
Counting points on elliptic curves
in medium characteristic

Antoine Joux1,3 and Reynald Lercier1,2

1 DGA
2 CELAR

Route de Laill
35170 Bruz, France

Reynald.Lercier@m4x.org
3 Universit de Versailles St-Quentin-en-Yvelines

PRISM
45, avenue des Etats-Unis

78035 Versailles Cedex, France
Antoine.Joux@m4x.org

Abstract. In this paper, we revisit the problem of computing the kernel
of a separable isogeny of degree ` between two elliptic curves defined
over a finite field Fq of characteristic p. We describe an algorithm the
asymptotic time complexity of which is equal to eO(`2(1 + `/p) log q) bit
operations. This algorithm is particularly useful when ` > p and as a
consequence, we obtain an improvement of the complexity of the SEA
point counting algorithm for small values of p. More precisely, we obtain
a heuristic time complexity eO(log4 q) and a space complexity O(log2 q),
in the previously unfavorable case where p ' log q. Compared to the best
previous algorithms, the memory requirements of our SEA variation are
smaller by a log2 q factor.
Keywords: finite fields, elliptic curves, separable isogenies, point count-
ing.

1 Introduction

Counting points on an elliptic curve over a finite field Fq, q = pn is a
fascinating problem, which has attracted considerable interest in the re-
cent years. In 1997, Elkies already mentioned this keen interest at the
beginning of [Elk98]. The whole story started in 1985, with the publica-
tion by Schoof [Sch85] of a deterministic polynomial time algorithm to
compute the number of points of an elliptic curve with polynomial time
complexity. This offered a strong alternative to the exponential methods.
Later on, the algorithm was improved by Atkin [Atk88,Atk92] and by
Elkies [Elk91,Elk98]. More recently, a new family of algorithms, extremely
efficient in small characteristic, appeared with the work of Satoh [Sat00]
and Mestre [Mes01].



The main idea of the algorithm given in [Sch85] is to consider the
characteristic equation φ2 − [c] ◦ φ + [q] = 0 of the Frobenius φ while
viewing φ as a linear action on the F`-vector space E[`] of `-torsion points
(for prime integers `). This allows to determine the trace c of φ modulo
`. When sufficiently many c mod ` are known, it remains to apply the
Chinese Remainder Theorem to compute c and find the cardinality of the
curve. The complexity of the algorithm essentially depends on the degree
of the extension field that one must uses to handle the `-torsion. Since
the algorithm of Schoof uses the polynomials of `-th division f`(X), this
degree is around `2/2. Using asymptotically fast arithmetic, one finds a
time complexity Õ(log5 q) and a space complexity O(log3 q).

The improvements by Atkin and Elkies stem from the following fact:
for odd primes ` different from the characteristic p such that the prin-
cipal ideal (`) splits in the imaginary quadratic field Q(

√
c2 − 4q), there

exists two degree ` separable isogenies associated with two factors h`(X)
of degree (`− 1)/2 of f`(X). Such an integer ` is called an Elkies prime.
Computing these isogenies from the polynomials h`(X) is feasible by for-
mulas due to Vélu [Vél71] but that necessitates the factorization of f`(X).
Atkin and Elkies showed that one can go in the other direction and find
the rational isogenies of degree ` defined from E in order to deduce, with-
out factorization, the polynomial h`(X). In fields of large characteristic,
the time and space complexity respectively decrease then to Õ(log4 q) and
O(log2 q).

In this paper, we focus on the medium case, where more precisely,
p ' log q and n ' log q/ log log q, when log q tends to infinity. This choice
is right on the boundary where obstructions prevent the Atkin-Elkies’
method from working. The classical workaround would be to consider the
algorithm of Couveignes [Cou00] which, for fixed p, yields the same SEA
complexity as in the large prime case. Unfortunately, this algorithm also
behaves badly in the medium case. Instead, we propose here a new isogeny
finding algorithm which yields a SEA algorithm which still heuristically
runs in Õ(log4 q) bit operations and O(log2 q) memory.

At the present time, four families of algorithms are known to explicitly
calculate kernels of separable isogenies of degree ` on elliptic curves.

Charlap-Coley-Robbins [Mor95] or Atkin-Elkies [Atk92]: they are valid
for p � `, they require Õ(`2 log q) bit operations and O(` log q) mem-
ory.
First Couveignes’ algorithm [Cou94]: it is the first efficient algorithm
known for small characteristic p, it consists in calculations in the



formal groups defined by the elliptic curves. It requires, for fixed p,
Õ(`3 log q) bit operations and O(`2 log q) memory.
Lercier [Ler96]: it is specific to the p = 2 case, one gets rid of for-
mal groups and obtains an algorithm with heuristic time complexity
Õ(`3 log q) and O(`2 log q) bit operations.
Second Couveignes’ algorithm [Cou96]: it consists of the interpolation
of the isogeny on the pk-torsion points. In conjunction with other
ideas of Couveignes [Cou00], the asymptotic time complexity of this
algorithm is for fixed p equal to Õ(` log2 q) bit operations.

In our novel approach, we explain how to apply to finite fields of any
characteristic an algorithm due to Charlap, Coley and Robbins, well un-
derstood over the complex field (cf. section 2) and successfully used, until
now, in finite fields of large characteristic. The main ingredient is to lift
the involved elliptic curves to the p-adic field, so that the inversions by p
which occurs in the algorithm are no longer a problem (cf. section 3). This
algorithm needs Õ((1+`/p)`2 log q) bit operations and a O((1+`/p)` log q)
memory. As a result, we get an easy to implement variation of the SEA
algorithm with time heuristic complexity equal to Õ(log4 q) and space
complexity equal to O(log2 q) for the forementioned case p ' log q (cf.
section 4).

Notations. We denote Õ(N) complexities of the type O(N(log N)k

(log log N)k′ . . .) for integers k, k′, . . . .

2 Complex field viewpoint

We recall here some well known results that can be found, for instance,
in [Sil86].

Complex tori and doubly periodic functions. Let Λ be a lattice
of C, that is a non null discrete subgroup of C which is non-isomorphic
to Z. It can be defined by Zω1 + Zω2 with ω1, ω2 ∈ C. A fundamental
parallelogram for Λ is a set of the form D = {a+t1ω1+t2ω2, 0 6 t1, t2 < 1}
where a ∈ C. There exists a bijective map between D and the quotient of
(C,+) by Λ.

A meromorphic function f on C is an elliptic function of period Λ if for
all ω ∈ Λ, f(z +ω) = f(z). In particular, an elliptic function may be seen
as a meromorphic function of the torus and the set of these functions
forms clearly a field. Let us observe that an elliptic function without



poles or without zeroes is constant (Liouville’s theorem). Also, the sum
of the residues of an elliptic function on a fundamental parallelogram (not
meeting its poles) is null (residues theorem).

It is natural to introduce the function
∑

ω∈Λ 1/(z − ω)3 because this
series converges uniformly in every compact subset of C \ Λ. It defines
an odd elliptic function with a pole of order three at each point of Λ. Its
integration, with a corrective term that guarantees uniform convergence
in every compact subset of C \Λ, yields an elliptic function with poles of
order two at each point of Λ called the function ℘ of Weierstraß,

℘(z) =
1
z2

+
∑

ω∈Λ−{0}

1
(z − ω)2

− 1
ω2

.

Focusing on the zeroes and the poles zi of an even elliptic function f(z),
it is always possible to exhibit a product of functions ℘(z) − ℘(zi) the
quotient with f of which is elliptic and without pole, therefore constant.
The field of even elliptic functions is just C(℘) and, more widely, one can
show that the elliptic functions field is C(℘, ℘′).

As ℘′2(z) is an even function, it is therefore natural to write it accord-
ing to ℘(z). One finds thus, once denoted Gk =

∑
ω∈Λ−{0} ω−2k, that

℘′2 = 4℘3 − 60G2℘− 140G3.

The map ϕ : z → (℘(z), ℘′(z)) is therefore a bijective map between the
torus C/Λ and the set of the points of the plane projective curve with
equation Y 2Z = 4X3−60G2XZ2−140G3Z

3 whose associated affine curve
E is y2 = 4x3 − 60G2x − 140G3. These curves are called elliptic curves
and the existence of ϕ (Riemann surfaces isomorphisms) shows that they
are non singular. The field C(℘, ℘′) is therefore isomorphic to the fraction
field of the ring C[x, y]/(y2 − 4x3 + 60G2x + 140G3) which contains the
regular functions of E.

Addition law. At this stage, one can express the addition law on the
torus C/Λ in geometric terms on the curve E. For that, let us quickly
define a divisor D of C/Λ as a finite formal combination of points of
C/Λ with coefficients in Z. It is denoted

∑
P∈C/Λ eP [P ]. The degree of

a divisor D is the sum of its coefficients. The set of degree 0 divisors,
denoted Div0(C/Λ), is a subgroup of the set of divisors Div(C/Λ). To
each meromorphic function f of C/Λ, one associates the divisor Div f of
which the points are the zeroes and the poles of f and the coefficients,



the corresponding valuations. Such a divisor is called a principal divisor.
One can then write the following exact sequence:

1 −→ C∗ −→ C(℘, ℘′)∗ −→ Div0(C/Λ) −→ C/Λ −→ 0.

The exactness at C(℘, ℘′) results from Liouville’s theorem. The exactness
in Div0(C/Λ) comes back to to say that degree 0 divisors of sum 0 are
divisors of elliptic functions. It follows that the Picard group Pic0(C/Λ) of
C/Λ, defined as the quotient of Div0(C/Λ) by the group of principal divi-
sors, is isomorphic to C/Λ. With O, the point at infinity of the projective
curve, the associated isomorphism is simply P −→ [P ]− [O]. Explaining
from this isomorphism the addition on the torus yields the well known
so-called “chord and tangent” method.

Morphisms between complex tori. Let E1 and E2 be two projective
elliptic curves associated with two tori C/Λ1 and C/Λ2. A holomorphic
map of C/Λ1 towards C/Λ2 that sends O towards O is a group morphism
which, when non constant, is subjective and called an isogeny. One can
then show that the set of the isogenies of E1 towards E2 is a commutative
group isomorphic to the subset of the complex values α such that αΛ1 ⊂
Λ2. For the direct direction, it is not difficult to see that when α verifies
this last condition, the application [α] : z −→ αz is an isogeny. On the
other hand, it is necessary to lift on C the considered isogeny to see that
its derivative is holomorphic and elliptic, therefore constant.

Thus, the kernel of a non-null isogeny Φ is the finite subgroup α−1Λ2/Λ1.
The degree of Φ denoted deg Φ is the number of elements in the kernel of
Φ. We have deg(Φ) = [Λ2 : αΛ1] = [α−1Λ2 : Λ1].

This yields an injective map of the function field C(Λ2) in C(Λ1),

Φ∗ : C(Λ2) −→ C(Λ1),
f −→ f ◦ Φ .

This injective map defines a Galois extension of degree deg Φ. On the
other hand, any injective map of C(Λ2) in C(Λ1) defines an holomorphic
morphism of C/Λ1 in C/Λ2. Besides, Φ induces a morphism of Div E1 in
Div E2 that preserves the degree,

∑
P∈C/Λ eP [P ] −→

∑
P∈C/Λ eP [Φ(P )].

Using the norm of the extension C(E1)/C(E2), we see that the image of
a principal divisor is a principal divisor. Thus, the isogeny Φ induces a
morphism of Pic0(E1) in Pic0(E2), or equivalently a morphism of E1 in
E2.



Let d be the degree of Φ, then Λ1 ⊂ α−1Λ2 ⊂ d−1Λ1 and therefore
Λ2 ⊂ d−1αΛ1. Therefore, there exists an isogeny:

Φ̂ : C/Λ2 −→ C/Λ1,
z −→ dα−1z .

Then, Φ̂ ◦ Φ is equal to the multiplication by d on C/Λ1, denoted [d]1.
Similarly Φ ◦ Φ̂ = [d]2.

Algorithmic viewpoint. In the SEA point counting algorithm, we need,
given two isogeneous curves of degree `, to compute the kernel C` of the
corresponding isogeny. More precisely, let E be defined by the Weierstraß
equation y2 = x3 + a4x + a6 and the isogeneous elliptic curve of degree `,
Ẽ = E/C` defined by y2 = x3 + ã4x + ã6, we would like to compute the
polynomial

h`(X) =
∏

+−P∈C`\{O}

(X − x(P )).

Over C, we can associate to E the reduced Weierstraß ℘-function
given by

℘(z) =
1
z2

+
∞∑

k=1

ckz
2k

where the coefficients are

c1 = −a4

5
, c2 = −a6

7
, ck =

3
(k − 2)(2k + 3)

k−2∑
j=1

cjck−1−j , for k ≥ 3.

The function ℘̃ for Ẽ is defined similarly using the coefficients ã4 and
ã6. Seen in terms of lattices, the isogeny is quite simple,

C/(ω1Z + ω2Z) → C/(ω1
` Z + ω2Z),

z 7→ z.

The following observation gives a first relation between ℘(z) and ℘̃(z).

Lemma 1. Let ℘(z) and ℘̃(z) be two Weierstraß functions respectively
defined over the lattices ω1Z + ω2Z et ω1

` Z + ω2Z. Then

∀z ∈ C, ℘̃(z) =
l−1∑
i=0

℘(z + i
ω1

`
)−

l−1∑
i=0

℘(i
ω1

`
).



We are now ready to give a short summary of the method of Charlap,
Coley and Robbins. For more details, the reader can refer to the presen-
tation given by Morain in [Mor95]. We proceed in two steps. First, we
calculate the sums

pk =
(`−1)/2∑

i=1

℘k
(
i
ω1

`

)
, k ∈ N,

and in a second step obtain h`(X) using Newton’s formulas [Coh93, p.
161]. To this effect, we compute the derivative of the differential equation

satisfied by ℘,
(

d℘
dz

)2
= 4℘3 + 4a4℘ + 4a6, and obtain d2℘

dz2 = 6℘2 + 2a4.

Computing the second derivative yields d4℘
dz4 = 120℘3 + 72a4℘ + 48a6.

Similarly, further derivatives yield equations

∀k ∈ N∗,∀z ∈ C,
d2k℘

dz2k
(z) = (2k + 2)!℘k+1(z) + · · ·

Evaluating these derivates at ω1
` , . . . , (`−1)ω1

` and summing up, we find

∀k ∈ N∗,

l−1∑
i=1

d2k℘

dz2k

(
i
ω1

`

)
= 2 ((2k + 2)!pk+1 + · · ·) .

Using Lemma 1, we get

l−1∑
i=1

d2k℘

dz2k

(
i
ω1

`

)
= (2k)!(b̃k − ck)

and therefore

(2k)!(c̃k − ck) = 2(2k + 2)!℘k+1(z) + · · ·

In particular,

a4 − ã4 = 5(6p2 + 2a4p0),
a6 − b̃6 = 7(10p3 + 6a4p1 + 4a6p0).

As a consequence, the computation of the pk becomes a simple inversion
of a triangular linear system of equations.



3 Back to finite fields

For elliptic curves defined over finite fields, the situation is slightly more
difficult. In order to compute h`(X), we first need a model for the isoge-
neous curve of degree `. This was solved by Elkies with the help of the
`-th modular polynomials. In the same manner, Elkies describes how we
can obtain the sum p1 of the x-coordinates of the nonzero points in E[`].
We refer to [Elk91,Sch95] for details. The remaining of the computation
is then a direct application of the formulas given above.

Let us note that these algebraic relations are reductions of relations
over C; for these relations to hold over a finite field, the characteristic p
must be large enough since the coefficients ck and c̃k need inversions of
integers of the form (k− 2)(2k +3), which can be equal to zero modulo p
when ` ≥ (p−3)/2. When p is large enough, everything proceeds correctly
and it is not difficult to see that the time complexity is equal to Õ(`2 log q).

A p-adic version. In the same spirit as the results published in the last
few years for counting points on algebraic curves of small genus, we make
the previous algorithm work in finite finite fields of small characteristic by
lifting the isogeneous elliptic curves in an unramified extension denoted
Qq of the p-adic, corresponding to the extension Fq of Fp. This yields
algorithm 3.1.

Algorithm 3.1 CCRLifted

Algorithm to compute separable kernels of isogenies of degree `
Input: An non-supersingular elliptic curve given over Fq by E : y2+a1xy+a3y =
x3 + a2x

2 + ax + a6 and an Elkies prime `.
Output: Two polynomials in Fq[X] of degree b`/2c the roots of which are
x-coordinates of points of E[`].

Step 1. Let w be a p-adic precision given by

8<:
b15 + 3`/2c if p = 2,
5 + ` if p = 3,
b1 + 2`/pc otherwise.

Step 2. Lift E in Qq in a arbitrary way.

Step 3. Compute an isomorphic Weierstraß model E : y2 = x3 + A4x + A6

isomorphic by λ to E/Qq.

Step 4. Use Atkin-Elkies’ algorithm to get at precision w in Qq

two isogeneous curves Ẽ and Ẽ ′.
Step 5. Use Atkin-Elkies’ algorithm to get at precision w in Qq

the sums p1 and p′1.

Step 6. Use Charlap-Coley-Robbins algorithm to get from (Ẽ , p1) and (Ẽ ′, p′1)
two polynomials H`(X) and H′

`(X).

Step 7. return {λ−1(H`(X)) mod p, λ−1(H′
`(X)) mod p}.



Some comments on this algorithm follow.

It may happen that Atkin-Elkies’ algorithms fail with inputs super-
singular curves or ` = p (cf. [Sch95]). We thus do not authorize such
inputs in this algorithm. But Charlap-Coley-Robbins’ method, at the
opposite of Couveignes’ algorithms, do not need any non-trivial p-
torsion point.
When the characteristic p of the field is greater than 2`, algorithm 3.1
is the same algorithm as the classical Charlap-Coley-Robbins algo-
rithm since working with precision one in Qq is obviously the same
things as working in Fq.
The precision needed depends on the number of non invertible ele-
ments that the algorithm will encounter in the Charlap-Coley-Robbins
computations, mainly in the ck’s computations, and it is not hard to
see that this precision must be mainly proportional to 2`/p in general,
to ` in fields of characteristic 3 and to 3`/2 in fields of characteristic 2.
The additional terms of 15 in characteristic 2 and 5 in characteristic
3 was determined experimentally. It mostly comes from the change of
variable needed to get an isomorphic Weierstraß model of the form
E : y2 = x3 + A4x + A6 and from the few inversions by two or three
needed in Atkin-Elkies formulas.
The complexity in time of the algorithm is still Õ(`2) multiplications.
When p is large these are multiplications in Fq, otherwise, these are
multiplications in Qq at precision Õ(`/p). We therefore have a total
complexity in time equal to Õ((1 + `/p)`2 log q). The complexity in
space is O((1 + `/p)` log q).

We have implemented this algorithm using the Magma computer al-
gebra system, version 2.12 [BCP97]. We give below examples in charac-
teristics 23 and 2.

A characteristic 23 example. Let E/F23 be the elliptic curve y2 =
x3 + 6x + 17. We are looking for isogenies of degree 13. We simply take
as Weierstraß model isomorphic to E in Q23 at precision 2 the curve
E : y2 = x3 + (6 + O(232))x + (17 + O(232)). Atkin-Elkies’ algorithms
then enable us to find that E is 13-isogeneous to a curve approximated by
Ẽ : y2 = x3 + (99 + O(232))x. Similarly, we find that p1 = −19 + O(232).
Charlap-Coley-Robbins algorithm applied to these inputs yields

H23(X) = X6 + (19 + O(232)) X5 − (50 + O(232)) X4 + (208 + O(232)) X3

− (119 + O(232)) X2 − (252 + O(232)) X − 231 + O(232).



Reducing the result modulo 23, we finally find that

h23(X) = X6 + 19 X5 + 19 X4 + X3 + 19 X2 + X + 22.

A characteristic 2 example. Let F210 ' F2[t]/(t10+t6+t5+t3+t2+t+1)
and E be the elliptic curve y2+xy = x3+t457. We are looking for isogenies
of degree 7.

A Weierstraß model isomorphic to E in Q210 is given at precision 25
by

E : y2 = x3 − (27 + O(225))x + (2 (23328 t9 + 23328 t5 + 23328 t2 + 23355) + O(226))

with λ : (x, y) 7→ ((9.22 + O(227))x + (3 + O(225)), (27.23 + O(228))y +
(27.22 + O(227))x + O(227)). Atkin-Elkies’ algorithms then enable us to
find that E is 7-isogeneous to a curve approximated by

Ẽ : y2 = x3 + (48432 t9 + 3072 t8 − 56864 t7 + 38944 t6 + 108896 t5 − 93264 t4

+ 9264 t3 − 38080 t2 + 608 t− 114731 + O(218)) x + ((27064 t9 − 5248 t8 − 18512 t7

− 25712 t6 + 13520 t5 − 7016 t4 + 2328 t3 − 13056 t2 − 12816 t− 8461) 2 + O(217)).

Similarly, we find that p1 = −8660 t9 + 9992 t8 + 9528 t7 − 31720 t6 +
14456 t5 + 20204 t4 − 21212 t3 + 26264 t2 − 3472 t + 29477 + O(216).

Charlap-Coley-Robbins algorithm applied to these inputs yields

H7(X) = X3 + (8660 t9 − 9992 t8 − 9528 t7 + 31720 t6 − 14456 t5 − 20204 t4

+ 21212 t3 − 26264 t2 + 3472 t− 29477 + O(216)) X2 + (−10232 t9 − 3440 t8

+ 9936 t7 + 576 t6 + 6896 t5 + 2216 t4 − 4456 t3 + 7360 t2 + 15872 t

+ 11907 + O(215)) X + 6324 t9 + 11608 t8 + 200 t7 − 15592 t6

+ 4840 t5 + 4692 t4 + 15292 t3 − 104 t2 − 13584 t + 6121 + O(215).

Applying then λ−1 and reducing the result modulo two, we finally find

h7(X) = X3 + t889X2 + t256X + t591.

4 Point counting on elliptic curves

Plugging CCRLifted in SEA yields an algorithm of asymptotic time com-
plexity Õ((1+log q/p) log4 q) and space complexity O((1+log q/p) log2 q).
It is especially interesting when p ' log q because in this case we have an
algorithm of time complexity Õ(log4 q) and space complexity O(log2 q),
which compares well with classical SEA complexities analysis (where ei-
ther p or n is fixed).

We further compare this SEA algorithm to other efficient point count-
ing algorithms which work for smaller p, that is SEA with second Cou-
veignes finding isogeny algorithm, Satoh-Mestre and Kedlaya’s approaches.



Couveignes’ approach. The heart of second Couveignes’ algorithm
consists in computing an isomorphism between two towers of Artin-Schreier
extensions. The complexity of this algorithm, for varying p, is at least the
cost of computing an isomorphism between two Artin-Schreier extensions
defined over Fq. The classical way to solve this problem is to factor in one
extension the defining polynomial of the other one, that is a polynomial
of the form Xp−X = γ with γ ∈ Fq. Since Xp−X is Fp-linear, this may
be done by precomputing the inverse of a pn × pn matrix defined over
Fp (this already yields a Õ((pn)ω) time complexity with the Winograd
constant ω greater than 2.3). Then, each isogeny kernel computation in-
volves a matrix-vector multiplication by such a matrix, that is Õ((pn)2)
bit operations.

In the case p ' log q, the corresponding SEA algorithm runs thus
in Õ(log5 q) bit operations, which is larger than the complexity of our
variation.

Satoh’s and Mestre’s approaches. Satoh [Sat00] noticed first that
the results of Lubin, Serre and Tate [LST64] lead to an algorithm which
efficiently calculate the canonical lift of an elliptic curve defined in a finite
field of small characteristic. It obtains an algorithm with time complexity
Õ(p2n3) and space complexity O(p2n2 log q). One year later, Vercauteren,
Preneel and Vandewalle [VPV01] reduce in the general case the space
complexity down to O(p2n log q).

During the same period, Mestre proposed an algorithm of an aston-
ishing simplicity and nevertheless with the same complexity to calculate
the cardinality of an elliptic curve in finite fields of characteristic two, the
so-called AGM method [Mes01]. A generalization have been performed by
Carls [Car04] (another attempt is explored in [Koh03]). This also yields
algorithms of time complexity Õ(p2n3) and space complexity O(p2n log q).

Further algorithmic improvements are due to Satoh-Skjernaa-Taguchi
[SST03,Sat02], Lercier-Lubicz [LL03] and Harley [Har02]. As described
in the most complete text on the subject [Ver03, Chapter 3], the best
algorithms among those run in Õ(p2n2) bit operations and requires a
O(p2n2) memory (one bottleneck is that we can not avoid the calculation
of the p-torsion part of the curve and this involves the computation in
the p-adics of the p-th division polynomial).

Thus, all algorithms in this family have the same time complexity and
larger memory complexity than our SEA variation, in the case p ' log q.



Kedlaya’s approach. Kedlaya’s algorithm [Ked01] to count points on
hyperelliptic curve as a function of both p and n has been studied in [GG03].
For elliptic curves, the complexity, both in time and space, is reported to
be Õ(pn3).

When p ' log q, time complexity is the same as in our case but, again,
space complexity is much larger.

Comparison summary. As a conclusion, all these algorithms have
got at best the same time complexity as our SEA variation in the case
p ' log q that we are considering. However, their memory requirements
are much larger. Moreover, when time and memory requirements are com-
parable, as is the case here, memory is the bottleneck and the practical
impact of our improvement is noteworthy.

5 Other applications

Besides point counting, some applications may take advantage of an “easy
to implement” algorithm for isogeny computation. We give two examples
below.

Improvements to the Weil descent. The Weil descent is a method
that allows bringing back the discrete logarithm on elliptic curves defined
over an extension Fpn of a small finite field Fpm to the discrete logarithm
on a curve of larger genus defined over Fpm . It was initially proposed
by Frey [Fre98], deepened by Galbraith and Smart [GS99], then made
effective by Gaudry, Hess and Smart [GHS02b].

Now, the hardness of performing the Weil descent varies between iso-
geneous curves. To improve the attack, being given a curve E, one may
try to transport the discrete logarithm defined by E to an easier one on
an isogeneous curve. This strategy was studied by Galbraith, Hess and
Smart in [GHS02a].

Cryptographic protections against side-channel attacks. Side-
channel attacks are a recent development of cryptanalysis, where one
studies the precise physical behavior of cryptographic protocols and al-
gorithms (execution times, electric consumption, . . . ) to recover keys or
other secrets. Since their discovery in the 90’s, they are considered as a
serious threat.

Of course, the elliptic curve based cryptography, especially its point by
scalar multiplication, does not escape these attacks. Some of very popular



countermeasures were proposed by Coron [Cor99]. Unfortunately, some of
them were defeated by Goubin [Gou03] that using the specific represen-
tation of some points on the considered curve, typically the points with
zero x-coordinates. Nevertheless, it is possible to counter the correspond-
ing attacks, as proposed by Smart [Sma03], by replacing the known curve
by an isogeneous random curve.

6 Conclusion

Lifting elliptic curves in the p-adics, we give a generalization of the easy to
implement algorithm of Charlap, Coley and Robbins for finding isogenies.
Our approach, can also be successfully applied to similar algorithms, for
instance the isogeny finding algorithm given in [Sch95] or more recently
in [BMSS06]. An important consequence of these isogeny finding algo-
rithms is to extend the scope of the SEA algorithm toward fields of smaller
characteristic. In particular, in medium characteristic, this SEA variation
turns out to be the most efficient point counting algorithm available at
the present time.
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