAlone(X,n)[a]XHasAlone(X, n), where ifa = 〈m〉 thenn 6∈ closure(m)
F θ[〈m〉]X¬Fresh(X,t), where(t ∈ closure(m))
F2 Fresh(X, t1) ⊃ Fresh(X, t2), wheret1 ⊆ t2

Persist ∈ {Has,−3ϕ},
HasAlone(X, t) ≡ Has(X, t) ∧ (Has(Y, t) ⊃ (X = Y))

Fig. 8. Preservation and freshness loss axioms

F Computational soundness of the protocol logic

F.1 Soundness of axioms

AA1, AA2, AN2, AN3, ARP: Follows directly from definitions.
ORIG, REC, TUP, PROJ: Follows directly from the semantics ofHas.
WCR1-2:Let G be a member of a family of large cyclic groups (indexed byη) under multiplication of prime
orderq with generatorg. We note that there exists a bijectionf ′ from the setZq to the elements of the group
G. More formally,f ′ : Zq → G is a one-to-one function that mapsi ∈ Zq to gi ∈ G. If g is a generator for
G, then for any elementx ∈ Zq, gx is also a generator.

We proveWCR1. The proof forWCR2 is symmetric. AssumeWCR1 does not hold. For any fixed
y ∈ Zq, gy is a generator. Since we assume thatWCR1 is false, giveny andgx we can efficiently compute a
distinct valuegx′ such thatgxy = gx′y. But sincegy is a generator and there exists a bijection from elements
in G to elements inZq it follows that we can find two distinct elementsx, x′ ∈ Zq such thatgx

1 = gx′
1 , where

g1 = gy is a generator. Hence, a contradiction.

WCR3. Follows directly from the fact that the hash function is one-way which implies weak collision
resistance.

WCR4-5. We proveWCR5 sinceWCR4 is a special case ofWCR5. Suppose the contrary. Lett3 = f(t2)
andt2 = g(t1), wheref andg are in generaln-ary functions. For ease of exposition, the other argumentsare
not mentioned explicitly. From the assumption, we know thatg andf are weak-collision resistant functions

21

T1 −3(ϕ ∧ ψ) ⊃ −3ϕ ∧ −3ψ
T2 −3(ϕ ∨ ψ) ⊃ −3ϕ ∨ −3ψ
T3 ©©−©¬ϕ ⊃ ¬©©−©ϕ
AF0 Start(X)[]X¬−3a(X, t)
AF1 θ[a1 . . . an]XAfter(a1, a2) ∧ . . . ∧ After(an−1, an)
AF2 (−3(b1(X,t1) ∧©©−©Fresh(X, t)) ∧ −3b2(Y,t2)) ⊃

After(b1(X, t1), (b2(Y,t2)), wheret ⊆ t2, t ⊆ t1 andX 6= Y

Fig. 9. PLTL axioms and temporal ordering of actions

G1 if Π ⊢ θ[P]Xϕ andΠ ⊢ θ[P]Xψ thenΠ ⊢ θ[P]Xϕ ∧ ψ
G2 if Π ⊢ θ[P]Xϕ andθ′ ⊃ θ andϕ ⊃ ϕ′ thenΠ ⊢ θ′[P]Xϕ

′

G3 if Π ⊢ ϕ thenΠ ⊢ θ[P]Xϕ
MP if Π ⊢ θ andΠ ⊢ θ ⇒ ϕ thenΠ ⊢ ϕ
GEN if Π ⊢ ϕ thenΠ ⊢ ∀ x.ϕ
TGEN if Π ⊢ ϕ thenΠ ⊢ ¬−3¬ϕ
HON if Π ⊢ Start[]Xϕ and∀P ∈ S(Π),Π ⊢ ϕ[P]Xϕ

thenΠ ⊢ Alive(X) ∧ FollowsProt(X) ⊃ ϕ

whereS(Π) denotes all possible starting configurations ofΠ and
Alive(X) means that threadX has not completed the protocol yet.

Fig. 10.Rules for the proof system

of t1 andt2, respectively. Since we assume that the axiom is false we know thatf(g) is nota weak collision
resistant function oft1. Thus, for fixed valuesx1, x3 of termst1, t3, we can find a distinct valuex′1 (6= x1) of
t1 such thatf (g(x1)) = f (g(x′1)). We consider two distinct cases: (i)g(x1) = g(x′1), (ii) g(x1) 6= g(x′1). For
case (i), we contradict the weak collision resistance assumption forg. For case (ii), given a valuex2 = g(x1),
we can efficiently compute a distinct valuex′2 = g(x′1), such thatf (x2) = f (x′2). Thus contradicting the weak
collision resistance assumption forf . Hence, we have a contradiction in either case.

WCR6. Follows directly from the statement of the leftover hash lemma.

AUTH . LetΠ denote a protocol,Ac denote the concrete adversary, and letf be a family of pseudo-random
functions (indexed byη). Denote byfκ : {0, 1}L(η) → {0, 1}l(η) an individual member of the family indexed
by the keyκ. For simplicity, we assume that the length ofκ, the input lengthL and the output lengthl are
all equal ton. Security of PRFs is defined in terms of a game described in section A.

Before we prove the axiom, we need some definitions. For termst and t′, if t′
wcr
−→ t, then there

exists ann-ary (n ≥ 2) function g such thatt = g(t′, t1, . . . , tn−1) and, given valuesx, x′, x1, . . . , xn−1

for termst, t′, t1, . . . , tn−1, it is computationally hard to find a valuex′′ different fromx′ such thatx =
g(x′′, x1, . . . , xn−1).

Let tc ∈ CExecStrandΠ denote a computational trace such thattc = (ts, σ,R). We show thattc satisfies
the axiom with overwhelming probability over the random coin tosses of the adversary and the protocol
participants by demonstrating that if this is not the case, then there exists a PRF forgerB which runs the
adversaryAc as a subroutine and violates the pseudorandomness assumption. Suppose not. This implies that
the precondition of the axiom is true but the postcondition is false.

The forgerB runsAc as a “black box” and simulates the protocol execution to him.B proceeds as
follows. On receiving a query fromAc, B performs the desired action. IfB is required to produced a pseu-
dorandom valueft(c), whereIndistURand(t), i.e., t is indistinguishable from random,B obtains the

22

result by querying the oracleF . On receiving a queryi from B the oracle returnsft(i). B wins the game if
he can produce a pair(i, j) for somej that he did not obtain during the query phase andj = ft(i).

The precondition of the axiom states that the following events happened in order: (1)Y received some
termm containingt′′, (2) X verified the pseudorandom valueft(c) for the pseudorandom functionf, term
t and public constantc (verification of a PRF means thatX computed the pseudorandom valueft(c) and
checked that it is equal to the received value).

Since we supposed that the axiom does not hold, the postcondition is false, which means one of the
following: (1) X did not previously sendm′ containing termt′′ received byY, i.e., t′ 6= t′′, or (2)Y did not
previously send the pseudorandom valueft(c). In either case, we show howB can useAc to win the PRF
game.

Case I.SupposeAc replacedt′ with somet′′ that was not previously sent byX. Sincet is a weakly collision-
resistant function oft′, it follows that it is infeasible forAc to replacet′ with t′′ such that the value oft
remains unchanged. Therefore,Y computes somet1 instead oft such thatt1 6= t. The precondition states
thatX correctly verified the pseudorandom valueft(c). Therefore, eitherY sentft1(c) such thatX correctly
verified it, orAc replaced the value sent byY with somez, which is equal to the pseudorandom value
expected byX. In either case,B wins the PRF game. In the first case,B simply outputs the pair(c, ft1(c)).
Note that this is valid becauseB did not obtainft1(c) by querying the oracleF for ft in the first phase. In
the second case,B outputs(c, z).

Case II.SupposeAc produced a value forft(c) which was not previously sent byY, yet X successfully
verified it. This case is similar to the Case I andB simply outputs the value produced byAc. This is valid
because this value was not produced by any honest participant. Therefore,B wins the PRF game.

PRF. Let f be a family of pseudo-random functions (indexed byη). Denote byfκ : {0, 1}L(η) → {0, 1}l(η) an
individual member of the family specified by the keyκ, mappingL-bit strings tol-bit strings. For simplicity,
we assume that the key length, input length and the output length are all equal ton. Under the pseudo-
randomness assumption, we know that for a uniformκ, the functionfκ is computationally indistinguishable
from a random function mappingn-bitstrings ton-bitstrings.

We fix the protocolΠ and the (concrete) adversaryAc. We prove that the axiom holds with overwhelm-
ing probability over the random coin tosses of the adversaryAc and the protocol participants as follows.
Suppose the axiom does not hold. We use the concrete adversary Ac to construct another adversaryB who
distinguishes between a pseudo-random functionfκ (for uniformκ) and the uniform function onn-bit strings,
thus contradicting the pseudo-randomness assumption. As usual, the adversaryB runs the concrete adver-
saryAc as a subroutine and behaves as the oracle environment forAc, simulating the answer to every query
made byAc.

We constructB assuming that the axiom does not hold for a non-negligible fraction of computational
traces. This means that the preconditionIndistURand(t) holds andt was never previously sent in the past,
but the postconditionIndistURand(ft(c)) is false, wherec is a public constant.

We now present a polynomial-time testT which distinguishes between random functions and pseudo-
random functions.T receives as an argument an oracle functiong : {0, 1}n → {0, 1}n, which is chosen
according to the following experiment. Toss an unbiased coin b, and ifb = 0, letg be a random function, else
pick an indexκ at random and setg = fκ.B receives the valueg(c) from T and hands the value toAc. Since
we assumed that the precondition of the axiom is true, this implies that no efficient adversary can distinguish
between the value of the termt and a uniform random numberr. Also, sincet was never previously sent in
the past (and is indistinguishable from random),Ac cannot distinguish between the functionsft andfκ with
a non-negligible advantage. But, according to our assumption,Ac can distinguish between the valuesft(c)

23

andg(c) for a random functiong. Thus,Ac is able to distinguish between the valuesfκ(c) andg(c) with
a probability non-negligibly greater than12 . B simply outputs the guess ofAc as its own guess. Therefore,
B can outputs a correct guess of the bitb with a non-negligible advantage, which contradicts the pseudo-
randomness assumption.

N1, N2, F1: Follows from the semantics of theν operator (nonce generation) and actionsNew andFresh.
CON1-2: Follows directly from the semantics ofContains.
P1, P2, P3, F,F2: Follow directly from definitions ofFresh andHas.
T1, T2, T3: Follow from the semantics of PLTL.
AF0, AF1, AF2: Follow directly from the semantics of logic.

DDH1-2: LetΠ be a protocol andG be a member of a family of large cyclic groups (indexed byη) under
multiplication of prime orderq and generatorg. We prove computational soundness forDDH1 (the proof
for DDH2 is similar). As always, fix the randomnessRA of the computational adversaryAc andRΠ of the
honest participants, and suppose thatDDH1 does not hold over the overwhelming majority of computational
traces ofΠ. In this case, we demonstrate that the corresponding concrete adversaryAc can be used to used
to construct another concrete adversaryB who wins in the Decisional Diffie-Hellman game (as describedin
section A) with non-negligible probability.

As usual,B runs the concrete adversaryAc in a “box,” i.e., it behaves as the oracle environment forAc.
More formally, whenAc makes a queryq while running as a subroutine forB,B gets hold ofq and performs
the desired action. For example, if the concrete adversaryAc makes a query to start a new instance of a
protocol between principalsA andB, B simply starts a new instance of the protocolΠ between “dummy”
copies ofA and B and faithfully performs all actions prescribed by the protocol role on their behalf. In
particular, it computes honest participants’ Diffie-Hellman values. For example, if an honest participant is
required to send a fresh valuegx, thenB chooses a valuex uniformly at random fromZq and computesgx

using theexpfunction. Similarly,B can compute a joint exponentgxy provided he hasx andgy, or y andgx.
We assume the existence of a DH oracleODH and letB have access to the oracle. Initially,B simulates

the learning phase forAc. We allow the adversaryAc to performsession state revealsof previously com-
pleted sessions which reveal the value of the joint Diffie-Hellman value for these sessions. We assume that
these values aregxixj for somexi , xj drawn uniformly fromZq. SinceAc is constrained to run in polynomial
time, he can only initiate a polynomial number of sessions. In response to a reveal operation,B hands the
valuegxixj (for that particular session), which he obtains from the oracleODH toAc. Intuitively, this means
that having a polynomial number of samples from the distribution (gxi ,gxj ,gxi xj) does not give the adversary
a non-negligible advantage in distinguishing between the two distributions(gxi ,gxj ,gxi xj) and(gxi ,gxj ,gzij).

We now show howB can win in the DDH game with a non-negligible advantage. SupposeDDH1 does
not hold over a non-negligible fraction of computational traces. This means that, given some computational
trace tc, the precondition ofDDH1 is true, but the postcondition is false. The latter means that Ac can
determine, with a non-negligible advantage vs. random guessing, whethergr or gxixj has been used in this
trace.B chooses the session corresponding to this trace as the “testsession”.

Because the precondition ofDDH1 must be true ontc, valuesx andy either have not been sent at all
in this trace, or have only been sent asgx or gy, respectively. Therefore,B is never required to send the
actual values ofx or y when simulatingtc toAc. At the start of the session,B performs a queryq = (i, j)
to the oracleODH, and obtains the tuple(gxi ,gxj , ĝzij) (whereẑij is eitherxixj or a randomzij) fromODH in
response.

WhenAc is ready,B gives it the valueĝzij to be distinguished fromgr wherer is drawn uniformly at
random from(Z)q. If ẑij = xixj , thenAc guesses this correctly with some probability1

2 + p (0 < p <

24

1
2), where (sinceDDH1 fails, by assumption)p is a non-negligible function ofη. If ẑij is itself random,
thenAc cannot do better than random guessing,i.e., it guesses correctly with probability12 . B submits
the value guessed byAc to ODH as its own guess of the oracle’s bitb. Therefore,B wins the DDH game
with probability 1

2 + p
2 , wherep is the advantage of the computational adversaryAc in invalidating the

IndistRand(d(x, y)) predicate. Thus, ifDDH1 is false on more than a negligible fraction of computational
traces,B wins the DDH game with a non-negligible probability. The proof of DDH2 involves a similar
argument and is left to the reader.

LHL : Let G be a member of a family of large cyclic groups (indexed byη) under multiplication of prime
order q with generatorg. Let H be an almost universal family of hash functions mappingG to {0, 1}l

(indexed by a setI). For any i ∈ I, let hi denote a member ofH. For any i drawn uniformly fromI
andx drawn uniformly fromG, it follows from the leftover hash lemma that the distribution (hi ,hi(x)) is
statistically indistinguishable from the uniform distribution on the setH × {0, 1}l .

We fix the protocolΠ and the concrete adversaryAc. Let tc ∈ CExecStrandΠ denote a concrete trace.
To show that theLHL axiom holds with overwhelming probability over random cointosses of the concrete
adversary and the oracle environment, we suppose that this is not the case, and use the concrete adversaryAc

to construct another adversaryB that acts as a distinguisher between the uniform distribution onH×{0, 1}l

and (hi ,hi(x)). As usual, the adversaryB runs the concrete adversaryAc in a “box” and behaves as the
oracle environment forAc, simulating the answer to every query made byAc.

Before giving the construction of the distinguisherB, we need a few results. We first note that there
exists a bijectionf from the setZq to the elements of the groupG. More formally,f : Zq → G is a one-to-
one function that mapsi ∈ Zq to gi ∈ G. If x is drawn uniformly at random fromZq, then the distribution
{gx} is uniform onG.

Suppose the axiom does not hold for a non-negligible fraction of traces,i.e., IndistRand(d(x, y)) is
true, butIndistRand(hk(d(x, y))) is false, wherex, y, r are chosen uniformly at random fromZq, andk is
some hash function index chosen uniformly fromI.

We now constructB. B draws random valuesr1, r2 uniformly from Zq and{0, 1}l , respectively. It then
gives the valueshk(gr1) and r2 to the concrete adversaryAc. Since we assumed that the precondition is
true, this implies that no efficient adversary can distinguish between the distributionsgxy and gr with a
non-negligible advantage. Thus,Ac cannot distinguish betweenhk(gr1) andhk(gxy) with a non-negligible
advantage. But, according to our assumption,Ac can distinguish between the valueshk(gxy) andr2 with a
probability non-negligibly greater than12 . This implies thatAc can distinguish betweenhk(gr1) andr2 with
a probability non-negligibly greater than12 . B simply outputs the guess ofAc as its own guess. Therefore,
B can distinguish between the distribution (hk, hk(. . .)) and the uniform distribution onH × {0, 1}l with a
non-negligible probability, which contradicts the leftover hash lemma.

F.2 Rules

G1, G2, G3. Follow directly from Floyd-Hoare logic.
MP. The soundness of the modus ponens follows directly from thesemantics of conditional implication and
the fact that the sum of two negligible functions is a negligible function.
GEN. Follows from definition
TGEN. Follows from semantics of PLTL.
HON. Follows from definition.

25

G Proofs of authentication and key secrecy for DHKE-1 protocol

Figs. 11, 12 and 13 contain the symbolic proofs of, respectively, authentication and key secrecy for the
DHKE-1 protocol.

H Strong adaptive corruptions and universal composability

We outline the relation between our symbolic model and the “universally composable” Canetti-Krawczyk
model [13], which is the standard cryptographic model for secure key exchange protocols. Unlike our model,
the Canetti-Krawczyk model permitsstrong adaptive corruptions, in which the adversary obtains the com-
plete internal state of the corrupted participants, including ephemeral, session-specific information such as
Diffie-Hellman exponents.

First, we revisit a few definitions. In [12], Canetti and Krawczyk presented a weaker definition of se-
curity for key exchange known asSK-security. Unlike universal composability, which requires thatno en-
vironment be able to distinguish the real protocol and its ideal-world simulation, SK-security only requires
indistinguishability by a specific environmentZTEST.

Let Π be a protocol andA1, A2 the parties executing the initiator and responder roles, respectively.
The environmentZTEST is designed to test key agreement and real-or-random indistinguishability of the
established key. More precisely,ZTEST outputs1 if at the end of the protocol execution the adversaryA
(simulatorS) in the real world (ideal world, resp.) can correctly distinguish the established key from a
random number. If the partiesA1, A2 complete the protocol but disagree about the value of the key, then
ZTEST outputs the bit chosen by adversary. Otherwise,ZTEST outputs0. The protocol is called a secure
session key exchange protocol if the output of the environment machineZTEST is the same in the real and
ideal worlds.

In an earlier paper [22], we argued that instatic corruptions model, a symbolic proof of security in
our logic implies SK-security in the Canetti-Krawczyk model. Extending the symbolic model with weak
adaptive corruptions (i.e., only long-term state is exposed when a party is corrupted) does not violate SK-
security. The proof follows directly from the computational soundness of our proof system under weak
adaptive corruptions, given in appendix F.

We now sketch the extension to full universal composability. In [13], it is shown that universal com-
posability is achieved if the protocol satisfies SK-security and the so-called ACK property. Intuitively, the
ACK property requires that there exist a goodinternal state simulator Ifor the protocolΠ such that no envi-
ronment can distinguish with a non-negligible probabilityan interaction betweenΠ andI and a real-world
interaction withΠ. Intuitively, an internal state simulator presents a simulation of any corrupted partici-
pant’s internal state to the adversary which is indistinguishable from what the adversary would see had he
corrupted the same participant in the real world.

According to [13], the existence of the internal state simulator is guaranteed if at the time one of the par-
ticipants completes the protocol and outputs the key, the internal state of theotherparticipant is computable
using only the newly established key, his long-term secret and the messages exchanged up to that point. This
is typically achieved usingerasures. Each protocol participanteraseshis short-term state as soon as he is
able to derive the key (e.g., the originator in the Diffie-Hellman protocol erasesx as soon as he has received
gy and computedgxy). With erasures, the ACK property holds iff at the time the first participant commits
and outputs the key the second participant haserasedhis short-term state, and SK-security is sufficient for
universal composability. We can thus prove the protocol SK-secure using only the symbolic model (this re-
duces to a proof of mutual agreement and key secrecy [22]), and then verify that erasures are done properly
(independently of the symbolic proof).

26

AA2,P1 Fresh(A1, x) ∧ FollowsProt(A1)[Init]A1

−3(Send(A1, {A1,A2, d(x), {d(x),A2}
l1
A1
}) ∧©©−©Fresh(A1, x)) (1)

AA1,P1 Fresh(A1, x)[Init]A1

VerifySig(A1, {d(x), y
′, k′,A1}

l2
A2

) (2)
AF1,ARP Fresh(A1, x) ∧ FollowsProt(A1)[Init]A1

ActionsInOrder(
Send(A1, {A1,A2, d(x), {d(x),A2}

l1
A1
})

Receive(A1, {A2,A1, d(x), y
′, k′, {d(x), y′, k′,A1}

l2
A2
})) (3)

(3),F1,P1,G2 Fresh(A1, x) ∧ FollowsProt(A1)[Init]A1
¬−3Fresh(A2, x

′) (4)
F1,P1,G2 FollowsProt(A1)[Init]A1

FollowsProt(A2) ⊃ ¬−3Fresh(A1, y
′) (5)

HON FollowsProt(A1) ⊃ −3VerifySig(A1, {d(x), y
′, k′,A1}

l2
A2

) (6)
HON FollowsProt(A2) ⊃ ActionsInOrder(

VerifySig(A2, {x
′,A2}

l′1
A1
}),

Send(A2, {A2,A1, x
′, d(y), k, {x′, d(y), k,A1}

l′2
A2
})) (7)

(5),(6),(7),HON FollowsProt(A1) ⊃ ((¬−3Fresh(A1, y
′) ∧ −3VerifySig(A1, {d(x), y

′, k′,A1}
l2
A2

)) ⊃

ActionsInOrder(

Send(A2, {A2,A1, x
′, d(y), k, {x′, d(y), k,A1}

l′2
A2
}),

VerifySig(A1, {d(x), y
′, k′,A1}

l2
A2

))) (8)
(7),(8),HON, VER FollowsProt(A2) ∧ FollowsProt(A1) ∧ A1 6= A2 ∧ SendAfterVer(A2, x

′)∧

−3(VerifySig(A1, {d(x), y
′, k′,A1}

l2
A2

)∧ (−3VerifySig(A2, {x
′,A2}

l′1
A1

))) ⊃

∃ l1.∃ l
′

2.∃ m1.∃ m2. ActionsInOrder(

Sendterm(A1, {m1}
l1
A1

), VerifySig(A2, {d(x),A2}
l′1
A1

),

Sendterm(A2, {m2}
l′2
A2

), VerifySig(A1, {d(x), y
′, k′,A1}

l2
A2

))∧

ContainedIn(m1 , d(x)) ∧ ContainedIn(m2 , x
′) ∧ (x′ = d(x)) (9)

HON FollowsProt(A2) ⊃ (((−3Send(A2, m)∧

Contains(m, {d(x), d(y), k,A1}
l′2
A2

) ∧ ¬−3Fresh(A2, d(x)) ⊃

(m = {A2,A1, d(x), d(y), k, {d(x), d(y), k,A1}
l′2
A2
}∧ −3(Send(A2, m) ∧©©−©Fresh(A2, y))∧

ActionsInOrder(

Receive(A2, {A1,A2, d(x), {d(x),A2}
l′1
A1
}),

Send(A2, {A2,A1, d(x), d(y), k, {d(x), d(y), k,A1}
l′2
A2
}))))) (10)

(1),(9),AF2 Fresh(A1, x) ∧ FollowsProt(A1)[Init]A1

−3Receive(A2, {A1,A2, d(x), {d(x),A2}
l′1
A1
}) ⊃

After(Send(A1, {A1,A2, d(x), {d(x),A2}
l1
A1
}) , Receive(A2, {A1,A2, d(x), {d(x),A2}

l′1
A1
})) (11)

(1),(9),AF2 Fresh(A1, x) ∧ FollowsProt(A1)[Init]A1

Send(A2, {A2,A1, d(x), d(y), k, {d(x), d(y), k,A1}
l′2
A2
})∧

©©−©Fresh(A2, y) ⊃

After(Send(A2, {A2,A1, d(x), d(y), k, {d(x), d(y), k,A1}
l′2
A2
}),

Receive(A1, {A2,A1, d(x), y
′, k′, {d(x), y′, k′,A1}

l2
A2
},) (12)

(9-12),AF2 Fresh(A1, x) ∧ FollowsProt(A1)[Init]A1
FollowsProt(A2)) ⊃

∃ l1.∃ l
′

2.ActionsInOrder(
Send(A1, {A1,A2, d(x), {d(x),A2}

l1
A1
})

Receive(A2, {A1,A2, d(x), {d(x),A2}
l′1
A1
})

Send(A2, {A2,A1, d(x), d(y), k, {d(x), d(y), k,A1}
l′2
A2
})

Receive(A1, {A2,A1, d(x), y
′, k′, {d(x), y′, k′,A1}

l2
A2
})) (AUTH-1)

Fig. 11.Proof of authentication for DHKE-1 protocol

27

HON FollowsProt(A2) ⊃ −3[νk]A2
(14)

(14),WCR6 FollowsProt(A2) ∧ −3[νk]A2
⊃ k

wcr
−→ hk(d(x, y)) (15)

Secrecy Fresh(A1, x) ∧ FollowsProt(A1)[Init]A1
FollowsProt(A2) ∧ −3[νk]A2

⇒
IndistURand(κ = (hk(d(x, y)))) (16)

MP Fresh(A1, x) ∧ FollowsProt(A1)[Init]A1
FollowsProt(A2) ∧ IndistURand(κ) (17)

defn.of Done, G3, HON Fresh(A1, x) ∧ FollowsProt(A1)[Init]A1
FollowsProt(A2) ∧ Done(A2) ⊃

−3VerifyMAC(A2, fκ(c)) (18)
HON FollowsProt(A1) ⊃ ActionsInOrder(

Receive(A1, {A2,A1, d(x), y
′, k′, {d(x), y′, k′,A1}

l2
A2
})

Send(A1, {A1,A2, fκ(c)})) (19)
(17-19),AF2 FollowsProt(A1) ∧ FollowsProt(A2) ∧ Done(A2) ⊃ (

(−3VerifyMAC(A2, fκ(c)) ∧©©−©Fresh(A2, κ) ∧ −3Send(A1, {A1,A2, fκ(c)})) ⊃
ActionsInOrder(Send(A1, {A1,A2, fκ(c)})), VerifyMAC(A2, fκ(c)))) (20)

HON FollowsProt(A1)[Init]A1
FollowsProt(A2) ⊃ NotSent(A2, fκ(c)) (21)

(17-21) ,AUTH , Fresh(A1, x) ∧ FollowsProt(A1)[Init]A1
FollowsProt(A1) ∧ FollowsProt(A2) ∧ (A1 6= A2)∧

WCR1-6, G2 −3(VerifyMAC(A2, fκ(c)) ∧ −3Receive(A1, {A2,A1, d(x), y
′, k′, {d(x), y′, k′,A1}

l2
A2
}))∧

IndistURand(κ) ∧ NotSent(A2, fκ(c)) ∧ (d(y)
wcr
−→ κ) ∧ (k

wcr
−→ κ) ⇒

∃ l′2.ActionsInOrder(Sendterm(A2, m)
Receive(A1, {A2,A1, d(x), y

′, k′, {d(x), y′, k′,A1}
l2
A2
})

Sendterm(A1, fκ(c))
VerifyMAC(A2, fκ(c)))∧

ContainedIn(m, d(y)) ∧ ContainedIn(m, k) ∧ y
′ = d(y) ∧ k

′ = k (22)
(22),HON Fresh(A1, x) ∧ FollowsProt(A1)[Init]A1

FollowsProt(A1) ∧ FollowsProt(A2) ∧ Done(A2) ⊃

∃ l′2.ActionsInOrder(Send(A2, {A2,A1, d(x), d(y), k, {d(x), d(y), k,A1}
l′2
A2
})

Receive(A1, {A2,A1, d(x), d(y), k, {d(x), d(y), k,A1}
l2
A2
})

Send(A1, {A1,A2, fκ(c)})
Receive(A2, {A1,A2, fκ(c)})) (23)

(AUTH-1),(23) Fresh(A1, x) ∧ FollowsProt(A1)[Init]A1
FollowsProt(A1) ∧ FollowsProt(A2) ∧ Done(A2) ⊃

∃ l1.∃ l
′

2.ActionsInOrder(
Send(A1, {A1,A2, d(x), {d(x),A2}

l1
A1
})

Receive(A2, {A1,A2, x
′, {x′,A2}

l′1
A1

)})

Send(A2, {A2,A1, x
′, d(y), k, {x′, d(y), k,A1}

l′2
A2
})

Receive(A1, {A2,A1, d(x), d(y), k, {d(x), d(y), k,A1}
l2
A2
})

Send(A1, {A1,A2, fκ(c)})
Receive(A2, {A1,A2, fκ(c)})) (24)

Fig. 12.Proof of mutual authentication for DHKE-1 protocol (continued)

28

P2 Fresh(A1, x)[Init]A1
Fresh(A1, x) (1)

AUTH-1 from fig. 11 Fresh(A1, x)[Init]A1
FollowsProt(A2) ∧ Done(A2) ⊃

∃ l1.∃ l
′

2. ActionsInOrder(
Send(A1, {A1,A2, d(x), {d(x),A2}

l1
A1
})

Receive(A2, {A1,A2, d(x), {d(x),A2}
l′1
A1
})

Send(A2, {A2,A1, d(x), d(y), k, {d(x), d(y), k,A1}
l′2
A2
})

Receive(A1, {A2,A1, d(x), y
′, k′, {d(x), y′, k′,A1}

l2
A2
})) (2)

HON FollowsProt(A2) ∧ Send(A2, {A2,A1, d(x), y1, k, {d(x), y1, k,A1}
l′2
A2
})

⊃ ∃ y.(y1 = d(y) ∧ Fresh(A2, y1)) (3)
(2-3) Fresh(A1, x)[Init]A1

FollowsProt(A2) ⊃
∃ y.(y1 = d(y) ∧ Fresh(A2, y)) (4)

NotSent defn Fresh(A1, x)[Init]A1
NotSent(A1, d(x, y)) (5)

NotSent defn, (2) Fresh(A1, x)[Init]A1
FollowsProt(A2) ⊃ (NotSent(A2, d(x, y))) (6)

(1),(4-6) FollowsProt(A1) ∧ Fresh(A1, x)[Init]A1
FollowsProt(A1) ∧ Fresh(A1, x)∧

∧NotSent(A1, d(x, y)) ∧ (FollowsProt(A2) ⊃
∃ y.Fresh(A2, y) ∧ NotSent(A2, d(x, y))) (7)

(7),DDH1-2,G2,G3 FollowsProt(A1) ∧ Fresh(A1, x)[Init]A1
FollowsProt(A2) ⇒

IndistRand(d(x, y)) (8)
(8),LHL,G3 FollowsProt(A1) ∧ Fresh(A1, x)[Init]A1

FollowsProt(A2) ∧ −3[νk]A2
⇒

IndistRand(hk(d(x, y))) (9)
IndistURand defn,(9) FollowsProt(A1) ∧ Fresh(A1, x)[Init]A1

FollowsProt(A2) ∧ −3[νk]A2
⇒

IndistURand(hk(d(x, y))) (10)

Fig. 13.Proof of key secrecy for DHKE-1 protocol

We now sketch briefly how explicit erasures might be includeddirectly in the symbolic model. A par-
ticipant maintains an explicitstateat every step in the protocol execution which consists of symbolic terms
representing the following: short-term secrets (such as Diffie-Hellman exponents) generated by that partic-
ipant, long-term secrets (such as private signing keys) andthe set of messages received by that participant
up to now. Any message sent by the participant must be “Dolev-Yao” computable from the state. We add
an explicit(erase) action to the symbolic language, which erases only theshort-termpart of the partici-
pant’s state. We can now use the symbolic model to verify the following symbolictemporal property: in any
symbolic trace, if a participant outputs(done), the other participant must have output(erase) prior to that
point.

We argue that if the original symbolic protocol (without(erase) operations) was secure under weak
adaptive corruptions (i.e., in the sense defined in this paper), then the resulting tracewith the additional
verification on erasures is secure in the strong adaptive corruptions model. We do not provide the proof in
the conference version of the paper due to lack of space.

29

