
On Computing Products of Pairings

R. Granger and N.P. Smart

Dept. Computer Science,
Merchant Venturers Building,

Woodland Road,
Bristol, BS8 1UB,
United Kingdom.

{granger,nigel}@cs.bris.ac.uk

Abstract. In many pairing-based protocols often the evaluation of the
product of many pairing evaluations is required. In this paper we con-
sider methods to compute such products efficiently. Focusing on pairing-
friendly fields in particular, we evaluate methods for the Weil, Tate and
Ate pairing algorithms for ordinary elliptic curves at various security
levels. Our operation counts indicate that the minimal cost of each ad-
ditional pairing relative to the cost of one is ≈ 0.61, 0.45, and 0.43, for
each of these pairings respectively at the 128-bit security level. For larger
security levels the Ate pairing can have a relative additional cost of as
low as 0.13 for each additional pairing.
These estimates allow implementors to make optimal algorithm choices
for given scenarios, in which the number of pairings in the product, the
security level, and the embedding degree are factors under consideration.

1 Introduction

Let t̂ : G1 × G2 −→ GT be a non-degenerate bilinear map (or simply pairing)
from additive groups G1 and G2 to a multiplicative group GT , all of prime order
r. In some protocols the evaluation of products of the form

e =
n∏

i=1

t̂(Pi, Qi) (1)

is required. For example, in the BBG HIBE scheme [7] ones needs to compute a
ratio of two pairings (such a ratio can be computed via a product of two pairings
in a trivial manner), in the BBS short group signature scheme [8] one needs at
one point to compute a product of three pairings, in the Water’s [20] IBE scheme
extended to an l-level HIBE or WIBE [1] requires an evaluation of a product
of l + 1 pairing values, in a number of ID-based key distribution protocols one
needs to compute a product of two pairing values [9]. A common question asked
amongst protocol designers therefore is how efficiently can such a product be
computed?

A naive way to compute e is to evaluate each t̂(Pi, Qi) independently, and
then multiply the results. However, since only the entire product is required,



and not each individual pairing evaluation, one is free to apply more efficient
methods.

All pairing evaluation algorithms currently employed in cryptography are
based on elliptic curves, and so make use of Miller’s algorithm [18], which can be
used to compute both the Weil and Tate pairings and their variants [5, 13, 4]. The
algorithm consists of a sequence of elementary operations, or ‘Miller operations’,
which are function-evaluation steps very similar to a point doubling or addition
on the Jacobian under consideration. Depending on the pairing being computed,
after either one or two such Miller operations are performed, and possibly a final
powering depending on the type of pairing computed.

For example, to compute the reduced Tate pairing of points P and Q on an
ordinary elliptic curve with even embedding degree, the function-evaluation step
for doubling is simply

f ← f2 · l(Q),

where l is the tangent line to the curve at a point, depending on P and the
loop iteration in Miller’s algorithm. In (1) there are n such terms fi, and by
using a single accumulator f for their product, initialised to 1, each doubling
function-evaluation step becomes

f ← f2 ·
n∏

i=1

li(Qi). (2)

Therefore one needs only compute a single squaring in the extension field per
doubling, rather than n squarings as with the naive method. By the same argu-
ment, in this example one can also trivially combine the final powerings required
in each pairing evaluation in (1). Thus the basic idea to improve efficiency is to
compute only once those operations common to each pairing evaluation.

In the general scenario, the main question to consider in computing products
of a particular pairing is to what extent can one improve upon the naive method?
In this note we make some simple observations that attempt to answer this
question, for the Weil and Tate pairings, and also the recently defined Tate
pairing variant, the Ate [15] pairing.

Following their introduction by Koblitz and Menezes [16], we focus through-
out on pairing-friendly fields, since these allow for many optimisations, and have
various practical benefits [14]. Furthermore, in order to gain a real idea of how
these improvements perform, we also consider several practical security levels.

The paper is organised as follows. In Section 2 we provide a brief description
of pairing-friendly fields and their arithmetic. In Section 3 we detail the methods
and operation counts for computing products of pairings for our selection of
pairing algorithms. Lastly, in Section 4 we give some efficiency comparisons for
our choice of finite fields for various security levels.



1.1 Acknowledgements

The authors would like to thank Eike Kiltz for bringing the issue of products
of multiple pairings in various applications to our attention, and Frederik Ver-
cauteren who provided comments on an earlier version of this paper.

2 Pairing-Friendly Fields

Koblitz and Menezes [16] introduced the concept of pairing-friendly fields which
are particularly well suited to pairing implementations (see also [14]). They are
Kummer extensions of Fp defined by the polynomial

f(X) = Xk + f0 (3)

for values of p ≡ 1 (mod 12) and k = 2i3j . Generally one assumes that k is
even, which aids in efficiency due to the well-known denominator elimination
trick in pairing computations. Following [14, 16], we focus in particular on the
cases k = 6, 12 and 24. We give here a brief description of the various operations
together with their arithmetic costs, and refer the reader to [14] for further
details.

Define Fpk = Fp[θ]/(f(θ)), where f(θ) = 0, and for any k = 2i3j , let Mk, Sk

and Ik denote the time for a multiplication, squaring and inversion respectively in
the field Fpk . Here we assume that addition operations take a negligible amount
of time.

Using the Karatsuba and Toom-Cook methods for multiplication and squar-
ing, to compute products (resp. squares) of polynomials of degree 2i3j−1 over Fp

requires v(k) multiplications (resp. squarings) in the field Fp, where v(k) = 3i5j ,
i.e., Mk = v(k)M1.

Furthermore, we can assume that f0 in (3) has been chosen so that multi-
plication by f0 can be performed quickly by simple additions rather than a full
multiplication. With this representation, the Frobenius automorphism can be
computed with just a few additions, and inversions can be reduced to a single
inversion in Fp, together with a few multiplications in Fpk , see [14] for more
details. We also refer to [14] for a discussion of the relative costs of inversion in
the fields under consideration.

In the Tate and Ate pairings, one must perform an exponentiation, also
known as ‘the final powering’. Essentially this need only be performed (see Sec-
tion 3) in the cyclotomic subgroup of F×

pk of order Φk(p), which we denote by
GΦk(p). Inversion and the Frobenius operation in GΦk(p) are essentially free, and
using special properties of this subgroup, one can improve upon the squaring
cost in Fpk , again see [14] for details of this.

For the exponentiation step, using Lucas sequences [19] one can exponentiate
in GΦk(p) by an exponent l for a cost of

CLuc(l) = (Mk/2 + Sk/2) log2 l.



Also, using well known methods (see [14]), one can perform exponentiation via
standard signed sliding window methods [6] since inversion is cheap in GΦk(p). If
l ≤ p then the best way to perform the exponentiation, using windows of width
at least i, will take time

CSSW(l) = S(1 + log2 l) + Mk

(
log2 l

i + 2
+ (2i−2 − 1)

)
where S denotes the time needed to perform a squaring operation in GΦk(p). We
also need to store 2i−2 elements during the exponentiation algorithm.

When l ≥ p, as is the case in the final powering of the algorithm to compute
the Tate pairing, one uses the fact that we can perform the Frobenius operation
on GΦk(p) for free. Thus we write l in base p, and perform a simultaneous expo-
nentiation. Using the techniques of Avanzi [2], we can estimate the time needed
to perform such a multi-exponentiation by

CbigSSW(l) = (d + log2 p)S +
(

d(2i−1 − 1) +
log2 l

i + 2
− 1

)
Mk

using windows of width i, where d = dlog2 l/ log2 pe. The precomputation and
storage can be reduced using techniques described in [3].

3 Methods for Computing Products of Pairings

In this section we extend the best known algorithms for the computation of the
Weil, Tate, and Ate pairings for ordinary elliptic curves defined over pairing-
friendly fields, to consider the efficient computation of a product of n pairings
in each case.

Let E be an ordinary elliptic curve described by the equation y2 = x3+ax+b
over Fp, for p ≡ 1 mod 12, and let P be a basepoint of prime order r dividing
#E(Fp). Assuming E is not anomalous, let k be the multiplicative order of q
modulo r, i.e., the embedding degree of E under the MOV attack [17]. For the
purposes of this paper we assume k is 6, 12 or 24.

The main ingredient in Miller’s algorithm for computing a pairing is the eval-
uation of certain line functions at certain divisors. For each pairing we consider,
the basic step is the evalution of FP (Q), where FP is a function whose divisor is
equivalent to r(P )−r(∞), for points P and Q defined over either Fpk or a proper
subfield. It is usual to assume that P ∈ E(Fp) and Q is the image of a point in
E(Fpe), where E is either the quadratic or sextic twist of E. In particular it is
common to take either the curve y2 = x3 − 3x + b , or the curve y2 = x3 + b
which admit twists of degree d = 2 and d = 6 respectively. Thus we define e via
e = k/d, since we have assumed that k is a multiple of six.

We follow Koblitz and Menezes’ analysis [16] but we do not assume the group
order to be a Solinas prime, i.e., one of negligible Hamming weight. Hence in
addition to the line computations that arise from a doubling for the function-
evaluation step in each loop iteration, we must also consider the line computation



arising from an addition, for every set bit in the binary expansion of r. We
extended the analysis in this way as we are interested in the cost per addition
pairing in the product, which will depend on the heavily on the Hamming weight
of r. We now treat each pairing in turn.

3.1 The Weil Pairing

Let FP and FQ be functions whose divisors are r(P ) − r(∞) and r(Q) − r(∞)
respectively, which are normalised so that FP (∞)/FQ(∞) = 1. The Weil pairing
t̂ (see [18]) of P 6= Q is given by

(−1)r FP (Q)
FQ(P )

. (4)

As pointed out by Koblitz and Menezes [16], for even k one can replace t̂ by
its (1− pk/2)-th power to eliminate all subfield terms, as with the Tate pairing.
This can be accomplised with just one squaring in Fpk . The function-evaluation
steps - also known as ‘Miller operarions’ - for a single pairing are then

f ← f2 · l(Q) and f ← f · l′(Q), (5)

for lines l, l′ corresponding to point doubling and addition respectively. Clearly,
if one of the points being paired lies in E(Fp), then the Miller operations become
more efficient. In particular, if P ∈ E(Fp) and Q ∈ E(Fpk), then the computation
of FP (Q) is cheaper than that of computing FQ(P ). The computation of the
former has thus been dubbed ‘Miller-Lite’ by Solinas, while the latter we refer
to as Miller-Full. By (4), the total cost of a single Weil pairing computation is

CWeil = CLite + CFull,

where CLite and CFull represent the respective costs of a Miller-Lite and a Miller-
Full operation. Note we have dropped the final squaring and division costs since
these are negligible.

To compute the product of n terms FPi
(Qi), for each bit of r we simply

combine the squarings in Fpk as in (2), and if the bit is set also, multiply in n
extra terms arising from the addition line function-evaluation.

It turns out that in computing products of pairings one can achieve extra
advantages by assuming that the points P and Q, and all intermediate points
within Miller’s algorithm, are held in affine coordinates. At first sight this seems
to require n inversions in Fp, for the Miller-Lite algorithm, and n inversions in Fpe

for the Miller-Full algorithm. However, using Montgomery’s trick [11, Algorithm
10.3.4], one can trade the n inversions in Fp (resp. Fpe) for 3n−3 multiplications
in Fp (resp. Fpe) plus one inversion in Fp (resp. Fpe). For products of a larger
number of pairings using affine coordinates will always be more efficient, however
for smaller values the exact cross over point depends on the ratio between the
cost of an inversion in Fp to that of a multiplication.

In Table 1, we list the cost of all relevant operations in all cases.



Table 1. Cost of Miller operations per bit in product of n pairings

Operation d Cost

Jacobian Projective Coordinates

Miller-Lite double 2 (4S1 + (2e + 7)M1 + Mk)n + Sk

6 (5S1 + (2e + 6)M1 + Mk)n + Sk

Miller-Lite add 2/6 (3S1 + (2e + 10)M1 + Mk)n

Miller-Full double 2 (2eM1 + 4Se + 6Me + Mk)n + Sk

6 (2eM1 + 5Se + 6Me + Mk)n + Sk

Miller-Full add 2/6 (2eM1 + 3Se + 10Me + Mk)n

Affine Coordinates

Miller-Lite double 2/6 (2S1 + (e + 6)M1 + Mk)n− 3M1 + I1 + Sk

Miller-Lite add 2/6 (S1 + (e + 5)M1 + Mk)n− 3M1 + I1

Miller-Full double 2/6 (2Se + 6Me + eM1 + Mk)n− 3Me + IeSk

Miller-Full add 2/6 (Se + 5Me + eM1 + Mk)n− 3Me + Ie

For sake of a comparison we assume that the signed Hamming weight for the
relevant loops is on average 1/3 the length of the loop, using the non-adjacent
form [10] of a binary expansion to reduce the number of addition line function
evaluations in the loop. Therefore, the total cost for computing the product of
n Weil pairings, for group order r, using affine coordinates and d = 2, is,

((2S1 + 2Se + (2e + 6)M1 + 6Me + 2Mk)n− 3M1 − 3Me + I1 + Ie + 2Sk) log2 r

+ ((S1 + Se + (4e + 5)M1 + 6Me + 2Mk)n− 3M1 − 3Me + I1 + Ie) (log2 r)/3.

3.2 The Tate Pairing

In computing the Tate pairing one executes one Miller-Lite operation and then
performs an exponentiation by (pk − 1)/r in order to eliminate r-th powers
and obtain an r-th root of unity. As observed by Koblitz and Menezes, the
exponentiation can be sped up by first exponentiating by (pk − 1)/Φk(p), which
is very cheap since the Frobenius is also, and then exponentiating by Φk(p)/r.
Once raised to the power (pk − 1)/Φk(p), the pairing output is an element of
GΦk(p) and so the available techniques for fast arithmetic can be utilised. Hence,
we can make use of the fast squaring described in Section 2.

By the same argument as for the Weil pairing, the computation of the line
functions reduces to (5), and so we can use the same arithmetic for computing
the Miller-Lite part of the algorithm.

For the exponentiation we ignore the small cost to power by (pk − 1)/Φk(p),
as this is negligible. Thus a Tate pairing computation requires time

CTate = CLuc(Φk(p)/r) + CLite

or

CTate = CbigSSW(Φk(p)/r) + CLite,



whichever is the fastest. Therefore the total cost for computing the product of
n Tate pairings, in affine coordinates, is

((2S1 + (e + 6)M1 + Mk)n− 3M1 + I1 + Sk) log2 r

+ ((S1 + (e + 5)M1 + Mk)n− 3M1 + I1) (log2 r)/3
+ min{CLuc(Φk(p)/r), CbigSSW(Φk(p)/r)}.

3.3 The Ate Pairing

The Ate 1 pairing was introduced by Hess, Smart and Vercauteren [15] as an
extension of the Eta pairing [4] from supersingular, to ordinary elliptic curves.
It is particularly suited to the case where d = 6, and hence e is smaller than for
other curves.

The central idea behind the Ate pairing is rather than compute a function
with divisor r(P ) − r(∞) at Q, with P ∈ E(Fp) and Q ∈ E(Fpk), one instead
computes a function with divisor

(t− 1)(Q)− ((t− 1)Q)− (t− 2)(∞)

evaluated at P , where t is the trace of frobenius of E over Fp. Since the trace
of E is O(

√
p), the computational overheads can be smaller than the Tate pair-

ing depending on the security level and embedding degree. The computational
overhead is more pronounced when t is small compared to

√
p. For convenience

we let T = t− 1.
For the standard Ate pairing one computes

fT,Q(P )(p
k−1)/r,

whilst for the twisted Ate pairing one computes

fT e,P (Q)(p
k−1)/r.

Note that the length of the loop in computing the Miller function depends on the
size of the trace. Hence, one can exploit techniques that allow the construction
of curves with trace as small as log2(r)/φ(k) bits, for k ≥ 12 [12]. We refer the
interested reader to [15] for further details regarding the derivation of the Ate
pairing.

For this note, we consider both the standard and the twisted Ate pairing,
the degree of the relevant twist, and the size of the trace. We assume the signed
Hamming weight of T is around log2(t)/3, and that of T e is around e log2(t)/3.
Then the cost for computing the product of n Ate pairings can be easily read
from Table 1. For example, the cost of computing the product of n Standard
Ate pairings with average trace, in affine coordinates, is

((2Se + 6Me + eM1 + Mk)n− 3Me + IeSk) log2 t

+ ((Se + 5Me + eM1 + Mk)n− 3Me + Ie) (log2 t)/3
+ min{CLuc(Φk(p)/r), CbigSSW(Φk(p)/r)},

1 Pronounced in the natural way, the Ate pairing is called as such because it is effec-
tively the Eta pairing but with the roles of G1 and G2 reversed.



whilst, the cost of computing the product of n twisted Ate pairings with small
trace, i.e. log2 t ≈ log2 r/φ(k), in affine coordinates, is

((2S1 + (e + 6)M1 + Mk)n− 3M1 + I1 + Sk) (e log2 r)/φ(k)
+ ((S1 + (e + 5)M1 + Mk)n− 3M1 + I1) (e log2 r)/(3φ(k))
+ min{CLuc(Φk(p)/r), CbigSSW(Φk(p)/r)},

4 Results

Assuming that S1 ≈ M1 and that I1/M1 ≈ 10, in Tables 2 and 3 we list the
number of multiplications/squarings in Fp required to compute the product of
n pairings, for each of the AES security levels; that is 80-bits, 128-bits, 192-bits
and 256-bits, for embedding degrees 6, 12 and 24. We also list the ratio of the
cost per additional pairing compared to the cost of a single pairing. The table
present the affine coordinate versions of the algorithms only. With a ratio of
I1/M1 ≈ 10 the affine coordinate versions are always faster as long as n ≥ 2.

For the parameter sizes we follow the work of [14, 16]. The first set of param-
eters in each table corresponds to the 80-bit security level, the next two sets of
parameters refer to the 128-bit security level, whilst the next two correspond to
the 192-bit level, the final three are related to the 256-bit level.

As an example consider the 128-bit security level and the parameter set
k = 12, p ≈ r ≈ 2256 and d = 6. This parameter choice is generally considered
to be the most efficient choice at this security level. We see that each extra
pairing costs ranges roughly between 32 percent and 61 percent of the cost of
one pairing.

At the highest security level and most efficient implementation choice of k =
24, p ≈ 2640, r ≈ 2512 and d = 6, we find that the cost per extra pairing ranges
from 13 percent to 63 percent. For protocols in which one needs to compute the
product of three pairing values one finds that the Ate pairing with a small value
of t can be over three times faster than using the Tate pairing. It is also over
five times faster than naively computing the three Tate pairings independently
and then multplying the result.

References

1. M. Abdalla, D. Catalano, A.W. Dent, J. Malone-Lee, G. Neven and N.P. Smart.
Identity-based encryption gone wild. In ICALP 2006, Springer-Verlag LNCS
XXXX, XXXX–XXXX, 2006.

2. R.M. Avanzi. On Multi-exponentiation in cryptography. Preprint, Cryptology
ePrint Archive, Report 2002/154, 2002.

3. R. M. Avanzi and P. Mihailescu. Generic efficient arithmetic algorithms for PAFFs
(Processor Adequate Finite Fields) and related algebraic structures. In Selected
Areas in Cryptology – SAC 2003, Springer-Verlag LNCS 3006, 320–334, 2004.

4. P. Barreto, S. Galbraith, C. Ó hÉigearaigh, and M. Scott. Efficient pairing com-
putation on supersingular abelian varieties. Preprint, Cryptology ePrint Archive,
Report 2004/375.



5. P. Barreto, H. Kim, B. Lynn and M. Scott. Efficient Algorithms for Pairing-
Based Cryptosystems. In Advances in Cryptology – CRYPTO 2002, Springer-
Verlag LNCS 2442, 354–368, 2002.

6. I.F. Blake, G. Seroussi and N.P. Smart. Elliptic Curves in Cryptography. Cam-
bridge University Press, 1999.

7. D. Boneh, X. Boyen and E.-G. Goh. Hierarchichical identity based encryption
with constant size ciphertext. In Advances in Cryptology – EUROCRYPT 2005,
Springer-Verlag LNCS 3494, 440–456, 2005.

8. D. Boneh, X. Boyen and H. Shacham. Short group signatures. In Advances in
Cryptology – CRYPTO 2004, Springer-Verlag LNCS 3152, 41–55, 2004.

9. M.Z. Cheng, L. Chen and N.P. Smart. A built-in decisional function and security
proof of ID-based key agreement protocols from pairings. Preprint, 2006.

10. W. Clark and J. Liang. On arithmetic weight for a general radix representation.
IEEE Trans. Info. Theory, 19, 823–826, 1973.

11. H. Cohen. A course in computational algebraic number theory. Springer-Verlag,
GTM 139, 1993.

12. P. Duan, S. Cui and C.W. Chan. Special polynomial families for generating
more suitable elliptic curves for pairing-based cryptosystems. Preprint, Cryptology
ePrint Archive, Report 2005/342, 2005.

13. S. Galbraith, K. Harrison and D. Soldera. Implementing the Tate pairing. In
Algorithmic Number Theory Symposium – ANTS V, Springer-Verlag LNCS 2369,
324–337, 2002.

14. R. Granger, D. Page and N.P. Smart. High security pairing-based cryptography
revisited. In Algorithmic Number Theory Symposium – ANTS VII, Springer-Verlag
LNCS XXXX, XXXX–XXXX, 2006.

15. F. Hess, N.P. Smart and F. Vercauteren. The Eta pairing revisited. Preprint,
Cryptology ePrint Archive, Report 2006/110, 2005

16. N. Koblitz and A. Menezes. Pairing-based cryptography at high security levels. In
Cryptography and Coding, Springer-Verlag LNCS 3796, 13–36, 2005.

17. A. J. Menezes, T. Okamoto and S. A. Vanstone. Reducing elliptic curve logarithms
to logarithms in a finite field. IEEE Trans. Info. Theory, 39, 1639–1646, 1993.

18. V.S. Miller The Weil Pairing, and its efficient calculation. Journal of Cryptology,
17, 235–261, 2004.

19. M. Scott and P.S.L.M. Barreto. Compressed pairings. In Advances in Cryptology
– CRYPTO 2004, Springer-Verlag LNCS 3152, 140–156, 2004.

20. B. Waters. Efficient identity-based encryption without random oracles. In Ad-
vances in Cryptology – EUROCRYPT 2005, Springer-Verlag LNCS 3494, 114–127,
2005.



Table 2. Cost of the various algorithms for a product of n pairings, d = 2

Security level Algorithm Cost for n pairings Cost per extra pairing

k = 6 Weil 17256 n+ 8208 0.678
r ≈ 2160 Tate 5432 n+ 5491 0.497
p ≈ 2160 Ate (Average t) 5920 n+ 3760 0.612

Ate (Small t) 5920 n+ 3760 0.612
Twisted Ate (Average t) 8160 n+ 7440 0.523
Twisted Ate (Small t) 8160 n+ 7440 0.523

k = 6 Weil 27624 n+ 13136 0.678
r ≈ 2256 Tate 8696 n+ 12817 0.404
p ≈ 2512 Ate (Average t) 18944 n+ 13502 0.584

Ate (Small t) 9472 n+ 10046 0.485
Twisted Ate (Average t) 26112 n+ 25278 0.508
Twisted Ate (Small t) 13056 n+ 15934 0.450

k = 12 Weil 75710 n+ 25086 0.751
r ≈ 2256 Tate 19949 n+ 22899 0.466
p ≈ 2256 Ate (Average t) 27904 n+ 14582 0.657

Ate (Small t) 13952 n+ 11787 0.542
Twisted Ate (Average t) 59904 n+ 50720 0.542
Twisted Ate (Small t) 29952 n+ 29856 0.501

k = 6 Weil 41472 n+ 19712 0.678
r ≈ 2384 Tate 13056 n+ 26827 0.327
p ≈ 21365 Ate (Average t) 50468 n+ 35897 0.584

Ate (Small t) 14208 n+ 22667 0.385
Twisted Ate (Average t) 69598 n+ 67293 0.508
Twisted Ate (Small t) 19584 n+ 31499 0.383

k = 12 Weil 113664 n+ 37632 0.751
r ≈ 2384 Tate 29952 n+ 44412 0.403
p ≈ 2683 Ate (Average t) 74338 n+ 38439 0.659

Ate (Small t) 20928 n+ 27740 0.430
Twisted Ate (Average t) 159822 n+ 134877 0.542
Twisted Ate (Small t) 44928 n+ 54844 0.450

k = 6 Weil 55248 n+ 26272 0.678
r ≈ 2512 Tate 17392 n+ 44876 0.279
p ≈ 22560 Ate (Average t) 94720 n+ 66982 0.586

Ate (Small t) 18944 n+ 39334 0.325
Twisted Ate (Average t) 130560 n+ 125862 0.509
Twisted Ate (Small t) 26112 n+ 51110 0.338

k = 12 Weil 151420 n+ 50172 0.751
r ≈ 2512 Tate 39898 n+ 70264 0.362
p ≈ 21280 Ate (Average t) 139520 n+ 70397 0.665

Ate (Small t) 27904 n+ 48040 0.367
Twisted Ate (Average t) 299520 n+ 251090 0.544
Twisted Ate (Small t) 59904 n+ 84178 0.416

k = 24 Weil 435844 n+ 121872 0.781
r ≈ 2512 Tate 105370 n+ 183035 0.365
p ≈ 2640 Ate (Average t) 206720 n+ 139115 0.598

Ate (Small t) 41344 n+ 115136 0.264
Twisted Ate (Average t) 791040 n+ 663381 0.544
Twisted Ate (Small t) 158208 n+ 219989 0.418



Table 3. Cost of the various algorithms for a product of n pairings, d = 6

Security level Algorithm Cost for n pairings Cost per extra pairing

k = 6 Weil 10012 n+ 7782 0.563
r ≈ 2160 Tate 5006 n+ 5491 0.477
p ≈ 2160 Ate (Average t) 2506 n+ 3546 0.414

Ate (Small t) 2506 n+ 3546 0.414
Twisted Ate (Average t) 2506 n+ 3546 0.414
Twisted Ate (Small t) 2506 n+ 3546 0.414

k = 6 Weil 16028 n+ 12454 0.563
r ≈ 2256 Tate 8014 n+ 12817 0.385
p ≈ 2512 Ate (Average t) 8021 n+ 12819 0.385

Ate (Small t) 4010 n+ 9704 0.292
Twisted Ate (Average t) 8021 n+ 12819 0.385
Twisted Ate (Small t) 4010 n+ 9704 0.292

k = 12 Weil 42286 n+ 27132 0.609
r ≈ 2256 Tate 18585 n+ 22899 0.448
p ≈ 2256 Ate (Average t) 11861 n+ 15605 0.432

Ate (Small t) 5930 n+ 12298 0.325
Twisted Ate (Average t) 18602 n+ 22901 0.448
Twisted Ate (Small t) 9301 n+ 15946 0.368

k = 6 Weil 24064 n+ 18688 0.563
r ≈ 2384 Tate 12032 n+ 26827 0.310
p ≈ 21365 Ate (Average t) 21369 n+ 34078 0.385

Ate (Small t) 6016 n+ 22155 0.214
Twisted Ate (Average t) 21369 n+ 34078 0.385
Twisted Ate (Small t) 6016 n+ 22155 0.214

k = 12 Weil 63488 n+ 40704 0.609
r ≈ 2384 Tate 27904 n+ 44412 0.386
p ≈ 2683 Ate (Average t) 31599 n+ 41166 0.434

Ate (Small t) 8896 n+ 28508 0.238
Twisted Ate (Average t) 49631 n+ 60657 0.450
Twisted Ate (Small t) 13952 n+ 33980 0.291

k = 6 Weil 32056 n+ 24908 0.563
r ≈ 2512 Tate 16028 n+ 44876 0.263
p ≈ 22560 Ate (Average t) 40106 n+ 63568 0.387

Ate (Small t) 8021 n+ 38651 0.172
Twisted Ate (Average t) 40106 n+ 63568 0.387
Twisted Ate (Small t) 8021 n+ 38651 0.172

k = 12 Weil 84572 n+ 54264 0.609
r ≈ 2512 Tate 37170 n+ 70264 0.346
p ≈ 21280 Ate (Average t) 59306 n+ 75516 0.440

Ate (Small t) 11861 n+ 49063 0.195
Twisted Ate (Average t) 93013 n+ 111996 0.454
Twisted Ate (Small t) 18602 n+ 56359 0.248

k = 24 Weil 240756 n+ 142332 0.628
r ≈ 2512 Tate 99914 n+ 183035 0.353
p ≈ 2640 Ate (Average t) 88106 n+ 151915 0.367

Ate (Small t) 17621 n+ 117696 0.130
Twisted Ate (Average t) 250026 n+ 293887 0.460
Twisted Ate (Small t) 50005 n+ 146090 0.255


