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Abstract

For the first time we find Boolean functions on 9 variables having nonlinearity
241, that remained as an open question in literature for almost three decades. Such
functions are discovered using a suitably modified steepest-descent based iterative
heuristic search in the class of rotation symmetric Boolean functions (RSBFs). This
shows that there exist Boolean functions on n (odd) variables having nonlinearity
> 2n−1 − 2

n−1
2 if and only if n > 7. Using the same search method, we also find

several other important functions and we study the autocorrelation, propagation
characteristics and resiliency of the RSBFs (using proper affine transformations, if
required). The results show that it is possible to get balanced Boolean functions
on n = 10 variables having autocorrelation spectra with maximum absolute value
< 2

n
2 , which was not known earlier. In certain cases the functions can be affinely

transformed to get first order propagation characteristics. We also obtain 10-variable
functions having first order resiliency and nonlinearity 492 which was posed as an
open question in Crypto 2000.

Keywords. Autocorrelation, Boolean Functions, Combinatorial Problems, Cryptography,
Heuristic Search, Nonlinearity, Rotational Symmetry.

1 Introduction

Boolean functions with very high nonlinearity is one of the most challenging problems in
the area of cryptography and combinatorics. The problem is also related to covering radius
of first order Reed-Muller code. On even number of variables n, there maximum possible
nonlinearity 2n−1−2

n
2
−1 is attained for the well known bent functions [7, 34]. However, for

the case when n is odd, the situation is more complicated and very few results are available
since 1972 as follows.
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1. Negative results. In 1972 [1], it has been shown that the maximum nonlinearity
of 5-variable Boolean functions is 12 and in 1980 [28] it has been shown that the
maximum nonlinearity of 7-variable Boolean functions is 56. Thus for odd n ≤ 7,
the maximum nonlinearity of n-variable functions is 2n−1 − 2

n−1
2 .

2. Positive results. In 1983 [31], it has been shown that one can get Boolean functions
on 15 variables having nonlinearity 16276 and using this result one can show that for
odd n ≥ 15, it is possible to get Boolean functions having nonlinearity 2n−1− 2

n−1
2 +

20 · 2n−15
2 .

The question for n = 9, 11, 13 stayed completely open; the maximum nonlinearity known
for these cases was 2n−1 − 2

n−1
2 and there was no proof or evidence (before this work)

whether there are functions having nonlinearity strictly greater than that. In this paper
we show the existence of such functions. Our result shows that the covering radius of the
(29, 10) Reed-Muller code is at least 241.

In the process of searching, we also find functions with very good autocorrelation prop-
erties. Boolean functions with very high nonlinearity and very low autocorrelation (for
better confusion and diffusion) are important building blocks in both stream and block
cipher implementations. This means that one needs Boolean functions such that the maxi-
mum absolute value in both the Walsh and autocorrelation spectra are low. The maximum
absolute value in the autocorrelation spectrum of a Boolean function f is denoted by ∆f .
It has been conjectured in [42] that for any balanced function f on an odd number of

variables n, ∆f ≥ 2
n+1

2 . However, the conjecture has been disproved for n = 15 in [20]
and n = 21 in [10] by modifying the Patterson-Wiedemann type functions [31] and also for
n = 9, 11 variables by efficient search in the RSBF class [16].

Here we concentrate on the balanced functions over even number of variables. In [19],
a construction has been proposed having ∆f ≤ 2

n
2 + ∆g, where f is an n-variable (n

even) balanced function and g is an n
2
-variable one. Experimental results are available

in [2, 14, 15] for 8-variable balanced functions having maximum absolute value in the
autocorrelation spectrum as low as 16 which are better than the construction of [19].
Thus one can see that for n = 8, functions f are available with ∆f = 2

n
2 . Following the

similar idea corresponding to the odd number of variables, the question for even number
of variables is whether there are balanced functions f on even number of variables such
that ∆f < 2

n
2 . We answer this question positively for a 10-variable function φ with

∆φ = 24 < 2
10
2 .

Next we present a 10-variable 1-resilient function having nonlinearity 492, which is
theoretically the maximum possible nonlinearity for such functions [36]. In [36], a tight
upper bound on nonlinearity of resilient Boolean functions has been proposed and a list of
functions on 7 to 10 variables have been presented in [36, Table 3] which were not known
at that time. After that it becomes a challenging question to discover such functions
and the papers [29, 22, 40, 35] present some of them. The 10-variable 1-resilient function
having nonlinearity 492 was in the list which remained unknown till date and we present
the function for the first time in this paper. Earlier [22] the best known nonlinearity of
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10-variable 1-resilient function was 488, a suboptimal one.

1.1 Background

Construction of important Boolean functions has for some time used combinatorial tech-
niques and search methods together. Patterson and Wiedemann [31] proposed a construc-
tion of highly nonlinear Boolean functions on n variables (n odd) using such a hybrid
approach. These functions were later modified using heuristic search once again [20], to
get balanced functions with very high nonlinearity and very low autocorrelation. Recent
results on highly nonlinear, balanced, correlation immune functions show that computer
search is very effective after some initial pruning on the search domain. In fact, most of the
best functions on small number of variables (7–10) are available in this way [22, 36, 29].

A lot of hard optimization problems have been attacked in various other domains us-
ing general purpose heuristic strategies like simulated annealing, genetic algorithms, tabu
search and various forms of hill-climbing. For Boolean functions such attempts were ini-
tially made in [25, 26, 27]. These attempts provided good but suboptimal results. Subse-
quently, simulated annealing [17] was used to provide competitive results [2, 14] in terms
of nonlinearity and autocorrelation values together for small functions (n ≤ 8). In [3], it
was observed that some of the functions obtained by annealing could be transformed using
simple linear change of basis to obtain resilient functions with excellent profiles (i.e., the
best possible trade-offs). Supplementing optimization with theory allows the best possible
trade-offs between nonlinearity, algebraic degree and correlation immunity for balanced
functions on n ≤ 8 variables. Very recently, an interesting result showing the existence of
9-variable, 3-resilient functions having nonlinearity 240 has been presented in [35]. This
question was open since Crypto 2000 [36]. These functions could be discovered by a heuris-
tic search that exploits “Particle Swarm Optimization” [37].

In general, for n ≥ 9, optimization based techniques are not competitive since the search
space increases super exponentially as n increases. Thus we need some initial pruning before
attempting suitable heuristic search. The set of Rotational Symmetric Boolean Functions

(RSBFs) is interesting to look into as the space is much smaller (≈ 2
2n

n ) than the total space
of Boolean functions (22n

) and the set contains functions with very good cryptographic
properties. These functions have been analyzed in [8, 9], where the authors studied the
nonlinearity of these Boolean functions up to 9 variables and found encouraging results.
Note that the search in [8, 9] for 9-variables was not exhaustive and it could achieve the
nonlinearity till 240. This study has been extended in [38, 39, 40, 6, 4, 12, 23, 24], where
it has been justified theoretically and experimentally that the RSBF class is extremely
important in terms of Boolean functions with good cryptographic properties. On the other
hand, in [32], Pieprzyk and Qu studied these functions as components in the rounds of a
hashing algorithm and research in this direction was later continued in [5].

In this paper, we suitably modify the steepest-descent like iterative algorithm that
has appeared in [15, 16] so that it can be applied for a search in the class of rotational
symmetric Boolean functions and have found functions which are very good in terms of
their Walsh and autocorrelation spectra. The strategy presented in [15] has been applied
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for the complete space of Boolean functions and it performs much better when applied to
a much smaller (but rich) space of RSBFs. In [16], the search was on RSBFs, but it was
constrained to produce the balanced functions only. We have relaxed this requirement and
found much better results.

In the following section we present basic definitions related to Boolean functions. In
Section 3, we present our search strategy. The results are presented in Section 4.

2 Preliminaries on Boolean Functions

A Boolean function on n variables may be viewed as a mapping from Vn = {0, 1}n into
{0, 1}. The truth table of a Boolean function f(x1, . . . , xn) is a binary string of length 2n,
f = [f(0, 0, · · · , 0), f(1, 0, · · · , 0), f(0, 1, · · · , 0), . . . , f(1, 1, · · · , 1)]. The Hamming weight
of a binary string S is the number of 1’s in S denoted by wt(S). An n-variable function
f is said to be balanced if its truth table contains an equal number of 0’s and 1’s, i.e.,
wt(f) = 2n−1. Also, the Hamming distance between equidimensional binary strings S1 and
S2 is defined by d(S1, S2) = wt(S1 ⊕ S2), where ⊕ denotes the addition over GF (2).

An n-variable Boolean function f(x1, . . . , xn) can be considered to be a multivariate
polynomial over GF (2). This polynomial can be expressed as a sum of products repre-
sentation of all distinct k-th order products (0 ≤ k ≤ n) of the variables. More precisely,
f(x1, . . . , xn) can be written as

a0 ⊕
⊕

1≤i≤n

aixi ⊕
⊕

1≤i<j≤n

aijxixj ⊕ . . .⊕ a12...nx1x2 . . . xn,

where the coefficients a0, aij, . . . , a12...n ∈ {0, 1}. This representation of f is called the
algebraic normal form (ANF) of f . The number of variables in the highest order product
term with nonzero coefficient is called the algebraic degree, or simply the degree of f and
denoted by deg(f).

Functions of degree at most one are called affine functions. An affine function with
constant term equal to zero is called a linear function. The set of all n-variable affine
(respectively linear) functions is denoted by A(n) (respectively L(n)). The nonlinearity of
an n-variable function f is

nl(f) = ming∈A(n)(d(f, g)),

i.e., the minimum distance from the set of all n-variable affine functions.
Let x = (x1, . . . , xn) and ω = (ω1, . . . , ωn) both belonging to {0, 1}n and x · ω =

x1ω1⊕. . .⊕xnωn. Let f(x) be a Boolean function on n variables. Then the Walsh transform
of f(x) is a real valued function over {0, 1}n which is defined as

Wf (ω) =
∑

x∈{0,1}n

(−1)f(x)⊕x·ω.

In terms of Walsh spectrum, the nonlinearity of f is given by

nl(f) = 2n−1 − 1

2
max

ω∈{0,1}n
|Wf (ω)|.
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In [11], an important characterization of correlation immune functions has been pre-
sented, which we use as the definition here. A function f(x1, . . . , xn) is m-th order corre-
lation immune (respectively m-resilient) iff its Walsh transform satisfies

Wf (ω) = 0, for 1 ≤ wt(ω) ≤ m (respectively 0 ≤ wt(ω) ≤ m).

Propagation Characteristics (PC) and Strict Avalanche Criteria (SAC) [33] are impor-
tant properties of Boolean functions to be used in S-boxes. Further, Zhang and Zheng [42]
identified related cryptographic measures called Global Avalanche Characteristics (GAC).

Let α ∈ {0, 1}n and f be an n-variable Boolean function. The autocorrelation value of
the Boolean function f with respect to the vector α is

∆f (α) =
∑

x∈{0,1}n

(−1)f(x)⊕f(x⊕α),

and the absolute indicator is

∆f = max
α∈{0,1}n,α 6=(0,...,0)

|∆f (α)|.

A function is said to satisfy PC(k), if

∆f (α) = 0 for 1 ≤ wt(α) ≤ k.

2.1 Rotation Symmetric Boolean Functions

Let xi ∈ {0, 1} for 1 ≤ i ≤ n. For 1 ≤ k ≤ n, we define

ρk
n(xi) = xi+k, if i + k ≤ n, and

= xi+k−n, if i + k > n.

Let (x1, x2, . . . , xn−1, xn) ∈ Vn. We can extend the definition of ρk
n to n-tuples as

ρk
n(x1, x2, . . . , xn) = (ρk

n(x1), ρ
k
n(x2), . . . , ρ

k
n(xn)).

Definition 1 A Boolean function f is called Rotation Symmetric if for each input
(x1, . . . , xn) ∈ {0, 1}n, f(ρk

n(x1, . . . , xn)) = f(x1, . . . , xn) for 1 ≤ k ≤ n.

Following [38], let us consider the set of vectors

Gn(x1, . . . , xn) = {ρk
n(x1, . . . , xn), for 1 ≤ k ≤ n}.

Note that Gn(x1, . . . , xn) generates an orbit in the set Vn. Let gn be the number of such
orbits. Using Burnside’s lemma, it can be shown (see also [38]) that

gn =
1

n

∑
k|n

φ(k) 2
n
k ,
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φ being Euler’s phi−function. It can be easily checked that gn ≈ 2n

n
. Since 2gn << 22n

, the
number of n-variable RSBFs is much smaller than the total space of Boolean functions.

An orbit is completely determined by its representative element Λn,i, which is the
lexicographically first element belonging to the orbit [40]. The rotation symmetric truth
table (RSTT) is defined as the gn-bit string

[f(Λn,0), f(Λn,1), . . . , f(Λn,gn−1)],

where the representative elements are again arranged lexicographically.
The Walsh transform of a rotation symmetric Boolean function takes the same value for

all elements belonging to the same orbit, i.e., Wf (u) = Wf (v) if u ∈ Gn(v). In analyzing
the Walsh spectrum of RSBFs, the nA matrix of size gn × gn has been introduced [40].
The (i, j)th entry of the matrix nA is defined as nAi,j =

∑
x∈Gn(Λn,i)(−1)x·Λn,j , for an n-

variable RSBF. The Walsh spectrum for an RSBF can then be calculated from the RSTT
as Wf (Λn,j) =

∑gn−1
i=0 (−1)f(Λn,i)

nAi,j.

3 Search Strategy

The search strategy of [16] uses a steepest-descent like iterative algorithm, where each iter-
ation step has the balanced Boolean functions f and fmin as input and output respectively.
At each iteration step, a cost function is calculated within a predefined neighborhood of f
and the Boolean function having the smallest cost is chosen as the iteration output fmin.
The sum of squared errors [14, 41] is used as the cost function, which is given as

Cost =
∑
ω

(W 2
f (ω)− 2n)2.

The cost function defined above is the sum of squared errors between the Walsh spectrum
of f and that of a bent function. In [41], it is shown that this cost is equal to

∑
α 6=0 ∆2

f (α).
Hence, the cost function used in [16] is a simultaneous measure of the sum of squared errors
both in the Walsh and the autocorrelation spectra of f with respect to the corresponding
spectra of bent functions.

In some rare cases, the cost of fmin may be larger than or equal to the cost of f . This
is the crucial part of the search strategy, which provides the ability to escape from local
minima and differentiates it from the steepest-descent algorithm. This search technique
minimizes the cost until a local minimum is attained, then it takes a step in the direction of
non-decreasing cost. That is, whenever possible, the cost is minimized; otherwise, a step in
the reverse direction is taken. The deterministic step in the reverse direction corresponds
to the smallest possible cost increase within the predefined neighborhood of the preceding
Boolean function, which also makes it possible to escape from the local minima.

The closest balanced neighbors of a balanced f are obtained by swapping any two
dissimilar values of its truth table. When the search space is restricted to balanced RSBFs
as in the algorithm of [16], if two dissimilar bits in the truth table are swapped, then all
entries of the corresponding orbits should be changed to obtain another RSBF. So, at each
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step of the algorithm, the neighborhood of f is constituted by swapping RSTT entries
corresponding to possible pairs of equal-size orbits having dissimilar values. The main
disadvantage of this algorithm is that it makes a search in the set of balanced RSBFs only,
which is a very small fraction of the whole set. This restriction prevents the algorithm to
reach some unbalanced RSBFs with very good profiles, which may be affinely transformable
to resilient or balanced functions. Hence, we modify the algorithm in [16] by extending the
search space to all RSBFs.

Our modified algorithm given below starts with an arbitrary RSBF finitial, and stops
after a fixed number of iterations, N . At each iteration, gn distinct Boolean functions within
the predefined neighborhood, each of which is shown by fflipped, are visited by storing the
cost value costflipped in COST , and the corresponding Boolean function itself in SETf .
Among the stored cost values, the minimum one, costmin, is chosen, and the respective
Boolean function, fmin, is obtained from SETf as the candidate of the step output. If the
candidate fmin is already in STORE, which contains all previous iteration outputs, then
this candidate fmin and its cost are removed from SETf and COST respectively. The
minimum cost value is searched again in COST among the remaining cost values to find
the respective new candidate for fmin.

Algorithm
f = finitial;
for(int k = 0; k < N ; k + +){

for(int i = 0; i < gn; i + +){
Flip one orbit of f
SETf [ i ] = fflipped

COST [ i ] = costflipped

}
Find costmin (minimum costflipped in COST ), and fmin (respective fflipped in SETf)
while(fmin is already in STORE){

Remove costmin from COST , and fmin from SETf

Find costmin in COST , and fmin in SETf

}
STORE[k] = fmin

f = fmin

}

Since the neighbors of f are obtained simply by flipping a bit in its RSTT, instead of
swapping two bits as in the algorithm of [16], our modified algorithm reduces the number
of neighbors from gn

2 to gn. Notice that, this is a remarkable reduction, which makes an
iteration step of our algorithm much faster than that of the algorithm in [16].

Using our algorithm, we obtain some unbalanced RSBFs with very good cryptographic
properties that are unattainable by the algorithm in [16].
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4 Results

We present our results in three parts: functions having
i) nonlinearity > 2n−1 − 2

n−1
2 for n = 9, 11, 13;

ii) absolute indicator < 2
n
2 for n = 10;

iii) resiliency 1 and nonlinearity 492 for n = 10.

i) The following is the truth table of a 9-variable function f(x1, . . . , x9) having nonlinearity

29−1 − 2
9−1
2 + 1 = 241.

977F3FFA0EFAAEC955F8FACDCCA9A0837666EBC0FA88E0B3F4E08983C845915E

7F7C2C29FCCBA101EA98C085E8118B5EFE21E9118483851EE1952136971676E9

Thus it is clear that the function g(y1, y2)⊕f(x1, . . . , x9) is an 11-variable function with

nonlinearity 211−1− 2
11−1

2 +2 = 994 where g(y1, y2) is a 2-variable bent function. Similarly

h(y1, y2, y3, y4)⊕f(x1, . . . , x9) is a 13-variable function with nonlinearity 213−1−2
13−1

2 +4 =
4036 where h(y1, y2, y3, y4) is a 4-variable bent function. Thus there exist Boolean functions

having nonlinearity > 2n−1 − 2
n−1

2 for n = 9, 11, 13. Keeping this in mind, and adding the
results of [1, 28, 31], we get the following.

Theorem 1 There exist Boolean functions on n (odd) variables having nonlinearity >

2n−1 − 2
n−1

2 if and only if n > 7.

In other words, for odd n, the covering radius of the (2n, n + 1) Reed-Muller code is

> 2n−1 − 2
n−1

2 if and only if n > 7.

ii) Now we concentrate on balanced functions on even number of variables with absolute
indicator < 2

n
2 . We answer this question positively for a 10-variable function.

• We find the following unbalanced RSBF φ on 10-variables such that ∆φ = 24 < 2
10
2 .

FA8CD4B4F675CA70FA7C2B27E0C82E45AFCD6FA14DDE5D7EE811E1840DAD3467

9DFAB1A77CFF895761F3A6E866E37BA9BDC00742ED42817404F6D9F64B70682E

C2E6EF8CCE13882B3BB1BEFE8592336B7C53EF1F9D28A9D17838B81E2EDE9C82

8AB2A501556E3459EDB7701DC4462E600431FA6DB7C7AA2825CB7B0039D05CE8

We find 20 zeros in the Walsh spectrum of φ. Choose an ω = (0, 0, 0, 0, 0, 1, 0, 0, 1, 1)
such that Wφ(ω) = 0. Thus the function f(x) = φ(x) ⊕ ω · x is balanced. hence we

get a balanced 10-variable function f such that ∆f = 24 < 2
10
2 . The nonlinearity

and algebraic degree of f as presented below are 488 and 7 respectively.

9CEA4D2D901353E99C1AB2BE86AEB7DCC9ABF6382BB8C4E78E77781D6BCBADFE

FB9C283E1A9910CE07953F710085E230DBA69EDB8B2418ED6290406F2D16F1B7

A4807615A87511B25DD72767E3F4AAF21A357686FB4E30481E5E218748B8051B

ECD43C983308ADC08BD1E984A220B7F9625763F4D1A133B143ADE2995FB6C571
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Given an n-variable Boolean function f , let us define Tf = {α | ∆f (α) = 0}. If there
exist n linearly independent vectors in Tf , then one can construct a nonsingular n×n
matrix Df whose rows are linearly independent vectors from Tf . Now one can define
f ′(x) = f(xDf ). Both f ′ and f have the same weight, nonlinearity and algebraic
degree [18]. Moreover, ∆f ′(α) = 0 for wt(α) = 1. This ensures that f ′ is PC(1). This
technique has been used in [20].

We have checked that by linear transformation on f one can get the PC(1) property
and the function with the PC(1) property is as follows.

C0EC6696A657BDF973FC366AC2B753360945A191C1E959F7DD551B2664373874

0E0F44A382CA7FB24FD08C00C05B8736A6930A4054F0C8E99047FECFB61F42A7

0DC6223F6BB884DB90FC55E52BD084594CEF8FF55F09219DA5A1C72C975ADE30

D1D54D00D27B8E646ED42284E5EDC38DE63417156A4D8CB73E759D3A364BEB49

• We also find an unbalanced RSBF φ with nl(φ) = 488, ∆φ = 24, and deg(φ) = 9 as
given below.

FFFEEBF9E8CAAFD2E8C5A4899CFFB20CFDC4F162992580C283E5FAAA8F1C51B5

FAA6B471FA12385996824D379154A55DD10EA827BF9D8D98D0EB07B43606CE27

FE9D883C8B216F42FAD853081BC036D7C26DC44D60B75E3FD2037734C93662A3

E70611B8CCD0586F8BAB87E7C1F69681B254ACCB113B9E614E295569A1F91D7F

We find only one zero at ω = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) in the Walsh spectrum of φ,
which is used to get a balanced function as follows.

96687D907EA3C6447EACCD1FF56924656BAD98F4F0B316ABEA736CC319753823

6CCFDDE79384AE30FF14DB5E073DCCCBB8983E4E29F4E40E46826E225F90584E

68F4E1AAE2B7F92B934EC5618DA95F41ABFB5224F6DE37A9446A1EA2A0A0F4CA

8E9087D15AB931F91DC2EE71A86000E8243DC55D78AD080827BFC300379074E9

We then obtain the following PC(1) function by linear transformation.

E268057177B22ACE3F3F44CB6D3B93674A9579E2DB90E916F107A69B9666C8A2

3161C81F185FD09F4060259DE418A0931ED23193024E7AE76C4FD9C35D73520A

B7CEDFBC389E34B7B2146DA01B6F5307BBD802DFAC85919197FEBC0A68B04232

C4E37E5BF7DAA2D3A26CAF8BF15800BDC5D142459CDDC8B8AA51AF58F8B2B428

iii) Next we present a 10-variable 1-resilient function having nonlinearity 492 and absolute
indicator 56. We start with the unbalanced RSBF φ as follows.

E9C6B17C9F136FE496BA574B7CEEA820D33C8E9D776F709B6EB1A8E9CCD01941

B34F4EF095F8C2E23E6A68AA6B40C2DA3CE8DB469C81A883F4A1A24146877153

9A5E75BA64F9EA00D627FBC5A509AC595BAC7C886880988C68DA6101E109A3DD

4EF4AD80E3DB312DD2E080428C91911FAE309D53C8082557247D803F2F07335E
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To make it balanced we take ω = (0, 0, 0, 0, 0, 0, 0, 1, 0, 1) where Wφ(ω) = 0. Thus f =
φ⊕ω · x is a balanced function. Then we consider the set Sf = {ω ∈ {0, 1}n | Wf (ω) = 0}
having |Sf | = 40. There exist 10 linearly independent vectors in Sf , and one can construct
a nonsingular 10× 10 matrix Bf whose rows are linearly independent vectors from Sf . We
have considered the following matrix.

Bf =



0 1 0 1 0 0 0 1 0 1
1 1 0 1 0 1 1 0 1 0
1 1 1 0 1 0 1 0 1 0
0 0 0 0 0 0 1 1 1 1
1 1 1 1 0 1 0 0 1 0
1 0 0 0 0 0 0 1 1 1
0 0 0 0 1 0 1 1 1 1
1 1 1 1 1 0 1 1 1 0
1 0 0 0 0 0 1 1 1 1
0 1 0 0 0 0 0 0 0 0



.

Let, Cf = B−1
f and then f ′(x) = f(Cfx) is a 10-variable 1-resilient function with

algebraic degree 8 and nonlinearity 492. The function f ′ is as follows.

8180CDED6C1C0302AA32E761B2079F0C37D8393E5B8DF2934B2AACEA7EB40BF0

AF6694BAF19E415E4580C0D679DB9BEB982963591185C33FEC2F67987D121D3B

C4E281F3D071957A74DF8A99FF258E9EC3D3AE6BE39415B0F4E5DA104DFC0125

24AD19CBA965D3768C525AD75C5316AA0F77F1A49E4AFD4223D40756C8388886

As for the statistical information, for n = 9 we have carried out 2000 runs each with
N = 100, 000 iterations. Among these 200 million RSBFs, five have the nonlinearity
241, and, 580 many RSBFs have the nonlinearity 240 and absolute indicator 24. For
n = 10, 250 runs have been performed each with N = 400, 000 iterations. Among the
total of 100 million RSBFs, 11 have the nonlinearity 488 and absolute indicator 24, all
transformable to balanced functions. In the same experiment, we have found 67,479 RSBFs
with nonlinearity 492, all transformable to balanced functions and just a few dozens being
transformable to 1-resilient functions. Besides, we have noticed that only four of the
67,479 RSBFs are balanced, and none of these balanced functions can be transformed into
a 1-resilient function. This statistical information clearly demonstrates what our algorithm
achieves over the algorithm in [16] by not restricting the search space to the set of balanced
functions.

Using a computer system with Pentium IV 2.8 GHz processor and 248 MB RAM, and
setting the iteration number N = 100, 000, a typical run of our algorithm takes 1 minute
and 29 seconds for n = 9. For n = 10, a typical run takes 57 minutes with iteration number
N equal to 400,000.
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5 Conclusion

Functions, which were not known for a long time, could be achieved with our steepest-
descent based iterative heuristic search in the class of rotation symmetric Boolean functions.
As a major result, we could show the existence of Boolean functions having nonlinearity
> 2n−1−2

n−1
2 for n = 9, 11, 13. In the process, by applying affine transformations, we could

find balanced PC(1) Boolean functions on 10 variables with maximum absolute value in
the autocorrelation spectrum < 2

n
2 along with other cryptographic properties like good

nonlinearity and algebraic degree. Further, we discovered several 10-variable 1-resilient
functions with nonlinearity 492, which was posed as an open question in Crypto 2000.
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[15] S. Kavut and M. D. Yücel. A new algorithm for the design of strong Boolean functions
(in Turkish). In First National Cryptology Symposium, pages 95–105, METU, Ankara,
Türkiye, November 18-20, 2005.
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