
FPGA Accelerated Tate Pairing Based Cryptosystems over Binary Fields

Chang Shu?, Soonhak Kwon??, and Kris Gaj?

George Mason University, Fairfax, Virginia, USA?

Sungkyunkwan University, Suwon, Korea??

cshu@gmu.edu, shkwon@skku.edu, kgaj@gmu.edu

Abstract

Though the implementation of the Tate pairing is commonly believed to be computationally more
intensive than other cryptographic operations, such as ECC point multiplication, there has been
a substantial progress in speeding up the Tate pairing computations. Because of their inherent
parallelism, the existing Tate pairing algorithms are very suitable for hardware implementation
aimed at achieving a high operation speed. Supersingular elliptic curves over binary fields are
good candidates for hardware implementation due to their simple underlying algorithms and
binary arithmetic. In this paper we propose efficient Tate pairing implementations over binary
fields F2239 and F2283 via FPGA. Though our field sizes are larger than those used in earlier
architectures with the same security strength based on cubic elliptic curves or binary hyperelliptic
curves, fewer multiplications in the underlying field are required, so that the computational latency
for one pairing can be reduced. As a result, our pairing accelerators implemented via FPGA can
run 15-to-25 times faster than other FPGA realizations at the same level of security strength,
and at the same time achieve lower product of latency by area.

Keywords: Tate pairing, elliptic curve, FPGA.

1 Introduction

Pairing based cryptography is an important new branch of public key cryptography. This is because
bilinear pairings allow identity-based cryptographic schemes that were not readily available using
conventional techniques other than parings. The idea of identity-based cryptography is due to
Shamir [15]. After the pioneering works of Boneh and Franklin [17] and Sakai et al. [18], using
pairing techniques for identity based cryptography, numerous other works on pairing based protocols
are proposed.

Though the implementation of the pairing based cryptography was commonly believed to be slow
because of the heavy cost of Tate pairing computations, there has been much progress by the works
of Galbraith et al. [12], Barreto et al. [8], Granger et al. [5, 6], and Duursma and Lee [7]. All their
optimizations involve intricate techniques of deleting unnecessary operations from Miller’s algorithm
[13]. Especially the work of Duursma and Lee [7] promoted the study of efficient pairing computations
of elliptic curves over F3m , which has embedding degree 6. Subsequently their idea was applied to
the case of binary fields by Kwon [11], and generalized to encompass different characteristics and
also hyperelliptic cases by Barreto et al. [9] using eta pairing technique.

To the authors’ knowledge, the first known hardware implementations of pairing computations
are the works of Kerins et al. [1, 2] and of Grabher and Page [3], and they all considered Duursma-Lee
algorithm for cubic fields. Recently Ronans et al. [4] proposed dedicated hardware for computing
eta pairing of hyperelliptic curve based on the algorithm in [9]. Though the cubic elliptic and binary
hyperelliptic cases have strong merits of having high embedding degrees such as 6 and 12, they

1

also have some drawbacks for hardware implementations. First, the arithmetic circuits over F3m are
more costly and complex than those for arithmetic over F2m , and the binary fields can exploit the full
power of gate capacity. Second, the binary hyperelliptic case [4] uses more complicated arithmetic
operations than binary elliptic case and the resulting data path may not be so ideal for a hardware
implementation.

In this paper, we propose a low-latency hardware accelerator for Tate pairing computations on
supersingular elliptic curves over binary fields. Our implementation is based on the algorithms in [9]
and [11]. Though the elliptic curves have rather low embedding degree 4, the arithmetic operations
in the algorithms are simple and easy to parallelize. We have developed a compact design for the
extension field multiplier by sharing XOR array among several multipliers in case that one of the
two operands is the same for those field multiplications. The controller is realized by hardwired
logic. The method to simplify the datapath for the final exponentiation is proposed. The optimal
choices of parameters such as digit sizes of multipliers provide further optimization for the design.
Consequently, our pairing accelerator can run 15-to-25 times as fast as the ones published in [1, 3, 4]
at the same level of security strength with lower product of latency by area.

2 Overview of Tate Pairing Computations

Let E be an elliptic curve over a finite field Fq, where q is a power of a prime. Let l > 0 be an integer
relatively prime to q, and let k be the least positive integer satisfying qk ≡ 1 (mod l). Such k is
called a security multiplier or embedding degree of E and l. Let E(Fq)[l] = {P ∈ E(Fq)|lP = O}.

A divisor D on E is a formal (finite) sum of the points P on the curve, D =
∑

np(P), np ∈ Z.
We call D a degree 0 divisor if

∑
np = 0. A principal divisor is a divisor of the form (f) =

∑
np(P),

where f is a rational function on E and P is a point of E with nP the order of multiplicity of f at
P . One can refer to [14] for elementary introduction to divisor theories. The (reduced) Tate pairing
τl on the set E[l] is defined as follows.

Definition 1. Let P ∈ E[l](Fq) and Q ∈ E[l](Fqk). The Tate pairing is a map

τl : E(Fq)[l]×E(Fqk)[l] −→ F×
qk/(F×

qk)l, with τl(P, Q) = fP (DQ)
qk−1

l ,

where fP is a rational function satisfying (fP) = l(P)− l(O) and DQ is a degree 0 divisor equivalent
to (Q)− (O) such that DQ and (fP) have disjoint supports.

It is well known that τl is a non-degenerate bilinear pairing [14]. An effective algorithm for
finding a rational function fP satisfying (fP) = l(P) − l(O) with P ∈ E[l] is found by Miller [13].
This Miller’s algorithm is further improved by the works of [5, 6, 7, 8, 9, 11, 12].

Let E be a supersingular elliptic curve over F2m with gcd(m, 2) = 1 defined by

Eb : Y 2 + Y = X3 + X + b, b = 0, 1.

Then, it is well known that the corresponding elliptic curves have the embedding degrees k = 4, and
have orders dividing 22m + 1. More precisely we have

|Eb(F2m)| = 2m + 1 + (−1)b2
m+1

2 , if m ≡ 1, 7 (mod 8)

= 2m + 1− (−1)b2
m+1

2 , if m ≡ 3, 5 (mod 8).

2

3 Algorithms for Pairing for Supersingular Elliptic Curves over
Binary Fields

Inspired by the work of Duursma and Lee [7], a nice formula for the Tate paring computation on
supersingular elliptic curve over binary field is given in [9, 11]. Moreover by introducing eta pairing
technique, revised version of [9] contains an improved formula which reduces the number of iterations
by half. The algorithms in [9, 11] use repeated product of the term g2iP (ψQ). Here P, Q are points
on Eb and gP (X,Y) denotes the tangent line at P . That is if P = (α, β), then gP is given by the
equation gP (x, y) = (α2 + 1)x + β2 + b + y. Also ψ is a distortion map (automorphism) defined by

ψ : Eb −→ Eb, with ψ(x, y) = (x + s2, y + sx + t),

where s2 + s + 1 = 0 and t2 + t + s = 0. For a point P = (α, β) on a supersingular curve, It is
straightforward to verify that point doublings follow a nice formula 2iP = φi(α(2i), β(2i)), where φ

is defined as φ(x, y) = (x + 1, y + x) and α(i) denotes α(i) = α2i′
with i′ ≡ i (mod m) and i′ ≥ 0.

Inductively one can show that φi(x, y) = (xi, yi) = (x + i, y + ix + εi), where

εi = 0 if i ≡ 0, 1 (mod 4), and εi = 1 if i ≡ 2, 3 (mod 4).

Thus,
g2iP (x, y) = (α(2i+1)

i + 1)x + β
(2i+1)
i + b + y (1)

where (α(j)
i , β

(j)
i) = φi(α(j), β(j)). Note that α

(j)
i = (αi)(j) = (α(j))i since the automorphism φ and

the Frobenius map are commutative to each other. The results in [9, 11] says that we have the Tate
pairing τ(P, Q) as

τ(P, Q) =

(
m−1∏

i=0

g2iP (ψQ)2
2m−i

)22m−1

.

Based on Equation 1 and modifying original algorithm [9, 11] for parallel implementation we
obtain Algorithm 1.

Algorithm 1 A modified algorithm from [9, 11] for parallel computation of Tate pairing.
Require: P = (α, β), Q = (x, y)

Ensure: C =
(∏m−1

i=0 g2iP (ψQ)2
2m−i

)22m−1

1: C ← 1,
2: α ← α4, β ← β4, u ← x2 + y2 + b + m−1

2 , v ← x2 + 1, θ ← αv {Initialize}
3: for i = 0 to m− 1 do
4: A ← β + θ + u + (α + v)s + t
5: C ← C2

6: C ← C ·A
7: α ← α4, β ← β4, u ← u + v, v ← v + 1, θ ← αv
8: end for
9: C ← C22m−1 {Final exponentiation}

By refining eta pairing approach, Barreto et al. [9] successfully reduced the number of loops by

3

half using Equation 2,

τ(P, Q) =

`(ψQ)

m−1
2∏

i=0

g2iP (ψQ)2
m−1

2 −i

(22m−1)(2m∓2
m+1

2 +1)(2
m+1

2 ±1)

(2)

where `(X, Y) is an equation of line passing 2
m+1

2 P and εP with ε = (−1)
b+ε m+1

2 , and it is given as

`(X, Y) = Y + β + b + εm+1
2

+ (α +
m− 1

2
)(X + α).

The corresponding algorithm in accordance with Equation 2 is shown below.

Algorithm 2 A modified algorithm from [9] for parallel computation of Tate pairing.
Require: P = (α, β), Q = (x, y)

Ensure: C =
(

`(ψQ)
∏m−1

2
i=0 g2iP (ψQ)2

m−1
2 −i

)MT

,

where MT = (22m − 1)(2m ∓ 2
m+1

2 + 1)(2
m+1

2 ± 1)
1: C ← 1
2: α ← α2 + 1, β ← β2 + 1, u ← y + b + 1, v ← x + 1, θ ← αv {Initialize}
3: for i = 0 to m−1

2 do
4: A ← β + θ + u + (α + v + 1)s + t
5: C ← C2

6: C ← C ·A
7: if i < m−1

2 then
8: α ← α4, β ← β4, u ← u + v + 1, v ← v + 1, θ ← αv
9: end if

10: end for
11: A ← A + (α2 + v + 1) + s {Computing `(ψQ)}
12: C ← C ·A {Computing `(ψQ)

∏m−1
2

i=0 g2iP (ψQ)2
m−1

2 −i}
13: C ← CMT {Final exponentiation}

Here we computed the product `(ψQ) = `(x + s2, y + sx + t) after the for-loop unlike in the
original algorithm [9]. This is possible because the last element g

2
m−1

2 P (ψQ) of the product in
Equation 2 is related with `(ψQ) by Equation 3, where the values of α and β can be recovered after
the accumulative multiplication stage without additional memories.

`(ψQ) = g
2

m−1
2 P (ψQ) +

m + 1
2

+ α2 + x + s. (3)

After reviewing previous works [1, 3, 4] on FPGA implementations of Tate pairing and analyzing
comparable finite fields of equivalent security levels, we choose two finite fields F2239 and F2283 .
Detailed reason for choosing these fields is explained in Section 4. Our modified Algorithms 1 and 2
have the following characteristics:

1. They are parallel in the sense that the two crucial operations C ← C2A and θ ← αv can be
done in parallel.

4

2. We use a polynomial basis for our implementation of the above algorithms since a polynomial
basis has an advantage over a normal basis for computing multiplications, even though a normal
basis has a simpler squaring and square root operations.

3. We do not compute square root as in the original algorithms, because in the pentanomial case
with m = 283, we found that square root operation in hardware is rather complicated unlike
for the trinomial case, where square root operation is as fast as squaring [10, 16].

4 Choice of Underlying Fields

The following is the table for applicable curves (having large prime order subgroups) with correspond-
ing MOV security levels. Cofactor means that the order of the given curve divided by the cofactor
is a prime. Cubic elliptic and binary hyperelliptic cases in Table 1 are taken from [6, 9] and the
binary elliptic cases are computed using MAPLE. In Table 1, the bolded numbers in MOV security
are the closest security levels to Fq with q ≈ 21024. At the current state of cryptographic standards,
it is reasonable to choose a field for FPGA implementation whose MOV security is comparable to
1024-bit RSA. In the cubic elliptic case, it is the field F3163 that gives the equivalent security level.
Due to the nature of a cubic field, in which two bits are necessary to represent an element of F3, this
field requires 326 bits to represent an element of the underlying field F3163 and there is no known
FPGA implementations for F3163 . Instead the implementation results for the cases F379 and F397 can
be found in [1, 3]. For binary hyperelliptic case, the field which insures the security level of Fq with
q ≈ 21024 is F2103 , and its implementation can be found in [4].

Table 1: Applicable curves for cubic elliptic, binary hyperelliptic and binary elliptic cases.

Fields Curves Co-Factors MOV Security

Cubic Elliptic

F379 Y 2 = X3 −X − 1 1 750

F397 Y 2 = X3 −X + 1 7 922

F3163 Y 2 = X3 −X − 1 1 1548

F3193 Y 2 = X3 −X − 1 1 1830

F3239 Y 2 = X3 −X − 1 1 2268

F3353 Y 2 = X3 −X − 1 1 3354

Binary Hyperelliptic

F279 Y 2 + Y = X5 + X3 + 1 151681 948

F2103 Y 2 + Y = X5 + X3 13 · 1237 1236

F2127 Y 2 + Y = X5 + X3 + 1 198168459411337 1524

F2199 Y 2 + Y = X5 + X3 + 1 2389 · 121789 2388

F2239 Y 2 + Y = X5 + X3 + 1 1 2868

F2313 Y 2 + Y = X5 + X3 + 1 1 3756

Binary Elliptic

F2239 Y 2 + Y = X3 + X + 1 1 956

F2241 Y 2 + Y = X3 + X + 1 1 964

F2283 Y 2 + Y = X3 + X 5 1132

F2353 Y 2 + Y = X3 + X + 1 1 1412

F2367 Y 2 + Y = X3 + X + 1 1 1468

F2379 Y 2 + Y = X3 + X + 1 1 1516

F2457 Y 2 + Y = X3 + X + 1 1 1828

F2557 Y 2 + Y = X3 + X 5 2228

Although the arithmetic of paring computations on binary elliptic curves is very simple, there is
no known FPGA implementation at this moment, and the reason might be low security multiplier
(embedding degree). However since the hardware implementation of the cubic field is not so efficient
compared with a binary field, and the binary hyperelliptic curve has complex arithmetic operations
for point additions (which make the data path complicated for FPGAs), it is desirable to design an

5

FPGA circuit for binary elliptic case and compare it with existing architectures. From the previous
results on cubic elliptic and binary hyperelliptic cases, we chose two fields F2239 for the comparison
with the cubic case [1, 3] and F2283 for the comparison with the binary hyperelliptic case [4].

5 FPGA implementations

In this section, we focus on the FPGA implementations of Tate pairing on supersingular elliptic curves
over binary fields. The underlying fields, F2239 and F2283 , are constructed via f239(x) = x239 +x36 +1
and f283(x) = x283 + x12 + x7 + x5 + 1 accordingly. Both Alg. 1 and 2 contain mainly two stages,
accumulative multiplication and final exponentiation, in both of which the operations in F24m are
involved. The best approach is to represent F24m as an extension of F2m with a convenient basis [19],
and work over the smaller field whenever possible. We use the basis {1, s, t, st} for F24m over F2m ,
with s ∈ F22m , t ∈ F24m satisfying:

s2 + s + 1 = 0 and t2 + t + s = 0. (4)

To obtain a high-efficiency pairing accelerator, one must consider issues such as: algorithm selec-
tion, top architecture, parallelism, resource sharing and efficient realization of the underlying field
arithmetic.

Algorithm comparison: The most attractive advantage of using Alg. 2 instead of Alg. 1 is
that it takes half iterations in the accumulative multiplication stage. However, a lower complexity
of the data-path for final exponentiation can be gained when using Alg. 1 considering that its final
exponentiation is much simpler than that of Alg. 2. Both algorithms are realized in our experiments.

Top architecture: There are basically two kinds of structures. The first one is the traditional
stored-program machine (SPM), which contains three functional units: a processor, a controller,
and memory [20]. The processor includes registers, datapaths, control lines and ALU. The con-
troller should be capable of steering data to the proper destination according to the instruction. The
memory is used to store instructions and data. To adopt such an architecture, the designer needs to
develop ALU according to the operations necessary for pairing, and accordingly build the instruction
set. Since the intermediate operands of pairing are data-dependent and most of the field operations
can not be completed in a single or small number of clock cycles, it’s not suitable to be pipelined.
Moreover, in program-directed operations, instructions are synchronously fetched, decoded and exe-
cuted, which will deter the operation speed of the accelerator of pairing because of the overhead of
communication between memory and the processor. Alternatively, the pairing processor can be con-
structed via a main controller, interconnection networks, register files and ALU. The controller may
be designed as a finite state machine (FSM), scheduling the computation tasks, i.e., it can generate
the stimulate signals and select signals switching operands for ALU. The intermediate results will
be stored in the register files in order to eliminate the overhead of communication between memory
and ALU. We adopt the second architecture for our pairing processor, as shown in Fig. 1.

Parallelism and sharing resources: One advantage of hardware implementation is that it
supports parallel computations and provides high operation speed as long as multiple operations
can be performed at the same time. In the first stage of both algorithms, the computations C · A
and α · v can be completed simultaneously. Additionally, in the second stage of both algorithms,
by multiplying the conjugates of the elements in extension fields F24m and F22m , the inversion of
extension fields can be transformed into one inversion in F2m and several multiplications in F2m ,
F22m and F24m . We use one special extension field multiplier, namely CA in Fig. 1, to perform the
multiplications involved in both stages. The multiplier CA can be optimized to obtain a compact
design by sharing some combinational circuits among several multipliers in F2m in case of the same

6

Figure 1: Top architecture of the accelerator of Tate pairing over binary fields.

operand. The multiplier computing α · v in the first stage performs multiplications in F2m involved
in final exponentiation as well.

Underlying field arithmetic: The underlying field F2m is constructed via the low Hamming
weight irreducible polynomial, such as a trinomial or a pentanomial, by which reductions become
simple. Squarer should not be shared since the multiplexers introduced are more expensive. Multi-
plier is the most significant component directly determining the performance of the accelerator, so it
is imperative to implement it with high efficiency. Linear feedback shift register (LFSRs) structure
is adopted in our MSD-serial multipliers. The multiplicative inversion in F2m is computed using
Itoh-Tsujii algorithm. Since most intensive computations concentrate in the first stage, it requires
that the multipliers inside the component CA and the multiplier performing α · v should have large
digit sizes to achieve high operation speed. On the other hand, in order to decrease the resource
utilization without loss of performance, the multipliers working only at the final exponentiation stage
can be relatively slow, with small digit size.

5.1 Design of Arithmetic Logic Unit

In the following section, we briefly review the traditional technique computing squaring over the
underlying field. Our main interest is to compute the multiplications C ·A efficiently. In particular,
we propose a method optimizing individual subfield multiplier to obtain a compact design of the
extension field multiplier CA. Furthermore, we present two schemes for the multiplier CA in which
a different number of multipliers are used. These two schemes are ported to an FPGA device. The
optimal choices are made based on the product of latency by area. Finally, the simplifying technique
for the final exponentiation in both algorithms is explained.

7

5.1.1 Squarer

Squaring an element a =
∑m−1

i=0 aix
i ∈ F2m , where ai ∈ F2, is ruled by the equation a2 =

∑m−1
i=0 aix

2i.
Since the underlying fields are constructed via irreducible trinomials or pentanomials, by replacing
xm with xk + 1 or xk3 + xk2 + xk1 + 1, we can get the formulae computing the coefficients of a2. The
circuit complexity in terms of gate count is proportional to m. Further details can be found in [22].
Squaring over the extension fields F22m and F24m is relative easy and can be decomposed into several
squarings in F2m .

5.1.2 Multiplier

Digit serial multiplier, allowing the trade-off between timing and area, is more suitable for crypto-
graphic applications with large operand sizes. There are two basic algorithms computing multiplica-
tions with polynomial basis representation in F2m , left-to-right and right-to-left. Even though it is
claimed in [24] that the second algorithm is superior in term of low power, we find that less registers
are needed when using the first algorithm because only partial product needs to be updated in each
iteration besides the shift-in digits. However, both partial product and one operand must be updated
in each iteration when using the second one. Therefore we adopt the left-to-right algorithm to derive
the digit-serial multiplier.

Let a(x) and b(x) be the two operands of the multiplication in F2m and let c(x) be the product.
Suppose that the shift D bits are from a(x). Let n = min{l | l ∈ Z, l ≥ m, and D | l}. Let
a′ =

∑n−1
i=0 a′ix

i, where a′i = ai if 0 ≤ i ≤ m− 1, otherwise a′i = 0. The multiplier contains mainly
two parts, XOR-AND arrays for computing s(x) =

∑D−1
i=0 an−D+ix

ib(x) mod fm(x) and LFSRs for
computing c(x) ← c(x) + s(x). There are two candidates for the second part, see Fig. 2. The first
approach is to compute xib(x) mod fm(x) separately and the partial sum is kept in m bits. For the
second one, the partial sum is kept in m + D bits before reduction. Even though less XOR gates are
used in the second structure for an individual multiplier, these XOR-AND arrays can not be shared
among different multipliers in F2m . Additionally, the wire density is increased significantly if D is
chosen large. On the contrary, the first approach is more suitable to construct the extension field
multiplier CA in F24m considering that the XOR arrays for xib(x) mod fm(x) can be shared among
different multipliers in F2m in case they share one operand, see Equation 6 and Fig. 3. The second
advantage of the first structure is its low wire density which makes it easy for placing and routing.

With the basis {1, s, t, st} of F24m over F2m , we may write A = w + zs + et where w, z ∈ F2m

and e ∈ F2. We set e = 1 in the accumulative stage and e = 0 in the final exponentiation stage. Let
C = c0 + c1s + c2t + c3st, ci ∈ F2m , be the partial product of C ← C ·A. It it not suitable to apply
Karatsuba-Ofman algorithm [23] directly to compute this extension field multiplication recursively
since more underlying field multiplications would need to be calculated. However, we can use the
same idea to simplify the computations of coefficients c′1 and c′3 (see Equation 6).

C · (w + zs + et) = (c0 + c1s + c2t + c3st)(w + zs + et)
= c′0 + c′1s + c′2t + c′3st,

(5)

where

c′0 = c0w + c1z + ec3 c′1 = (c0 + c1)(w + z) + c0w + e(c2 + c3)
c′2 = c2w + c3z + e(c0 + c2) c′3 = (c2 + c3)(w + z) + c2w + e(c1 + c3) (6)

Therefore, it takes only 6 F2m-multiplications for the computation of C · A, and all these 6
multiplications can be done simultaneously if 6 multipliers in F2m are adopted (See Fig. 4(a)).

8

(a) Structure 1 (b) Structure 2

Figure 2: Alternative structures for
∑D−1

i=0 an−D+ix
ib(x) mod fm(x).

Figure 3: Two digit serial multipliers in F2239 with D = 4 sharing the component for
∑3

i=0 xib(x)
mod f239(x).

9

(a) Scheme 1: 6 multipliers adopted (b) Scheme 2: 3 multipliers adopted

Figure 4: Alternative schemes for CA.

Table 2: FPGA implementation results for the multipliers CA over F24×239 and F24×283 .
Scheme 1 for F2239 Scheme 2 for F2239

D = 4 D = 8 D = 16 D = 4 D = 8 D = 16
FF 3664(4%) 3664(4%) 3664(4%) 2675(3%) 2675(3%) 2675(3%)
LUT 7799(8%) 13508(15%) 20744(23%)) 5580(6%) 8439(9%) 12075(13%)
CLB slices 4268(9%) 7094(16%) 10722(24%)) 3617(8%) 5331(12%) 7536(17%)
Clock period (ns) 9.61 9.98 9.99 9.86 9.98 9.76
Latency (ns) 576.6 299.4 149.9 1182.8 598.8 292.8

Scheme 1 for F2283 Scheme 2 for F2283

D = 4 D = 8 D = 16 D = 4 D = 8 D = 16
FF 4324(4%) 4348(4%) 4348(4%) 3159(3%) 3171(3%) 3171(3%)
LUT 9273(10%) 16060(18%) 24729(28%) 6632(7%) 10031(11%) 14428(16%)
CLB slices 5070(11%) 8416(19%) 12856(29%) 3046(6%) 4483(10%) 6306(14%)
Clock period (ns) 9.84 9.98 9.99 8.89 9.99 9.98
Latency (ns) 698.6 359.3 179.8 1262.4 719.3 359.3

10

Alternatively, if 3 multipliers are adopted in case of limited resources, the computation of C ·A will
take two multiplication rounds. In the first round, the first two coefficients of the product, namely c′0
and c′1, will be computed and stored in the registers. In the second round, the other two coefficients,
namely c′2 and c′3, will be computed (See Fig. 4(b)). To get the optimal choice in terms of low product
of latency by area, both schemes of the special multipliers CA over F24×239 and F24×283 are ported to
the same FPGA device, Xilinx XC2VP100-6FF-1704. The optimization goal is speed instead of area.
Second, the hierarchy is not kept so that registers and XOR arrays can be saved considering that
several underlying field multiplications share the same operands. Comparisons in terms of timing
and area are demonstrated in Table 2.

According to Table 2, Scheme 1 is always superior in terms of low product of latency by area.
Hence we adopt 6 multipliers in the extension field multiplier CA for our pairing accelerator so that
the multiplication C ·A can be completed in one underlying field multiplication round.

5.1.3 Inverter

The inversion in F24m involved in the final exponentiation can be transformed into one inversion in
F2m and several multiplications in F2m (the transforming procedure is explained in details in Sec.
5.2). Therefore, we only need to implement one inverter in F2m . Itoh-Tsujii’s algorithm [25] is
adopted in our realizations. It takes

blog2(m− 1)c+ HW (m− 1)− 1 (7)

multiplications in F2m to complete one inversion, where HW (m − 1) denotes the Hamming weight
of m− 1.

5.2 Simplifying the Data-path for the Final Exponentiation

Let C = C1 + C2t with C1, C2 ∈ F22m . Using subfield arithmetic and repeated norm calculations, we
may compute C22m−1. Letting C2

1 + C1C2 + C2
2s = c0 + c1s with c0, c1 ∈ F2m , a straight calculation

shows

C22m−1 =
1

c2
0 + c0c1 + c2

1

· (c0 + c1(s + 1))(C2
1 + C2

2 (1 + s) + C2
2 t),

where the total cost of the above computations is 1 F2m-inversion plus 12 F2m-multiplications. That
is, we need 4 F2m-multiplications (1 F22m-multiplication for C1C2 and 1 F2m-multiplication for c0c1)
for the denominator c2

0 + c0c1 + c2
1, 2 F2m-multiplications for 1

c20+c0c1+c21
· (c0 + c1(s + 1)), and 6 F2m-

multiplications (2 F22m-multiplications) which come from the final multiplication by C2
1 + C2

2 (1 +
s) + C2

2 t. Therefore only six multiplication units (for parallel processing) are needed here and one
can reuse the same arithmetic units as shown in Fig. 5 for multiplications, and thus the additional
cost of the final exponentiation is the inversion circuit for computing 1

c20+c0c1+c21
.

In Algorithm 2, we have more complicated final exponentiation, where M = 24m−1
|Eb(F2m)| = 24m−1

2m±2
m+1

2 +1

= (22m − 1)(2m ∓ 2
m+1

2 + 1) and T = 2
m+1

2 ± 1. Here we should be cautious about appropriate sign
of T . The original definition of T [9] is T = 2m −N = ∓2

m+1
2 − 1. However when T = −2

m+1
2 − 1,

one computes (−T){(P) − (O))} which gives an inverse of the rational function corresponding to
T{(P)− (O))}, so the exponents should be changed to −T in this case. When m = 239 and b = 1,
we have |Eb(F2m)| = 2239 − 2120 + 1. In this case we get MT = (22m − 1)(2m + 2

m+1
2 + 1)(2

m+1
2 − 1)

with m = 239. Also when m = 283 and b = 0, we have |Eb(F2m)| = 2283− 2142 + 1 and thus we have
the same form of MT = (22m − 1)(2m + 2

m+1
2 + 1)(2

m+1
2 − 1) with m = 283.

11

Suppose z is in GF (24m) such that z = w22m−1 for some w ∈ F24m . Then z22m+1 = w24m−1 = 1

and thus we get z−1 = z22m
. Moreover from 1 = z22m+1 = z(2m+1+2

m+1
2)(2m+1−2

m+1
2), we get

z(2m+1+2
m+1

2)(2
m+1

2 −1) = z(2m+1+2
m+1

2)2m
. Therefore the exponent MT can be interpreted as:

MT = (22m − 1)(2m + 2
m+1

2 + 1)(2
m+1

2 − 1)

= (22m − 1)(2m + 2
m+1

2 + 1)2m (8)

5.3 Parameter Choices for ALU

In Fig. 5, we provide the timing diagram of scheduling computations for pairing according to
Algorithm 1. Additions and squarings realized via combinational circuits need not to be taken into
account for estimating the latency.

Figure 5: Timing diagram of scheduling computations according to Alg. 1.

Let ∆1 denote the latency for one computation of Tate pairing using Alg. 1 and let Tclk denote
the clock period. Let D1 denote the digit size of multipliers inside CA and Multiplier 1; D2 denote
the size of Multiplier 2; and D3 denote the digit size of multiplier inside the inverter. The notations
of T1, T2, T3 are specified in Fig. 5. Then we can estimate the latency for computing one Tate pairing
using Alg. 1 as follows:

∆1 = (m + 2)(T1 + 2) + 3T2 + T3 + 8 (9)

where T1 = dm/D1eTclk, T2 = dm/D2eTclk. Two extra clock cycles are required for the register
read/write operations. In case of F2239 , it takes around 239 clock cycles for exponentiation and 12
multiplications in case of computing c2 each cycle. However the latency for exponentiation needs
to be shortened. We compute c24

in each cycle so that 60 cycles are necessary to complete the
exponentiation in the inversion of F2239 . Then T3 ≈ (60 + 12 · d239/D3e)Tclk. Similarly T3 ≈
(71 + 11 · d283/D3e)Tclk for F2283 . If we choose D1 = 16, D2 = 4 and D3 = 8, the time spent on final
exponentiation is 10.3% of accumulative multiplications. However if we choose D3 = 4 and keep the
same value of D1 and D2, the time for final exponentiation is 23.8% of accumulative multiplication.
So we choose D1 : D2 : D3 = 4 : 1 : 2 for both F2239 and F2283 .

For Alg. 2, the computation of CMT needs to be additionally taken into account for latency
estimation, see Equation 8. We use the component computing C24

each cycle for the extension field

12

exponentiation, and one extension field multiplication with two operands in F24m can be completed
by CA in two underlying field multiplication rounds. Then, we use the following equation to estimate
the latency of pairing for Alg. 2,

∆2 =
m + 5

2
(T1 + 2) + 3T2 + T3 + T4 + 8; T4 =

m + 1
2

Tclk + 4(T1 + 2) (10)

where T4 denotes the latency for CMT . We use the same ratio of D1, D2 and D3 as Alg. 1.

5.4 Results and Comparisons with Previous Work

The target device for our implementations is Xilinx XC2VP100-6FF-1704. For Alg. 1, the digit size
of multipliers inside CA is chosen as 16 and 32 for both F2239 and F2283 . For Alg. 2, due to the
limitation of resources, the digit size D1 is chosen as 16. The results after placing and routing via
Xilinx ISE-7.1 are summarized in Table 3.

Table 3: Performance and cost of Tate pairing accelerators on elliptic curves over F2239 and F2283

using both algorithms.

FF # LUT # CLB slices f (MHz) Latency (µs)

Alg. 1

F2239 , D1 = 16 10,981 (12%) 34,499 (12%) 18,202 (41%) 100 47

F2239 , D1 = 32 11,077 (12%) 59,971 (68%) 31,719 (71%) 83 33

F2283 , D1 = 16 12,995 (14%) 42,997 (48%) 22,726 (51%) 84 76

F2283 , D1 = 32 13,007 (14%) 72,961 (82%) 37,803 (85%) 72 49

Alg. 2
F2239 , D1 = 16 14,226 (16%) 48,895 (55%) 25,487 (57%) 84 34

F2283 , D1 = 16 16,563 (18%) 64,845 (73%) 33,252 (75%) 56 70

If the digit sizes are chosen the same for both algorithms, the latency of Alg. 2 is shorter than
Alg. 1. However more resources are utilized for Alg. 2 because the multiple squarers in F24m are
adopted for CMT and more complicated datapath in final exponentiation can not be avoided so that
the critical path is longer than Algorithm 1.

Compared with other researchers’ works [1, 3, 4], almost at the same level of security strength, our
Tate pairing accelerators can run 15-to-25 times as fast as theirs on average. See Table 4, where D
denotes the digit size of multipliers working in the accumulative stage. In [1], the pairing accelerator
for the elliptic curve over F397 with k = 6 is realized via a larger FPGA device, Xilinx XC2VP125
with 55,616 slices. Karatsuba-Ofman’s method [23] is used to construct the multiplier in F36m . To
achieve the full power of parallel computation for such a large extension field multiplication, 18
multipliers in F3m are necessary. Due to the limitation of resources, the digit sizes of underlying field
multipliers can not be large so they select D = 4. The cost is 60% of 55616 slices for the multiplier
in F36×97 . For comparison it costs only 10,722 slices for our multiplier CA in F24×239 where D = 16.
No exact results for the whole accelerator of pairing are provided in [1], but it is claimed that 100%
of resources are utilized. So the cost is around 55,616 CLB slices. The operation frequency is 10MHz
and it takes 850 µs for one pairing. Our pairing accelerator on the elliptic curve over F2239 can run
25 times faster.

In [3], a smaller device, Xilinx XC2VP4FF672-6 with 4928 slices is chosen as the target device.
The cubic field arithmetic is realized as a kind of co-processor via FPGA, which is controlled by
a more general purpose processor, i.e., the top architecture is a stored-program machine (SPM) as
described previously. Their field arithmetic co-processor contains only one polynomial basis multi-
plier with digit size D = 4 so that multiplications are performed sequentially, i.e., at least 18 subfield

13

Table 4: Comparisons with Peer researchers’ FPGA implementations with almost the same security
strength.

Curves Underlying MOV Controller # CLB Digit f(MHz) Latency

fields Security slices size D (µs)

[1] Elliptic F397 922 Hardwired logic 55,616 4 10 850

[3] Elliptic F397 922 Microprocessor 4,481 4 150 432

[4] Hyperelliptic F2103 1236 Hardwired logic 43,986 16 32 749

Alg. 2 Elliptic F2239 956 Hardwired logic 25,287 16 84 34

Alg. 1 Elliptic F2283 1132 Hardwired logic 37,803 32 72 49

multiplication rounds are necessary for each iteration of the accumulative multiplication. In contrast,
our processor support parallel computation of multiplications in F2m and the digit sizes we used are
much larger than the ones in [3]. The latency for one pairing of our accelerator over F2239 is only 34
µs. The latency of the design by Grabher et al. [3] is at least 432 µs. At the same time, our resource
utilization is only 5 times larger as theirs.

Ronan et al. [4] have implemented Tate pairing accelerator on the hyperelliptic curve over binary
field using the device Xilinx XC2VP125 which is tha same as the one used in [1]. They chose a
smaller underlying field F2103 and a larger embedding degree k = 12. However, in each iteration
of accumulative multiplication stage, 16 multiplications in F2m and 1 multiplication in F212m need
to be computed. These 16 subfield multiplications must be completed before the accumulative
multiplication in F212m . Note that, in [4], one multiplication in F212m is realized as 54 multiplications
in F2m using Karatsuba’s method. In our case, we choose a larger underlying field F2283 and smaller
embedding degree k = 4 so that the computations of accumulative multiplications becomes much
simpler and only 7 multiplications in F2m are involved each round and these multiplications can be
performed in parallel. The shortest latency for one pairing of Ronan et al’s is 749 µs and 50,893
slices are used. Our accelerator can run 15.6 times as fast as theirs whereas the resource utilization
is only 37,803 slices, see Table 4.

6 Conclusions

We investigated the FPGA implementations of Tate pairing on supersingular elliptic curves over
binary fields with embedding degree k = 4. We adopted two top algorithms computing pairing by
which full power of parallel computations can be exploited with less resource utilization than in
designs of other researchers. We performed security analysis for different curves over binary and
cubic fields by which we can choose two binary fields F2239 and F2283 for our experiments to achieve
almost the same security strength as others. Besides the superiority of top algorithms, we also
proposed an optimization method to obtain a compact design of the extension field multiplier CA by
sharing some combinational circuits among several individual subfield multipliers in F2m in case of one
shared operand. Furthermore we compared two schemes with a different number of multipliers in F2m

for CA to get the optimal choice. The controller is implemented via hardwired logic to eliminate
the overhead of instruction fetching and decoding, particularly for the simple operations such as
additions and squarings. The technique simplifying the final exponentiations for both algorithms
are addressed. Finally the implementations are further optimized by optimal parameter choices for
ALU. Compared with other researchers’ work, our pairing processors are more efficient in terms of
the product of latency by area. In particular, our accelerators can outperform earlier designs by a
factor of 15-to-25 in terms of the total execution time.

14

References

[1] T. Kerins, W.P. Marnane, E.M. Popovici, and P.S.L.M. Barreto, “Efficient hardware for the Tate
pairing calculation in charateristic three”, CHES 2005, Lecture Notes in Computer Science, vol.
3659, pp. 412–426, 2005.

[2] T. Kerins, E.M. Popovici, and W.P. Marnane, “Algorithms and architectures for use in FPGA
implementations of Identity Based Encryption Schemes”, In Field Programmable Logic and
Applications - FPL 2004, Lecture Notes in Computer Science, vol. 3203, pp. 74-83, 2004.

[3] P. Grabher and D. Page, “Hardware acceleration of the Tate pairing in charateristic three”,
CHES 2005, Lecture Notes in Computer Science, vol. 3659, pp. 398 - 411.

[4] R. Ronan, C.O. Eigeartaigh, C. Murphy, M. Scott, T. Kerins, and W.P. Marnane, “A dedicated
processor for the Eta pairing”, preprint available at http://eprint.iacr.org/2005/330.pdf.

[5] R. Granger, D. Page, and M. Stam, “Hardware and software normal basis arithmetic for pairing
based cryptography in characteristic three”, IEEE Trans. on Computers, vol. 54, pp. 852–860,
2005.

[6] R. Granger, D. Page, and M. Stam, “On small characteristic algebraic tori in pairing based
cryptography,” preprint available at http://eprint.iacr.org/2004/132.pdf, 2004.

[7] I. Duursma and H. Lee, “Tate pairing implementation for hyperelliptic curves y2 = xp−x+ d”,
Asiacrypt 2003, Lecture Notes in Computer Science, vol. 2894, pp. 111–123, 2003.

[8] P. Barreto, H. Kim, B. Lynn, and M. Scott, “Efficient algorithms for pairing based cryptosys-
tems”, Crypto 2002, Lecture Notes in Computer Science, vol. 2442, pp. 354–368, 2002.

[9] P. Barreto, S. Galbraith, C. O’hEigeartaigh, and M. Scott, “Efficient pairing computation on
supersingular abelian varieties,” preprint available at http://eprint.iacr.org/2004/375.pdf, 2004.

[10] P. Barreto, “A note on efficient computation of cube roots in characteristic 3,” preprint available
at http://eprint.iacr.org/2004/305.pdf, 2004.

[11] S. Kwon, “Efficient Tate pairing computation for supersingular elliptic curves over binary fields,”
preprint available at http://eprint.iacr.org/2004/303.pdf, 2004.

[12] S. Galbraith, K. Harrison, and D. Soldera, “Implementing the Tate pairing,” ANTS 2002,
Lecture Notes in Computer Science, vol. 2369, pp. 324–337, 2002.

[13] V. Miller, “Short programs for functions on curves,” unpublished manuscript, 1986.

[14] A.J. Menezes, Elliptic Curve Public Key Cryptosystems, Kluwer Academic Publisher, 1993.

[15] A. Shamir, “Identity-based cryptosystems and signature schemes,” Crypto 1985, Lecture Notes
in Computer Science, vol. 196, pp. 47–53, 1985.

[16] K. Fong, D. Hankerson, J. López, and A. Menezes, “Field inversion and point halving revisited,”
Technical Report CORR 2003-18, Univ. of Waterloo, 2003.

[17] D. Boneh and M. Franklin, “Identity based encryption from the Weil pairing,” Crypto 2001,
Lecture Notes in Computer Science, vol. 2139, pp. 213–229, 2001.

15

[18] R. Sakai, K. Ohgishi, and M. Kasahara, “Cryptosystems based on pairing,” SICS 2000, Sym-
posium on Cryptography and Information Security, pp. 26–28, 2000.

[19] I.F. Blake, G. Seroussi, and N.G. Smart, Advances in elliptic curve cryptography, Cambridge
University Press, 2005.

[20] M.D. Ciletti, Advanced digital design with the Verilog HDL, Prentice Hall, 2004.

[21] T. Wollinger, “Software and Hardware Implementation of Hyperelliptic Curve Cryptography”,
Ph. D Thesis, Bochum : Europäischer University, 2004.

[22] G. Orlando and C. Paar, “A high-performance reconfigurable elliptic curve processor for
GF (2m)”, CHES 2000, vol. 1965, pp. 41-56, 2000.

[23] A. Karatsuba and Y. Ofman, “Multiplication on many-digit numbers by automatic computers”,
Translation in Physics-Doklady, vol 7, pp. 595-596, 1963.

[24] L. Song and K.K. Parhi, “Efficient Finite Field Serial/Parallel Multiplication”, Proceedings of In-
ternational Conference on Application Specific Systems, Achitectures and Processors - ASAP’96,
pp. 72-82, 1996.

[25] T. Itoh and S. Tsujii, “A fast algorithm for computing multiplicative inverses in GF (2m) using
normal bases”, Information and Computation, vol. 78, pp. 171-177, 1988.

16

