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Abstract

This paper proposes investigation of special sessions of the Diffie Hellman (DH)
key exchange scheme on elliptic curves for which the shared key can be computed by
a polynomial time algorithm. Such sessions are called singular. Existence of singular
sessions are demonstrated using the Frobenius expansion and polynomial representation
of public keys which lead to an expression for the shared key. When the Weil pairing can
be computed on the elliptic curve along with a modified pairing defined by a distortion
map efficiently, a sufficient condition is obtained for sessions to be singular which can
be verified in polynomial time. Hence this condition identifies sessions whose singular
nature can be determined in polynomial time. A single round three party key exchange
scheme is proposed using singular sessions in which efficient computation of the shared
key of a pair of users by the third party is a necessary requirement. This scheme is thus
a positive application of singular sessions and offers a possible alternative to the need
for using super singular curves on which pairings can be computed efficiently.

K eywords Diffie Hellman scheme, Frobenius expansion, Tri-party key exchange.

1 Introduction

Security of the Diffie Hellman (DH) key exchange scheme over any group rests primarily on
the computational difficulty of solving two problems, the discrete logarithm (DL) problem
(DLP) and the DH Problem (DHP). The DL computation on cyclic subgroups of elliptic
curves is as yet not known to have have yielded to sub-exponential time solutions except
in case of super-singular curves. On the other hand provable security can be achieved for
the scheme only if the number of all those special key exchange sessions in which the DHP
can fall to a polynomial time solution are negligibly small. In this paper we identify such
special class of sessions in terms of the parameters of the scheme. While these are insecure
for key exchange between two parties, we motivate their positive application, that for single
round three party key exchange in which computation of the shared keys of pairs of parties
by a third party is a necessary requirement.

A DH session of the DH scheme is defined by the private keys (integers) a, b and
corresponding public keys Q = aP , R = bP of two parties say A and B where P is a publicly

1



known point on an elliptic curve. Then the shared (or exchanged) key S = aR = bQ and
is thus bilinear in the public keys Q,R. It is unknown whether this bilinear function can
be constructed, however it would be worthwhile to identify suitable representations of this
function and sessions for which computation of S from the public data (P,Q,R) is feasible.
A cryptanalyst would naturally construct such representations by means of algorithms and
determine the special sessions for which computation of S is possible in polynomial time.
We shall call the private key a of A to be singular relative to R if a polynomial time
algorithm T is available such that S = T (Q,R). The session itself shall be called singular if
either a or b is singular relative to R, Q respectively. Further, we shall still call the session
singular if a polynomial time algorithm T is available such that Decisional DHP (DDHP)
with data (P,Q,R, T (Q,R)) can be answered in the affirmative in polynomial time. In
practical situations a polynomial time algorithm T may be constructible from the public
data to compute S̃ = T (Q,R). Then the sessions are singular whenever S̃ = S. However
whether or not S̃ = S should be decidable by invoking extra session information which an
oracle may provide.

In a practical implementation of the DH scheme the security is thus compromised in
singular sessions if there exists such an oracle. Hence accidental occurrence of such sessions
during random selection of private keys must be estimated for a given set of parameters
of the scheme and such sessions avoided if they are likely to occur frequently. However,
singular sessions should have utility in the three party single round key exchange protocol
(or in group key exchange schemes). In this protocol it is necessary that each party be able
to efficiently compute the solution of the DHP arising from key selection of the other two
parties i.e. the DH sessions for any two parties should be intentionally singular. In this way
singular DH sessions also have positive applications. A purpose of this paper is to identify
singular DH sessions on elliptic curves and to propose their application for the three party
key exchange scheme. A central observation of this paper is that such sessions arise from a
generalization of the Frobenius expansion of points in < P > on certain elliptic curves.

1.1 Relationships with previous work

The Diffie Hellman key exchange scheme [1] can justifiably be called the flagship of the public
key cryptography. Its formulation over elliptic curves and recent progress in understanding
and computation of pairings on elliptic curves [3] has especially proved to be very valuable
in public key cryptography. Initially the MOV reduction using the Weil pairing on elliptic
curves was proposed to reduce the discrete logarithm problem from elliptic curves to that
over extension of fields containing a given cyclic group of a point. However it was soon
realized that as long as the point has sufficiently high order and has co-ordinates in a field
of sufficiently high order, even for a small extension of this field which can encompass the
values of the pairing, the DL computation is infeasible and one can utilize pairings for
positive applications. This lead to cryptography using pairings. For instance in the three-
party key exchange scheme of [6] the DH scheme is modified to what is known as bilinear
DH scheme, in which the shared key of a pair of parties is a value of a bilinear function
of the pair of public keys in a finite field. Applications of pairings however necessitate one
to utilize points on super-singular elliptic curves over large extensions of the base field or
more generally over curves where the values of pairing involve a small degree field extension
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thereby giving away the advantage of elliptic curve DL problem. On the other hand it
would be worthwhile to explore whether such three or multi-party key exchange schemes
can be constructed on general elliptic curves without the use of a bilinear DH scheme or
pairings. A necessary requirement of such a scheme for three parties is that each party be
able to compute efficiently the two party DHP of every pair of other parties. Thus the DH
sessions of each pair of parties must be singular and yet the shared key of the three parties
be protected by computation of the DL. In this paper we take the first steps at constructing
such a scheme.

Consider an elliptic curve E defined by a polynomial equation with co-efficients over
the field Fq called the base field, and let P be a point on E(Fqm) of order n. A DH session
is defined by the triple (P,Q,R) = (P, kP, lP ) called the public data of the session for the
private keys k, l in Zn. The point S = klP is the shared key of the session. Problem of
computing S is known as the (computational) DHP. The DL Problem (DLP) of computing k
(or l) given the public data, has so far resisted solutions as fast as solving the DLP in groups
F∗

qm (called DLP over finite fields Fqm) which involve sub-exponential time complexity for
the index calculus algorithm. Over super-singular curves however, the MOV reduction
transforms the DLP in polynomial time to that over a small degree extension of Fqm . Hence
for sufficiently largem the DL computation in such a field is still intractable. The DH scheme
is then secure if the DH assumption that, the solution of the DHP is as much infeasible as the
DL computation, holds. While no formal proof of the DH assumption is known in general,
it is often believed to be true for the group under consideration. Several formulations for
characterizing the practical validity of this assumption are well known [11, 7, 4, 8]. However
in a group being used for the DH scheme, there can be exceptional cases of DH sessions
which do not have strong security from the viewpoint of the DH assumption. These are the
singular sessions referred above. Singular DH sessions are thus defined by triples (P, k, l)
or public data (P,Q,R) for which there is a polynomial time algorithm which can compute
S. Recently non-trivial singular cases of the DHP are reported in [9, 10] over finite fields.
Note that the singular cases of the DH schemes on elliptic curves which are based on the
bilinear DH problem are characterized by the singular cases of the DHP over finite fields.
Hence the singular cases discovered in [9, 10] are relevant to pairing based schemes on
elliptic curves. This paper extends these singular cases of the DHP to elliptic curves and
shows their existence in special cases. A complete and good characterization of these cases
is desirable and if achieved, would provide a step in the direction of achieving provable
security of the DH scheme.

1.2 Frobenius expansion

In this paper we specifically investigate the singular DH sessions described above for m > 1.
In this case the Frobenius map is an automorphism of E(Fqm) (unlike the case where E is
defined over Fq and the generator P is also chosen in E(Fq)) and gives rise to the Frobenius
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expansion of points of < P >. It turns out that if

Q =
µ∑

i=0

aiσ
iP (1)

R =
µ∑

i=0

biσ
iP (2)

are any Frobenius expansions of the public keys Q,R (which always exist [2]) in terms of
the conjugates σiP of the point P , then the shared key S can be expressed in the form

S =
µ∑

i=0

aiσ
iR or (3)

S =
µ∑

i=0

biσ
iQ (4)

with appropriate summation indices, in terms of the conjugates of the public keys Q, R.
The largest index of summation is roughly of the order of log n where n is the order of P ,
while the co-efficients ai, bi arise from a set of integers not larger in cardinality than q.
These expressions show that whenever a polynomial time computation of these co-efficients
is possible from the public keys as input data, then it also yields the computation of the
shared key efficiently (although does not explicitly yield the DL of Q or R with base P ).
Hence such sessions are singular.

In this paper we define more general expansions analogous to the Frobenius expansion in
terms of polynomial maps and investigate singular sessions determined by such expansions.
The singular nature of these sessions is a consequence of certain (weak) commutativity
between these maps and the multiplication endomorphisms. However commutativity of
multiplication endomorphisms corresponding to the private keys are not known from the
public keys but a passive adversary can still compute a generalized Frobenius expansion and
a candidate shared key S̃. Hence this computation of S̃ leads to a DDHP. However when
additionally the Weil pairing (modified by a distortion map) can be computed efficiently on
a subgroup containing P , this DDHP can be resolved efficiently and the above computation
along with the pairing determines a condition for singular nature of the session. Hence
when such a pairing is computable efficiently, the singular sessions can be identified by this
condition and the DHP solved in polynomial time without resorting to the computation of
the DL. In this way the condition for singular nature of sessions also identifies exceptional
cases of the well known DH assumption. Efficient solubility of the DHP is a feature of
singular sessions which could turn out useful for the single round multi party extension of
the DH scheme. Due to this reason while singular sessions are undesirable for two party
key exchange, they might provide an inexpensive solution for a secure multi party scheme.

1.3 Notations and background

We begin by recalling basic notations and shall consider those in [11, 3] for reference.
Consider an elliptic curve E defined over a finite field K. Assume that E is defined by the
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equation in the Weierstrass form with co-efficients in K,

Y 2 + Y (a1X + a3) = X3 + a2X
2 + a4X + a6 or

Y 2 = X3 +AX +B
(5)

when char K is not 2, 3 and is nonsingular in both of the above cases as an affine variety.
For a finite extension L/K, E(L) denotes the set of all points (x, y), x, y ∈ L which satisfy
the above equation. We assume that K = Fq is of characteristic p while L = Fqm . A DH
scheme is defined on a cyclic subgroup < P > of E(L) where P has order n assumed to
be coprime to the characteristic p. The set of all n-torsion points of E(L) is denoted by
E[n]. Finally it is assumed that arithmetical operations referred as Fq-operations can be
accomplished in polynomial time in bit length log q. Hence if a computation is feasible in
polynomial number of Fq-operations then it is a polynomial time computation. Frobenius
map on E(Fqm) is the map σ : E(Fqm) → E(Fqm), σ(x, y) = (xq, yq). In the above situation
when the defining equation of E has Fq co-efficients, σ is also an automorphism of the group
E(Fqm) and hence commutes with the multiplication endomorphism P → mP . We shall
call the set of all points ±σiP the set of conjugates of P . Since P = (x, y) has co-ordinates
x, y in Fqm the set of conjugates consists at most of points {±P,±σP,±σ2P, . . . ,±σm−1P}.

2 Frobenius expansions and expressions for the shared key

Frobenius expansion is a representation of the multiplication endomorphism P → rP in
E(Fqm) by an integer r, as the sum of a divisor defined in terms of conjugates of P . This
is a consequence of the following well known result [2]

Lemma 1. Given r in Zn

rP =
k∑

i=0

riσ
iP (6)

where ri ∈ [−dq/2e+ 1, . . . , bq/2c] and k ≤ 2 logq 2r + 3.

We shall however consider more general expansions and also call them Frobenius expan-
sions. For instance an expansion of rP of the form

rP =
m−1∑
i=0

aiσ
iP (7)

where ai belong to Zn shall also be called as Frobenius expansion. Clearly, by incorporating
larger number of terms in conjugates of P for expanding the multipliers ai outside the range
of ri in (6), the above expansion can be brought to the form (6).

Let (P,Q,R) be the public data of a DH session. From above lemma an expansion of
the shared key of the session in terms of the conjugates of the public keys Q,R as in (1)
and (3) follows.

Proposition 1. There exist integers ai, bi in [−dq/2e + 1, . . . , bq/2c] for 0 ≤ i ≤ µ such
that the shared key of the session with public data (P,Q,R) is given by (3) where µ <
2 logq 2n+ 3.
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Proof. Consider the Frobenius expansions of Q, R as in (1) wherein the co-efficients ai, bi
exist in the range specified. Since Q, R belong to the cyclic subgroup < P >, the multiplier
r in the expansion is at most (n− 1) where n is the order of P . This gives the bound µ by
above lemma. Given such an expansion for Q and R = lP , the shared key S of a session
(P,Q,R) is given by

S = lQ = l
∑µ

i=0 aiσ
iP

=
∑µ

i=0 aiσ
i(lP )

=
∑µ

i=0 aiσ
iR

where only the commutativity of the endomorphisms σ and l is used. Similarly the second
expression in (3) also follows.

In fact it can be easily seen that we may only have a general Frobenius expansion to get
an expression of the shared key.

Proposition 2. Consider a DH session with public data (P,Q,R).

1. If an expansion

Q =
m−1∑
i=0

aiσ
iP

is known with ai in Zn then the shared key has an expansion

S =
m−1∑
i=0

aiσ
iR

2. If an expansion

R =
m−1∑
i=0

biσ
iP

is known with bi in Zn then the shared key has an expansion

S =
m−1∑
i=0

biσ
iQ

The proof follows as in the above proposition on using commutativity of σ with multipli-
cation endomorphisms. Thus the knowledge of the Frobenius expansion of the public keys
leads to the expansion of the shared key in terms of conjugates of the public keys. What is
important further for the DH scheme is that, the knowledge of the Frobenius expansion of
the public data (say Q) does not automatically yield knowledge of its DL. Hence whenever
the Frobenius expansion of the public data can be computed efficiently, the DHP can also
be solved efficiently.
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2.1 Singular DH sessions

We now formally define sessions in which computation of the shared key in terms of public
keys is feasible efficiently and it is also feasible to decide that the session has this property.

Definition 1. Let a, b be private keys of a DH session with public data (P,Q = aP,R =
bP ). Then a is said to be singular relative to R if there is available a polynomial time
algorithm T such that S = T (Q,R) is the shared key of the session. We shall call the
session itself as a singular session if either a is singular relative to R or b is singular relative
to Q. We shall also call a session singular if there is available a polynomial time algorithm
T such that the DDHP (P,Q,R, S) can be answered in affirmative for S = T (Q,R).

Clearly when a Frobenius expansion (1) can be computed in polynomial time the shared
key S itself can be computed in polynomial time. Hence such sessions are singular. Instances
of trivially singular sessions are given by the following theorem.

Theorem 1. If there exists 1 ≤ i ≤ (m− 1) and ki ∈ Zn such that

±σiP = kiP (8)

then the sessions with public data (P,±(kr
i mod n)P,R) or (P,Q,±(kr

i mod n)P ), r =
0, 1, 2, . . . are singular.

Proof. Consider the session with public data (P,Q,R) = (P,±(kr
i mod n)P,R) for some r.

Let s = ir mod m. Then Q = ±σsP is the Frobenius expansion of Q of the type (7). The
index s of exponent of σ can be computed in polynomial time by comparing Q with 2m
conjugates ±σiP . Then from proposition 2 it follows that the shared key is S = ±σsR
which can be computed in polynomial time by repeated squaring in Fqm and action of σ on
R. In the case of public data (P,Q,R) = (P,Q,±(kr

i mod n)P ) it can be similarly shown
that the shared key S = ±σsQ can be computed in polynomial time. Thus the DDHP
(P,Q,R, S) is resolved automatically for these sessions.

Remark 1. The weak sessions in the above theorem have one of the private keys equal
to ±(kr

i mod n). Hence given that the condition (8) is satisfied for some i, if any one of
the users chooses a private key satisfying this relation, then for every choice of private key
of the other user the session turns out to be singular. We shall call such private keys as
singular keys of conjugate class. Further, what is worth noting is the fact that the solutions
of the DHPs for above class of DH sessions are obtained without computing the DL of the
public data. In fact it is only necessary for an adversary to compute the exponent i of σ
and verify whether one of the public keys equals a conjugate. This computation can be
done in polynomial time and by itself does not yield the DL of Q or R.

A further fatal consequence of the above theorem for the DH scheme is

Corollary 1. If n is prime, the condition (8) is satisfied for some i and ki is primitive in
Z∗

n then every DH session is singular.

Proof. Since ki is primitive in Z∗
n for every multiplier k, such that Q = kP , there exists r

such that k = kr
i mod n. Thus Q = σir mod mP implying that every Q is a conjugate of P .

Hence every session with public data (P,Q,R) is singular by the above theorem.
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Clearly the parameters of the DH scheme such as the co-efficients in the defining equation
of the elliptic curve E, the point P and its order which cause conditions of the above
corollary to be satisfied lead to an insecure DH scheme. Whether the condition (8) holds
can be determined off-line from the parameters of the DH scheme. The trivial case of
parameters in which singular sessions exist is when the generator P ∈ E(Fqm) is chosen for
which σP is dependent on P as group element thus (8) is satisfied for i = 1. Hence we next
consider the problem of establishing conditions under which (8) holds.

2.2 Frobenius expansions when conjugates exist in the cyclic subgroup

The Frobenius automorphism σ acts as an automorphism also of the subgroup E[n] of points
of order diving n. Hence all conjugates of points of E[n] are in the same subgroup. However
the cyclic subgroup < P > need not be invariant under action of σ. The condition (8) is
concerned with those conjugates of P which are in < P >. We now show that a Frobenius
expansion of any point in < P > can be constructed from the knowledge of solutions of (8).
Let χ(X) = X2 − tX + q denote the characteristic polynomial of σ and for a polynomial
h(X) ∈ Zn[X] let r(X) = h(X) mod χ(X) denote the reminder on division by χ. (Such a
reminder always exists since χ(X) is monic, moreover deg r(X) ≤ 1). The next result is a
condition for existence of solutions to (8).

Proposition 3. For an index i, 1 ≤ i ≤ (m − 1) let r(X) = miX + ni = Xi mod χ(X).
Then there exists ki such that (8) holds for the index i iff σ(miP ) ∈< P >.

Proof. Clearly, ±σiP = ±r(σ)P . Hence necessity is obvious. Conversely let there exist
a ∈ Zn such that σ(miP ) = aP . Then σiP = miσP + niP = aP + niP . Hence (8) is
satisfied for ki = ±(a+ ni) mod n.

Clearly, computing ki satisfying (8) for any i involves solution of a DLP. However such
ki can be precomputed from the parameters of the DH scheme whenever they exist and
will be useful in determining singular keys of the conjugate class when the users select their
private keys. One type of Frobenius expansion which exists if the condition (8) is known to
satisfy for some i and ki is as follows. (It would be natural to call this an ki-adic expansion).
Assume that there exist an index j, 1 ≤ j ≤ (m− 1) such that (8) holds for this index and
let κ be the least positive integer among all such kj .

Proposition 4. Let there exist solutions i and ki to (8) and κ be the least multiplier in
these solutions, then there exists a unique expansion of any Q in < P > of the form

Q =
µ∑

i=0

aiσ
iP

where ai belong to Z/κZ and µ < m logκ n.

Proof. Since Q = rP for some r < n consider the κ-adic expansion of r

r =
µ∑

l=0

alκ
l

where l < logκ n. Since κP = σjP for some 1 ≤ j ≤ (m − 1) it follows that rP has the
expansion claimed where the largest power of σ is bounded by m logκ n.
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3 Analogs of the Frobenius expansion

Frobenius expansion can be generalized using other polynomial maps. Frobenius mapping
(being a group endomorphism of E) also commutes with the multiplication endomorphism
r : E → E, P 7→ rP . This commutativity plays the main role in causing sessions to be
singular whose public keys are conjugates of P . We may extend such commutativity even to
maps which may not be endomorphisms yet commute with special multipliers. We moreover
need such commutativity to be defined only at a point P to get analogous singular sessions.

Definition 2. Let Φ and Ψ be rational mappings of E into itself. These mappings shall be
called commutative at P if Φ, Ψ and the compositions Φ ◦Ψ, Ψ ◦ Φ are defined at P and

(Φ ◦Ψ)(P ) = (Ψ ◦ Φ)(P )

A mapping Φ is said to commute with r at P if Φ commutes at P with multiplication
endomorphisms P 7→ rP for r in Zn.

We can now get an analogue of the expansion of the shared key S in proposition 1 in
terms of expansions of the public data as follows.

Proposition 5. Let Φi, i = 1, 2, . . . , N be a family of rational mappings of E defined at P
which commute with l at P . Then a DH session with public data (P,Q,R) where R = lP
and

Q =
N∑

i=1

aiΦi(P )

has the shared key given by

S =
N∑

i=1

aiΦi(R)

Proof. Immediate from commutation of Φi with l at P .

The Frobenius map powers σi are some of the special examples of maps Φi. Thus if Q
has an expansion of the above form the expression for S is the shared key of any session
(P,Q,R) in which Φi commute with the DL of R at P . Analogous proposition holds relative
to expansion of R as follows.

Proposition 6. Let Ψi, i = 1, 2, . . . , N be a family of rational mappings of E defined at P
which commute with k at P . Then a DH session with public data (P,Q,R) where Q = kP
and

R =
N∑

i=1

aiΨi(P )

has the shared key given by

S =
N∑

i=1

aiΨi(Q)

We next construct maps in the above propositions from the public data and obtain more
general form of singular sessions than those in which the public data consist of conjugates
of P . This uses the fundamental property of multipliers, their rational representation.

9



3.1 Rational representation of multiplication

Elements of < P > have a natural rational representation in terms of co-ordinates x, y of
P given by the following well known lemma [11] presented here in slightly restricted form.

Lemma 2. For any P = (x, y) in E[n] of order n and every k < n

1. There exists a unique pair of rational functions r1k(X), r2k(X) in Fq(X) expressed in
terms of coprime numerator and denominator, dependent only on k such that

kP = (r1k(x), yr2k(x))

2. kP = ∞ iff r1k(X) is undefined at x (or has a pole at x).

3. If r1k(X) is defined at x then r2k(X) is also defined at x.

In fact a rational representation in the above form holds for all endomorphisms of E
and that the second item above means that P is in the kernel of k as an endomorphism iff
r1k(x) is undefined. Details may be referred from [11]. From this representation it follows
that if (P,Q,R) is the public data of a DH session with parameters (P, k, l) then there exist
unique rational functions rik(X), ril(X) in Fq(X) such that

Q = (xk, yk) = (r1k(x), yr2k(x))
R = (xl, yl) = (r1l(x), yr2l(x))

(9)

while the shared key can be expressed in either of the following way

S = (x∗, y∗)
= (r1k(xl), ylr2k(xl))
= (r1l(xk), ykr2l(xk))

(10)

3.2 Polynomial representation

Next we construct a polynomial representation for elements of < P >. Let P = (x, y)
in E(Fqm) be of order n and let h(X) in Fq[X] denote the minimal polynomial of x with
d = deg h(X). Clearly d ≤ m.

Lemma 3. For every k < n there exists a unique pair of polynomials φk(X), ψk(X) in
Fq[X] such that

1. deg φk(X) < d, degψk(X) < d

2. kP = (φk(x), yψk(x))

Proof. Consider the rational functions rik(X) = pik(X)/qik(X) of the previous lemma,
i = 1, 2, where pik(X), qik(X) belong to Fq[X] and are coprime. Since kP 6= ∞, qik(x) 6= 0.
Hence rik is defined at all roots of h(X) or that qik(X) are units in Fq[X]/h(X). Thus there
exist polynomials fik(X) such that qik(X)fik(X) mod h(X) = 1 which implies qik(x)−1 =
fik(x) for all roots x of h(X). Hence rik(x) = pik(x)fik(x). Let φ(X) = p1k(X)f1k(X) mod
h(X) and ψ(X) = p2k(X)fk(X) mod h(X). Then from lemma 2 it follows that φk(X),
ψk(X) satisfy the conditions claimed while uniqueness follows from uniqueness of rik(X) in
terms of coprime fractions.
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Remark 2. The polynomials representing co-ordinates of points kP = (xk, yk) are in Fq[X]
however they are dependent on P which is in E(Fqm). For this reason, unlike the rational
functions rik(X) which depend only on k, the polynomials φk(X), ψk(X) are also unique for
given k but vary with P . A better notation would have been φk,P (X), ψk,P (X). We shall
call representation of kP in the above lemma as polynomial representations over Fq and
to be of degree equal to max(deg φ,degψ). Note that only the polynomial representation
of degree less than d is unique as shown above. There can be multiple representations of
degree ≥ d.

Another important characteristic of the polynomial representation say kP = Φk(P ) of
the multiplier endomorphism k is that the polynomial map Φk : E → E equals a rational
mapping of E defined at P and evaluated at P . Hence the property of commutativity
defined above for rational mappings can be extended to polynomial representations also.

Next theorem shows that the polynomial representation is efficiently computable from
the public data. Note that a rational representation of multiples kP is well known in terms
of the division polynomials. However computation of division polynomials from kP is then
equivalent to the DL computation on the elliptic curve.

Theorem 2. Given Q in < P > the unique polynomials φ, ψ in Fq[X] in lemma 3 of degrees
less d can be computed in polynomial time.

Proof. Following notations of lemma 3, observe first that the minimal polynomial h(X) of
x is computable in polynomial number of Fq operations. The elements 1, x, x2 . . . x(d−1)

are Fq-linearly independent in Fqm . Hence relative to any basis of Fqm the conditions
Q = (φ(x), yψ(x)) and φ, ψ in Fq[X] lead to equations,

σiQ = (φ(xq), yqψ(xq))

for 0 ≤ i ≤ (d − 1) which are two systems of d equations in d unknowns. These systems
of equations are linear in the unknown co-efficients of each of φ, ψ and have unique so-
lutions since 1, x, xq, . . . , xq(d−1)

are Fq-linearly independent. Thus Fq co-efficients of the
polynomials φ, ψ can be computed in polynomial number of Fq operations.

.

4 Singular Diffie Hellman sessions on elliptic curves

Polynomial time solubility of φ, ψ in the above theorem and the analogues of the Frobenius
expansions of propositions 6, 5 now lead us to identifying singular sessions when supple-
mented with the knowledge that the multipliers of P defining the public data commute with
these polynomial representations.

Theorem 3. Let (P,Q,R) be a DH session,

1. Let Q have a polynomial representation Q = Φ(x, y) = (φ1(x), yφ2(x)) and R = lP .
If Φ commutes with l at P then the session (P,Q,R) is singular and S = Φ(R) is the
shared key of the session.

11



2. Let R have a polynomial representation R = Ψ(x, y) = (ψ1(x), yψ2(x)) and Q = kP .
If Ψ commutes with k at P then the session (P,Q,R) is singular and S = Ψ(Q) is the
shared key of the session.

Proof. Formulas for S are special cases of expansions in propositions 5, 6 which in turn
essentially follow from commutativity of Φ, Ψ with l, k respectively. Since co-efficients of
Φ and Ψ can be computed in polynomial time and the evaluations Φ(R), Ψ(Q) can also be
carried out in polynomial time, the theorem follows.

Above theorem shows that the knowledge of commutativity of k, l with Ψ, Φ rather
than these parameters themselves is enough for a polynomial time algorithm to compute S.
All such sessions which satisfy these commutativity conditions are singular.

Algorithm 1 (Algorithm for computing S for singular sessions). Input Public data (P,Q,R).

1. Compute polynomial representations of minimal degree Q = Φ(P ), R = Ψ(P ).

2. Compute S1 = Φ(R), S2 = Ψ(Q).

Output Shared key S = S1 if l commutes with Φ at P , S = S2 if k commutes with Ψ at P .

4.1 Identifying singular sessions

Above theorem identifies singular sessions under the knowledge that the maps Φ, Ψ repre-
senting the public data at P commute with multipliers k, l at P . In the case of singular
sessions identified earlier one of the public data Q or R is a conjugate of P . In this case it
is evident that polynomial maps Φ, Ψ being constructed from the powers of the Frobenius
map, commute with any multipliers l, k. Hence the DH sessions in which such a commuta-
tivity of Φ, Ψ with k, l at P is not known are not necessarily a priori singular. Nevertheless,
since Φ, Ψ exist and are computable in polynomial time for a given public data, Φ(R) and
Ψ(Q) can also be computed in polynomial time and are candidates for the shared key even
when not confirmed as a shared key. Alternatively, we can say that in the standard DH
scheme the lack of knowledge of k, l gives rise to a DDHPs with public data (P,Q,R,Φ(R))
and (P,Q,R,Ψ(Q)). Those DH sessions for which these DDHPs can be answered in the
affirmative in polynomial time are singular sessions.

(It is worth noting however that the situation is opposite in the case of three party
key exchange scheme which utilizes these singular cases of standard DH session. In this
scheme a legitimate user has public key of another user (say Q) and is required to choose a
private key l such that (P,Q,R = lP ) is a singular session since the third party is required
to compute the shared key of this session using the public data. Hence it is necessary to
construct a condition involving the private key l so that the session (P,Q, lP ) is singular).

Consider a DH session (such as an El Gammal encryption session) in which the first
user selects a private key and communicates the public key to the second user who wishes
to encrypt a message. The second user must then have at her disposal an algebraic formula
to check if the private key selected by her makes the session weak. This is given by the
following corollary to the above theorem which describes l which make a session singular
when k is fixed.
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Corollary 2. Let Q be the public key of one of the members of a DH session and let
Q = Φ(P ) be a polynomial representation. If l is the private key of the second member
with public key R = lP and R = Ψ(P ) is a polynomial representation, then the session is
singular if any one of the following conditions hold

lQ = Φ(R)
lQ = Ψ(Q)

(11)

Proof. Clearly the shared key of the session (P,Q,R) is lQ. First relation is same as
lQ = Φ(lP ) which denotes commutation of Φ with l at P . Similarly, since the shared
key also equals kR the second relation is equivalent to kR = Ψ(kP ). Hence the session is
singular due to theorem 3.

A symmetrically analogous condition for describing k which make a session singular
when l is fixed is given by

Corollary 3. Let R be the public key of one of the members of a DH session and let
R = Ψ(P ) be a polynomial representation. If k is the private key of the second member
with public key Q = kP and Q = Φ(P ) is a polynomial representation, then the session is
singular if any one of the following conditions hold

kR = Ψ(Q)
kR = Φ(R)

(12)

The above corollaries show that given Q the set of all l which commute with the minimal
degree polynomial representation Q = Φ(P ) are singualr relative to Q. (Let this set be
denoted byW (Q)). Symmetrically, given R the set of all k which commute with the minimal
degree polynomial representation R = Ψ(Q) are singular relative to R. (Let this be denoted
by W (R)). Both of these sets are subsets of Zn and can be utilized by a user of a DH scheme
to determine whether the private key chosen by her makes the session singular. Note that
whenever the private keys are singular of conjugate class (see remark after theorem 1) one
of the relations in (11) or (12) is automatically satisfied. It is worthwhile noting this as

Corollary 4. Let R be the public key of one member with polynomial representation
R = Ψ(P ). If the private key l (R = lP ), is of conjugate class then every k satisfies
kR = Φ(R) for Q = kP and polynomial representation Q = Φ(P ) and l satisfies lQ = Φ(R).

Proof. Since l is of conjugate class there is an i such that R = σiP . Then kR = kσiP =
σikP = σiΦ(P ) = Φ(σiP ) = Φ(R) which follows due to the binomial theorem. Similarly,
lQ = k(lP ) = kσiP = σi(kP ) = σiQ = σi(Φ(P )) = Φ(σiP ) = Φ(R).

Similar result holds for k of the conjugate class. These show that the set of pairs (k, l)
in which k satisfies one of the relations (11) and l satisfies one of (12) is non empty and
contains conjugate class private keys. These relations can have more solutions than that of
the conjugate class as demonstrated by the special case of E(Fp) analyzed below. In this
special case there are no conjugates however there exist solutions to relations (11) and (12).
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4.2 Modified DH scheme

Consider now a modified form of the standard DH protocol which incorporates rejection of
singular sessions of the above type when either k belongs to W (R) or l belongs to W (Q).

Protocol 1 (Diffie Hellman protocol with rejection of singular sessions). Alice and Bob
share a key over a public channel. Assume P to be a point on E(Fqm) of order n, while the
curve is defined on Fq.

1. Alice and Bob establish priorities for choice of private keys. Let Alice has first priority.

2. Alice chooses a random k, 1 < k < (n − 1), computes and publishes the public key
Q = kP .

3. Bob chooses a random l, 1 < l < (n − 1) and computes R = lP and the polynomial
representations of minimal degree Q = Φ(P ) and R = Ψ(P ).

4. Bob computes Φ(R) and Ψ(Q) and checks whether any one of them equal lQ. If
neither of Φ(R), Ψ(Q) equal lQ, Bob publishes R as his public key of the session and
ends the protocol.

5. If the above check fails, Bob rejects l and repeats the choice of l till success in the
above step.

Above protocol depends on random selection of private keys by the second user and
then rejecting those which turn out singular relative to the public key of the first user. A
good characterization of singular sessions should lead to a one step selection.

4.3 Occurrence of singular sessions

In practice the keys shared by DH sessions are used as seeds for generation of long en-
cryption keys. A guessed shared key can be verified for its correctness if an oracle service
for answering the DDHP is available. In [9, 10] random trials of session generation and
the number of times singular sessions occur are reported for the DH scheme over finite
fields. These empirical results show that singular sessions can turn out to be significant
under certain choices of parameters. A theoretical estimate of their density in the finite
fields as well as the elliptic curve case being discussed in this paper is still an unresolved
issue which acquires significance in view of the application of the singular sessions for three
party key exchange scheme constructed in this paper. The question of existence of singular
sessions characterized by (12) and (11) is resolved by the fact that the conjugates of P in
< P > satisfy these equations. Moreover for the case of P belonging to E(Fp) we identify
conditions under which there exist singular sessions. Since in this special case the set of
conjugates is empty, existence of singular sessions establishes that there exist more singular
sessions than those in which the public data contains conjugates of P . Note however that
every point in < P > has a polynomial representation hence the shared key of a session
itself has a polynomial representation. It appears that there are no singular sessions other
than those characterized by the relations (12) and (11). It has however not been possible
to prove this result in this paper.
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Another argument can be given in support of existence of singular sessions in which the
public keys are not conjugates. For instance consider the DH scheme in which P satisfies
(8) for powers i, j, σiP = kiP and σjP = kjP . Then σiP + σjP = (ki + kj)P = kP is
an element say Q of < P > which need not be a conjugate of P . However both sessions
(P, kiP, lP ) and (P, kjP, lP ) are singular say with shared keys Si and Sj and the shared key
of the session (P, kP, lP ) = (P,Q,R) is S = Si + Sj . Now a polynomial time search on i, j
such that the equality σiP + σjP = Q is verified reveals that S = σiR + σjR. Thus the
session is singular without the private key k being singular of conjugate class.

In the elliptic curve based DH scheme, sessions with conjugate public data as well as
possibility of more general sessions becoming singular due to Frobenius expansions being
efficiently computable, do not seem to have appeared in the literature to the best of author’s
knowledge.

4.4 Condition for singular sessions in terms of pairings

It is now apparent that in the elliptic curve case we can resolve the above DDHP arising out
of computation of S in theorem 3 in certain cases where the Weil paring can be computed
on E[n] efficiently and there is available a distortion map. This is a well known way by
which a DDHP with only two parties is resolved by Weil pairing [5, 11]. Let the curve
E now be super-singular and e(., .) denote the Weil pairing on E[n]. Assume that there
is available a distortion morphism T : E[n] → E[n] at P which is an isomorphism of the
group E[n] such that P and T (P ) are independent. We further assume that T can be
evaluated on points of E[n] efficiently. Given such a distortion morphism it is well known
that ẽ(P,Q) = e(P, T (Q)) is a paring on E[n] and ẽ(P, P ) is an nth root of unity not equal
to one.

Theorem 4. Consider a DH session on a super-singular curve E with public data (P,Q,R)
on the subgroup E[n] on which there is available a distortion morphism T such that T
can be evaluated on points of E[n] in polynomial time. Let Q = Φ(P ), R = Ψ(P ) be
polynomial representations of Q,R. Then the session is singular if any one of the following
sets of conditions hold.

1. nΦ(R) = ∞, e(P,Φ(R)) = 1 and

ẽ(P,Φ(R)) = ẽ(Φ(P ), R) (13)

The point S = Φ(R) is the shared key.

2. nΨ(Q) = ∞, e(P,Ψ(Q)) = 1 and

ẽ(P,Ψ(Q)) = ẽ(Ψ(P ), Q) (14)

The point S = Ψ(Q) is the shared key.

Proof. The two conditions on Φ(R) viz nΦ(R) = ∞ and e(P,Φ(R)) = 1 imply that S =
Φ(R) is in < P > (as shown in lemma 5.1 of [11]). Now S is the shared key of the session
iff

e(P, T (S)) = ẽ(Q,R)
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due to the property of the modified pairing. This is precisely the condition (13) written in
terms of the modified pairing. The computation of S involves computation of the polyno-
mial representation Q = Φ(P ) and the evaluation Φ(R) while verification of Φ(R) as the
shared key S involves computation of the distortions T (R), T (Φ(R)), checking whether n
annihilates Φ(R) and pairings ẽ(P,Φ(R)), ẽ(Q,R) all of which can be computed in poly-
nomial time due to assumptions on T and super singular nature of E. This proves that
S = Φ(R) is the shared key and is computed from the public data in polynomial time
whenever the conditions given are satisfied. This proves the first part. The second part
can be proved on similar lines by using the symmetry property of the modified pairing ẽ(, )
when restricted to the subgroup < P >, giving ẽ(P,Q) = ẽ(Q,P ) for Q in < P >.

.
A special case of distortion maps viz the trace map is also useful in the above situation.

The trace map Tr : E(Fqm) → E(Fqm) is defined as

Tr(P ) =
(m−1)∑

i=0

σi(P )

where the sum on the right hand side in taken in the group E. It is well known that Tr(P )
belongs to E(Fq) and is an endomorphism of E(Fqm). Further when n is prime and P is
not in E(Fq), e(P,Tr(P )) 6= 1. Thus Tr is a distortion morphism of E.

Corollary 5. Consider a DH session on E with public data (P,Q,R) and let Q = Φ(P ),
R = Ψ(P ) be polynomial representations over Fq. Then the session is singular if any one
of the following conditions hold.

1. nΦ(R) = ∞, e(P,Φ(R)) = 1 and

(m−1)∏
i=0

e(P,Φ(σiR)) =
(m−1)∏

i=0

e(Φ(P ), σiR) (15)

2. nΨ(Q) = ∞, e(P,Ψ(Q)) = 1 and

(m−1)∏
i=0

e(P,Ψ(σiQ)) =
(m−1)∏

i=0

e(Ψ(P ), σiQ) (16)

Proof. Proof follows immediately from theorem 4 on using the fact that the modified pair-
ings are symmetric in the sense that ẽ(R,Q) = ẽ(Q,R) when restricted to elements R,Q in
< P > and noting that the distortion map is defined by the trace homomorphism. Hence

ẽ(P,Φ(R)) = e(P,
∑m−1

i=0 σiΦ(R)
= e(P,

∑m−1
i=0 Φ(σiR))

=
∏m−1

i=0 e(P,Φ(σiR))

which gives the left hand side of (15). Next

ẽ(Φ(P ), R) = e(Φ(P ),
∑m−1

i=0 σiR)
=

∏m−1
i=0 e(Φ(P ), σiR)
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which gives the right hand side of (15). The equation (16) can be similarly established after
using symmetry of the pairing.

4.5 A tri-party key exchange based on singular sessions

We now describe an application of the singular sessions described above for a single round
tri-party key exchange protocol. In this case there are three members A, B, C who wish to
share a common key. The members first agree on an elliptic curve E(Fq) and a point P in
E(Fqm) of order n. Then they execute the following protocol.

Protocol 2 (Three party single round key exchange protocol). Three users A, B, C ex-
change a common key.

1. A chooses a private key a randomly in Zn, computes and publishes the public key
U = aP along with the polynomial representation U = Φa(P ) of minimal degree.

2. B chooses the private key b in Zn randomly and computes V = bP along with the
polynomial representation V = Φb(P ) of minimal degree.

3. B checks whether one of the relations bU = Φa(V ) or bU = Φb(U) holds. If none of
these relations are satisfied B rejects b and repeats the choice of b until one of these
relations hold. Once one of these relations are satisfied B publishes Uab = bU , V and
the polynomial representation of minimal degree, V = Φb(P ).

4. C chooses private key c in Zn randomly and computes W = cP along with the
polynomial representation W = Φc(P ) of minimal degree.

5. C verifies whether at least one of the relations among cU = Φa(W ), cU = Φc(U) as
well as at least one among cV = Φb(W ), cV = Φc(V ) holds. If none of these relations
are satisfied, C rejects c and repeats the choice of c until success. Once one of these
relations are satisfied, C publishes only Uac = cU and Ubc = cV .

6. A computes Sa = aUbc, B computes Sb = bUac and C computes Sc = cUab. By design
of b, c it follows that Sa = Sb = Sc = abcP .

The above protocol achieves a three party key exchange based on the special cases of two
party DH sessions in which the DHP can be efficiently solved but does not utilize pairings
or need the curve to be super singular. Note that P need not be agreed as a parameter but
need only be published as a public key by A if such a choice is acceptable to other users.
Security of the above protocol relies on the same fact that the private keys can be computed
from the public keys by solution of the DL over the elliptic curve. However the public data
(Uab, Ubc, Uac) poses a new three party DHP similar to the bilinear DH problem. Note that
in the above protocol, the public data consists of points on E, as well as constraints on
public keys arising from the polynomial representations.

Problem 1 (Three party DHP). Given the points (U, V, Uab, Ubc, Uca), the constraints 1)
Uab = Φa(V ) or Uab = Φb(U), 2) Uab = bU = aV , Ubc = cV , Uac = cU compute abcP =
cUab = aUbc = bUca.
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Similarly a decisional version of the above problem can be posed as follows.

Problem 2 (Three party DDHP). Given points (U, V, Uab, Ubc, Uca) satisfying the con-
straints as in the above problem and a point S, determine whether S = abcP .

Analysis of these problem as well as cryptanalysis of the protocol shall be carried out
in greater detail in a future article. Clearly, the analysis of the above three party exchange
scheme is not complete unless singular sessions of the three party case can be determined
analogous to the two party scheme above and the above protocol is augmented by rejection
of singular sessions. This aspect shall be explored elsewhere.

4.6 The case E(Fp)

We now take a look at the case m = 1 for completeness. In this case the Frobenius map
is not available as above. However the singular DH sessions can still be defined using
the relations (11) defining the set W (Q) and (12) defining the set W (R). Consider the
DH session over E(Fp) with P also over Fp and the public data (P,Q = kP,R = lP ). An
obvious polynomial representation for such a data is to choose Φ as the constant polynomial
Q and Ψ as the constant polynomial R. Hence singular sessions arise for these polynomial
maps when (12) or (11) are satisfied.

Consider the case when Q is specified. The set of all l for which the session is singular
is then given by the constraints lQ = Q or lQ = R. These equations are respectively
klP − kP = ∞ or klP − lP = ∞. Hence for each k in Zn the set of l which can make the
session singular (i.e. the set W (Q)) is given by

W (Q) = {l ∈ Zn|k(l − 1) mod n = 0 or l(k − 1) mod n = 0}

If n is prime the only nonzero solutions of l in W (Q) are l = 1. It is apparent that the size
of W (Q) increases with the number of prime divisors of n and their powers. For instance if
n = p′q′ with p′, q′ prime, we have the following relations arising from the Chinese reminder
theorem, that l is in W (Q) iff one of p′|k, q′|k hold or one of p′|(l − 1), q′|(l − 1) hold.

This shows that the singular sessions of more general class than the conjugate class
exist since solutions to k, l can exist for above equations which arise in this special case
E(Fp) where there are no conjugates of P other than −P . It would thus be fruitful to build
the multi-party schemes with large prime p and the point order n having several prime
factors. However the DL problem is easier when the prime factors of n are small after
MOV reduction. Hence a choice of P shall be governed by these considerations. Moreover
these special sessions above are defined by the minimal degree polynomial representation.
Singular sessions generated using higher degree polynomial representations should provide
a larger class of singular sessions and should be useful sessions for the multi-party key
exchange. These aspects shall be explored elsewhere.

Appendix

Frobenius expansions defined by endomorphisms

For completeness of discussion consider another analogue of the Frobenius expansion and
a subsequent expression of the shared key of a DH session. This expansion can be said to
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generalize the p-adic expansions well known in finite fields. Let h : E(Fqm) → E(Fqm) be an
endomorphism of the elliptic curve. Then we call an expansion of an element Q in < P >
of the form

Q =
N∑

i=0

aih
i(P )

where a range for constants ai and the largest summation index N are specified, as an
h-adic expansion of Q. For instance let q = pm, E is defined over Fp and P belongs to
E(Fq). Also assume that p does not divide the order n of P . If Q = kP and let

k =
N∑

i=0

aip
i

be the p-adic expansion of k, where ai belong to Fp and N = dlogp ke. Then a p-adic
expansion of Q in terms of the multiplication endomorphism by p is given by

Q =
N∑

i=0

aip
iP

As a special case consider the case of binary expansion. Let k = β0 + β12 + . . . + βt2t be
the binary expansion of k. Then Q = kP has the expansion

Q =
t∑

i=0

βi2iP

which can be called as binary expansion of Q in terms of P . It follows due to the fact that
h is an endomorphism that an analogous expansion formula can be given for the shared key
of a DH session.

Proposition 7. Let (P,Q,R) be the public data of a DH session over E(Fpm). If Q, R are
expressed in terms of the p-adic Frobenius expansions

Q =
∑

aip
iP (17)

R =
∑

bip
iP (18)

where ai, bi belong to Fp, then the shared key has the expansions

S =
∑

aip
iR (19)

S =
∑

bip
iQ (20)

The proof is quite straightforward and only depends on commutativity of multiplication
by p with other multipliers. Note however that computation of the co-efficients ai, bi is
tantamount to computation of the DLs of Q, R. A similar set of formulas can be written
for the binary Frobenius expansion.
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5 Concluding remarks

This paper builds on the fact that having a Frobenius expansion of public keys in < P >
of any DH session in terms of a sum of conjugates of P leads to an expression of the shared
key of the session in terms of the co-efficients of this expansion. Following these expansions
singular DH sessions are defined for which the computation of the shared key can be carried
out in polynomial time. This computation moreover does not yield the discrete logarithms
in the elliptic curve group. A more general polynomial representation of public keys is also
shown to exist which is used to generalize the Frobenius expansion and analogous definition
of singular sessions. On ellliptic curves over which the Weil pairing can be computed
efficiently a sufficient condition for sessions to be singular is determined. This condition
allows determination of singular nature of sessions in polynomial time. Efficient solution
of the DHP is a necessary requirement in multi-party key exchange problems. Hence the
singular sessions of the two party DH session can be put to positive use in such schemes.
A scheme for three party key exchange based on the singular sessions is constructed in this
paper as a first step along this goal. In the use of the DH scheme for two party key exchange,
the parameters of the scheme must be selected to cause negligible singular sessions. On the
other hand choosing these parameters to cause a large number of singular sessions may be
in the interest of a multi party key exchange.
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