
A New Cryptosystem Based On Hidden Order Groups

Amitabh Saxena and Ben Soh
Email: {asaxena, ben}@cs.latrobe.edu.au

Department of Computer Science and Computer Engineering
La Trobe University
VIC, Australia 3086

June 6, 2006

Abstract

Let G1 be a cyclic multiplicative group of order n. It is known that the Diffie-Hellman problem is random
self-reducible in G1 with respect to a fixed generator g if φ(n) is known. That is, given g, gx ∈ G1 and having
oracle access to a “Diffie-Hellman Problem solver” with fixed generator g, it is possible to compute g1/x ∈ G1

in polynomial time (see theorem 3.2). On the other hand, it is not known if such a reduction exists when
φ(n) is unknown (see conjuncture 3.1). We exploit this “gap” to construct a cryptosystem based on hidden
order groups and present a practical implementation of a novel cryptographic primitive called an Oracle
Strong Associative One-Way Function (O-SAOWF). O-SAOWFs have applications in multiparty protocols.
We demonstrate this by presenting a key agreement protocol for dynamic ad-hoc groups.

1 Introduction

The problem of efficient key agreement in ad-hoc groups is a challenging problem, primarily because membership
in such groups does not follow any specified pattern. We envisage an ad-hoc group as a broadcast group where
members do not have one-to-one channels; rather they share the communication medium such that everyone
within range is able to receive any broadcast message. An efficient group key agreement protocol in this scenario
should satisfy the property that the shared group key is computable without interaction with the other members.
Such protocols are often called one-round key agreement protocols where the only round consists of the initial
key distribution phase. Two notable examples of one-round key agreement protocols are the classic two-party
Diffie-Hellman key exchange [1] and the Joux tripartite key exchange using bilinear maps [2]. However, till
date constructing a generalized one-round n-party key agreement protocol has remained a challenging and
open problem. In this paper, we present the first practical example of a one-round key agreement protocol for
arbitrary size groups. Although our construction enables the group key to be computed non-interactively, it
comes with a caveat; a third party is required to do most of the computation.

We refer the reader to [3, 4] for a survey of key agreement protocols for ad-hoc groups. In the literature,
most group key agreement protocols are classified in three categories (a) Centralized, (b) Distributed and (c)
Fully Contributory. Our proposed method is fully contributory, yet it uses a central authority. We elaborate
on this below.

The original two-party Diffie-Hellman key exchange [1] can be extended to fully contributory multi-party
key exchange as demonstrated in [5] using the Group Diffie-Hellman (GDH) protocol. However, all protocols
based on GDH require many rounds of sequential messages to be exchanged between members.

Centralized protocols, on the other hand have their own disadvantages; the central controller needs to
maintain a large amount of state information for the groups it is managing. Our approach is to combine the
two methods and design an efficient one-round key agreement protocol where the central controller does not
maintain any state information.

Our protocol uses a central authority in computing the shared group key. However, the central authority is
not responsible for key distribution and is only used as an “oracle” (i.e. a computing device) with public access.
Users do not require secure channels in communicating with this oracle. Additionally, we provide a method to
verify that the oracle is performing correctly. In our protocol, this oracle has some trapdoor information that
can be efficiently used to compute partial public keys that are sent to users over an insecure public channel.

1

Thus, our protocol can be directly converted into a de-centralized (or distributed) one simply by sharing this
trapdoor information between a number of trusted authorities and allowing multiple “copies” of this oracle
to function simultaneously. In effect, we present an entirely new model for secure group communication (see
figure 1).

In our model, secure group communication is facilitated by the Oracle. Assuming that public keys are
known in advance, users can use this Oracle to compute a shared secret key independently of the other
users such that no (active or passive) adversary has the ability to compute this key. Essentially the
oracle is used as a “verifiable computing device” and the adversary as the communication medium.

Figure 1: Secure group communication in our model.

Our basic idea arises due to the paper of Rabi and Sherman [6], where they described a cryptographic
primitive called a Strong Associative One-Way Function (SAOWF), and discussed as an application a one-round
key agreement protocol in ad-hoc groups. In related work, Boneh and Silverberg also proposed a one-round
key agreement protocol for ad-hoc groups based on a similar primitive called a multilinear map [7]. However,
as of now no practical construction of either primitive is known. In this paper we extend the work of Rabi
and Sherman and give a practical construction of a SAOWF under a restricted model of computation, namely
black-box computation.

This paper is organized as follows. In section 2 we give some background and notation. We define SAOWFs
in section 2.1 and extend this definition to include black-box computation in section 2.4. Our construction is
presented in section 4 and some applications are given in section 5. Finally, we discuss implementation issues
in section 6.

2

2 Preliminaries

Around 1984, Rivest and Sherman suggested the idea of one-round key agreement in ad-hoc groups using a
class of cryptographic primitives that they called Associative One-Way Functions (AOWFs) [8, 9]. Later in
1993, Rabi and Sherman suggested the use of AOWFs in digital signatures [10]. In subsequent work, Rabi and
Sherman [6] gave an existence proof of complexity theoretic AOWFs under the P 6= NP hypothesis. Other
authors studied complexity theoretic AOWFs with respect to different properties such as low ambiguity, strong
invertibility, totality and commutativity [11, 12, 13]. Finally, in [14], Hemaspaandra, Rothe and Saxena gave a
complete characterization of complexity theoretic AOWFs.

In all the above works, however, the AOWFs considered are complexity theoretic, that is, they exhibit useful
characteristics only in the worst case and not in the average case. Such constructions do not have much practical
significance in the context of cryptography. In this work we focus on cryptographic AOWFs - that exhibit useful
characteristics even in the average case. Additionally, we study only a small family of AOWFs, namely those
that are commutative, total and strongly non-invertible. We call this the class of Strong Associative One-Way
Functions (SAOWFs).

2.1 Strong Associative One-Way Functions

Let (G, ?) be a finite abelian group. The mapping

f : G×G 7→ G
(A,B) 7→ A ? B

has the following four properties (we use the notation f(A,B) and A ? B interchangeably):

P1. Associativity: f(f(A,B), C) = f(A, f(B,C)) ∀A,B, C ∈ G.

P2. Commutativity: f(A,B) = f(B,A) ∀A,B ∈ G.

P3. Identity: There exists a unique element I ∈ G such that f(A, I) = A ∀A ∈ G. We say I is the identity
element. Denote by G∗ the set G\{I}.

P4. Inverses: For each A ∈ G∗, there exists a unique B ∈ G∗ such that f(A,B) = I. We say B is the inverse
of A and denote it by A−1.

The above four properties come for “free” in any abelian group. We now additionally want to enforce the
following three properties on (G, ?):

P5. Samplability: Elements of G must be efficiently samplable.

P6. Computability: For all A,B ∈ G, f(A,B) must be efficiently computable.

P7. Strong Non-Invertibility: Let A,B
R← G∗ and C ← f(A,B) ∈ G. Given A,C, computing B =

f(C,A−1) must be infeasible in the average case.

Definition 2.1. We say that f is a Strong Associative One-Way Function (SAOWF) if properties P1-P7 are
satisfied.1

Remark 2.2. A SAOWF as defined above is analogous to a Group with Infeasible Inversion (GII) defined
in [15].

Although SAOWFs have many applications as demonstrated in [6, 15, 16], exhibiting a practical construction
of a SAOWF is still an open problem. We make a positive progress in this direction by presenting a practical
black-box construction of a SAOWF.

We note that it is possible to construct a SAOWF f under the P 6= NP hypothesis if we replace “aver-
age case” by “worst case” in the statement of property P7 [13, 14]. However, for applications significant to
cryptography we require property P7 to be defined in the average case. For completeness, we also define weak
non-invertibility as follows.

1Most researchers differentiate between commutative and non-commutative SAOWFs [14]. For simplicity, we will enforce the
commutativity property (P2) in our definition.

3

P8. Weak Non-Invertibility: Let C
R← G∗. Given C, computing any pair (A,B) ∈ G∗2 such that C =

f(A,B) must be infeasible in the average case.

Definition 2.3. We say that f is a Weak Associative One-Way Function (WAOWF) if properties P1-P6 and
P8 are satisfied.

The strong non-invertibility condition (P7) requires that for any C
R← image(f), inverting f with respect

to a given preimage A must be infeasible in the average case. However, this condition does not say anything
about weak non-invertibility (P8), which requires that computing any preimage of C must be infeasible. In
fact, the results of [17] prove that there exists an associative one-way function that is strongly non-invertible
but not weakly non-invertible.2

Thus, a WAOWF may not be a SAOWF and vice-versa. In this work, we do not enforce the weak non-
invertibility requirement. Rather, we allow the function to be weakly invertible. It turns out that our construc-
tion of a SAOWF is strongly non-invertible, yet it is weakly invertible.

Clearly, property P7 implies that computing inverses in G must be infeasible. Since the group (G, ?) is of
finite order, the only way to achieve this is to keep the order of this group hidden. This is the main idea behind
our construction.

2.2 Black-Box Constructions

Although the original objective of our research was to exhibit a practical construction of a SAOWF, in this
work, we focus on a slightly different but related problem: exhibiting a practical black-box construction of a
SAOWF by extending the definition of “computation” in property P6 to include oracle computation.

In our black-box model although the group (G, ?) is easily samplable, we we do not have access to the
algorithm for computing f . Instead, access to the computing algorithm is only provided via a “black-box” with
public access. This is illustrated in figure 2.

However, for a black-box construction to have any practical significance it must support (a) verifiable and
(b) private computation as elaborated next.

2.3 PV-Oracles

In complexity theory, a black-box with public access is referred to as an oracle. In this work, we restrict ourselves
to constructible oracles (i.e. oracles that can be constructed using some trapdoor), since we want our system to
be practical. Additionally, to justify the use of a (constructible) oracle as one-way function in a cryptographic
protocol, we must provide the same guarantees that a real function provides. Specifically, a real function is
private and verifiable. We define similar properties for oracles. We will restrict ourselves to an oracle that
computes a binary commutative function using two inputs.

Verifiable Oracles. Let f be the binary commutative function computed by an oracle. We say that the
oracle supports verifiable computation if for all A,B ∈ domain(f) and all C ∈ image(f), there exists a
PPT verification algorithm Verify that outputs 1 if C = f(A,B) and 0 otherwise. An oracle supporting
verifiable computation is called a Verifiable Oracle (V-Oracle). A V-Oracle is illustrated in figure 3.3

Private And Verifiable Oracles. Let f be the binary commutative function computed by a V-Oracle. We
say that the V-Oracle supports private computation if the inputs and outputs of the computation can be
blinded from the V-Oracle such that the blinding algorithm provides information theoretic [18] secrecy.
Formally, there must exist two PPT algorithms Blind and Unblind as follows.

Blind is a randomized algorithm and takes as input an element A ∈ domain(f) and outputs a tuple
(A′, σ), where A′ ∈ domain(f) and the distributions {A} and {A′} are independent and identical.
We say that Blind is the Blinding Algorithm and σ is the Unblinding Value.

2We note that the terminology used in this paper is slightly non-standard (but more intuitive). For instance, “weak non-
invertibility” as defined here is simply referred to as “non-invertibility” in the literature [17]. Additionally, “weak” in the literature
is used to refer to non-total functions [13]. However, since we are working in finite abelian groups, we can dispense off with
definitions such as honesty, non-commutativity and totality used in [13, 14] for describing SAOWFs.

3As an example of a V-Oracle with one input, consider an existentially unforgeable signature scheme. The signing oracle is a
V-Oracle since the signature can obviously be verified.

4

A

B

//
//
/* Algorithm for f(A, B) */

int compute(int A, int B) {
. . .

return(result);}

// f(A, B)

PRIVATE
VERIFIABLE

COMPUTATION

(a) A real computable function

A

B

//
//

Blackbox
computing

f(A, B)
// f(A, B)

PUBLIC
UNVERIFIABLE
COMPUTATION

(b) A black-box with public access

Figure 2: Comparing a real and black-box computation.

A

B

GF ED��
@A BCOO

//
//

Blackbox
computing

f(A, B)
f(A,B) // Verifying

algorithm
// f(A, B)

PUBLIC
VERIFIABLE

COMPUTATION

Figure 3: Public, Verifiable Black-box computation (V-Oracle).

Unblind takes as input a tuple (C ′, σ), where C ∈ image(f). It outputs a value C ∈ image(f) such that
the following homomorphic property holds (We call Unblind the Unblinding Algorithm).

Pr

A,B

R← domain(f);
(A′, σ) R← Blind(A);

C ← Unblind(f(A′, B), σ) :
C = f(A,B)

 = 1 (1)

We call a V-Oracle supporting a private computation a Private V-Oracle (PV-Oracle). See figure 4 for
an illustration of a PV-Oracle.4

4As an example of a PV-Oracle with one input, consider a RSA decryption oracle w.r.t. a given RSA public key. Information
theoretic privacy for inputs to the decryption oracle can be achieved using Chaum’s blinding technique [19].

5

unblinding
valueOO

GF ED

��
A

B

//
//

Blinding
algorithm

A′

B′

//
//

GF ED��
@A BCOO

Blackbox
computing
f(A′, B′)

f(A′,B′) // Verifying
algorithm f(A′,B′) // Unblinding

algorithm
// f(A, B)

PUBLIC
VERIFIABLE

COMPUTATION

PRIVATE
VERIFIABLE

COMPUTATION

Figure 4: Private and Verifiable Black-box computation (PV-Oracle).

2.4 Oracle SAOWFs (O-SAOWFs)

We now extend the definition of computation in property P6 of section 2.1 to include computation by PV-
Oracles. We call such a construction an Oracle-SAOWF (O-SAOWF) and formally define it below.

Definition 2.4. A black-box construction of a SAOWF implemented using a PV-Oracle is called an Oracle-
SAOWF (O-SAOWF). An O-SAOWF construction has four PPT “algorithms” as described below (we use quotes
here because one of the algorithms PV-Compute is not a real algorithm in the usual sense; it involves a call to
a PV-Oracle).

Setup This is a randomized algorithm and takes in as input a security parameter τ . It outputs the system
parameters params for the group (G, ?) and a master key master-key.

Sample This is a randomized algorithm and takes in the parameter params. It outputs a uniformly selected
element A

R← G along with some auxiliary information σA, which we will call the sampling information in
our construction.

Compute This algorithm takes as input the parameter params, the master key master-key and two values A,B.
If (A,B) /∈ G2, it sets C ← I (recall that I is the identity element). On the other hand, if (A,B) ∈ G2 it
computes C ← f(A,B) = A ? B. The output is C ∈ G. We assume that master-key acts like a trapdoor
that enables computation of f .

Define a PV-Oracle O having access to master-key and implementing the compute algorithm. We assume that
master-key is not known to anybody else. The fourth algorithm involves a call to this oracle.

PV-Compute This algorithm takes as input the parameter params and two elements A,B ∈ G. It uses the
Verify, Blind and Unblind algorithms defined in section 2.3 as sub-routines to compute C ← f(A,B) = A?B
privately and verifiably by querying the PV-Oracle O that implements the Compute procedure. It outputs
C ∈ G.

2.4.1 Security Of O-SAOWFs

Assume that the PV-Compute algorithm performs correctly (that is, the Verify algorithm is correct and the
Blind/Unblind algorithms provide information theoretic secrecy). Also assume that access to the Compute
algorithm is available only in a black-box manner via oracle O that knows the parameter master-key. We can
then define the security of the O-SAOWF as follows. We say that a PPT algorithm A breaks the O-SAOWF
if it is able to “strongly invert” the O-SAOWF and compute inverses in G having only black-box access to the

6

Compute algorithm. We call this the Group Inversion Problem (GIPG). Formally, the advantage of A in solving
GIPG is defined as

GIP-AdvA(τ) = Pr

AO(Compute(), master-key)(P, params)→ P−1 :

(params,master-key) R← Setup(τ),
(P, σP) R← Sample(params)

 (2)

Definition 2.5. We say that algorithm A (kO, δ, ε)-breaks the O-SAOWF f if A runs at most time δ; A makes
at most kO adaptive queries to the oracle O implementing the Compute algorithm; and GIP-AdvA(τ) is at least
ε. Alternatively, we say that the O-SAOWF is (kO, δ, ε)-secure under an adaptive attack if no such algorithm
A exists.

It is clear that a black-box SAOWF f where we extend the definition of computation in property P6 to
include computation by PV-Oracles, is identical to a “real” computable SAOWF f in terms of functionality.
However, until now it had been an open question to present even a black-box construction of SAOWFs using PV-
Oracles. In this work, we present the first practical construction of a black-box SAOWF based on a PV-Oracle.
In other words, our construction allows private (in the information-theoretic sense) and verifiable computation.5

Remark 2.6. It should be noted that the above model of an O-SAOWF f that allows black-box computation
of the group operation ? on G using a PV-Oracle is different from a black-box group, a notion introduced by
Babai and Szemerédi [20] (see also [21]), where access to the entire group (G, ?) is provided through black-box
routines and the representation of group elements is opaque. In contrast, the above model is an example of
a semi black-box group, since the representation of group elements is not opaque and certain operations like
blinding/unblinding, sampling and verification of composition can be done outside of the black-box.

3 The Underlying Primitives

In this section, we give a brief overview of the two main underlying primitives of our construction: (i) composite
order bilinear maps, and (ii) the Paillier cryptosystem.

3.1 Bilinear Maps

Let G1 and G2 be two cyclic multiplicative groups both of the same order n such that computing discrete
logarithms in G1 and G2 is intractable. A bilinear pairing is a map ê : G1×G1 7→ G2 that satisfies the following
properties:

1. Bilinearity : ê(ax, by) = ê(a, b)xy ∀a, b ∈ G1 and x, y ∈ Zn.

2. Non-degeneracy : If g is a generator of G1 then ê(g, g) is a generator of G2.

3. Computability : The map ê is efficiently computable.

The above properties also imply:

ê(ab, c) = ê(a, c) · ê(b, c) ∀a, b, c ∈ G1

ê(a, bc) = ê(a, b) · ê(a, c) ∀a, b, c ∈ G1

Additionally, we assume that it is easy to sample elements from G1. In a practical implementation, the
group G1 is the set of points on an elliptic curve and G2 is the multiplicative subgroup of a finite field. The
map ê is derived either from the modified Weil pairing [22, 23] or the Tate pairing [24]. We will assume that
the smallest prime factor of n is ≥ 2171 so that the fastest algorithm for computing discrete logarithms in G1

(Pollard’s rho method [25, p.128]) takes ≥ 285 iterations [22].

5It is noteworthy that our construction of a black-box SAOWF using a PV-Oracle also serves an existence proof of real computable
SAOWFs in a way because we achieve almost identical functionality using a black-box construction.

7

3.1.1 Problems in Bilinear Maps

It is clear that irrespective of whether n is prime or composite, both G1 and G2 have generators. Fix some
generator g of G1 and define the following problems.

Computational Diffie-Hellman Problem [CDHP(g,G1)]: Given gx, gy ∈ G1 for unknowns x, y ∈ Z, output
gxy ∈ G1.

Decision Diffie-Hellman Problem [DDHP(g,G1)]: Given gx, gy, gz ∈ G1 for unknowns x, y, z ∈ Z, output
1 if z ≡ xy (mod n); otherwise output 0.

Inverse Diffie-Hellman Problem [IDHP(g,G1)]: Given gx ∈ G1 for unknown x ∈ Z∗n, output g1/x ∈ G1.

The following result was noted by Joux and Nguyen [26].

Lemma 3.1. DDHP(g,G1) (the decision Diffie-Hellman problem) is easy.

Proof. Clearly, from the properties of the mapping, z ≡ xy (mod n) if and only if ê(g, gz) = ê(gx, gy). Thus,
solving DDHP(g,G1) is equivalent to computing the mapping ê twice.

The next theorem shows that the computational Diffie-Hellman problem is random self-reducible in the
group G1 if φ(n) is known.

Theorem 3.2. IDHP(g,G1) ⇒ CDHP(g,G1) if φ(n) is known.

Proof. We must show that given an IDHP(g,G1) instance gx ∈ G1 for some x ∈ Z∗n and access to a CDHP(g,G1)

oracle, we can efficiently compute g1/x ∈ G1. This follows from the following facts.

1. Fact. From Euler’s theorem [25, p.69] we know that ∀u ∈ Z∗n uφ(n) ≡ 1 mod n. Equivalently, uφ(n)−1 ≡
1/u mod n.

2. Fact. Given any pair gu, gv ∈ G1 for arbitrary u, v ∈ N we can use the CDHP(g,G1) oracle to compute
guv ∈ G1

3. Fact. Given any value gu ∈ G1, we can use the CDHP(g,G1) oracle to compute gu2i

for any i ∈ N by the
“repeated squaring” method (see [27, p.23] for an example).

Therefore, from gx we can efficiently compute h = gxφ(n)−1 ∈ G1 using the CDHP(g,G1) oracle and the “repeated
squaring and multiply” algorithm of [25, p.71] (via facts 2 and 3). Then from fact 1, h = g1/x, and thus, h is
the required solution.

Although theorem 3.2 says that IDHP(g,G1) ⇒ CDHP(g,G1) if φ(n) is known, it is not clear if the same
reduction holds when φ(n) is unknown. In light of this, we make the following hypothesis, necessary for the
security of our construction.

Conjuncture 3.1. IDHP(g,G1) 6⇒ CDHP(g,G1) if φ(n) is unknown.

3.1.2 BDH Parameter Generator

We will further assume that n = |G1| = |G2| = pq where p, q are large primes such that given the product
n = pq, factoring n is intractable. We refer the reader to [28] for details on generating composite order bilinear
maps for any given n that is square free.

Using the idea of [23], we define a Bilinear Diffie-Hellman (BDH) parameter generator as a randomized
PPT algorithm BDH that takes a single parameter τ ∈ N and outputs a tuple (ê, G1, G2, p, q) such that p, q
are distinct primes of τ bits each, G1, G2 are two cyclic multiplicative groups of the same order pq, and
ê : G1 ×G1 7→ G2 is a bilinear mapping as defined in section 3.1.

For any PPT algorithm A, denote by CDHP-AdvA(τ), the advantage of A in solving CDHP(g,G1) for some
security parameter τ . Formally,

8

CDHP-AdvA(τ) = Pr

A(ê, n, G1, G2, g, u, v) = gxy :

(ê, G1, G2, p, q) R← BDH(τ) s.t. |G1| = |G2| = pq,

n = pq, g
R← G1 s.t. 〈g〉 = G1, (x, y) R← Zn

2, u = gx, v = gy

 (3)

Similarly, we denote by IDHP-AdvA(τ) the advantage of A in solving IDHP(g,G1). Formally,

IDHP-AdvA(τ) = Pr

A(ê, n, G1, G2, g, u) = g1/x :

(ê, G1, G2, p, q) R← BDH(τ) s.t. |G1| = |G2| = pq,

n = pq, g
R← G1 s.t. 〈g〉 = G1, x

R← Z∗n, u = gx

 (4)

We will make the following two assumptions for all our constructions.

Diffie-Hellman Assumption: The computation Diffie-Hellman problem (CDHP(g,G1)) is intractable. In
other words, for all PPT algorithms A, CDHP-AdvA(τ) is a negligible function of τ .

Inverse Diffie-Hellman Assumption: The inverse Diffie-Hellman problem (IDHP(g,G1)) is intractable. In
other words, for all PPT algorithms A, IDHP-AdvA(τ) is a negligible function of τ .

3.2 The Paillier Cryptosystem

Our idea of constructing the O-SAOWF is to use an oracle as a “Diffie-Hellman problem solver” in the bilinear
group G1 of composite order n. Since the only known way to solve the Diffie-Hellman problem is to compute
discrete logarithms, we provide the discrete logarithms to the oracle in an encrypted form using an asymmetric
cryptosystem. The requirement here is that the encryption algorithm E must possess the following multiplicative
homomorphic property: for any messages m1,m2 ∈ Z∗n, given {E(m1),m2} or {m1,E(m2)}, it must be possible
to compute E(m1m2 mod n) directly without knowing the corresponding decryption algorithm D. The Paillier
cryptosystem [29] has this property.6

The following facts form the basis of the Paillier cryptosystem. Let n = pq, where p, q are distinct odd
primes. Let λ = lcm(p− 1, q − 1) and φ(n) = (p− 1)(q − 1).

1. Fact. |Z∗n2 | = nφ(n)

2. Fact. For all w ∈ Z∗n2 it is true that wnλ ≡ 1 mod n2 and wλ ≡ 1 mod n.

3. Fact. For all w ∈ Z∗n2 it is true that (wλ mod n2) ≡ 1 mod n. Thus the mapping L : Z∗n2 7→ Zn, where

L(w) = (wλ mod n2)−1
n is well defined.

We are now ready to describe the Paillier cryptosystem (see [29] for details).

Key Generation: Generate p, q
R← N, where p, q are large distinct primes. Set n← pq and λ← lcm(p−1, q−1).

Generate t
R← Z∗n2 such that the order of t is a non-zero multiple of n. This can be done by checking that

L(tλ mod n2) is invertible in Zn. The public key is (t, n) and the private key is (λ, n).

For convenience in this paper, we will use the notation E,D to denote the encryption and decryption
functions respectively for some fixed parameters (λ, t, n) whenever the parameters are clear from the
context.

Encrypt: To encrypt a message m ∈ Zn, generate random r
R← Z∗n and set

c← E(m) = tmrn mod n2

The ciphertext is c ∈ Z∗n2 .

Decrypt: To decrypt, compute

m← D(c) =
L(cλ mod n2)
L(tλ mod n2)

∈ Zn

6Although this property is necessary, it is not sufficient; the RSA [30] and Rabin [31] cryptosystems also have this property.
However, our construction based on RSA or Rabin is insecure.

9

3.2.1 Homomorphic Properties

The Paillier cryptosystem has the following homomorphic properties [29].

1. Plaintext multiplication:

∀m1,m2 ∈ Zn D(E(m1)
m2 mod n2) = D(E(m2)

m1 mod n2) = m1m2 mod n

2. Self Blinding:
∀m ∈ Zn ∀r ∈ N D(E(m)rn mod n2) = m

The semantic security of the above encryption scheme is proved under the Decision Composite Residuosity
Assumption (DCRA) [29], which states that the following problem is hard unless the factors of n are known.

Decision Composite Residousity Problem [DCRPn] Given x
R← Z∗n2 , output 1 if ∃y ∈ Z∗n2 s.t. x ≡ yn

(mod n2) otherwise output 0.

The DCRA is a stronger assumption than factoring [29]. See [32, 33] for a discussion on the bit-security of the
Paillier cryptosystem.

4 Our O-SAOWF Construction

Our construction will describe the four algorithms Setup, Sample, Compute and PV-Compute defined in sec-
tion 2.4. First we describe the Setup procedure. Then we elaborate on the structure of the group (G, ?) defined
by params before describing the remaining algorithms.

4.1 Setup

This algorithm generates the system parameters. The input is a single parameter τ ∈ N.

1. Use the BDH parameter generator BDH of section 3.1.2 to output (ê, G1, G2, p, q)← BDH(τ), where p, q
are large distinct primes of ≈ τ bits each, G1, G2 are descriptions of two groups both of order pq and
ê : G1 ×G1 7→ G2 is a bilinear map (of section 3.1). Then pick a generator g

R← G1.

2. Set n ← pq and λ ← lcm(p − 1, q − 1). Then generate an element t
R← Z∗n2 such that the order of t is a

non-zero multiple of n. The pair (t, n) is the public key for the Paillier cryptosystem. The corresponding
private key is (λ, n). We will denote the corresponding encryption and decryption algorithms by E and
D respectively.

3. Generate α, r
R← Z∗n. Then set h← gα ∈ G1 and β ← E(α) = tαrn ∈ Z∗n2 .

4. Output params ← (ê, G1, G2, g, t, n, h, β) and master-key ← λ.

Recall that the Compute algorithm requires as input the parameter master-key and is accessible only as a
black-box routine via oracle O that implements this algorithm. The value master-key is sent to O via a secure
channel and the value params is made public.

4.2 Description Of The Underlying Group

From params, the tuple (ê, G1, G2, g, t, n) defines the structure of the group (G, ?) and the pair (h, β) represents
a random element of this group. We now describe the structure of this group.

1. Consider the set S (G1 defined as

S = {x|x = gy for some y ∈ Z∗n}

Clearly, |S| = φ(n) = |Z∗n| and S is exactly the set of elements of G1 having order n.

10

2. Define the set G (S× Z∗n2 as
G = {(x, y)|x = gD(y)} (5)

and define a binary operation ? on G using the multi-valued mapping

f : G×G 7→ G
(A,B) 7→ A ? B

as follows. Let A = (xA, yA) and B = (xB , yB). Then A ? B = (xC , yC), where

xC ← xA
D(yB) = gD(yA)D(yB) = xB

D(yA) ∈ G1 (6)

yC ← E(D(yA)D(yB) mod n) ∈ Z∗n2 (7)

Thus, xC = gD(yC) and therefore (xC , yC) ∈ G.

3. Finally, define an equivalence relation ∼ on G as follows. For any A,B ∈ G, where A = (xA, yA) and
B = (xB , yB), we say that A ∼ B if and only if xA = xB . This relation is symmetric, reflexive and
transitive. Thus, it indeed forms an equivalence relation.

We state without proof the following lemmas (which can be easily verified):

Lemma 4.1. For any A,B ∈ G, it is true that A ? B ∼ B ? A. That is, the relation ∼ transforms ? into an
commutative operation over G.

Lemma 4.2. For any A,B,C ∈ G, it is true that (A?B) ?C ∼ A? (B ?C). That is, the relation ∼ transforms
? into an associative operation over G.

For any A ∈ G, denote by [A] (G the equivalence class of A with respect to the relation ∼. Therefore we
can define an equivalence class [I] (G as follows:

[I] = {X|X ∼ (g, t) ∼ (g,E(1))}

Lemma 4.3. For any [A] (G, there exists a unique [B] (G such that [A] ? [B] = [I]. Additionally, [A] ? [I] =
[A].

It is clear from the above lemmas that the relation ∼ transforms the equivalence classes of G into an abelian
group with respect to the binary operation ?. The order of this group (φ(n)) is effectively hidden from anyone
who does not know the factors of n.

For any [A] (G, let the symbol [A]i denote [A] ? [A] ? . . . [A] (i times). The inverse of [A] is denoted by
[A]−1. It can be trivially verified that the following are also true.

[A]i ? [A]j = [A]i+j

([A]i)j = [A]ij

[A] ? [A]−1 = [A]0 = [I]
([A]i ? [B]j)k = [A]ik ? [B]jk

 ∀ [A], [B] (G
∀ i, j, k ∈ Z

We will slightly abuse notation and denote the equivalence class [A] by A. We will use = instead of ∼ to
indicate that we are working with equivalence classes. For any j given elements A1, A2, . . . Aj ∈ G, we denote
A1 ? A2 ? . . . Aj by

j∏
i=1

Ai

11

4.3 Properties Of The Underlying Group

We now enumerate some important properties of the group (G, ?).

1. Samplability: G is efficiently samplable. To sample from G, first generate random σ
R← Z∗n. Then

set x ← gσ ∈ G1 and y ← E(σ) ∈ Z∗n2 . We see that (x, y) ∈ G. In this case we call σ, the sampling
information of (x, y). When we say that A ∈ G has been sampled by us, we imply that the sampling
information of A is known. The sampling information acts like a trapdoor in our construction.

2. Trapdoor Computability: Let A,B ∈ G be given. Anyone who has sampled either one of A or B can
compute A ? B efficiently as follows:

Let A = (xA, yA) and B = (xB , yB) be given. Additionally, we are given σA ∈ Z∗n, the sampling
information of A. That is, xA = gσA ∈ G1 and yA = E(σA) ∈ Z∗n2 . To compute A ? B, first generate

random r
R← Z∗n. Then set x← xB

σA ∈ G1 and y ← yB
σA · rn ∈ Z∗n2 .

Therefore, x = xB
D(yA) and due to the homomorphic properties of the Paillier cryptosystem, we find that

y = E(σAD(yB) mod n) = E(D(yA)D(yB) mod n). Thus, (x, y) = A ? B.

3. Trapdoor Strong Invertibility and Exponentiation: Let A,B ∈ G be given. Anyone who has
sampled A ∈ G can also compute A−1 ? B because if σA ∈ Z∗n is the sampling information for A then
σ−1

A ∈ Z∗n is the sampling information for A−1. Also, for any i ∈ Z, the sampling information for Ai ∈ G
is (σA)i ∈ Z∗n.

4. Non-computability: Let A,B ∈ G be given. Anyone who has not sampled at least one of {A,B, A−1, B−1}
cannot compute A ? B without knowledge of λ.

5. Strong Non-invertibility: Let A,B ∈ G be given. Anyone who has not sampled at least one of {A,A−1}
cannot compute A−1 ? B without knowledge of λ.

6. Indistinguishability: Let (x, y) ∈ G1 × Z∗n2 be given. It is infeasible to decide if (x, y)
?
∈ G without

knowledge of λ.

7. Black-Box Computability: Let A,B ∈ G be given. Anyone knowing λ has the ability to compute A?B
using equations 7 and 6.

8. Black-Box Distinguishability: Let (x, y) ∈ G1×Z∗n2 be given. Anyone knowing λ, also has the ability

to decide if (x, y)
?
∈ G by virtue of equation 5.

4.4 A Concrete O-SAOWF Construction

We now describe a concrete construction of an O-SAOWF under definition 2.4. In addition to the four main
algorithms Setup, Sample, Compute, PV-Compute and the three algorithms Verify, Blind and Unblind used as
subroutines in PV-Compute, our construction has four ‘auxiliary’ algorithms Verify-In-Group, Verify-Not-In-Group,
TD-Exponentiate and V-Compute. Thus, our construction has a total of eleven algorithms. The Setup algorithm
is described in section 4.1 while the Sample algorithm is described in section 4.3, item 1.

A-1.

Setup

Input: τ ∈ N
Step-1. Generate {ê, G1, G2, g, t, n, h, β, λ} as described in section 4.1.

Step-2. Set params ← (ê, G1, G2, g, t, n, h, β) and master-key ← λ.

Output: (params, master-key)

12

A-2.

Sample

Input: params

Step-1. Generate σA, r
R← Z∗n

Step-2. Set xA ← gσA ∈ G1; yA ← tσArn mod n2 = E(σA) ∈ Z∗n2

Step-3. Set A← (xA, yA) ∈ G
Output: (A, σA) ∈ G× Z∗n [σA is the sampling information of A]

Remark 4.4. From the value params, the pair (h, β) ∈ G such that its sampling information α ∈ Z∗n is unknown
(see section 4.1).

A high level description of the Compute algorithm is given below.

A-3.

Compute

Input: (master-key, params, A,B), where A,B ∈ G1 × Z∗n2

Step-1. Use master-key = λ to decide if (A,B)
?
∈ G2 [See section 4.3, item 8]

Step-2. If (A,B) 6∈ G2, set C ← I ∈ G; otherwise, compute A ? B using λ and set C ← A ? B

[See section 4.3, item 7]

Output: C ∈ G

Functionality Of Oracle O: Access to Compute is provided in a black-box manner via the oracle O that
knows master-key and params. The oracle works as follows.

Oracle O
Input: A,B ∈ G1 × Z∗n2

Step-1. Set C ← Compute(master-key, params, A, B)

Output: C ∈ G [We say C = O(A,B)]

Remark 4.5. A query to oracle O on inputs (A,B) /∈ G2 requires at most two exponentiations in G1 and
Z∗n2 . On the other hand, if (A,B) ∈ G2, the query always involves three exponentiations in G1 and Z∗n2 . Also,
O(A,B) = A ? B whenever (A,B) ∈ G2.

Remark 4.6. Assuming that access to oracle O is authentic, we can use O to decide if any given pair (x, y)
?
∈ G.

Additionally we can use O to compute Ai for any A ∈ G, i ∈ N using the “repeated squaring and multiply”
method [25, p.71].

Since access to oracle O is over an insecure public channel, we cannot assume that oracle replies are authentic.
Denote by O∗ the unauthenticated oracle (which could be an active adversary) supposedly claiming to be oracle
O.

The following algorithm Verify-In-Group uses oracle O∗ to decide that any given pair (x, y) ∈ G1 × Z∗n2 is
indeed an element of G. If (x, y) /∈ G the algorithm outputs 0 with a high probability.

13

A-4.

Verify-In-Group

Input: (params, x, y) such that (x, y) ∈ G1 × Z∗n2

Step-1. Generate u1, u2, v1, v2,
R← Zn and w1, w2

R← Z∗n
Step-2. Set x1 ← xu1gv1 ∈ G1; x2 ← xu2gv2 ∈ G1

Step-3. Set y1 ← yu1tv1w1
n mod n2; y2 ← yu2tv2w2

n mod n2; result← 0

Step-4. Set (x′, y′)← O∗((x1, y1), (x2, y2))

Step-5. If ê(x′, g) = ê(x1, x2), set result← 1

Output: result ∈ {0, 1}

We prove in appendix A that the above algorithm is sound (under a non-standard assumption). That is, if
(x, y) 6∈ G then the algorithm outputs 0 with a high probability. However, the converse is not true. Hence, the
above algorithm cannot be used to conclude that (x, y) /∈ G if the output is 0.

In some cases, we may need to decide with certainty that a given pair (x, y) is indeed not an element of
G. The next algorithm Verify-Not-In-Group enables us to do this using oracle O∗. If (x, y) ∈ G the algorithm
outputs 0 with a high probability.

A-5.

Verify-Not-In-Group

Input: (params, x, y) such that (x, y) ∈ G1 × Z∗n2

Step-1. Set a security parameter j and generate a j-bit string a
R← {0, 1}j . Set result← 0.

Initialize another j-bit string b ∈ {0, 1}j .
Step-2. Repeat for i from 1 to j (denote by ai and bi, the ith bits of a and b respectively).

i. If ai = 1, set (x′, y′) R← Sample(params); otherwise, set (x′, y′)← (x, y)
ii. Set bi ← Verify-In-Group(params, x′, y′)

Step-3. If (a = b), set result← 1

Output: result ∈ {0, 1}

The following lemma shows that the Verify-Not-In-Group algorithm is sound if the Verify-In-Group algorithm
is sound.

Lemma 4.1. If the Verify-In-Group algorithm is sound then the Verify-Not-In-Group algorithm is also sound.

Proof. We must show that if the Verify-Not-In-Group algorithm outputs 1 then (x, y) 6∈ G.
If (x, y) ∈ G, then (x′, y′) in step 2 of Verify-Not-In-Group is always an element of G. Now assume that

the Verify-In-Group algorithm is sound. Thus, the probability that ai = bi is 1
2 for any i. Also, each bit ai is

independent of other bits. Thus, for a total of j bits, Pr[(ai = bi)∀1 ≤ i ≤ j] = 1
2j . In other words, if (x, y) ∈ G

the probability that the Verify-Not-In-Group algorithm outputs 1 is 1
2j , which can be made arbitrarily small.

The next algorithm Verify takes as input a 3-tuple (A,B,C), where A,B ∈ G and C ∈ G1×Z∗n2 . It outputs
1 only if C = A ? B

A-6.

Verify

Input: (params, A,B,C) such that A,B ∈ G and C ∈ G1 × Z∗n2 .
Assume that the input is correct.

Step-1. Set (xA, yA)← A; (xB , yB)← B; (xC , yC)← C; result← 0

Step-2. If ê(xC , g) = ê(xA, xB), set result← Verify-In-Group(params, xC , yC)

Output: result ∈ {0, 1}

14

Clearly, the Verify algorithm is sound if the Verify-In-Group algorithm is sound. We observe that we can
remove the function call Verify-In-Group(params, xC , yC) in step 2 of the above algorithm (and simply set result←
1 instead) without introducing any weakness in the construction. However, including this call enables us to
reduce the soundness of other related algorithms to the soundness of the Verify-In-Group algorithm.

Algorithm V-Compute takes as input two elements A,B ∈ G. It uses the Verify-In-Group algorithm as a
subroutine and computes A ? B verifiably by querying O∗.

A-7.

V-Compute

Input: (params, A,B) such that A,B ∈ G. Assume that the input is correct.

Step-1. Set C ← O∗(A,B) ∈ G1 × Z∗n2

Step-2. If Verify(A,B,C) = 0, set C ← I ∈ G
Output: C ∈ G

Clearly, the soundness of the above algorithm reduces to the soundness of the Verify algorithm. As a
consequence, we state the following theorem which says that if the Verify algorithm is sound then having
indirect access to the oracle O via some active adversary O∗ is the same has having authentic and public access
to O.

Theorem 4.2. If the Verify algorithm is sound then O is a V-Oracle.

The next algorithm, TD-Exponentiate (“trapdoor-exponentiate”) takes as input (i) the sampling information
σA ∈ Z∗n of an element A ∈ G, (ii) an arbitrary index i ∈ Z, and (iii) an element B ∈ G. It outputs Ai ? B ∈ G.
TD-Exponentiate will be primarily used as a subroutine in the Blind and Unblind algorithms.

A-8.

TD-Exponentiate

Input: (params, σA, i, B), where σA ∈ Z∗n; i ∈ Z; B ∈ G.
Here, σA is the sampling information of A ∈ G. Assume that the input is correct.

Step-1. Generate r
R← Z∗n

Step-2. Set σ ← σA
i ∈ Z∗n; (xB , yB)← B ∈ G1 × Z∗n2

Step-3. Set x← xB
σ ∈ G1; y ← (yB)σ

rn = E(σD(yB) mod n) ∈ Z∗n2

Output: (x, y) ∈ G

The next two algorithms Blind and Unblind work as follows.
Blind takes as input a value A ∈ G. It generates B

R← G and outputs (A ? B) ∈ G, along with σB ∈ Z∗n,
the sampling information of B. Unblind is the inverse of Blind. It takes as input an pair (A, σB) ∈ G× Z∗n and
outputs A ? B−1 ∈ G such that σB is the sampling information of B ∈ G.

A-9.

Blind

Input: (params, A) such that A ∈ G. Assume that the input is correct.

Step-1. Set (B, σB) R← Sample(params) ∈ G× Z∗n [B will be ignored]

Step-2. Set (x, y)← TD-Exponentiate(params, σB , 1, A) ∈ G
Output: (x, y, σB) ∈ G× Z∗n

A-10.

Unblind

Input: (params, A, σB), where A ∈ G and σB ∈ Z∗n.
Here, σB is the sampling information of B ∈ G. Assume that the input is correct.

Step-1. Set (x, y)← TD-Exponentiate(params, σB ,−1, A) ∈ G
Output: (x, y) ∈ G

15

Lemma 4.3. The Blind/Unblind algorithms provide information theoretic secrecy.

Proof. Clearly, the Blind and Unblind algorithms are inverses of each other. Now, if the output of the Sample
algorithm is uniformly distributed over G then the output of the Blind algorithm is also uniformly distributed
over G, independent of the input.

Algorithm PV-Compute takes as inputs A,B ∈ G. It uses the Blind, Unblind and and V-Compute algorithms
as subroutines to compute A ? B privately and verifiably.

A-11.

PV-Compute

Input: (params, A,B) such that A,B ∈ G. Assume that the input is correct.

Step-1. Set (A′, σA′) R← Blind(params, A) ∈ G× Z∗n
Step-2. Set (B′, σB′) R← Blind(params, B) ∈ G× Z∗n
Step-3. Set C ′ ← V-Compute(A′, B′) ∈ G1 × Z∗n2

Step-4. Set C ← Unblind(params,Unblind(params, C ′, σA′), σB′) ∈ G
Output: C ∈ G

Since the Blind/Unblind algorithms provide information theoretic secrecy (lemma 4.3), the soundness of the
above algorithm also reduces to the soundness of the Verify algorithm. As a consequence, we state the following
theorem which says that if the Verify algorithm is sound then having indirect access to the oracle O via some
active adversary O∗ is the same has having private and authentic access to O.

Theorem 4.4. If the Verify algorithm is sound then O is a PV-Oracle.

This completes our O-SAOWF construction. Figure 5 gives the dependencies between the eleven algorithms.
We can essentially use PV-Compute(params, A, B) to denote f(A,B), where f is a real SAOWF defined using
(G, ?) in section 2.1. When considering the security, we will assume that O takes one time unit to respond to
each query and that the sum of the number of queries to O and the running time of an adversary attacking the
O-SAOWF is bounded by a polynomial in τ .

TD-ExponentiateOO hh

QQQQQQQQQQQQQ Sample oo
OO Verify-Not-In-Group

��

Unblind Blind Verify

��
PV-Compute //

OO 66mmmmmmmmmmmmm
V-Compute

66lllllllllllll

O∗

##G
G

G
G

G
G

G
G

G Verify-In-Group

O∗

���
�
�
�
�
�

Setup Compute
params,master-keyoo

params

��

Figure 5: Dependencies between the algorithms.

4.5 Notation

For convenience we will adopt the following shorthand notation.

16

1 We will denote TD-Exponentiate(params, σA, i, B) by T (σA, i, B).

2 Since invoking V-Compute is equivalent to making a public query to oracle O (Theorem 4.2), we will
denote V-Compute(params, A, B) simply by O(A,B).

3 Invoking PV-Compute is equivalent to making a private query to oracle O (Theorem 4.4). We will denote
PV-Compute(params, A, B) by Ô(A,B).

4 For any set of k elements {A1, A2, . . . Ak} ⊂ G, we denote by
〈
O

〉k

i=1
(Ai) the value

O(O(. . .O(A1, A2), . . .), Ak) =
k∏

i=1

Ai

Similarly, we denote by
〈
Ô

〉k

i=1
(Ai) the value

Ô(Ô(. . . Ô(A1, A2), . . .), Ak) =
k∏

i=1

Ai

5 We will denote by E(A, i) an algorithm to compute Ai for any A ∈ G with the repeated squaring method
using V-Compute as a subroutine. This algorithm does not provide privacy of inputs. However, the outputs
are verifiable.

6 We will denote by Ê(A, i) an algorithm to compute Ai for any A ∈ G with the repeated squaring method
using PV-Compute as a subroutine. This algorithm provides information theoretic privacy of inputs and
verifiability of outputs.

Remark 4.7. Computing Ai using algorithms E and Ê will amount to ≈ c·log i queries to oracle O (for constant
c) with the repeated squaring method [25, p.71].

4.6 Security Of The Construction

The oracle is primarily used as a “computing device” in the proofs. We assume that the oracle always functions
correctly and keeps the trapdoor information λ secret. Recall that out of params, the pair (h, β) ∈ G. Denote
this value by P . The security of our O-SAOWF relies on the difficulty of inverting ? with respect to P . One way
to do this would be to extract λ from the oracle. However, this is equivalent to factoring n so we should look
at indirect methods for inverting ? (with respect to P) using the oracle. The security of all our constructions
reduces to the difficulty of the following problem:

Group Inversion Problem [GIPG]: Let P = (h, β) R← G be uniformly sampled using secret α
R← Z∗n such

that h = gα ∈ G1 and β = E(α) ∈ Z∗n2 . Given P , compute P−1 = (h′, β′) ∈ G, where h′ = g1/α ∈ G1 and
β′ = E(1/α) ∈ Z∗n2 , possibly by using the oracle O.

Computing h′ becomes an instance of the inverse Diffie-Hellman problem IDHP(g,G1) defined in section 3.1,
which is believed to be hard even if the Diffie-Hellman problem is easy. We hypothesize that any method of
reducing IDHP(g,G1) to CDHP(g,G1) will yield a method of reducing GIPG to the oracle O. We define the
advantage of an algorithm for solving the group inversion problem as follows.

Definition 4.8. For any algorithm A, the advantage of A in solving the group inversion problem GIP-AdvA(τ)
for some security parameter τ is defined as:

GIP-AdvA(τ) = Pr

AO(λ)(ê, G1, G2, n, g, t, h, β) = (g1/α,E(1/α)) :

(ê, G1, G2, p, q) R← BDH(τ) s.t. |G1| = |G2| = pq,

n = pq, α
R← Z∗n, g

R← G1 s.t. 〈g〉 = G1,

t
R← Z∗n2 s.t. | 〈t〉 | = nλ, h = gα, β = E(α)

 (8)

17

Here BDH is the BDH parameter generator algorithm (section 3.1.2); E denotes the Paillier encryption
algorithm with public key (t, n) (section 3.2), and O is an oracle implementing the Compute algorithm (sec-
tion 4.4).

For any algorithm A, let δA denote the upper-bound on the running time of A, and let k(O,A) denote the
upper-bound on the number of queries to oracle O by A. Our security is based on the following conjuncture.

Conjuncture 4.9. For any algorithm A such that k(O,A), δA ∈ Poly(τ), GIP-AdvA(τ) is a negligible function
in τ . In other words, for all kO, δ, 1/ε ∈ Poly(τ), the O-SAOWF is (kO, δ, ε)-secure under an adaptive attack
using definition 2.5.

5 Applications Of O-SAOWFs

In this section we describe three applications of O-SAOWFs: (a) Multiparty-Key Agreement, (b) Signatures and
(c) Broadcast encryption (another application, Identity Based Encryption (IBE) is described in appendix B).

5.1 Key Generation (Setup PKI)

To participate in the protocols, each user i must have a certified public key and the corresponding private key.
This is generated as follows. Recall that out of params, the pair (h, β) = P ∈ G. This will serve as a common
starting value for all users.

1 User i generates (Xi, σXi
) R← Sample(params) ∈ G× Z∗n. The private key is σXi

.

2 User i computes the public key Yi ← T (σXi
, 1, P) = Xi ? P . The public key is made available in an

authentic way.

5.2 Multiparty Key Agreement

In this section, we describe the multiparty key agreement protocol of Rivest, Rabi and Sherman [6] using O-
SAOWFs. At a high level, the objective of a multiparty key agreement protocol is to enable a set of users to
compute a shared secret key (the group private key) such that no one outside the set can compute this key. In
our model each group private key also has a corresponding group public key, which can be used for join/merge
operations and for verifying (group) signatures created using the group private key. Our construction also
defines a partial public key that is used in the intermediate steps for group private key computation.

5.2.1 Key Agreement Protocol

[k users] A set s = {1, 2, 3 . . . k} of k users compute a shared group key.

1 Partial public key: Each user j ∈ s first computes the partial public key

Ys\{j} ←
〈
O

〉k

i=1;i 6=j
(Yi) =

k∏
i=1;i 6=j

Yi = P k−1 ?
k∏

i=1;i 6=j

Xi

2 Group Private Key: Each user j ∈ s then computes the group private key

Ks ← T (σXj
, 1, Ys\{j}) = Xj ? Ys\{j} = P k−1 ?

k∏
i=1

Xi

3 Group Public Key: The group public key for s is computed by anyone as

Ys ←
〈
O

〉k

i=1
(Yi) =

k∏
i=1

Yi = P k ?
k∏

i=1

Xi

Thus, the partial public key of user j in set s is the group public key of the set s\{j}.

18

5.2.2 Overview Of The Key Agreement Protocol

1 Complexity : For a group of k users, k− 2 oracle queried are required for each user to compute the shared
key. Thus, total k(k− 2) queries are required for all the k users. However, no specific ordering is required
between the users (users can compute the shared key after receiving a ciphertext). Additionally, oracle
queries can be batched.

2 Universal Escrow : Given a public key Yi = Xi ? P , the oracle O can compute the corresponding private
key σXi

. Therefore, O has universal escrow capability.

3 Non-interactivity : Assuming that all the public keys Yi are known in advance, any user can compute the
shared key without interacting with the other users.

4 Multiple copies of the Oracle: An arbitrary number of “copies” of the oracle can be run without any
compromise in security.

5.2.3 Join And Merge Operations

Clearly, members can join any group and many groups can merge arbitrarily. For simplicity we only demonstrate
the merge operation between two disjoint sets a and b of users.

Example [Merge] A set a of users merges with another set b of users such that a ∩ b = ∅. Further assume
that a has the private key Ka and the public key Ya. Similarly, b has the private key Kb and the public key Yb

1 Group private key: Each member i ∈ a computes Ka∪b ← Ô(Ka, Yb), while each member j ∈ b computes
Ka∪b ← Ô(Kb, Ya).

2 Group public key: The group public key corresponding to the group private key Ka∪b can be computed
as Ya∪b ← O(Ya, Yb) = Ya ? Yb.

In the above merge procedure, we assumed that a and b are disjoint (i.e. they have no common members).
In case the sets are not disjoint, we could still use the above merge procedure without any serious drawback
as long as this instantiation of O-SAOWF is only used for key agreement (and not for signatures, which are
discussed below in section 5.3). In case the same instantiation of O-SAOWF is also used for signatures, we
would require the merge procedure to eliminate duplicate users in the merged set (this can be efficiently done
if the intermediate values in the partial public key computation are cached).

5.2.4 Forward Secrecy

Due to the above mentioned merge procedure, the compromise of the group private key of a set a of users
compromises the group private key of any other set c of users whenever c) a. To overcome this weakness, if
the private key of group a is compromised, at least one member of a must compute a new public-private key
pair. Compromise of a group private key of a set a of users, however, does not compromise the group private
key of any set c of users whenever c (a.

5.2.5 Security Of The Key Agreement Protocol

From the key agreement procedure, it is clear that if the adversary knows the private key of user i ∈ a then
the adversary knows the group private key of the set a of users. Additionally, if the adversary knows the group
private key of the set a then the adversary also knows the group private key of any set that properly includes a.
Thus, we restrict the adversary to output the private key of any set a of users such that the adversary knows
neither the group private key of any proper subset of a nor the private keys of any users in the set a. We
show that any algorithm that breaks the key agreement protocol with this restriction can be used to compute
P−1. First observe that the secret key Ka for the set a = {1, 2, . . . k} of users is related to the public keys
{Y1, Y2, . . . Yk} as:

Ka = P k−1
k∏

i=1

Xi = P−1 ?
k∏

i=1

Yi (9)

19

We use the security model of security of multiparty key agreement similar to the one used in [7], namely
security under a one-time key attack. The difference here is that we allow the attacker to choose the set of
public keys to attack. Formally, we define a one-time key attack on a multiparty key agreement using game 1.

Game 1

Initialize. To initialize the game, the challenger C gives a security parameter τ to the adversary. The
adversary A responds with a value µ1 ∈ N

Challenge. The challenger performs the key generation phase and gives a set {Y1, Y2, . . . Yµ1} of µ1 public
keys to A.

Output. Eventually A outputs a pair 〈a,Ka〉.

Result: A wins the game if a ⊆ {1, 2, . . . µ1} and Ka is the group private key of a.

Definition 5.1. We say that adversary A (µ1, δ1, ε1)-breaks the key agreement protocol in an one-time key
attack if for a total of µ1 public keys output in the setup phase A runs at most time δ1 and the probability of A
winning game 1 is at least ε1. Alternatively, we say that the key agreement protocol is (µ1, δ1, ε1)-secure under
a one-time key attack if no such adversary exists.

The next theorem shows that the key agreement protocol is secure under a one-time key attack if the group
inversion problem is hard.

Theorem 5.1. Let the O-SAOWF be (·, δ, ε)-secure under an adaptive attack. Then the multiparty key agree-
ment protocol is (µ1, δ1, ε1)-secure in a one-time key attack, where δ ≤ δ1 + Θ(c1µ1) and ε = ε1. Here, c1 is the
time for a multiplication in Z∗n.

Proof. Let the O-SAOWF be (·, δ, ε)-secure under an adaptive attack and let A be an algorithm that (µ1, δ1, ε1)-
breaks the key agreement protocol in a one-time key attack. We construct an algorithm B that uses A to solve
GIPG in at most δ time with probability at least ε, thus arriving at a contradiction. The input to B is P ∈ G
and its goal is to output P−1. B simulates the challenger of game 1 and runs algorithm A as follows.

Initialize. B gives the security parameter τ to A who replies with µ1.

Challenge. B generates (Y1, σY1), (Y2, σY2), . . . (Yµ1 , σYµ1
) R← Sample(params) ∈ G × Z∗n and gives the

(µ1 + 1)-tuple (Y1, Y2, . . . Yµ1 , P) to A.

Output. Eventually A outputs a pair 〈a,Ka〉.

Result: If 〈a,Ka〉 is a winning configuration, then a ⊆ {1, 2, . . . µ1} and Ka = P−1 ?
∏

i∈a Yi by virtue of
equation 9. Clearly, the simulation provided by B is perfect. Algorithm B then proceeds as follows:

i. If 〈a,Ka〉 is not a winning configuration, B reports failure and terminates.

ii. We know that 〈a,Ka〉 is a winning configuration. Algorithm B sets σY ←
∏

i∈a σYi mod n. Thus,
σY is the sampling information of

∏
i∈a Yi (see section 4.3, item 3).

iii. B sets result← T (σY ,−1,Ka) and outputs result.

Algorithm B is correct because

T (σY ,−1,Ka) = (
∏
i∈a

Yi)
−1

? Ka = (
∏
i∈a

Yi)
−1

? P−1 ?
∏
i∈a

Yi = P−1

The running time of B is the running time of A plus the time required for generating the µ1 public keys; the
time required for computing T ; and the time required for at most µ1 multiplications in Z∗n. The probability of
B’s success is the same as the probability of A’s success. This gives the bounds.

5.3 Signatures

As noted in [10], SAOWFs give rise to signature schemes. Here, we describe two signature schemes using
O-SAOWFs: ordinary signatures and multi-user signatures. A signature scheme consists of three algorithms
KeyGen, Sign and VerifySig, where the algorithms have their usual constraints [22]. Our message space is N.

20

5.3.1 Single-User Signatures

This is a variation of the scheme for single-user signatures described in [6].

KeyGen. This algorithm is described in section 5.1. The private key of user i is σXi
∈ Z∗n. The public

key is Yi = Xi ? P ∈ G.

Sign. Let m ∈ N be the message. To sign m, user i computes the signature S(i,m) as:

S(i,m) ← T (σXi
,m, P) = Xi

m ? P

VerifySig. To verify a signature S(i,m) of user i on message m, we check if the following holds:

E(Yi,m) ?= O(S(i,m), E(P,m− 1))

In other words, we check if Yi
m ?= S(i.m) ? Pm−1

5.3.2 Multi-User And Ring Signatures

The above construction of single-user signatures can be trivially extended to multi-user signatures. To sign
messages, members of a group must share a secret group key.

KeyGen. This algorithm is described in section 5.2. Without loss of generality, assume that any of
the set a = {1, 2, . . . j} of users want to independently sign messages using the group private key
Ka = P j−1?

∏j
i=1 Xi such that the signatures can be verified using the group public key Ya =

∏j
i=1 Yi.

Sign. Let m ∈ N be the message. To sign m, any member i ∈ a computes the signature S(a,m) as:

S(a,m) ← Ô(Ê(Ka,m), P) = Ka
m ? P

VerifySig. To verify a signature S(a,m) of user i ∈ a on message m, we check if the following holds:

E(Ya,m) ?= O(S(a,m), E(P,m− 1))

In other words, we check if Ya
m ?= S(a,m) ? Pm−1

Given a signature of some set a, it is not possible for any group controller to revoke the anonymity of the
signer (since there is no group controller). Thus, the above scheme is an example of ring signatures [34].

5.3.3 Security Of The Signature Schemes

The strongest model for security of signatures is security against existential forgery under an adaptive chosen
message attack [22], where the attacker is required to output a successful forgery under the challenge public key
after having access to the signing oracle. However, we only prove the security of our schemes in a weaker model
that we call security against existential forgery under a non-adaptive chosen message attack. In a non-adaptive
attack, the attacker is not allowed to make any signature queries. We define this using the following game
between the challenger C and an adversary A.

Game 2

Initialize. To initialize the game, the challenger gives a security parameter τ to the adversary. The
adversary A outputs µ2 ∈ N.

Challenge. The challenger C performs the key generation phase and gives a set {Y1, Y2, . . . Yµ2} of µ2

public keys to A.

Output. Eventually A outputs a tuple
〈
a, S(a,m),m

〉
.

Result: A wins the game if a ⊆ {1, 2, . . . µ2} and S(a,m) is a valid signature by a on the message m.

21

Definition 5.2. We say that adversary A (µ2, δ2, ε2)-breaks the signature scheme in a non-adaptive chosen
message attack if for a total of µ2 public keys output in the setup phase A runs at most time δ2 and the
probability of A winning game 2 is at least ε2. Alternatively, we say that the signature scheme is (µ2, δ2, ε2)-
secure under a non-adaptive chosen message attack if no such adversary exists.

The next theorem shows that any algorithm that is successful in existential forgery of signatures under a
non-adaptive chosen message attack can be used to solve GIPG. First observe that S(a,m) can be rewritten as

S(a,m) = Ka
m ? P = P 1−m ? (

j∏
i=1

Yi)
m (10)

Also note that game 2 considers both single and multi-user signatures.

Theorem 5.2. Let the O-SAOWF be (kO, δ, ε)-secure under an adaptive attack. Then the signature scheme is
(µ2, δ2, ε2)-secure under a non-adaptive chosen message attack, where kO ≤ c2 log n; δ ≤ δ2 +Θ(µ2); and ε ≥ ε2.
Here, c2 is a constant.

Proof. Let the O-SAOWF be (kO, δ, ε)-secure under an adaptive attack and let A be an algorithm that
(µ2, δ2, ε2)-breaks the signature scheme in a non-adaptive chosen message attack. We construct an algorithm B
that uses A to solve GIPG in at most δ time with probability at least ε, thus arriving at a contradiction. The
input to B is P ∈ G and its goal is to output P−1. B simulates the challenger of game 2 and runs algorithm A.

Initialize. B gives the parameter τ to A, who outputs µ2 ∈ N.

Challenge. B generates (Y1, σY1), (Y2, σY2), . . . (Yj , σYµ2
) R← Sample(params) ∈ G × Z∗n and gives the

(µ2 + 1)-tuple (Y1, Y2, . . . Yµ2 , P) as the input to A.
Output. Finally A outputs a tuple

〈
a, S(a,m),m

〉
.

Result: If the tuple
〈
a, S(a,m),m

〉
represents a winning configuration, then a ⊆ {1, 2, . . . µ2} and S(a,m) =

P 1−m ? (
∏

i∈a Yi)
m by virtue of equation 10. provided by B is perfect. Algorithm B then proceeds as

follows:

i. If
〈
a, S(a,m),m

〉
not a winning configuration, algorithm B reports failure and terminates.

ii. We know that a ⊆ {1, 2, . . . µ2} and S(a,m) = P 1−m ? (
∏

i∈a Yi)
m. Algorithm B then sets C ←

E(P,m − 2) = Pm−2 and σY ←
∏

i∈a σYi
mod n. Thus, σY is the sampling information of

∏
i∈a Yi

(see section 4.3, item 3).
iii. Finally, B sets result← T (σY ,−m,O(S(a,m), C)) and outputs result.

Algorithm B is correct because

T (σY ,−m,O(S(a,m), C)) = (
∏
i∈a

Yi)
−m

? S(a,m) ? C

= (
∏
i∈a

Yi)
−m

? (P 1−m ?
∏
i∈a

Yi) ? (Pm−2) = P−1

The running time of B is the running time of A plus the time required for generating the µ2 public keys; the
time required for computing T ; and the time required for at most µ2 multiplications in Z∗n. The probability of B’s
success is the same as the probability of A’s success. Finally, B queries the oracle for computing O(S(a,m), C)
and E(P,m − 2). This amounts to a maximum of c2 log n queries for some constant c2. Thus, we have the
required bounds.

5.4 Broadcast Encryption

In a broadcast encryption scheme [35], anyone can encrypt a message addressed to a closed set of users using
their public keys such that only those users have the ability to decrypt the message (we do not consider schemes
that allow traitor tracing [36]). Using our method, the size of ciphertexts and public/private keys is O(1) and
for a set of k users, a total of O(k) calls to the oracle O are required for encryption and decryption. A broadcast
encryption scheme consists of three algorithms KeyGen, BC-Encrypt and BC-Decrypt, where the algorithms have
their usual constraints [35]. (We use the prefix ‘BC’ to indicate ‘broadcast’).

22

KeyGen. This algorithm is described in section 5.2. Without loss of generality, assume that messages will
be encrypted to any arbitrary set a = {1, 2, . . . k} of k users with public keys {Y1, Y2, . . . Yk}. The
sender of the message generates the group public key Ya by making k − 1 oracle queries as follows:

Ya ←
〈
O

〉k

i=1
(Yi) =

k∏
i=1

Yi = P k ?
k∏

i=1

Xi

and any receiver i ∈ a must independently compute the group private key Ka by making k−2 oracle
queries as follows:

Ka ← T (σXj , 1,
k∏

i=1;i 6=j

Yi) = P k−1 ?
k∏

i=1

Xi

Our message space is {0, 1}l, where l ≤ log2 n. We additionally require a cryptographic hash function
H : G1 7→ {0, 1}l, that will be treated as a random oracle in the proofs.7

BC-Encrypt. To encrypt m ∈ {0, 1}l to the set a = {1, 2, . . . k} of k users with group public key Ya,
generate (R, σR) R← Sample(params) ∈ G× Z∗n and compute

c1 ← m⊕H(T (σR, 1, Ya)) = m⊕H(R ? Ya)

C2 ← T (σR, 1, P) = R ? P

Here ⊕ denotes the XOR operator. The ciphertext is C = (c1, C2) ∈ {0, 1}l ×G.

BC-Decrypt. To decrypt ciphertext (c1, C2) using group private key Ka, compute

m← c1 ⊕H(Ô(Ka, C2)) = c1 ⊕H(Ka ? C2)

The decryption is correct, because for a legitimate ciphertext we have

(Ka ? C2) = (P k−1 ?

k∏
i=1

Xi) ? (R ? P) = R ? P k ?

k∏
i=1

Xi = R ? Ya

5.4.1 Security Of Broadcast Encryption

We use a restricted model for security called security under an adaptive chosen plaintext attack (IND-CPA).
In this model, we fix some arbitrary set a = {1, 2, . . . k} of k users and require the adversary to attack the
semantic security of the scheme without access to a decryption oracle. However, we allow the adversary to
choose the subset of keys it is attacking. Since full security in the sense of adaptive chosen ciphertext attacks
(IND-CCA) in the random oracle model can be achieved using the Fujisaki-Okamoto transformation [37], we
only prove security in the IND-CPA model. IND-CPA security of a broadcast encryption scheme is defined using
the following game between a challenger C and an adversary A.

Game 3

Initialize. The challenger C gives a security parameter τ to the adversary A, who outputs a tuple µ3.
The challenger performs the key generation phase and gives a set {Y1, Y2, . . . Yµ3} of µ3 public keys
to A.

Challenge. A generates two messages m0,m1 along with a set a ⊆ {1, 2, . . . µ3} of users. The challenger
chooses a bit b

R← {0, 1} and outputs the encryption of mb under the group public key Ya of a.

Guess. Eventually A outputs a bit b′ ∈ {0, 1}
7To construct this hash function, let A = (x, y) ∈ G ∈ G1 × Z∗n be some input and let H1 : G1 7→ {0, 1}l be a hash function.

Then H(A) = H1(x).

23

Result: A wins the game if b = b′.

We refer to such an adversary A as an IND-CPA adversary. We define A’s advantage in attacking the
broadcast encryption scheme Adv-cpaA(τ) as:

Adv-cpaA(τ) =
∣∣∣∣Pr[b = b′]− 1

2

∣∣∣∣ ,

where the probability is taken over the random coin tosses of C and A.

Definition 5.3. Let H be a random oracle. We say that an IND-CPA adversary A (µ3, δ3, k3, ε3)-breaks the
broadcast encryption scheme in a adaptive chosen plaintext attack if for a total of µ3 public keys output in the
setup phase A runs at most time δ3; A makes at most k3 queries to the oracle for H; and Adv-cpaA(τ) at least
ε3. Alternatively, we say that the broadcast encryption scheme is (µ3, δ3, k3, ε3)-secure under a adaptive chosen
plaintext attack if no such adversary A exists.

The next theorem shows that any IND-CPA adversary A with non-negligible advantage Adv-cpaA(τ) in the
random oracle model can be used to solve the group inversion problem with non-negligible advantage. The
proof is similar to the proof of [23, lemma 4.3]

Theorem 5.3. Let H be a random oracle and let the O-SAOWF be (kO, δ, ε)-secure under an adaptive attack.
Then the broadcast encryption scheme is (µ3, δ3, k3, ε3)-secure under an adaptive chosen plaintext attack, where
kO ≤ k3; δ ≤ δ3 + Θ(c1µ3) + Θ(c2k3); and ε ≥ 2ε3. Here, c1 is the time for one multiplication in Z∗n, and c2 is
a constant that depends on the oracle O.

Proof. Let the O-SAOWF be (kO, δ, ε)-secure under an adaptive attack and let A be an algorithm that
(µ3, δ3, k3, ε3)-breaks the key agreement protocol in an adaptive chosen plaintext attack. We construct an
algorithm B that uses A to solve GIPG in at most δ time with probability at least ε and making at most kO
oracle queries, thus arriving at a contradiction. The input to B is P ∈ G and its goal is to output P−1. B
simulates the challenger of game 3 and runs A.

Initialize. B gives the security parameter τ to A who replies with µ3. B generates

(Y1, σY1), (Y2, σY2), . . . (Yµ3 , σYµ3
) R← Sample(params) ∈ G× Z∗n,

and gives the (µ3 + 1)-tuple (Y1, Y2, . . . Yµ3 , P) to A.

H-queries. At any time, A may query the random oracle H. To respond to these queries, B maintains
a list of tuples called the Hlist. Each entry in this list is a tuple of the form 〈Zj ,Hj〉. Initially this
list is empty. To respond to a H query on Zi, algorithm B does the following:

i. If the query Zi already appears on theHlist in a tuple 〈Zi,Hi〉, then B responds withH(Zi) = Hi.
ii. Otherwise, B just picks a random string Hi ∈ {0, 1}l and adds the tuple 〈Zi,Hi〉 to the Hlist. It

responds with H(Zi) = Hi.

Challenge. A generates two messages m0,m1 along with a set a ⊆ {1, 2, . . . µ3} and sends the tuple
(m0,m1, a) to B. Algorithm B picks random c1 ∈ {0, 1}l; generates (C2, σC2)

R← Sample; defines the
ciphertext C = (c1, C2); and gives C as the challenge ciphertext to A. Observe that the decryption
of C is c1 ⊕H(P−1 ? C2 ?

∏
i∈a Yi).

Algorithm B also computes σW ← σC2 ·
∏

i∈a σYi
mod n. Clearly, σW is the sampling information of

W = C2 ?
∏

i∈a Yi (see section 4.3, item 3).

Guess. Eventually A outputs a bit b′ ∈ {0, 1}. At this point, B searches the Hlist to find a tuple 〈Zj ,Hj〉
such that

O(Zj , P) = W (11)

If such a tuple does not exist in the Hlist, algorithm B reports failure and terminates. Otherwise, B
sets result ← T (σW ,−1, Zj) = W−1 ? Zj . Algorithm B outputs result as the solution to the GIPG
instance.

24

Clearly, the simulation provided by algorithm B is perfect. Therefore, from claims 1 and 2 in the proof
of [23, lemma 4.2], we can conclude that

Pr
[
a tuple 〈Zj ,Hj〉 appears in the Hlist such that equation 11 is satisfied

]
≥ 2ε3

Thus, ε ≥ 2ε3. Also, algorithm B makes at most k3 queries to O. The running time of B is the running time
of A plus the time required for generating the µ3 public keys; the time required for computing T ; the time
required for searching up to k3 entries in the Hlist; and the time required for at most µ3 multiplications in Z∗n.
Thus, δ ≤ δ3 + Θ(c1µ3) + Θ(c2k3), where c1 is the time for one multiplication in Z∗n, and c2 is the time for
checking one entry of the Hlist. Combining the above results, we have the required bounds

6 Implementation And Efficiency

In this section, we will briefly touch upon issues relating to implementation and efficiency of our primitive.
Although our construction of O-SAOWF has other applications as demonstrated, we feel that its primary use
will be for highly dynamic group key agreement in applications like “secure chat”. Our system offers the
advantage that the group key need not be precomputed for communication between group members. Thus,
there is no specific ordering between the users.

6.1 Key Size

Factoring n enables an attacker to solve GIPG. Based on the current state-of-the-art factoring algorithms, we
suggest using the modulus n of about 313 decimal digits (≈ 1024 bits) for moderate security applications.8 This
also makes computing discrete logarithms in G1 intractable using Pollard’s rho method [25, p.128]. Using these
parameters elements of G can be represented with at most ≈ 384 bytes. The public keys Yi of section 5.1, which
are elements of G will be 384 bytes each. The private keys σXi

on the other hand, which are elements of Z∗n
will be 128 bytes.

6.2 Query Overhead

In all the above protocols, we have been working in the equivalence classes of G rather than the individual
elements themselves. For any A = (x, y) ∈ G, the equivalence class [A] is completely characterized by the first
element x. The second element y is used only as an ‘auxiliary’ input for the oracle, and is useless to anyone
who does not know the factorization of n. Thus, verification of the second element cannot provide additional
security. With this consideration in mind, we slightly modify the Verify algorithm of section 4.4 and remove
the call to the Verify-In-Group subroutine, since computing the bilinear pairing allows verification of the first
element x. The computation overhead is given in table 1.

Algorithm Exp G1 Exp Z∗
n2 Multi Z∗

n2 Multi Z∗
n Pairing

Compute 3 4 1 2 -

V-Compute 3 4 1 2 2

PV-Compute 5 5 1 2 2

Table 1: Computation involved in a query

6.3 Batch Queries

For increased efficiency in partial public key computation, we will assume that calls to the oracle can be batched
as follows, for any i inputs A1, A2, . . . Ai ∈ G, the oracle outputs A1?A2?. . . Ai. In this case, for key computation
in a group of m users each user must make a batch call requiring a message of size O(m) bits to be sent to the
oracle. The reply of the oracle constitutes just one element of size O(1). However, we lose the ability to verify
the output of the oracle in a “batch query”.

8See the RSA factoring challenge (http://www.rsasecurity.com/rsalabs/node.asp?id=2092) and the article “TWIRL and RSA
key size” (http://www.rsasecurity.com/rsalabs/node.asp?id=2004). It is thought that 1024 bit keys will be secure till the year 2010
while 2048 bit keys will be secure till the year 2030.

25

6.4 Verifiability Of The Oracle

If verifiability of the oracle is not required (i.e. we need protection only from passive adversaries) then instead
of the bilinear group G1, we can use a finite field having a multiplicative subgroup of order n. The set S defined
in section 4.2 is then the φ(n) elements of this field of order n.

6.5 Fast Paillier Decryption

Since each computation of ? requires two decryptions, it is desirable to obtain a faster decryption procedure.
In [29, section 6], a fast variant of the Paillier cryptosystem is presented where decryption does not require the
factors of n and runs with almost quadratic complexity. In this variant, λ = (p − 1)(q − 1) has a large prime
factor ν. The public key is (t, n) such that the order of t ∈ Z∗n2 is νn. The private key is ν. Encryption and
decryption is described below.

Encrypt Plaintext is m ∈ Zn. Generate r
R← Z∗n and compute c = tm+nr mod n2. The ciphertext is c.

Decrypt Ciphertext is c ∈ Z∗n2 . Compute m = L(cν mod n2)
L(tν mod n2) mod n.

Semantic security of this variant does not depend on the DCRA (section 3.2) but instead relies on the weaker
Decisional Partial Discrete Logarithm Assumption (DPDLA) [29, theorem 20], which states that the following
problem is hard.

Decisional Partial Discrete Logarithm Problem (DPDLP(t,n)) Fix any t ∈ Z∗n2 such that the order of
t is νn for unknown ν. Given w ∈ 〈t〉 and x ∈ Zn, output 1 if ∃y ∈ Z∗n s.t w ≡ txyn (mod n2) otherwise
output 0.

6.6 Decentralizing The Oracle

Distributing the oracle is desirable, since each oracle call involves 3 exponentiations in G1 (irrespective of the
decryption algorithm). It is possible to share the Paillier decryption key (known only to the oracle) between
different trusted authorities with the weakness that compromise of even one would compromise the entire system.
We close this section with a comparison of our scheme with previously proposed group key agreement methods
in table 2.

7 Conclusion

In this paper, we presented a practical implementation of a new cryptographic primitive known as an Oracle
Strong Associative One-Way Function (O-SAOWF). As some practical applications of this primitive, we pre-
sented a one-round key agreement scheme for dynamic ad-hoc groups based on the protocol due to Rabi and
Sherman [6].

The scheme can be extended to group signatures as demonstrated in section 5.3. In reality, we also demon-
strate a “pay-per-use” cryptographic primitive using the oracle. The advantage of our scheme in comparison
with other centralized schemes is that the central controller does not maintain any state information of the
groups it is managing. It just acts as a “computing device” for users registered with it. We envisage several
interesting applications of this primitive in the near future.

As we demonstrate, the ability to “multiply” using the oracle does not give us the ability to “divide” in
G because its order is unknown. This ensures that an “Euclidean”-like Algorithm does not work here. The
curious property of our O-SAOWF is that it is weakly invertible. In other words, given A ∈ G, it is possible to
compute two pairs (B,B′) ∈ G2 such that A = B ? B′ even without using the oracle.9 We conclude this section
with two open questions.

1 Prove/disprove conjuncture 4.9. In other words, find the complexity of the group inversion problem GIPG.

2 Construct a group of hidden order where the group operation is computable and strongly non-invertible.
In other words, exhibit a practical SAOWF construction.

9To see this, sample B ← G. Then B′ = B−1 ? A.

26

Membership size is m O-SAOWF GDH basic [5] AGKE [38] GKE[39]

Number of rounds 1 m− 1
sequential

2
sequential

2
sequential

Synchronization /
ordering needed?

No Yes Yes Yes

Controller needed? No No Yes (initial key
distribution)

Yes (group key
distribution)

Interaction needed? No Yes Yes Yes (for
synchronization)

Key Agreement
method

Oracle Self
(interactive)

Self
(broadcast)

Controller

Message size per
user (sent)∗

(m− 1)k1 (m− 1)k2 k3 (broadcast
only, otherwise
mk3

2k4 (to
controller)

Message size per
user (rcvd)∗

k1 (no verification),
otherwise
(m− 2)k1

(m− 1)k2 mk3 k4

Merge with m1 users 1 round
(total 2(m + m1)
messages)

O(m + m1)
rounds
(fresh key)

2 rounds
(total m + m1

broadcasts)

2 rounds
(total 2m1 + m
messages)

Part with m1 users no oracle calls
needed if partial
keys are cached

O(m−m1)
rounds
(fresh key)

2 rounds (m−m1

to m + m1

broadcasts)

1 round
(total m−m1

messages)

Partial Public
keys reusable ?

Yes No No No

Optimization
Possible?

Yes∗∗ Not likely Not likely Not likely

Protection under
active attack

Yes#

(Verifiable Oracle)
Susceptible to a
man-in-the-
middle attack

Authentication af-
ter 2nd
round

Insecure under an
active attack [40]

Protection under
passive attack

Group Inversion
Problem

Diffie-Hellman
Problem

Diffie-Hellman
Problem

Diffie-Hellman
Problem

* We assume that k1, k2 . . . kn are constants.

** Assuming that intermediate controllers are used and partial public keys are cached.
If public keys are known in advance, the verifiability of the oracle ensures implicit group key authentication.

Table 2: Comparison of our group key agreement scheme

Acknowledgment

We would like to thank Ronald Rivest, Virendra Sule, Pascal Paillier and Chunbo Ma for useful feedback during
the preparation of this manuscript.

References

[1] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Transactions on Information
Theory, IT-22(6):644–654, 1976.

[2] Antoine Joux. A one round protocol for tripartite Diffie-Hellman. In ANTS-IV: Proceedings of the 4th
International Symposium on Algorithmic Number Theory, pages 385–394, London, UK, 2000. Springer-
Verlag.

[3] Sandro Rafaeli and David Hutchison. A survey of key management for secure group communication. ACM
Comput. Surv., 35(3):309–329, 2003.

27

[4] Xukai Zou, Byrav Ramamurthy, and Spyros S. Magliveras. Secure Group Communications Over Data
Networks. Springer, New York, NY, USA, 2005.

[5] Michael Steiner, Gene Tsudik, and Michael Waidner. CLIQUES: A new approach to group key agreement.
In Proceedings of the 18th International Conference on Distributed Computing Systems (ICDCS’98), pages
380–387, Amsterdam, 1998. IEEE Computer Society Press.

[6] Muhammad Rabi and Alan T. Sherman. An observation on associative one-way functions in complexity
theory. Inf. Process. Lett., 64(5):239–244, 1997.

[7] Dan Boneh and Alice Silverberg. Applications of multilinear forms to cryptography. Cryptology ePrint
Archive, Report 2002/080, 2002.

[8] Alan T. Sherman. Cryptology and VLSI (a two-part dissertation). I, II, Detecting and exploiting algebraic
weaknesses in cryptosystems. Algorithms for placing modules on a custom VLSI chip. Thesis (Ph.D.),
Laboratory for Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA, October
1986. Supervised by Ronald Linn Rivest.

[9] Burton S. Kaliksi, Jr., Ronald L. Rivest, and Alan T. Sherman. Is the Data Encryption Standard a group?
Journal of Cryptology, 1(1):3–36, 1988.

[10] M. Rabi and A. Sherman. Associative one-way functions: A new paradigm for secret-key agreement and
digital signatures. Technical Report CS-TR-3183/UMIACS-TR-93-124, 1993.

[11] Christopher M. Homan. Low ambiguity in strong, total, associative, one-way functions, 2000.

[12] Alina Beygelzimer, Lance A. Hemaspaandra, Christopher M. Homan, and Jörg Rothe. One-way functions
in worst-case cryptography: Algebraic and security properties. Technical Report TR722, 1999.

[13] Lane A. Hemaspaandra and Jörg Rothe. Creating strong, total, commutative, associative one-way functions
from any one-way function in complexity theory. J. Comput. Syst. Sci., 58(3):648–659, 1999.

[14] Lane A. Hemaspaandra, Jörg Rothe, and Amitabh Saxena. Enforcing and defying associativity, com-
mutativity, totality, and strong noninvertibility for one-way functions in complexity theory. In ICTCS,
2005.

[15] Susan Hohenberger. The cryptographic impact of groups with infeasible inversion. Master’s thesis, Massa-
chusetts Institute of Technology, 2003. Advisor: Ronald L. Rivest.

[16] Amitabh Saxena and Ben Soh. A novel method for authenticating mobile agents with one-way signa-
ture chaining. In Proceedings of The 7th International Symposium on Autonomous Decentralized Systems
(ISADS 05), pages 187–193, China, 2005. IEEE Computer Press.

[17] Lane A. Hemaspaandra, Kari Pasanen, and Jörg Rothe. If P 6= NP then some strongly noninvertible
functions are invertible. In FCT ’01: Proceedings of the 13th International Symposium on Fundamentals
of Computation Theory, pages 162–171. Springer-Verlag, 2001.

[18] Ueli Maurer. Information-theoretic cryptography. In Michael Wiener, editor, Advances in Cryptology —
CRYPTO ’99, volume 1666 of Lecture Notes in Computer Science, pages 47–64. Springer-Verlag, August
1999.

[19] David Chaum. Blind signatures for untraceable payments. In CRYPTO’82, pages 199–203, 1982.

[20] László Babai and Endre Szemerédi. On the complexity of matrix group problems I. In FOCS’1984, pages
229–240, 1984.

[21] Ronald L. Rivest. On the notion of pseudo-free groups. In Moni Naor, editor, TCC, volume 2951 of Lecture
Notes in Computer Science, pages 505–521. Springer, 2004.

[22] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the Weil pairing. In ASIACRYPT
’01: Proceedings of the 7th International Conference on the Theory and Application of Cryptology and
Information Security, pages 514–532, London, UK, 2001. Springer-Verlag.

28

[23] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil pairing. SIAM J. Comput.,
32(3):586–615, 2003.

[24] Paulo S. L. M. Barreto, Hae Yong Kim, Ben Lynn, and Michael Scott. Efficient algorithms for pairing-based
cryptosystems. In CRYPTO ’02: Proceedings of the 22nd Annual International Cryptology Conference on
Advances in Cryptology, pages 354–368, London, UK, 2002. Springer-Verlag.

[25] Alfred J. Menezes, Scott A. Vanstone, and Paul C. Van Oorschot. Handbook of Applied Cryptography. CRC
Press, Inc., Boca Raton, FL, USA, 1996.

[26] Antoine Joux and Kim Nguyen. Separating Decision Diffie-Hellman from Diffie-Hellman in cryptographic
groups. Technical Report 2001/003, 2001.

[27] Neal Koblitz. A course in number theory and cryptography. Springer-Verlag New York, Inc., New York,
NY, USA, 1987.

[28] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-DNF formulas on ciphertexts. In Joe Kilian,
editor, TCC, volume 3378 of Lecture Notes in Computer Science, pages 325–341. Springer, 2005.

[29] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes. In EUROCRYPT,
pages 223–238, 1999.

[30] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and public-key
cryptosystems. Commun. ACM, 21(2):120–126, 1978.

[31] M. O. Rabin. Digitalized signatures and public-key functions as intractable as factorization. Technical
report, Massachusetts Institute of Technology, Cambridge, MA, USA, 1979.

[32] Dario Catalano, Rosario Gennaro, and Nick Howgrave-Graham. The bit security of Paillier’s encryption
scheme and its applications. In EUROCRYPT ’01: Proceedings of the International Conference on the
Theory and Application of Cryptographic Techniques, pages 229–243, London, UK, 2001. Springer-Verlag.

[33] D. Catalano, R. Gennaro, and N. H. Graham. Paillier’s trapdoor function hides up to O(n) bits. Journal
of Cryptology, 15(4):251–269, 2002.

[34] Ronald L. Rivest, Adi Shamir, and Yael Tauman. How to leak a secret. Lecture Notes in Computer Science,
2248:552–??, 2001.

[35] Amos Fiat and Moni Naor. Broadcast encryption. Lecture Notes in Computer Science, 773:480–??, 1994.

[36] Hervé Chabanne, Duong Hieu Phan, and David Pointcheval. Public traceability in traitor tracing schemes.
In Ronald Cramer, editor, EUROCRYPT, volume 3494 of Lecture Notes in Computer Science, pages 542–
558. Springer, 2005.

[37] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and symmetric encryption
schemes. Lecture Notes in Computer Science, 1666:537–554, 1999.

[38] Hyun-Jeong Kim, Su-Mi Lee, and Dong Hoon Lee. Constant-round authenticated group key exchange
for dynamic groups. In Pil Joong Lee, editor, ASIACRYPT, volume 3329 of Lecture Notes in Computer
Science, pages 245–259. Springer, 2004.

[39] E. Bresson, O. Chevassut, A. Essiari, and D. Pointcheval. Mutual authentication and group key agreement
for low-power mobile devices, 2003.

[40] Junghyun Nam, Seungjoo Kim, and Dongho Won. Attacks on Bresson-Chevassut-Essiari-Pointcheval’s
group key agreement scheme for low-power mobile devices. Cryptology ePrint Archive, Report 2004/251,
2004.

29

APPENDIX

A Soundness Of Verify-In-Group Algorithm

The reader is referred to section 4.4, algorithm A-4 for the notation used here. First we define the following
problem.

Decision Exponent Class Problem [DECP(t,n,g,G1)]: Given {t, n, g,G1} ⊂ params and a pair (x, y) ∈ G1×
Z∗n2 , where x = ga and y = tbrn mod n2 for unknowns (a, b, r) ∈ Zn × Zn × Z∗n, output 1 if [a ≡ b
(mod p) Y a ≡ b (mod q)], otherwise output 0.

The following theorem shows that the Verify-In-Group algorithm is sound if the problems DECP(t,n,g,G1) and
CDHP(g,G1) are intractable.

Theorem A.1. If the decision exponent class problem and the computational Diffie-Hellman problem are hard
then the Verify-In-Group algorithm is sound.

Proof. The input to the Verify-In-Group algorithm is (x, y) ∈ G1 × Z∗n2 . We must show that if the algorithm
outputs 1 then (x, y) ∈ G. Let x = ga and y = tbrn mod n2 for unknowns (a, b, r) ∈ Zn × Zn × Z∗n. The
transformation of (x, y) to (x1, y1) and (x2, y2) in step 2 of the algorithm can be denoted by the mapping

f1 : Zn × Zn × Z∗n 7→ G1 × Z∗n2

(u, v, w) 7→ (gau+v, tbu+vrunwn mod n2)

Consider the cases when the algorithm outputs 1.

Case 1. [a ≡ b (mod p) ∧ a ≡ b (mod q)]: In this case a = b and so (x, y) ∈ G. Therefore, f1(u, v, w) ∈
G ∀ (u, v, w) ∈ domain(f1). In this case, the output of Verify-In-Group algorithm is consistent with its
requirements.

Case 2. [a 6≡ b (mod p) ∧ a 6≡ b (mod q)]: It is not hard to prove that the mapping f1 is a bijection in this
case. Since both sides of f1 have the same number of elements n2φ(n), it is enough to prove that f1 is
invertible with respect to every element in G1 × Z∗n2 . Let (ga1 , tb1r1

n mod n2) ∈ G1 × Z∗n2 be an element
of the right side of f1. If a preimage (u1, v1, w1) of f1 exists for this element, then we must have

a1 ≡ au1 + v1 (mod n)
b1 ≡ bu1 + v1 (mod n)
r1 ≡ ru1w1 (mod n)

 (12)

Clearly equation 12 has a unique solution in (u1, v1, w1) for all (a1, b1, r1) if and only if (a− b) ∈ Z∗n. In
other words, if and only if gcd(a − b, n) = 1. Note that gcd(a − b, n) = 1 is another way of saying that
[a 6≡ b (mod p) ∧ a 6≡ b (mod q)].

Since f1 is a bijection, the distributions {(x1, y1)} and {(x2, y2)} are identical to a random distribution
in G1 × Z∗n2 . If the oracle O∗ can make the algorithm output 1 then we can use O∗ to solve CDHP(g,G1)

(see section 3.1) as follows:

1 Input is g, gσ1 , gσ2 and our goal is to output gσ1σ2 .

2 Generate y1, y2
R← Z∗n2

3 Set x1 ← gσ1 and x2 ← gσ2

4 Give (x1, y1), (x2, y2) as input to oracle O∗ in step 3 of the algorithm instead of the real values.

Since the forged and real distributions of {(x1, y1)} and {(x2, y2)} are identical, the oracle O∗ cannot
distinguish between the forged and real inputs. Accordingly it will reply with (x′, y′) such that the
algorithm outputs 1 in step 4. In this case x′ is the required solution to the CDHP(g,G1) instance.

30

Case 3. [a ≡ b (mod p) ∧ a 6≡ b (mod q)]: (or gcd(a− b, n) > 1 and a 6= b)

The probability of a randomly picked pair (x, y) ∈ G1 × Z∗n2 such that gcd(a − b, n) > 1 and a 6= b is
p+q−2

pq which can be neglected for large p, q. On the other hand, if the adversary (O∗) knows in advance
that gcd(a − b, n) > 1 but does not know both of {a, b}, then the adversary knows that the distribution
of the image

f1(u1, v1, w1) = (ga1 , tb1r1
n mod n2)

always satisfies a1 ≡ b1 (mod p). In this case, our security relies on the adversary’s inability to distin-
guish elements of this distribution from randomly chosen elements of G1 × Z∗n2 assuming the hardness
of DECP(t,n,g,G1). Under this assumption, we can use the adversary O∗ to solve CDHP(g,G1) as in the
previous case. The case of [a 6≡ b (mod p) ∧ a ≡ b (mod q)] is handled similarly.

Thus, we have proved that the algorithm is sound under the assumption that the problems DECP(t,n,g,G1) and
CDHP(g,G1) are intractable.

B Identity Based Encryption Using O-SAOWFs

In this section we give (without a security proof) an Identity Based Encryption (IBE) scheme as another
application of our O-SAOWFs. We refer the reader to [23] for the definitions of an IBE scheme and to section 4.4
for the notation used here. In summary, our IBE scheme has four PPT algorithms Setup-IBE, KeyGen, ID-Encrypt
and ID-Decrypt. The definition of “PPT” has the usual caveat; oracles are considered as algorithms.

1 The Setup-IBE algorithm takes as input some security parameter. It outputs the IBE system parameters
par and the IBE master key m-key.

2 The KeyGen algorithm takes as input the value par, m-key and a random string i. It outputs the private
key prv-keyi corresponding to the string i.

3 The ID-Encrypt algorithm takes as input par, a random message m and a random string i. It outputs a
ciphertext c.

4 The ID-Decrypt algorithm takes as input par, a private key prv-keyi (corresponding to some string i) and
ciphertext c. It outputs a message m.

The ID-Encrypt and ID-Decrypt algorithms satisfy the standard consistency constraint:

∀m ∀i ID-Decrypt(par, ID-Encrypt(par,m, i),KeyGen(par,m-key, i)) = m

In an IBE scheme, the master key m-key is known only to a trusted authority known as the Key Generating
Center (KGC) that is responsible for distributing private keys. In our construction although the oracle O is
required for computation, it need not be the Key Generating Center (KGC). The four algorithms are described
below.

1 Setup-IBE: Set (X, σX), (Y, σY) R← Sample(params) and set Z ← T (σX , 1, Y) = X ? Y . Finally set
par← (Y, Z) ∈ G2; m-key← (σX , σY) ∈ Z∗n

2 and output (par,m-key).

2 KeyGen: Let i ∈ N be the input string. Set prv-keyi ← T (σX ,−i, Y) = X−i ? Y ∈ G and output prv-key.

3 ID-Encrypt: Our message space is {0, 1}l where l < log2(n) and we require a cryptographic hash function
H : G 7→ {0, 1}l. To encrypt a message m ∈ {0, 1}l using input string i ∈ N, first generate random
(R, σR) R← Sample(params). Then compute

c1 = m⊕H(T (σR, 1, E(Y, i + 1))) = m⊕H(Y i+1 ? R)

C2 = T (σR, 1, E(Z, i)) = Zi ? R = Xi ? Y i ? R

The ciphertext is (c1, C2).

Both c1 and C2 can be directly computed if Y i+1 and Zi are precomputed.

31

4 ID-Decrypt: To decrypt arbitrary ciphertext (c1, C2) compute

m = c1 ⊕H(Ô(C2, prv-keyi)) = c1 ⊕H(C2 ? X−i ? Y)

Decryption is correct, because for a legitimate ciphertext:

C2 ? X−i ? Y = (Xi ? Y i ? R) ? (X−i ? Y) = Y i+1 ? R

32

	Introduction
	Preliminaries
	Strong Associative One-Way Functions
	Black-Box Constructions
	PV-Oracles
	Oracle SAOWFs (O-SAOWFs)
	Security Of O-SAOWFs

	The Underlying Primitives
	Bilinear Maps
	Problems in Bilinear Maps
	BDH Parameter Generator

	The Paillier Cryptosystem
	Homomorphic Properties

	Our O-SAOWF Construction
	Setup
	Description Of The Underlying Group
	Properties Of The Underlying Group
	A Concrete O-SAOWF Construction
	Notation
	Security Of The Construction

	Applications Of O-SAOWFs
	Key Generation (Setup PKI)
	Multiparty Key Agreement
	Key Agreement Protocol
	Overview Of The Key Agreement Protocol
	Join And Merge Operations
	Forward Secrecy
	Security Of The Key Agreement Protocol

	Signatures
	Single-User Signatures
	Multi-User And Ring Signatures
	Security Of The Signature Schemes

	Broadcast Encryption
	Security Of Broadcast Encryption

	Implementation And Efficiency
	Key Size
	Query Overhead
	Batch Queries
	Verifiability Of The Oracle
	Fast Paillier Decryption
	Decentralizing The Oracle

	Conclusion
	Soundness Of Verify-In-Group Algorithm
	Identity Based Encryption Using O-SAOWFs

