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Abstract

For the first time we find a Boolean function on 9 variables having nonlinearity
241. Such functions are discovered using a suitably modified steepest-descent based
iterative heuristic search in the class of rotation symmetric Boolean functions. This
shows that there exist Boolean functions on n (odd) variables having nonlinearity
> 2n−1 − 2

n−1
2 if and only if n > 7.
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1 Introduction

Boolean functions with very high nonlinearity is one of the most challenging problems in
the area of cryptography and combinatorics. The problem is also related to covering radius
of first order Reed-Muller code. On even number of variables n, there maximum possible
nonlinearity 2n−1 − 2

n
2
−1 is attained for the well known bent functions [2, 5]. However, for

the case when n is odd, the situation is more complicated and very few results are available
since 1972 as follows.

1. Negative results. In 1972 [1], it has been shown that the maximum nonlinearity
of 5-variable Boolean functions is 12 and in 1980 [3] it has been shown that the
maximum nonlinearity of 7-variable Boolean functions is 56. Thus for odd n ≤ 7,
the maximum nonlinearity of n-variable functions is 2n−1 − 2

n−1
2 .

∗This is a working draft only to announce the result. We will come up with a detailed draft soon with
more details.
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2. Positive results. In 1983 [4], it has been shown that one can get Boolean functions
on 15 variables having nonlinearity 16276 and using this result one can show that for
odd n ≥ 15, it is possible to get Boolean functions having nonlinearity 2n−1− 2

n−1
2 +

20 · 2n−15
2 .

The question for n = 9, 11, 13 stayed completely open; the maximum nonlinearity known
for these cases was 2n−1 − 2

n−1
2 and there was no proof or evidence (before this work)

whether there are functions having nonlinearity strictly greater than that.
A Boolean function on n variables may be viewed as a mapping from Vn = {0, 1}n into

{0, 1}. The truth table of a Boolean function f(x1, . . . , xn) is a binary string of length 2n,
f = [f(0, 0, · · · , 0), f(1, 0, · · · , 0), f(0, 1, · · · , 0), . . . , f(1, 1, · · · , 1)]. The Hamming weight
of a binary string S is the number of 1’s in S denoted by wt(S). An n-variable function
f is said to be balanced if its truth table contains an equal number of 0’s and 1’s, i.e.,
wt(f) = 2n−1. Also, the Hamming distance between equidimensional binary strings S1 and
S2 is defined by d(S1, S2) = wt(S1 ⊕ S2), where ⊕ denotes the addition over GF (2).

An n-variable Boolean function f(x1, . . . , xn) can be considered to be a multivariate
polynomial over GF (2). This polynomial can be expressed as a sum of products repre-
sentation of all distinct k-th order products (0 ≤ k ≤ n) of the variables. More precisely,
f(x1, . . . , xn) can be written as

a0 ⊕
⊕

1≤i≤n

aixi ⊕
⊕

1≤i<j≤n

aijxixj ⊕ . . .⊕ a12...nx1x2 . . . xn,

where the coefficients a0, aij, . . . , a12...n ∈ {0, 1}. This representation of f is called the
algebraic normal form (ANF) of f . The number of variables in the highest order product
term with nonzero coefficient is called the algebraic degree, or simply the degree of f and
denoted by deg(f).

Functions of degree at most one are called affine functions. An affine function with
constant term equal to zero is called a linear function. The set of all n-variable affine
(respectively linear) functions is denoted by A(n) (respectively L(n)). The nonlinearity of
an n-variable function f is

nl(f) = ming∈A(n)(d(f, g)),

i.e., the distance from the set of all n-variable affine functions.
Let x = (x1, . . . , xn) and ω = (ω1, . . . , ωn) both belonging to {0, 1}n and x · ω =

x1ω1⊕. . .⊕xnωn. Let f(x) be a Boolean function on n variables. Then the Walsh transform
of f(x) is a real valued function over {0, 1}n which is defined as

Wf (ω) =
∑

x∈{0,1}n

(−1)f(x)⊕x·ω.

In terms of Walsh spectrum, the nonlinearity of f is given by

nl(f) = 2n−1 − 1

2
max

ω∈{0,1}n
|Wf (ω)|.

2



1.1 Rotation Symmetric Boolean Functions

Let xi ∈ {0, 1} for 1 ≤ i ≤ n. For 1 ≤ k ≤ n, we define

ρk
n(xi) = xi+k, if i + k ≤ n, and

= xi+k−n, if i + k > n.

Let (x1, x2, . . . , xn−1, xn) ∈ Vn. We can extend the definition of ρk
n to n-tuples as

ρk
n(x1, x2, . . . , xn) = (ρk

n(x1), ρ
k
n(x2), . . . , ρ

k
n(xn)).

Definition 1 A Boolean function f is called Rotation Symmetric if for each input
(x1, . . . , xn) ∈ {0, 1}n, f(ρk

n(x1, . . . , xn)) = f(x1, . . . , xn) for 1 ≤ k ≤ n.

Consider the set of vectors

Gn(x1, . . . , xn) = {ρk
n(x1, . . . , xn), for 1 ≤ k ≤ n}.

Note that Gn(x1, . . . , xn) generates an orbit in the set Vn. Let gn be the number of such
orbits. Using Burnside’s lemma, it can be shown that

gn =
1

n

∑
k|n

φ(k) 2
n
k ,

φ being Euler’s phi−function. It can be easily checked that gn ≈ 2n

n
. Since 2gn << 22n

, the
number of n-variable RSBFs is much smaller than the total space of Boolean functions.
Thus attempting a search in this space is more encouraging than attempting a search in
the complete space of Boolean functions.

2 Search Strategy

Our search strategy uses a steepest-descent like iterative algorithm, where each iteration
step has the input Boolean function f and the output Boolean function fmin. At each
iteration step, a cost function is calculated within a pre-defined neighborhood of f and
the Boolean function having the smallest cost is chosen as the iteration output fmin. In
some rare cases, the cost of fmin may be larger than or equal to the cost of f . This is the
crucial part of the search strategy, which provides the ability to escape from local minima
and its distinction from the steepest-descent algorithm. Our steepest-descent based search
technique minimizes the cost until a local minimum is attained, then it takes a step in
the direction of non-decreasing cost. That is, whenever possible, the cost is minimized;
otherwise, a step in the reverse direction is taken. The deterministic step in the reverse
direction corresponds to the smallest possible cost increase within the pre-defined neigh-
borhood of the preceding Boolean function, which also makes it possible to escape from
the local minima. The following is the truth table of a 9-variable function f(x1, . . . , x9)

having nonlinearity 29−1 − 2
9−1
2 + 1 = 241.
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1001011101111111001111111111101000001110111110101010111011001001

0101010111111000111110101100110111001100101010011010000010000011

0111011001100110111010111100000011111010100010001110000010110011

1111010011100000100010011000001111001000010001011001000101011110

0111111101111100001011000010100111111100110010111010000100000001

1110101010011000110000001000010111101000000100011000101101011110

1111111000100001111010010001000110000100100000111000010100011110

1110000110010101001000010011011010010111000101100111011011101001

Thus it is clear that the function g(y1, y2)⊕f(x1, . . . , x9) is an 11-variable function with

nonlinearity 211−1− 2
11−1

2 +2 = 994 where g(y1, y2) is a 2-variable bent function. Similarly

h(y1, y2, y3, y4)⊕f(x1, . . . , x9) is a 13-variable function with nonlinearity 213−1−2
13−1

2 +4 =
4036 where h(y1, y2, y3, y4) is a 4-variable bent function.

This proves the following result.

Theorem 1 There exist Boolean functions on n (odd) variables having nonlinearity >

2n−1 − 2
n−1

2 if and only if n > 7.
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