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Abstract

In a traditional signature scheme, a signatureσ on a messagem is issued under a public keyPK, and can be
interpreted as follows: ”The owner of the public keyPK and its corresponding secret key has signed messagem.”
In this paper we consider schemes that allow one to issue signatures on behalf of any NP statement, that can be
interpreted as follows: ”A person in possession of a witnessw to the statement thatx ∈ L has signed messagem.”
We refer to such schemes assignatures of knowledge.

We formally define the notion of a signature of knowledge. We begin by extending the traditional definition of
digital signature schemes, captured by Canetti’s ideal signing functionality, to the case of signatures of knowledge.
We then give an alternative definition in terms of games that also seems to capture the necessary properties one may
expect from a signature of knowledge. We then gain additional confidence in our two definitions by proving them
equivalent.

We construct signatures of knowledge under standard complexity assumptions in the common-random-string
model.

We then extend our definition to allow signatures of knowledge to benestedi.e., a signature of knowledge (or
another accepting input to a UC-realizable ideal functionality) can itself serve as a witness for another signature
of knowledge. Thus, as a corollary, we obtain the firstdelegatableanonymous credential system, i.e., a system in
which one can use one’s anonymous credentials as a secret keyfor issuing anonymous credentials to others.
Keywords: signature schemes, NIZK, proof of knowledge, UC,anonymous credentials

1 Introduction

Digital signature schemes constitute a cryptographic primitive of central importance. In a traditional digital signature
scheme, there are three algorithms: (1) the key generation algorithmKeyGen through which a signer sets up his public
and secret keys; (2) the signing algorithmSign; and (3) the verification algorithmVerify. A signature in a traditional
signature scheme can be thought of as an assertionon behalf of a particular public key. One way to interpret(m,σ)
whereVerify(PK,m, σ) = Accept , is as follows: “the person who generated public keyPK and its corresponding
secret keySK has signed messagem.”

We ask ourselves the following question: Can we have a signature scheme in which a signer can speakon behalf
of any NP statement to which he knows a witness? For example, letφ be a Boolean formula. Then we want anyone
who knows a satisfying assignmentw to be able to issue tuples of the form(m,σ), whereVerify(φ,m, σ) = Accept ,
that can be interpreted as follows: “a person who knows a satisfying assignment to formulaφ has signed message
m.” Further, we ask whether we can have a signature that just reveals that statement but nothing else; in particular, it
reveals nothing about the witness. Finally, what if we want to use a signature issued this way as a witness for issuing
another signature?

Online, you are what you know, and access to data is what empowers a user to authenticate her outgoing messages.
The question is:what data? Previously, it was believed that a user needed a publicsigning key associated with her
identity, and knowledge of the corresponding secret key is what gave her the power to sign. Surprisingly, existence
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of signatures of knowledge means that if there isany NP statementx ∈ L is associated with a user’s identity, the
knowledge of a corresponding and hard-to-find witnessw for this statement is sufficient to empower the user to sign.

WHY WE NEED SIGNATURES OFKNOWLEDGE AS A NEW PRIMITIVE . Suppose that a messagem is signed under
some public keyPK, andσ is the resulting signature. This alone is not sufficient for any application to trust the
messagem, unless this application has reason to trust the public keyPK. Thus, in addition to(m,σ, PK), such an
application will also request some proof thatPK is trustworthy, e.g., a certification chain rooted at some trustedPK0.
In order to convince others to accept her signature, the owner of the public keyPK has to reveal a lot of information
about herself, namely, her entire certification chain. Yet,all she was trying to communicate was that the message
m comes from someone trusted by the owner ofPK0. Indeed, this is all the information that the application needs
to accept the messagem. If instead the user could issue asignature of knowledgeof her SK, PK, and the entire
certification chain, she would accomplish the very same goalwithout revealing all the irrelevant information.

More generally, for any polynomial-time Turing machineML, we want to be able to sign using knowledge of a
witnessw such thatML(x,w) = Accept . We think ofML as a procedure that decides whetherw is a valid witness
for x ∈ L for the NP languageL. We call the resulting signaturea signature of knowledge ofw that is a witness to
x ∈ L, on messagem, or sometimes just a signature of knowledge ofw on messagem, or sometimes a signature of
knowledge on behalf ofx ∈ L on messagem.

Why do we need something so general, and not just a signature of knowledge of a certification chain? The reason
for the generality is that different applications require different things. One application may want a certification chain
only in order to trust a signature, while another will want tomake sure that none of the links of the certification
chain has been revoked, while yet another application will have yet another set of requirements before it can trust a
given signature. It makes sense to define a signature of knowledge in the most general terms that will suit all such
applications.

Let us give additional examples of how signatures of knowledge enable simple realizations of various privacy-
preserving cryptographic schemes.

OTHER APPLICATIONS Our simplest example is a ring signature [RST01]. In a ring signature, a signer wishes to
sign a messagem in such a way that the signature cannot be traced to her specifically, but instead to a group ofN
potential signers, chosen at signing time. A ring signaturecan be realized by issuing a signature of knowledge of one
of the secret keys corresponding toN public keys. Moreover, following Dodis et al. [DKNS04] using cryptographic
accumulators [BdM94], the size of this ring signature need not be proportional toN : simply accumulate all public
keys into one accumulatorA using a public accumulation function, and then issue a signature of knowledge of a secret
key corresponding to a public key inA.

Next, let us show how signatures of knowledge give rise to a simple group signature scheme [CvH91, CS97,
ACJT00, BMW03, BBS04]. In a group signature scheme, we have group members, a group manager, and an
anonymity revocation manager. Each member can sign on behalf of the group, and a signature reveals no information
about who signed it, unless the anonymity revocation manager gets involved. The anonymity revocation manager can
trace the signature to the group member who issued it; moreover it is impossible, even if the group manager and the
revocation manager collude, to create a signature that willbe traced to a group member who did not issue it.

Consider the following simple construction. The group’s public key consists of(PKs, PKE , f), wherePKs is a
signature verification key for which the group manager knowsthe corresponding secret key;PKE is an encryption
public key for which the anonymity revocation manager knowsthe corresponding decryption key; andf is a one-way
function. To become a group member, a user picks a secretx, givesf(x) to the group manager and obtains a group
membership certificateg = σPKs

(f(x)). To issue a group signature, the user picks a random stringR, encrypts his
identity using randomnessR: c = Enc(PKE , f(x)) and produces a signature of knowledgeσ of (x, g,R) suchc is
an encryption off(x) using randomnessR, andg is a signature onf(x). The resulting group signature consists of
(c, σ). To trace a group signature, the revocation manager decrypts c. It is not hard to see (only intuitively, since we
haven’t given any formal definitions yet) that this construction is a group signature scheme. Indeed, on a high level,
this is how existing practical and provably secure group signatures work [ACJT00, BBS04].

Unlike the two applications above that have already been studied and where signatures of knowledge offer just a
conceptual simplification, our last application was not known to be realizable prior to this work.
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Consider the problem of delegatable anonymous credentials. The problem can be explained using the following
example. Suppose that, as Brown University employees, we have credentials attesting to that fact, and we can use
these credentials to open doors to campus facilities. We wish to be able do so anonymously because we do not want
the janitors to monitor our individual whereabouts. Now suppose that we have guests visiting us. We want to be
able to issue them a guest pass using our existing credentialas a secret key, and without revealing any additional
information about ourselves, even to our guests. In turn, our visitors should be able to use their guest passes in order
to issue credentials to their taxi drivers, so these driverscan be allowed to drive on the Brown campus.1 So we
have a credential delegation chain, from the Brown University certification authority (CA) that issues us the employee
credential, to us, to our visitors, to the visitors’ taxi drivers, and each participant in the chain does not know who gave
him/her the credential, but (1) knows the length of his credential chain and knows that this credential chain is rooted
at the Brown CA; and (2) can extend the chain and issue a credential to the next person.

Although it may seem obvious how to solve this problem once wecast everything in terms of signatures of
knowledge and show how to realize signatures of knowledge, we must stress that this fact eluded researchers for
a very long time, dating back to Chaum’s original vision of the world with anonymous credentials [Cha85]. More
recently this problem was raised in the anonymous credentials literature [LRSW99, CL01, Lys02]. And it is still
elusive when it comes to practical protocols: our solution is not efficient enough to be used in practice.

In conclusion, we need signatures of knowledge as a primitive because it comes up again and again in privacy-
preserving protocols. This primitive is both conceptuallyhelpful in understanding existing constructions (group signa-
tures, ring signatures), and useful for developing new ones(signing without disclosing certification data, delegatable
anonymous credentials).

ON DEFINING SIGNATURES OFKNOWLEDGE. The first definition of any new primitive is an attempt to formalize
intuition. We see from the history of cryptographic definitions (from defining security for encryption, signatures,
multi-party computation) that it requires a lot of effort and care. Our approach is to give two definitions, each capturing
our intuition in its own way, and then prove that they are equivalent to make ourselves feel even better about them.

One definitional approach is to give an ideal functionality that captures our intuition for a signature of knowledge.
Our ideal functionality will guarantee that a signature will only be accepted if the functionality sees the witness
w either when generating the signature or when verifying it; and, moreover, signatures issued by signers through
this functionality will always be accepted. At the same time, the signatures that our functionality will generate will
contain no information about the witness. This seems to capture the intuitive properties we require of a signature of
knowledge, although there are additional subtleties we will discussion in Section 2.1. For example, this guarantees
that an adversary cannot issue a signature of knowledge ofw on some new messagem unless he knowsw, even with
access to another party who does knoww. This is because the signatures issued by other parties do not reveal any
information aboutw, while in order to obtain a valid signature, the adversary must revealw to our ideal functionality.
Although this definition seems to capture the intuition, it does not necessarily give us any hints as to how a signature
of knowledge can be constructed. Our second definition helpswith that.

Our second definition is a game-style one [Sho04, BR04]. Thisdefinition requires that a signature of knowledge
scheme be in the public parameter model (where the parameters are generated by some trusted process calledSetup)
and consist of two algorithms,Sign andVerify. Besides the usual correctness property that requires thatVerify accept
all signatures issued bySign, we also require that (1) signatures do not reveal anything about the witness; this is
captured by requiring that there exist a simulator who can undetectably forge signatures of knowledge without seeing
the witness using some trapdoor information about the common parameters; and (2) valid signatures can only be
generated by parties who know corresponding witnesses; this is captured by requiring that there exist an extractor
who can, using some trapdoor information about the common parameters, extract the witness from any signature
of knowledge, even one generated by an adversary with accessto the oracle producing simulated signatures. This
definition is presented in Section 2.2. (We call this definition SimExt-security, for simulation andextraction.)

We prove that the two definitions are equivalent: namely, a scheme UC-realizes our ideal functionality if and only
if it is SimExt-secure.

1This is fictional; you do not need permission to drive on campus.
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Our ideal signature of knowledge functionality can be naturally extended, to a signature of knowledge of an ac-
cepting input to another ideal functionality. For example,suppose thatFΣ is the (regular) signature functionality.
Supposew is a signature on the valuex under public keyPK, issued by the idealFΣ functionality. Then our func-
tionality FSOK can issue a signatureσ on messagem, whose meaning is as follows: ”The messagem is signed by
someone who knowsw, wherew is a signature produced byFΣ under public keyPK on messagex.” In other words, a
signaturew on messagex under public keyPK that causes the verification algorithm forFΣ to accept, can be used as a
witness for a signature of knowledge. A further complication in defining the signature of knowledge functionality this
way is that, to be meaningful, the corresponding instance oftheFΣ functionality must also be accessible somehow,
so that parties can actually obtain signatures under publickey PK. Further, forFSOK to be UC-realizable, we must
require that the functionality that decides thatw is a witness forx, also be UC-realizable. Please see Section 4 to see
how we tackled these definitional issues. As far as we know, this is the first time that an ideal functionality is defined
as a function of other ideal functionalities, which may be ofindependent interest to the study of the UC framework.

OUR CONSTRUCTIONS. In Section 3, we show how to construct signatures of knowledge for any polynomial-time
Turing machineML deciding whetherw is a valid witness forx ∈ L. We use the fact (proved in Section 2.3) that
SimExt-security is a necessary and sufficient notion of security, and give a construction of a SimExt-secure signature
of knowledge. Our construction is based on standard assumptions. In the common random string model, it requires
a dense cryptosystem and a simulation-sound non-interactive zero-knowledge proof scheme with efficient provers
(which can be realized by trapdoor permutations for example).

We then show in Section 4 that, given any UC-realizable functionalityF that responds to verification queries and is
willing to publish its verification algorithm, the functionality which generates signatures of knowledge of an accepting
input toF is also UC-realizable. We then explain why this yields a delegatable anonymous credential scheme.

THE HISTORY OF THE TERMINOLGY. The term “signature of knowledge” was introduced by Camenisch and
Stadler [CS97], who use this term to mean a proof of knowledge(more specifically, aΣ-protocol [Cra97]) turned
into a signature using the Fiat-Shamir heuristic. Many subsequent papers on group signatures and anonymous cre-
dentials used this terminology as well. However, existing literature does not contain definitions of security for the
term. Every time a particular construction uses a signatureof knowledge as defined by Camenisch and Stadler, the
security of the construction is analyzed from scratch, and the term “signature of knowledge” is used more for ease of
exposition than as a cryptographic building block whose security properties are well-defined. This frequent informal
use of signatures of knowledge indicates their importance in practical constructions and therefore serves as additional
motivation of our formal study.

2 Signatures of Knowledge of a Witness forx ∈ L

A signature of knowledge scheme must have two main algorithms, Sign and Verify. The Sign algorithm takes a
message and allows anyone holding a witness to a statementx ∈ L to issue signatures on behalf of that statement.
The Verify algorithm takes a message, a statementx ∈ L, and a signatureσ, and verifies that the signature was
generated by someone holding a witness to the statement.

Signatures of knowledge are essentially a specialized version of noninteractive zero knowledge proofs of knowl-
edge: If a partyP can generate a valid signature of knowledge on any messagem for a statementx ∈ L, that should
mean that, first of all, the statement is true, and secondly,P knows a witness for that statement. This intuitively
corresponds to the soundness and extraction properties of anon-interactive proof of knowledge system. On the other
hand, just as in a zero-knowledge proof, the signature should reveal nothing about the witnessw. We know that gen-
eral NIZK proof systems are impossible without some common parameters. Thus, our signatures of knowledge will
require a setup procedure which outputs shared parameters for our scheme.

Thus, we can define the algorithms in a signature of knowledgeschemes as follows: Let{Mesk} be a set of
message spaces, and for any languageL ∈ NP , let ML denoted a polynomial time Turing machine which accepts
input (x,w) iff w is a witness showing thatx ∈ L. Let Setup be an algorithm that outputs public parametersp ∈
{0, 1}k for some parameterk. LetSign(p,ML, x, w,m) be an algorithm that takes as input some public parametersp,
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a TM ML for a languageL in NP, a valuex ∈ L, a valid witnessw for x, andm ∈Mesk, a message to be signed.Sign

outputs a signature of knowledge for instancex ∈ L on the messagem. Let Verify(p,ML, x,m, σ) be an algorithm
that takes as input the valuesp, ML, x, the messagem, and a purported signatureσ, and either accepts or rejects.

2.1 An Ideal Functionality for a Signature of Knowledge

Canetti’s Universal Composability framework gives a simple way to specify the desired functionality of a protocol.
Furthermore, the UC Theorem guarantees that our protocols will work as desired, not matter what larger system they
may be operating within. We will begin by giving a UC definition of signatures of knowledge. For an overview of the
UC framework, see Appendix A.

We begin by recalling Canetti’s signature functionality. Note that the cited version of the functionality is from
2005, and is different from the one that Canetti first proposed in 2000. For details see Appendix B. For a detailed
discussion and justification for Canetti’s modelling choices see [Can05].

FSIG : Canetti’s signature functionality

Key Generation Upon receiving a value (KeyGen,sid) from some partyP , verify thatsid = (P, sid ′) for somesid ′. If not,
then ignore the request. Else, hand (KeyGen,sid) to the adversary. Upon receiving (Algorithms, sid , Verify, Sign)
from the adversary, whereSign is a description of a PPT ITM, andVerify is a description of adeterministicpolytime ITM,
output (VerificationAlgorithm, sid , Verify) to P .

Signature Generation Upon receiving a value (Sign,sid , m) from P , let σ ← Sign(m), and verify thatVerify(m, σ) =
1. If so, then output (Signature, sid , m, σ) to P and record the entry(m, σ). Else, output an error message
(Completeness error) to P and halt.

Signature Verification Upon receiving a value (Verify, sid , m, σ, Verify′) from some partyV , do: If Verify′ = Verify, the
signer is not corrupted,Verify(m, σ′) = 1, and no entry(m, σ′) for any σ′ is recorded, then output an error message
(Unforgeability error) to V and halt. Else, output (Verified,sid , m, Verify′(m, σ)) to V .

Note that this functionality is allowed to produce an error message and halt, or quit, if things go wrong. That
means it is trivially realizable by a protocol that always halts. We will therefore only worry about protocols that
realize our functionalitiesnon-trivially, i.e. never output an error message.

The session id(sid) ofFSIG captures the identityP of the signer; all participants in the protocol with this session
id agree thatP is the signer. In a signature of knowledge, we do not have one specific signer, soP should not be
included in the session id. But all participants in the protocol should agree on the language that they are talking about.
Thus, we have a languageL ∈ NP and a polynomial-time Turing machineML and a polynomialp, such thatx ∈ L
iff there exists a witnessw such that|w| = p(|x|) ∧ML(x,w) = 1. Let us capture the fact that everyone is talking
about the sameL by requiring that the session id begin with the description of ML.

As mentioned above, signatures of knowledge inherently require some setup. Just as in the key generation interface
of FSIG above, a signature of knowledge functionality (FSOK ) setup procedure will determine the algorithmSign

that computes signatures and the algorithmVerify for verifying signatures. However, since anyone who knows avalid
witnessw can issue a signature of knowledge on behalf ofx ∈ L, bothSign andVerify will have to be available to
any party who asks for them. In addition, the setup procedurewill output algorithmsSimsign andExtract that we will
explain later.

There are three things that the signature generation part oftheFSOK functionality must capture. The first is that in
order to issue a signature, the party who calls the functionality must supply(m,x,w) wherew is a valid witness to the
statement thatx ∈ L. This is accomplished by having the functionality check that it is supplied a validw. The second
is that a signature reveals nothing about the witness that isused. This is captured by issuing the formal signatureσ
via a procedure that does not takew as an input. We will call this procedureSimsign and require that the adversary
provide it in the setup step. Finally, the signature generation step must ensure that the verification algorithmVerify is
complete, i.e., that it will accept the resulting signatureσ. If it find that Verify is incomplete,FSOK will output and
error message(Completeness error) and halt, just asFSIG does.

The signature verification part ofFSOK should, of course, accept signatures(m,x, σ) if m was previously signed
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on behalf ofx ∈ L, andσ is the resulting signature (or another signature such thatVerify(m,x, σ) = 1). However,
unlikeFSIG , just becausem was not signed on behalf ofx through the signing interface, that does not mean thatσ
should be rejected, even if the signer is uncorrupted. Recall that anyone who knows a valid witness should be able
to generate acceptable signatures! Therefore, the verification algorithm must somehow check that whoever generated
σ knew the witnessw. Recall that in the setup stage, the adversary provided the algorithm Extract. This algorithm
is used to try to extract a witness from a signatureσ that was not produced via a call toFSOK . If Extract(m,x, σ)
produces a valid witnessw, thenFSOK will output the outcome ofVerify(m,x, σ). If Extract(m,x, σ) fails to produce
a valid witness, andVerify(m,x, σ) rejects, thenFSOK will reject. What happens ifExtract(m,x, σ) fails to produce
a valid witness, butVerify(m,x, σ) accepts? This corresponds to the case when a signatureσ on m on behalf ofx
was produced without a valid witnessw, and yetσ is accepted byVerify. If this is ever the case, then there is an
unforgeability error, and soFSOK should output(Unforgeabilityerror) and halt. UnlikeFSIG , here we need not worry
about whether the requesting party supplied a correct verification algorithm, since here everyone is on the same page
and is always using the same verification algorithm (determined in the setup phase).

We are now ready to provide a more formal and concise description of theFSOK (L) functionality.
FSOK (L): signature of knowledge of a witness forx ∈ L

Setup Upon receiving a value (Setup,sid) from any partyP , verify thatsid = (ML, sid ′) for somesid ′. If not, then ignore the
request. Else, if this is the first time that (Setup,sid) was received, hand (Setup,sid) to the adversary; upon receiving
(Algorithms, sid , Verify, Sign, Simsign, Extract) from the adversary, whereSign, Simsign, Extract are descriptions
of PPT ITMs, andVerify is a description of a deterministic polytime ITM, store these algorithms. Output the stored
(Algorithms, sid , Sign, Verify) to P .

Signature Generation Upon receiving a value(Sign,sid, m, x, w) fromP , check thatML(x, w) = 1. If not, ignore the request.
Else, computeσ ← Simsign(m, x), and check thatVerify(m, x, σ) = 1. If so, then output (Signature,sid, m, x, σ) to
P and record the entry(m, x, σ). Else, output an error message(Completeness error) to P and halt.

Signature Verification Upon receiving a value (Verify, sid , m, x, σ) from some partyV , do: If (m, x, σ′) is stored for some
σ′, then output (Verified,sid, m, x, σ, Verify(m, x, σ)) to V . Else letw ← Extract(m, x, σ); if ML(x, w) = 1, output
(Verified,sid , m, x, σ, Verify(m, x, σ)) to V . Else if Verify(m, x, σ) = 0, output (Verified,sid, m, x, σ, 0) to V .
Else output an error message (Unforgeability error) to V and halt.

In the UC framework, each instance of the ideal functionality is associated with a unique sid, and it ignores all
queries which are not addressed to this sid. Since ourFSOK functionalities require thatsid = ML ◦ sid′, this means
that eachFSOK functionality handles queries for exactly one language.

Now consider the following languageU .

Definition 2.1 (Universal language).Define universal languageU s.t. x would contain a description of a Turing
machineM and an instancex′ such thatx ∈ U iff there existsw s.t. M(x′, w) = 1.

Notice thatFSOK (U) allows parties to sign messages on behalf of any instancex of any languageL. Thus, if
we haveSetup,Sign, andVerify algorithms which realizeFSOK (U), we can use the same algorithms to generate
signatures of knowledge for all instances and languages. Inparticular, this means we do not need a separate setup
algorithm (in implementation, a separate CRS or set of shared parameters) for each language. Readers familiar with
UC composability may notice that any protocol which realizesFSOK(U) will also realize the multisession extension
of FSOK . For more information, see Appendix H.

2.2 A Definition in Terms of Games

We now give a second, games style definition for signatures ofknowledge. We find that games style definitions are
often more intuitive, particularly to a reader not thoroughly versed in the UC composability framework, and that they
can also be much easier to work with. This definition providesadditional clarity and also makes our job easier when
proving security of our construction. We will show that thisdefinition is equivalent to (necessary and sufficient for)
the UC definition given in the previous section.

6



Informally, a signature of knowledge is SimExt-secure if itis correct, simulatable and extractable.
Thecorrectnessproperty is similar to that of a traditional signature scheme. It requires that any signature issued

by the algorithmSign should be accepted byVerify.
Thesimulatability property requires that there exist a simulator which, givensome trapdoor information on the

parameters, can create valid signatures without knowing any witnesses. This captures the idea that signatures should
reveal nothing about the witness used to create them. Since the trapdoor must come from somewhere, the simulator
is divided intoSimsetup that generates the public parameters (possibly from some different but indistinguishable
distribution) together with the trapdoor, andSimsign which then signs using these public parameters. We require that
no adversary can tell that he is interacting withSimsetup andSimsign rather thanSetup andSign.

Theextraction property requires that there exist an extractor, which given a signature of knowledge for anx ∈ L,
and appropriate trapdoor information, can produce a valid witness showingx ∈ L. This captures the idea that it should
be impossible to create a valid signature of knowledge without knowing a witness. In defining the extraction property,
we require that any adversary that interacts with the simulator Simsetup andSimsign (rather than theSetup andSign)
not be able to produce a signature from which the extractor cannot extract a witness. The reason that in the definition,
the adversary interacts withSimsetup instead ofSetup is because the extractor needs a trapdoor to be able to extract.
Note that it also interacts withSimsign instead ofSign. The adversary could runSign itself, so access toSimsign gives
it a little bit of extra power.

Definition 2.2 (SimExt-security). Let L be the language defined by a polynomial-time Turing machineML as ex-
plained above, such that all witnesses forx ∈ L are of known polynomial lengthp(|x|). Then(Setup,Sign,Verify)
constitute a SimExt-secure signature of knowledge of a witness forL, for message space{Mesk} if the following
properties hold:

Correctness There exists a negligible functionν such that for allL ∈ NP , x ∈ L, valid witnessesw for x(i.e.
witnessesw such thatML(x,w) = 1), andm ∈Mesk

Pr[p← Setup(1k);σ ← Sign(p,ML, x, w,m) : Verify(p,ML, x,m, σ) = Accept] = 1− ν(k)

Simulatability There exists a polynomial time simulator consisting of algorithms Simsetup andSimsign such that
for all probabilistic polynomial-time adversariesA there exists a negligible functionsν such that for all poly-
nomialsf , for all k, for all auxiliary inputs ∈ {0, 1}f(k)

∣

∣

∣

∣

Pr[(p, τ)← Simsetup(1k); b← ASim(p,τ,·,·,·,·)(s, p) : b = 1]

− Pr[p← Setup(1k); b← ASign(p,·,·,·,·)(s, p) : b = 1]

∣

∣

∣

∣

= ν(k)

where the oracleSim receives the valuesML, x, w, m as inputs, and checks that the witnessw given to it was
correct and then returnsσ ← Simsign(p, τ,ML, x,m). τ is the additional trapdoor value that the simulator
needs in order to simulate the signatures without knowing a witness.

Extraction In addition to(Simsetup,Simsign), there exists an extractor algorithmExtract such that for all proba-
bilistic polynomial time adversariesA there exists a negligible functionν such that for all polynomialsf , for
all k, for all auxiliary inputs ∈ {0, 1}f(k)

Pr [(p, τ)← Simsetup(1k); (ML, x,m, σ)← ASim(p,τ,·,·,·,·)(s, p);
w ← Extract(p, τ,ML, x,m, σ) :

ML(x,w) ∨ (ML, x,m, σ) ∈ Q ∨ ¬Verify(p,ML, x,m, σ)] = 1− ν(k)
whereQ denotes the query tape which lists all the previous queries (ML, x,m,w) A has sent to the oracleSim.

Note that the above definition captures, for example, the following intuition: suppose that Alice is the only one
in the world who knows the witnessw for x ∈ L, and it is infeasible to computew. Then Alice can usex as her
signing public key, and her signatureσ on a messagem can be formed using a signature of knowledgew. We want to
make sure that the resulting signature should be existentially unforgeable against chosen message attacks [GMR88].
Suppose it is not. Then there is a forger who can output(m,σ), such thatσ is accepted by the verification algorithm
without a querym to Alice. Then, by simulatability, he can also output(m,σ) when given access toSim (which does
not knoww) instead of to Alice. Then, by extraction, it follows thatw can be extracted from him. But it is infeasible
to computew, so this is a contradiction.
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2.3 Equivalence of the Definitions

As was mentioned in Section 2, signatures of knowledge cannot exist without some trusted setup procedure which
generates shared parameters. In the UC model, shared parameters are captured by theFD

CRS functionality [Can01].
This functionality generates values from a given distribution D (the desired distribution of shared parameters), and
makes them available for all parties in the protocol. Thus, protocols requiring shared parameters can be defined in the
FCRS -hybrid model, where real protocols are given access to the ideal shared parameter functionality.

Formally, theFD
CRS functionality receives queries of the form (CRS,sid) from a partyP . If a valuev for this sid

has not been stored, it chooses a random valuev from distributionD and stores it. It returns (CRS, sid , v) to P and
also sends (CRS,sid, v) to the adversary.

Let Σ = (Setup,Sign,Verify) be a signature of knowledge scheme. Letk be the security parameter. We define a
FD

CRS -hybrid signature of knowledge protocolπΣ, whereD is the distribution ofSetup(1k).
When a partyP runningπΣ receives an input (Setup,sid) from the environment, it checks thatsid = (ML, sid ′)

for somesid ′. If not it ignores the request. It then queries theFCRS functionality,receives (CRS,v), and storesv.
Finally, it returns (Algorithms,sid,Sign(v,ML, ·, ·, ·),Verify(v,ML, ·, ·)) to the environment.

WhenP receives a request (Sign, sid ,m, x,w) from the environment, it retrieves the storedv. It checks that
ML(x,w) = 1. If not, it ignores the request, otherwise it returns (Signature, sid ,m, x,Sign(v,ML, x, w,m)).
WhenP receives a request (Verify, sid ,m, x, σ) from the environment, it again retrieves the storedv, and then
returns (Verified, sid ,m, x, σ,Verify(v,ML, x,m, σ)).

Recall thatU , defined in Definition 2.1, is the universal language.

Theorem 2.1. πΣ UC-realizesFSOK (U) in theFD
CRS -hybrid model if and only ifΣ is SimExt-secure.

Proof. (Due to lack of space, we give an abbreviated version of the proof here, and refer the reader to Appendix C
for the full proof.) Suppose thatΣ is SimExt-secure. Then let us show thatπΣ UC-realizesFSOK (U). Consider
the ideal adversary (simulator)S that works as follows: Upon receiving (Setup,sid) from FSOK , S will parse
sid = (MU , sid ′). It obtains(p, τ) ← Simsetup(1k) and setsSign = Sign(p, ·, ·, ·, ·) (soSign will have four inputs:
the languageML — note that since we are realizingFSOK (U), any instance will start withML,— the instancex ∈ L,
the witnessw, and the messagem), Verify = Verify(p, ·, ·, ·, ·), Simsign = Simsign(p, τ, ·, ·, ·, ·), andExtract =
Extract(p, τ, ·, ·, ·, ·). Finally, it sends (Algorithms,sid,Sign,Verify,Simsign,Extract) back toFSOK . Another
place whereS must do something is when the adversaryA queries theFD

CRS functionality. In response to such a
query,S outputsp.

Let Z be any environment andA be an adversary. We wish to show thatZ cannot distinguish interactions withA
andπΣ from interactions withS andFSOK . Let us do that in two steps. First, we show that the eventE thatFSOK

halts with an error message has negligible probability. Next, we will show that, conditioned onE not happening,Z ’s
view in its interaction withS andFSOK is indistinguishable from its view in interactions withA andπΣ.

There are two types of errors that lead to eventE: FSOK halts withCompleteness error or Unforgeability error.
The only way to induce a completeness error is to causeVerify to reject a signature issued bySimsign, which con-
tradicts either the simulatability or the correctness requirement. The only way to induce an unforgeability error is to
causeVerify to accept a signature which was not issued bySimsign and from which no witness can be extracted. This
contradicts the extractability requirement. (We give moreformal justifications in Appendix C.)

Therefore we have shown that the probability of eventE is negligible. Conditioned on̄E, Z ’s view when in-
teracting withFSOK andS is indistinguishable from its view when interacting with a real adversaryA and the real
protocolπΣ, because if it were distinguishable, then this would contradict the simulatability requirement. (Details in
Appendix C.)

Now let us show the other direction. Suppose thatπΣ UC-realizesFSOK (U) in theFD
CRS -hybrid model. Let us

show that it follows thatΣ is SimExt-secure. SinceπΣ is UC-realizable, it must have a simulatorS. By (p, τ) ←
Simsetup(1k) let us refer to the algorithm thatS runs in response to a setup query; the public parametersp consist of
the value thatS will subsequently return in response to queries to theFD

CRS functionality; the trapdoorτ consists of
the algorithms(Simsign,Extract) thatS hands over toFSOK in response to the setup query. The resultingΣ satisfies
SimExt-security. (Details in Appendix C.)
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3 Construction

Here we presentΣ a construction of a SimExt-secure signature of knowledge. By Theorem 2.1, this also implies a
protocolπΣ that UC-realizes theFSOK functionality presented in Section 2.1.

Our construction has two main building blocks: CPA secure dense cryptosystems [DP92, SCP00] and simulation-
sound non-interactive zero knowledge proofs [Sah99, dSdCO+01]. (For a review of these primitives, see Appendix
D.) Let (G,Enc,Dec) be a dense cryptosystem, and let(NIZKProve,NIZKSimsetup,NIZKSim,NIZKVerify) be a
simulation-sound non-interactive zero-knowledge proof system.

Setup Let p be a common random string. Parsep as follows: p = PK ◦ ρ, wherePK is ak-bit public key of our
cryptosystem.

Signature Generation In order to sign a messagem ∈ Mesk using knowledge of witnessw for x ∈ L, let c =
Enc(PK, (m,w), R), whereR is the randomness needed for the encryption process; letπ ← NIZKProve(ρ,
(m,ML, x, c, PK), (∃(w,R) : c = Enc(PK, (m,w), R) ∧ML(x,w)), (w,R)). Outputσ = (c, π).

Verification In order to verify a signature of knowledge of witnessw for x ∈ L, σ = (c, π), runNIZKVerify(ρ, π,
(m,ML, x, c, PK), (∃(w,R) : c = Enc(PK, (m,w), R) ∧ML(x,w))).

Intuitively, the semantic security of the cryptosystem together with the zero knowledge property of the proof
system ensure that the signature reveals no information about the witness. The simulation soundness property of the
proof system means that the adversary cannot prove false statements. Thus any signature that verifies must include a
ciphertext which is an encryption of the given message and ofa valid witness. Clearly, if he is interacting only with
a simulator who does not know any witnesses, this implies that the adversary should “know” the witness. Further, by
simulatability, the adversary cannot gain any advantage bycommunicating with valid signers.

Theorem 3.1. The construction above is a SimExt-secure signature of knowledge.

Proof. (Sketch) First we argue simulatability. In theSimsetup phase, our simulator will choose a key pair(PK, SK)
of the dense cryptosystem, and will obtain the stringρ together with trapdoorτ ′ by runningNIZKSimsetup. In the
Simsign phase, the simulator will always letc be the encryption of0|m|+lL , and will create (fake) proofπ by invoking
NIZKSim.

We show that the resulting simulation is successful using a two-tier hybrid argument. First, note that, by the
unbounded zero-knowledge property of the underlying NIZK proof system, signatures obtained by replacing calls
to NIZKProve by calls toNIZKSim will be distributed indistinguishably from real signatures. We call this signing
processMixSign; so we see thatMixSign is indistinguishable fromSign. Second, note that, by semantic security of the
dense cryptosystem used, usingc ← Enc(PK, (m,w)) versusc ← Enc(PK, (0|m|+lL)) results in indistinguishable
distributions. Since the only difference betweenMixSign andSimsign is in howc is chosen, it follows thatMixSign

andSimsign are indistinguishable as well. So we get simulatability.
Second, let us argue extraction. Recall that, as part of the trapdoorτ , Simsetup above retainsSK, the secret

key for the cryptosystem. The extractor simply decrypts thec part of the signatureσ to obtain the witnessw. By the
simulation-soundness property of the underlying NIZK proof system, no adversary can produce a signature acceptable
to theVerify algorithm without providingc that decrypts to a correct witnessw.

For a more formal proof, see Appendix E.

4 FSOK for Generalized Languages, and Applications

Recall from the introduction that a signature of knowledge may be used in order to construct a group signature
scheme. LetPKs be the public signing key of the group manager, and suppose that the group manager can sign
under this public key (using the corresponding secret keySKs). Let PKE be a public encryption key such that the
anonymity revocation manager knows the corresponding secret keySKE. A user must pick a secret keys and a public
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key p = f(s) wheref is some one-way function. She then obtains a group membership certificateg = σPKs
(p), the

group manager’s signature on her public key. In order to signon behalf of the group, the user encrypts her public key
and obtains a ciphertextc = Enc(PKE , p,R), whereR is the randomness used for encryption. Finally, her group
signature on messagem is a signature of knowledge of(s, p, g,R) such thatc = Enc(PKE , p,R), p = f(s), andg
is a valid signature onp underPKs.

Now let us consider more closely the languageL used in the signature of knowledge. In the example above,c ∈ L
and(s, p, g,R) is the witness. This language is determined by the parameters of the system,(f, PKs, PKE). This is
not a general language, but instead it depends on the system parameters, which in turn depend on three other building
blocks, a one-way function, an encryption scheme and a signature scheme. We want to show that even in this context,
the use of a signature of knowledge has well-understood consequences for the security of the rest of the system.

To that end, we consider signatures of knowledge for languages that are defined by secure functionalities realizing
particular tasks. In this example, this corresponds to the one-way function, encryption and signing functionalities.En-
cryption is used to incorporate the encrypted identity,c, of the signer into her group signature. A signing functionality
is used to issue group membership certificates,g, to individual group members. Finally, we have a one-way function
f that takes a user’s secrets and maps it to her publicp.

In this section, we wish to create a framework where, given ideal functionalitiesFf , FEnc andFΣ for these
three primitives, we can define a signature of knowledge functionality FSOK for the resulting languageL, whereL
is defined in terms of the outputs of functionalitiesFf , FEnc , andFΣ. SuchFSOK can be used to realize group
signatures as above, as well as other cryptographic protocols.

To that end, first, in Section 4.1, we will characterize functionalities that define such generalized languagesL. I.e.,
when they receive an input(x,w), verify that this is indeed an accepting input, in other words thatw constitutes a
witness forx ∈ L.

In Section 4.2, we will defineFSOK (F0), a signature of knowledge of an accepting input to one ideal functionality,
F0. Then, we prove Theorem 4.1: given a SimExt-secure scheme,FSOK (F0) is UC-realizable in the CRS model if
and only ifF0 is UC-realizable.

Then we generalize the idea to apply to languagesL that are not defined by just one functionalityF0, but by a set
of functionalitiesF1, . . . , Fc. For example, it will follow that we can define and UC-realizeour ideal functionality for
group signatures, where the underlying languages is definedin terms ofFf ,FEnc , andFΣ. This extension is presented
in Appendix G. Further, we give a multiple-session extension of FSOK that allows protocols to reuse the CRS; this
is presented in Appendix H. In this multiple-session extension, we can even allow multiple signature of knowledge
instances to sign on behalf of languages defined in terms of the same subfunctionality instances.

In addition, it will follow thatFSOK (. . . (FSOK (F1, . . . ,Ft)) . . .) is UC-realizable, and so a signature of knowl-
edge can serve as a witness for another signature of knowledge. This allows us to UC-realize delegatable anonymous
credentials. This is explained in Appendix I.

As far as we know, prior literature on the UC framework did notaddress the issues of defining an ideal functionality
as an extension of another ideal functionality or of a set of other functionalities. (In contrast, it addressed the case
when areal protocol used an ideal functionality as a sub-routine.) As aresult, our modelling task at hand is very
complex. For simplicity, we will only formally address the situation ofFSOK (F), i.e., when the languageL is defined
by only one sub-functionalityF .

4.1 Explicit Verification Functionalities

Consider Canetti’s signature functionalityFSIG . Once the key generation algorithm has been run, this functionality
defines a language: namely, the language of messages that have been signed. A witness for membership in such
a language is the signatureσ. In a Verifyquery this functionality will receive(m,σ) and will accept ifm has
been signed andVerify(m,σ) = Accept , whereVerify is the verification algorithm supplied toFSIG by the ideal
adversaryS. Moreover, if it so happens thatVerify(m,σ) accepts whilem has not been signed, or if it is the case that
Verify(m,σ) rejects a signature generated byFSIG ,FSIG will halt with an error.FSIG is an example of a verification
functionality, defined below:
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Definition 4.1 (Verification functionality). A functionality F is a verification functionality if (1) there exists some
start(F) query such thatF ignores all queries until it receives astart query; (2) during thestart queryF ob-
tains from the ideal adversaryS a deterministic polynomial-time verification algorithmVerify; (3) in response to
(Verify,sid, input ,witness) queries,F either responds with the output ofVerify(input ,witness) or halts with an
error.

Note thatstart(F) is a specific command that depends on the functionalityF . For example, ifF is a signature
functionality,start(F) =Keygen. IfF is another signature of knowledge functionality,start(F) =Setup.

Any verification functionalityF with a particularsid defines a language of inputs that will be accepted by
this functionality if an appropriate witness is provided; moreover, this language can be captured by a determinis-
tic polynomial-time Turing machine represented by theVerify algorithm. The only times whenVerify’s behavior is
different from that ofF causeF to halt with an error. To work with this language, we need a wayto obtain the Turing
machineVerify. Note that Canetti’s signature functionality does not makethe algorithmVerify freely available to any
party that calls it. However, it could easily be extended to makeVerify explicitly available through an extra query:

Definition 4.2 (Explicit verification functionality). LetF be a verification functionality. It is also an explicit verifica-
tion functionality if, once astart(F)(sid) query has taken place, it responds to a query (VerificationAlgorithm,sid)
from any partyP by returning the algorithmVerify.

An explicit verification functionality not only defines a languageL, but also makes available the Turing machine
ML for deciding whetherw is a witness forx ∈ L.

4.2 Signatures of Knowledge of an Accepting Input toF0

LetF0 be any explicit verification functionality. (Our running example is Canetti’s signature functionality, or our own
FSOK functionality, augmented so that it responds toVerificationAlgorithmqueries with theVerify algorithm
obtained from the ideal adversary.) We want to build a signature of knowledge functionalityFSOK (F0) that incorpo-
ratesF0. It creates an instance ofF0 and responds to all the queries directed to that instance. So, if F0 is a signature
functionality, thenFSOK (F0) will allow some partyP to run key generation and signing, and will also allow anyone
to verify signatures. In addition, any party in possession of (x,w) such thatF0’s verification interface will accept
(x,w), can sign on behalf of the statement “There exists a valuew such thatF0(sid0) accepts(x,w).” For example,
if F0 is a signing functionality,m is a message, andσ0 is a signature onm created by signedP with session idsid0,
then throughFSOK (F0), any party knowing(m,σ0) can issue a signatureσ1, which is a signature of knowledge of a
signatureσ0 onm, whereσ0 was created by signerP . Moreover, any party can verify the validity ofσ1.

To defineFSOK (F0), we start with our definition ofFSOK (L) and modify it in a few places. In the protocol
description below, these places are underlined.

The main difference for the setup, signature generation, and signature verification interfaces is that here the Turing
machineML that decides whetherw is a valid witness forx ∈ L, is no longer passed to the functionalityFSOK .
Instead, it is determined by queries to the verification procedure ofF0, as well as an algorithmML thatF0 returns
when asked to provide its verification algorithm.ML is supposed to be an algorithm that UC-realizes the verification
procedure ofF0. Note, however, that just becauseML(x,w) accepts, does not mean thatF0’s verification procedure
necessarily accepts. IndeedFSOK expects thatML(x,w) accepts iffF0 accepts, and shouldFSOK be given(x,w)
where this is not the case,FSOK will output and error message(Error with F0) and halt.

The setup procedure ofFSOK (F0) differs from that ofFSOK (L) in two places. First, it used to check that the
session id contains the descriptionML of the languageL; instead now it checks that it contains a description of the
functionalityF0 and a session idsid0 with whichF0 should be invoked. Second, it must now invokeF0 to determine
the languageL and the Turing machineML (more about that later).

An important other difference is that(Sign,Verify,Simsign,Extract) returned by the adversary now also takeML

as input.
The signing and verification procedures ofFSOK (F0) differs from that ofFSOK (L) only in that, instead of just

checking thatML(x,w) = 1, they check thatF0 accepts(x,w) and thatML faithfully reflects whatF0 does.
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Let us explain how the languageL is determined. During the first setup query,FSOK must somehow fix the set of
accepted(x,w), i.e., get the languageL. To that end, it creates an instance ofF0, and runs the start query forF0. It
also queriesF0 to obtain its verification algorithmML. We describe how this is done separately by giving a procedure
we call GetLanguage(F0, sid0), as a subroutine of the setup phase ofFSOK .

Note that this instance ofF0 is createdinsideof FSOK , and outside parties cannot access it directly. Instead, if
they want to useF0 and send a query to it of the form(query , sid0, data), they should instead queryFSOK with a
query of the form(F0-query , sid , data), wheresid = (sid0, sid1) is the session id ofFSOK . We specify this more
rigorously in the actual description ofFSOK (F0). Note thatFSOK will ignore any queries until the first setup query
— this is done so that one cannot queryF0 before it is actually created.

Also note thatF0 may require input from the adversary. Whenever this is the case, the messages thatF0 wants to
send to the adversary are forwarded to the adversary, and theadversary’s responses are forwarded back toF0.

Finally, we wantFSOK (F0) itself to be a explicit verification functionality (as explained in Section 4.1), and so it
must be able to respond to queries asking it to provide its verification algorithm.

FSOK (F0): signature of knowledge of an accepting input toF0

For anysid , ignore any message received prior to (Setup, sid).

Setup Upon receiving a value (Setup,sid) from any party P , verify that sid = (F0, sid0, sid1) for some
sid0, sid1. If not, then ignore the request. Else, if this is the first time that (Setup,sid) was received,
let ML = GetLanguage(F0, sid0), storeML, and hand (Setup,sid) to the adversary; upon receiving (Algorithms,
sid , Verify, Sign, Simsign, Extract) from the adversary, whereSign, Simsign, Extract are descriptions of PPT ITMs,
and Verify is a description of a deterministic polytime ITM, store these algorithms. Output the (Algorithms,
sid , Sign(ML, ·, ·, ·),Verify(ML, ·, ·, ·)) to P .

Signature Generation Upon receiving a value (Sign,sid , m, x, w) from P , check that
F0 accepts (Verify,sid0, x, w) when invoked byP . If not, ignore the request.
Else, ifML(x, w) = 0, output an error message(Error with F0) to P and halt. Else, computeσ ← Simsign(ML, m, x),
and verify thatVerify(ML, m, x, σ) = 1. If so, then output (Signature,sid, m, x, σ) to P and record the entry
(m, x, σ). Else, output an error message(Completeness error) to P and halt.

Signature Verification Upon receiving a value (Verify,sid , m, x, σ) from some partyV , do: If (m, x, σ′) is stored for
some σ′, then output (Verified,sid, m, x, σ, Verify(m, x, σ)) to V . Else let w ← Extract(ML, m, x, σ). If
ML(x, w) = 1: if F0 does not accept (Verify,sid0, x, w), output and error message(Error with F0) to P and halt; else
output (Verified,sid , m, x, σ, Verify(ML, m, x, σ)) to V . Else if Verify(ML, m, x, σ) = 0, output
(Verified,sid , m, x, σ, 0) to V . Else output an error message (Unforgeability error) to V and halt.

Additional routines:

GetLanguage(F0, sid0) Create an instance ofF0 with session idsid0. Send toF0 the message(start(F0), sid0) on behalf of
P , the calling party. Send toF0 the message (VerificationAlgorithm,sid0). In response, receive fromF0 the message
(VerificationAlgorithm,sid0, M). OutputM .

Queries toF0 Upon receiving a message(F0-query, sid0, sid1, data) from a partyP , send(query , sid0, data) toF0 on behalf
of P . Upon receiving(response, sid0, data) fromF0, forward(F0-response, sid , data) to P .

F0’s interactions with the adversary WhenF0 wants to send(command , sid0, data) to the adversary, give to the adversary
the message(F0-command , sid , sid0, data). When receive a message(F0-header , sid , sid0, data) from the adversary,
give (header , sid0, data) toF0 on behalf of the adversary.

Providing the verification algorithm Upon receiving a message (VerificationAlgorithm,sid) from any partyP , output
(VerificationAlgorithm,sid , Verify(ML, ·, ·, ·) to P .

Theorem 4.1. Let F0 be an explicit verification functionality. Assuming SimExt-secure signatures of knowledge,
FSOK (F0) is nontrivially UC-realizable in theFD

CRS hybrid model iffF0 is nontrivially UC-realizable in theFD
CRS

hybrid model, where we consider a realization to be nontrivial if it never halts with an error message.
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Proof. (Due to lack of space, we give an abbreviated proof here. For the complete proof, see Appendix F.) Assume
that there exists a SimExtsecure signature of knowledge scheme (Setup,Sign,Verify). Assume also that there exists
a protocolρ which UC-realizesF0. Then we build a protocolπ in the FD

CRS hybrid model which UC-realizes
FSOK(F0) as follows.

Upon receiving a value (Setup, sid = (F0, sid0, sid1)), if this is the first such message, the protocolπ will start
running an instance ofρ. It will sendρ inputs (Setup, sid0) and then (VerificationAlgorithm, sid0), andρ will
return (VerificationAlgorithm, sid0,F0M). π will store ML = F0M . From this point on, it will behave asπΣ

defined in Section 2.1. To finish theSetupquery, it will obtain the CRSp from FD
CRS (whereD implements the

Setup algorithm of the scheme) and output theSign(p,ML, ·, ·, ·) andVerify(p,ML, ·, ·, ·) algorithms.
OnSignandVerifyqueries, it will behave exactly asπΣ defined in Section 2.3.
Whenπ receives a query of the form(F0-query , sid0, sid1, data) from partyP , it will send(query , sid0, data) to

ρ on behalf of partyP . When it receives a response,(response , sid0, data) fromρ, it forwards(F0-response , sid0, data)
to P .

Similarly, whenρ wants to send(command , sid0, data) to the adversary,π will give to the adversary the message
(F0-command , sid , sid0, data). Whenπ receives a message(F0-header , sid , sid0, data) from the adversary, it will
give (header , sid0, data) to ρ on behalf of the adversary.

On input (VerificationAlgorithm, sid) from partyP , π will output (VerificationAlgorithm, sid ,
Verify(v,ML, ·, ·, ·)) to P .

We show thatπ UC-realizesFSOK(F0); for details, see Appendix F.
To show that ifFSOK (F0) is UC-realizable, then so isF0, we just notice that any realization ofFSOK (F0)

automatically realizesF0; for details, see Appendix F.
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A UC definition

Here we will briefly review the UC framework as defined in [Can05].
In the UC model, each protocol is examined independently. Any other protocols operating simultaneously are

represented by the environment. In the execution scenario,the parties participating in a protocol are given inputs by
the environment, which captures the idea that input to a protocol can be dependent on all the other protocols running in
the system. Each party’s part in this protocol is represented by an ITM. These ITMs can communicate with each other
as specified by the protocol. They can also invoke other ITMs to run subroutines. And finally, they can communicate
with an adversary. This adversary gets input from and sends messages to the environment.

Security is defined by the description of an ideal functionality which specifies exactly what actions should be
possible and what information leakage is admissible. Thus,this ideal functionality expects to receive input from
parties, and deliver output back to some of them, while performing some sort of operation. The ideal functionality
may also communicate with the adversary. It can send messages to the adversary, representing information that we
allow a secure protocol to leak. It can also receive messagesfrom the adversary, which represents information not
under the control of the parties running the protocol.

We also define a simulator which will replace the adversary inthe ideal world. This simulator may run a copy of
the adversary, and its goal is to convert messages from the ideal world into the output that the environment expects
from the adversary in the real protocol. This means that whatever information the environment expects to receive from
the adversary is information that could be generated from what the ideal functionality leaks – the protocol leaks no
more information than we have declared admissible.

We then define the ideal execution of the protocol, in which the environment sends input to the parties who forward
it directly to the functionality. Any output from the functionality to the parties is delivered to the environment. When
the functionality tries to communicate with the adversary,the messages will be sent to and from the simulator instead.

Finally, a real protocol is considered secure if there exists a simulator such that for all environments and adversaries
the environment cannot tell whether it is communicating with real parties running the real protocol ITMs and with the
real adversary, or whether it is communicating with partiesrunning the ideal protocol (forwarding all inputs to the ideal
functionality) and with the simulator. In this case, we say that the real protocol UC-realizes the ideal functionality.

We now summarize a limited version of the UC-composition theorem. Suppose we are given a protocolρ that
UC-realizes an ideal functionalityF . We are also given a protocolπ which makes calls to the ideal protocolF , and
which UC-realizes a functionalityG. Letπρ be the functionality which runsπ, but in which all calls toF are replaced
by calls toρ. Then the UC-composition theorem states thatπρ UC-realizesG.

A few other details should be mentioned. Each ITM is identified by a unique identifier called an sid. The UC
model allows ITMs to send messages to other ITMs running within the same protocol, or to subroutine ITMs. All
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messages must specify the sid of the ITM they are addressed to, and the code that it should run. In either case, if no
ITM with the given sid exists, an ITM will be created running the given code.2 (If the ITM is already running we
ignore the given code.)

B Cannetti’s Basic Signature Functionality

Over a series of papers, Canetti [Can00, Can01, Can04, Can05] gave several ideal functionalities for a signature
scheme. His motivation was to capture the security properties that one would ideally want to obtain from a signature
scheme. Several versions were proposed, each subsequent version an improvement over a previous one, giving the
adversary less and less power. He then shows that a signaturescheme realizesFSIG if and only if it is existentially
unforgeable against adaptive chosen message attack, as defined by Goldwasser, Micali, and Rivest [GMR88].

We refer to Canetti’s most recent version [Can05], which differs from earlier versions in a few fundamental
ways. The most important difference is the role that the ideal adversary now plays. In the 2000 formulation, the
ideal adversary was contacted during signing, shown the message being signed and was asked to provide the formal
signatureσ. In the 2005 formulation, the adversary is contacted duringkey generation, and provides an algorithmSign

for generating signatures. The adversary is not contacted at all during signing, instead signatures are generated using
Sign. This new variant captures the fact that signing happens inside the signer without interaction with the outside
adversarial world, and so we need a notion of security that does not allow the adversary to know what messages were
signed.

Another, more subtle but very important difference from theearliest versions [Can01], is that this functionality
is allowed to produce an error message and halt, or quit, if things go wrong. That means it is trivially realizable by
a protocol that always halts. As mentioned in 2.1, we only worry about protocols that realize our functionalities
non-trivially, i.e. never output an error message.

C Proof of Theorem 2.1

Suppose thatΣ is SimExt-secure. Then let us show thatπΣ UC-realizesFSOK (U). Consider the ideal adversary
(simulator)S that works as follows: Upon receiving (Setup,sid) from FSOK , S will parsesid = (MU , sid ′). It
obtains(p, τ) ← Simsetup(1k) and setsSign = Sign(p, ·, ·, ·, ·) (soSign will have four inputs: the languageML —
note that since we are realizingFSOK (U), any instance will start withML,— the instancex ∈ L, the witnessw, and
the messagem), Verify = Verify(p, ·, ·, ·, ·), Simsign = Simsign(p, τ, ·, ·, ·, ·), andExtract = Extract(p, τ, ·, ·, ·, ·).
Finally, it sends (Algorithms,sid,Sign,Verify,Simsign,Extract) back toFSOK . Another place whereS must do
something is when the adversaryA queries theFD

CRS functionality. In response to such a query,S outputsp.
Let Z be any environment andA be an adversary. We wish to show thatZ cannot distinguish interactions withA

andπΣ from interactions withS andFSOK . Let us do that in two steps. First, we show that the eventE thatFSOK

halts with an error message has negligible probability. Next, we will show that, conditioned onE not happening,Z ’s
view in its interaction withS andFSOK is indistinguishable from its view in interactions withA andπΣ.

There are two types of errors that lead to eventE: FSOK halts withCompleteness error or Unforgeability error.
Suppose that the probability of a completeness error is non-negligible. By construction ofS, a completeness error

happens when a signature generated bySimsign is rejected byVerify. This contradicts the simulatability require-
ment: Since the environmentZ can, with non-negligible probability, find a series of queries toFSOK that lead to
a completeness error, then it distinguishes the output ofSim as defined in definition 2.2 from that ofSign, since by
SimExt-security ofΣ we get the property that signatures generated bySign are always accepted byVerify.

Suppose that the probability of an unforgeability error is non-negligible. Then there exists some polynomiali(k),
such that the probability that thei(k)th verification query causes the error, is non-negligible. By construction ofS,

2The codec includes the name of the functionality and the code for the real protocol which realizes it. If the new ITM is being invokedin
the ideal world, the real code is ignored, and the new ITM runsthe ideal functionality with the given name. If the new ITM isbeing invoked in
the real world, the name is ignored and the new ITM runs the given code.
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an unforgeability error happens whenExtract fails to extract a witnessw from a signatureσ, issued byZ, that is
accepted byVerify but which was not generated byFSOK . Let us construct an adversaryA that uses suchZ to
break the unforgeability property ofΣ. By definition of SimExt-security, first(p, τ) ← Simsetup(1k) are generated,
and thenASim(p,τ,·,·,·,·)(s, p) is invoked, wheres is an auxiliary string, for example one that contains the description
of Z. A then invokesZ. WhenZ issues setup queries (Setup,sid), A returns the appropriateSign(p, ·, ·, ·) and
Verify(p, ·, ·, ·) algorithms. WhenZ issues signing queries,A uses itsSim oracle; note that by construction ofS, the
resulting responses are distributed identically to the responses thatFSOK would have issued. For the firsti(k) − 1
verification queries (Verify,sid,m, x, σ of Z, A returns the output ofVerify(p,m, x, σ). A outputs the contents
of Z ’s i(k)th verification query(m,x, σ). Note thatZ ’s view here is the same as its view in an interaction with
FSOK , and so the probability thatFSOK would halt with an unforgeability error is non-negligible.Unforgeability
error occurs whenExtract(p, τ,m, x, σ) fails to extract a valid witnessw, andm has not been signed byFSOK ,
and yetVerify(p,m, x, σ) = Accept . Thus, with non-neglible probability,A produces(m,x, σ) that violate the
conditions of the extractability property of the SimExt-security definition. Therefore,Σ is not SimExt-secure, which
is a contradiction.

Therefore we have shown that the probability of eventE is negligible. Let us now show that, conditioned onĒ,
Z ’s view when interacting withFSOK andS is indistinguishable from its view when interacting with a real adversary
A and the real protocolπΣ. Suppose for contradiction that it is distinguishable. Then let us useZ to construct a
distinguisherA that will contradict the simulatability property ofΣ, namely, distinguish between theSign oracle and
theSim oracle.A will invoke Z. It will respond toZ ’s setup query by giving itSign(p, ·, ·, ·) andVerify(p, ·, ·, ·). If
p was generated usingSetup (and soA is givenSign as its oracle), this is the same situation as whenZ is interacting
with πΣ; while if it was generated usingSimsetup (and soA’s oracle isSim), then this is the same as whenZ is
interacting withS andFSOK . In response toZ ’s signing queries,A will ask its oracle to produce a signature. Again,
note that ifA’s oracle isSign, σ is distributed as inπΣ, while if it is Sim, σ is distributed as in an interaction with
FSOK — the only other possibility forFSOK would be to halt with an error, but we are considering the casewhen this
does not happen. To respond toZ ’s verification queries,A runs theVerify algorithm. Since we have conditioned on
FSOK not halting with an error, the response of theVerify algorithm will, in caseA’s oracle isSim, correspond to
the behavior ofFSOK . On the other hand, ifA’s oracle isSign, this response is the same as inπΣ. Therefore, ifZ
distinguishesFSOK andS from πΣ andA, it implies thatA distinguishes between the two oracles, which contradicts
simulatability.

Now let us show the other direction. Suppose thatπΣ UC-realizesFSOK (U) in theFD
CRS -hybrid model. Let us

show that it follows thatΣ is SimExt-secure. SinceπΣ is UC-realizable, it must have a simulatorS. By (p, τ) ←
Simsetup(1k) let us refer to the algorithm thatS runs in response to a setup query; the public parametersp consist of
the value thatS will subsequently return in response to queries to theFD

CRS functionality; the trapdoorτ consists of
the algorithms(Simsign,Extract) thatS hands over toFSOK in response to the setup query.

SupposeΣ does not satisfy the correctness property and yetπΣ UC-realizesFSOK (U). Then let us show a
contradiction. Note that honest parties that useFSOK , always accept signatures generated by honest parties through
FSOK , (althoughFSOK may halt during signing with aCorrectness error). On the other hand, sinceΣ does not satisfy
completeness, honest parties usingΣ rejects signatures produced by honest parties that useΣ with non-negligible
probability. Therefore, to distinguishFSOK from πΣ, all Z needs to do is to find a signatureσ, output by an honest
party, that is rejected byVerify. Such a signature will exist inπΣ with non-negligible probability sinceΣ does not
satisfy correctness, and yet will not exists inFSOK by the argument above. This is a contradiction.

SupposeΣ does not satisfy simulatability. Then there exists a distinguisher between theSign and theSim oracles.
Then it is easy to see how the environment can use such a distinguisher to distinguish betweenFSOK andπΣ, since in
FSOK signatures output by honest parties are computed accordingto Sim, while in πΣ, they are computed according
to Sign.

Finally, supposeΣ does not satisfy extractability. Then there exists an adversaryA that, with non-negligible
probability produces a signature from which an appropriatewitness cannot be extracted. Then it is easy to see how
the environmentZ can use this adversary to distinguishπΣ fromFSOK . It will invoke A; wheneverA issues queries
to Sim, it will direct these queries to be signed by honest parties.Finally, A produces an unsigned messagem and
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(m,x, σ) thatVerify accepts, but from which a witness cannot be extracted.Z directs(m,x, σ) to be verified by an
honest party. IfA’s success happens non-negligibly often, then, shouldZ be talking toFSOK , it will causeFSOK

to halt with an error with non-negligible probability; while should it be talking toπΣ, the values(m,x, σ) will be
accepted.

D Primitives

Recall that a cryptosystem(G,Enc,Dec) is calleddenseif the following two distributions are statistically indistin-
guishable: (1) the uniform distribution onk-bit binary strings; (2) the distribution of public keys obtained by running
G(1k).

Recall that a non-interactive zero-knowledge (NIZK) proofsystem consists of algorithms(NIZKProve,NIZKSimsetup,
NIZKSim,NIZKVerify).

NIZKProve takes as input (1) a common random stringρ; (2) the common inputx; (3) the statement that is being
proven about the common inputx (i.e., the description of a poly-time non-deterministic Turing machine that accepts
x); (4) the witnessw that the statement is true. It outputs a proofπ.

NIZKSimsetup generates a stringρ that is indistinguishable from random, together with some trapdoor informa-
tion τ about this string.NIZKSim takes as input (1) the stringρ generated byNIZKSimsetup; (2) the trapdoorτ ; (3)
the common inputx; (4) the statement that is being proven about the common input x. It outputs a simulated proofπ.

NIZKVerify takes as input (1) the common reference stringρ; (2) the proofπ; (3) the common inputx; (4) the
statement aboutx that is being proven. It either accepts or rejects.

Such a proof system has has three basic properties: completeness (NIZKVerify always accepts proofs generated
by NIZKProve); soundness (NIZKVerify always rejects proofs of false statements); and zero-knowledge (a proof
generated byNIZKSim is indistinguishable from one generated byNIZKProve).

A multi-theorem NIZK proof system requires that these properties hold even as many proofs for adversarially (and
adaptively) chosen statements are generated.

Here we need simulation-sound NIZK, which is a strengthening of the basic soundness property in the multi-
theorem setting. Simulation-soundness requires that no probabilistic poly-time adversary can getNIZKVerify to accept
a proofπ for a false statement, even after obtainingsimulatedproofs (i.e. proofs produced byNIZKSim instead of
NIZKProve) of statements of its own choice.

We refer the reader to existing literature [FLS99, dSdCO+01] for formal definitions.

E Proof of Theorem 3.1

Proof. • Simulatability:

Simsetup runs(PK, SK) ← G(1k) to obtain a random public keyPK and the corresponding secret keySK.
Then, let(ρ, τ ′)← NIZKSimsetup(1k). Let p = PK ◦ ρ, τ = (SK, τ ′).

Simsign(p, τ,ML, x,m) parsesp = PK ◦ ρ and τ = (SK, τ ′), lets c ← Enc(PK, (m, 0lL)) and obtains
π = NIZKSim(ρ, τ ′, (m,ML, x, c, PK), (∃(w,R) : c = Enc(PK,m,w,R) ∧ ML(x,w))). Output
(c, π).

We will show that interaction withSign and Setup is indistinguishable from interaction withSimsign and
Simsetup. Consider an intermediate signing algorithm:

MixSign(p, τ, L, x,m,w) verifies thatML(x,w) accepts, parsesp = PK ◦ ρ andτ = (SK, τ ′), lets c ←
Enc(PK, (m,w)) and obtainsπ = NIZKSim(ρ, τ ′, (m,ML, x, c, PK), (∃(w,R) : c = Enc(PK,m,w,R)∧
ML(x,w))). Output(c, π)
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Let

p1 =

∣

∣

∣

∣

Pr[(p, τ)← Simsetup(1k); b← AMixSign(p,τ,·,·,·,·)(s, p) : b = 1]

− Pr[p← Setup(1k); b← ASign(p,·,·,·,·)(s, p) : b = 1]

∣

∣

∣

∣

Sign andMixSign are identical except thatSign makes calls toNIZKProve, andMixSign makes calls toNIZKSim.
Thus, if p1 is nonnegligible, then we have broken the Unbounded Zero Knowledge property of the SSNIZK
proof system.

Finally, consider the following hybrid signing algorithms:

HybridSigni callsMixSign the firsti times it is queried, and callsSim for the rest of the queries.

Note thatHybridSigni andHybridSigni+1 are identical except that on the(i+1)-th call,HybridSigni+1 encrypts
(mi+1, wi+1), while hybridi encrypts(mi+1, 0

lL).

That means if
∣

∣

∣

∣

Pr[(p, τ)← Simsetup(1k); b← AHybridSigni+1(p,τ,·,·,·,·)(s, p) : b = 1]

− Pr[(p, τ)← Simsetup(1k); b← AHybridSigni(p,τ,·,·,·,·)(s, p) : b = 1]

∣

∣

∣

∣

is nonnegligible, then we have broken the semantic securityof the encryption scheme.

Thus, sinceHybridSign0 = Simsign, andHybridSignq = MixSign whereq is the total(polynomial) number of
signing queriesAmakes, we now have

p2 =

∣

∣

∣

∣

Pr[(p, τ)← Simsetup(1k); b← ASim(p,τ,·,·,·,·)(s, p) : b = 1]

− Pr[(p, τ)← Simsetup(1k); b← AMixSign(p,τ,·,·,·,·)(s, p) : b = 1]

∣

∣

∣

∣

is negligible.

So finally, combiningp1 andp2 , we have that
∣

∣

∣

∣

Pr[(p, τ)← Simsetup(1k); b← ASim(p,τ,·,·,·,·)(s, p) : b = 1]

− Pr[p← Setup(1k); b← ASign(p,·,·,·,·)(s, p) : b = 1]

∣

∣

∣

∣

is negligible. Thus, we have shown Simulatability.

• Extraction:

Extract(p, τ,ML, x,m, σ) parsesσ = (c, π) andτ = (SK, τ ′), runsDec(PK, SK, c) to obtain(m,w), and
outputsw.

Suppose there existsA, f, s such that

Pr [(p, τ)← Simsetup(1k); (ML, x,m, σ)← ASim(p,τ,·,·,·,·)(s, p);
w← Extract(p, τ,ML, x,m, σ) :

ML(x,w) ∨ (ML, x,m, σ) ∈ Q ∨ ¬Verify(p,ML, x,m, σ)] = 1− ε(k)

for nonnegligibleε(k)

LetL′ be a language such that an instance(ρ, x,ML,m, c, PK) ∈ L′ iff there exists(w,R) such thatML(x,w)∧
c = Enc(PK, (m,w), R).

Then, from above, using the constructions forSimsetup, Extract, andVerify:

Pr [(PK ◦ ρ, SK ◦ τ)← Simsetup(1k); (ML, x,m, σ = (c, π))← ASim(p,τ,·,·,·,·)(s, p);
(m,w) = Dec(PK, SK, c) :

ML(x,w) ∨ (ML, x,m, σ) ∈ Q ∨ ¬(NIZKVerify(π, (ρ, x,ML,m, c, PK) ∈ L′))] = 1− ε(k)
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Looking at the probability of the opposite event, we get:

Pr [(PK ◦ ρ, SK ◦ τ)← Simsetup(1k); (ML, x,m, σ = (c, π))← ASim(p,τ,·,·,·,·)(s, p);
(m,w) = Dec(PK, SK, c) :

(ML, x,m, σ) /∈ Q ∧ NIZKVerify(π, (ρ, x,ML,m, c, PK) ∈ L′)
∧¬ML(x,w)] = ε(k)

Finally, using the definition ofL′, which says that whenw is obtained fromDec(PK,SK, c), ML(x,w) must
accept:

Pr [(PK ◦ ρ, SK ◦ τ)← Simsetup(1k); (ML, x,m, σ = (c, π))← ASim(p,τ,·,·,·,·)(s, p);
(m,w) = Dec(PK, SK, c) :

(ML, x,m, σ) /∈ Q ∧ NIZKVerify(π, (ρ, x,ML,m, c, PK) ∈ L′)
∧(ρ, x,ML,m, x, PK) /∈ L′] = ε(k)

SinceSim callsNIZKSim for each of the queried proofs and we now have an algorithm which can prove false
statements, we have broken the simulation soundness property.

F Proof of Theorem 4.1

Proof. Assume that there exists a SimExtsecure signature of knowledge scheme (Setup,Sign,Verify). Assume also
that there exists a protocolρ which UC-realizesF0. Then we build a protocolπ in theFD

CRS hybrid model which
UC-realizesFSOK(F0) as follows.

Upon receiving a value (Setup, sid = (F0, sid0, sid1)), if this is the first such message, the protocolπ will start
running an instance ofρ. It will sendρ inputs (Setup, sid0) and then (VerificationAlgorithm, sid0), andρ will
return (VerificationAlgorithm, sid0,F0M). π will store ML = F0M . From this point on, it will behave asπΣ

defined in Section 2.1. To finish the Setup query, it will obtain the CRSp from FD
CRS (whereD is the distribution of

Setup(1k)) and output theSign(p,ML, ·, ·, ·) andVerify(p,ML, ·, ·, ·) algorithms.
On Sign and Verify queries, it will behave exactly asπΣ defined in Section 2.3.
Whenπ receives a query of the form(F0-query , sid0, sid1, data) from partyP , it will send(query , sid0, data) to

ρ on behalf of partyP . When it receives a response,(response , sid0, data) fromρ, it forwards(F0-response , sid0, data)
to P .

Similarly, whenρ wants to send(command , sid0, data) to the adversary,π will give to the adversary the message
(F0-command , sid , sid0, data). Whenπ receives a message(F0-header , sid , sid0, data) from the adversary, it will
give (header , sid0, data) to ρ on behalf of the adversary.

On input (VerificationAlgorithm,sid) from partyP , π will output (VerificationAlgorithm,sid ,
Verify(v,ML, ·, ·, ·)) to P .

We will show thatπ UC-realizesFSOK(F0).
Consider the hybrid protocolH, which runs in theF0-hybrid model.H will behave likeπ except that calls toρ

will be sent instead to the idealF0 functionality. By the UC theorem, ifH UC-realizesFSOK(F0) in theF0-hybrid
mode, thenπ UC-realizesFSOK(F0). Thus,we have only to show thatH UC-realizesFSOK(F0) in the hybrid model.

Let us examine the definition of theFSOK(F0) functionality more closely. Note that we can equivalently define
FSOK(F0) as follows: in theSetup query, first obtainML using Get Languageas a subroutine; then obtain the
algorithmsSign andVerify by invoking an instance ofFSOK (U) with session idsid as a subroutine, whereU is
the universal language, and every instancex passed toFSOK (U) is prepended by a description ofML. Similarly, to
processSign andVerify queries, first check that there is no error withF0; if there is an error, halt with the error message
“Error with F0;” otherwise, compute the output of the query by making a callto the same instance ofFSOK (U), again
with ML prepended to the instancex. Let us denote this (equivalent) formulation ofFSOK (F0) by G. (The fact that
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G is an equivalent formulation follows by inspection ofFSOK (F0) and we will leave it to the reader to verify that
fact.)

Let us consider the event thatG does not output “Error withF0.” In that case, note that if, inG, we replace all
calls toFSOK (U) by calls toπΣ, and conditioned on the error withF0 never happening, we obtainH. Moreover, by
Theorem 2.1,πΣ realizesFSOK (U), and therefore by the UC theorem, no environmentZ can distinguish an execution
with H from an execution withG.

SinceG is just another formulation ofFSOK(F0), we have shown that as long asFSOK(F0) does not halt with
an “Error withF0” error, FSOK(F0) andH are indistinguishable. By definition, sinceF0 is an explicit verification
functionality, the call (VerificationAlgorithm, sid0) toF0 returnsML = VerifyF0

, the algorithmF0 uses on its
verification queries. Thus,ML(x,w) = VerifyF0

(x,w) = 1 iff F0 accepts on query (Verify, sid0, x, w).
That means “Error withF0” can only occur ifF0 halts with an error. However, we require thatρ which realizes

F0 never outputs an error. Now suppose there exists an environmentZ which can causeFSOK(F0) to halt with “Error
with F0” with nonnegligible probablility. Then we can simulateFSOK and useZ to distinguishρ from F0, sinceρ
never outputs an error, butF0 does.

Thus, with all but negligible probability, interaction with FSOK(F0) andS is indistinguishable from interaction
with H in theF0-hybrid model, which as stated above implies thatπ UC-realizesFSOK(F0).

Now we will consider the reverse direction. Assume thatFSOK(F0) is UC-realized by some protocolπ in the
FD

CRS hybrid model. Then we will show thatF0 is also UC-realizable.
Let ρ be the following protocol in theFSOK (F0)-hybrid model: On input(start (F0)sid0), ρ setssid =

(F0, sid0, sid1) for some randomsid1, and (Setup,sid) toFSOK(F0). On receiving any other query(query , sid0,
data), ρ sends(F0-query , sid0, sid1, data) toFSOK(F0). WhenFSOK(F0) sends a response(F0-response , sid0,
data), ρ will output (response , sid0, data). Whenρ receives a message(F0-command , sid , sid0, data) fromFSOK(F0),
it sends(command , sid0, data) to the adversary. When the adversary sends a response(header , sid0, data), it sends
(F0-header , sid , sid0, data) toFSOK(F0).

Clearly, by definition ofFSOK(F0), ρ UC-realizesF0 in theFSOK(F0)-hybrid model. Thus, by the UC theorem,
ρπ(the protocolρ where all calls toFSOK(F0) have been replaced by calls toπ) UC-realizesF0. Furthermore, since
π nontrivially realizesFSOK(F0), andρ doesn’t output any error messages, and soρπ nontrivially realizesF0.

G Multiple Subfunctionalities

We definedFSOK (F0) in terms of just one instance of a sub-functionalityF0. It is easy to extend the ideal function-
ality to a more complex case. For example, suppose thatF1 andF2 are both explicit verification functionalities, and
we want to realize a signature of knowledge of either a an accepting input toF1 or accepting input toF2. In order
to decide whether a given(input ,witness) pair are acceptable byF1 or F2, it is sufficient to query both function-
alities and combine the result using the OR function. Similarly, given the Turing machinesML1

andML2
for their

respective verification algorithms, it is straightforwardto produce a Turing machine for the verification algorithm of
this extended functionality: just output a Turing machine that outputs the OR ofML1

andML2
.

In general, ifF1, . . . ,Fc are explicit verification functionalities,f1, . . . , fc and f ′
1, . . . , f

′
c are any poly-time

computable functions, andb is any polynomial-time computable Boolean function, then we can specify a signa-
ture of knowledge functionalityFSOK (F1, . . . ,Fc, f1, f

′
1, . . . , fc, f

′
c, b) for signatures of knowledge ofw such that

b(x,w,F1(f1(x,w), f ′
1(x,w)), . . . ,Fc(fc(x,w), f ′

c(x,w))) = 1. WhatFSOK will need to do to decide whetherw
is a witness tox’s membership in the language defined in terms ofF1, . . . ,Fc, f1, . . . , fc andf ′

1, . . . , f
′
c and the

Boolean functionb, is to: (1) store the responseri of eachFi to a(Verify, sid i, f(x,w), f ′(x,w)) query; (2) evaluate
b(x,w, r1, . . . , rc). And again, given a TM for eachML, we can easily build a TM for this composite language.

For example, this captures signatures of knowledge of a signature on one of several messages; on all of several
messages; on a preimage of a one-way function; on a decryption of a ciphertext formed using a given string as
randomness; etc. It is easy to see that this covers the group signature and ring signature applications we have discussed
previously.
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Note that for all such extensions, we can generalize the proof of Theorem 4.1 and show that, assuming SimExtse-
cure signatures of knowledge exist, the resultingFSOK (F1, . . . ,Fc, f1, f

′
1, . . . , fc, f

′
c, b) is UC-realizable in theFD

CRS

hybrid model if and only ifF1, . . . ,Fc are UC-realizable in theFD
CRS hybrid model.

For an example of howFSOK might use multiple subfunctionalities, see Appendix I.

H Multi-Session Extensions

Recall the definition of a multi-session extensionF̂ of an ideal functionality due to Canetti and Rabin [CR03]. In
a nutshell, a multi-session extension̂F takes care of managing many instances ofF in such a way that they don’t
interfere with each other. Specifically, when invokedF̂ is given a session idsid , and also a sub-session idssid , and
the query itself.F̂ creates an instance ofF with sub-session idssid if it does not already exist, and forwards the query
to it. Thus, many instances ofF run within F̂ as if they were running completely independently. Canetti and Rabin
proved that for any protocolπ, if a protocolρ UC-realizesF̂ , and protocolπ UC-realizes a functionalityG in the
F-hybrid model (with calls to many independent instances ofF), thenπ[ρ] UC-realizesG, whereπ[ρ] is the protocol
π where all calls to instances ofF have been replaced by calls toρ.

This is often used to examine the need for common setup parameters. If F̂ can be realized by a protocol in which
many independent copies use use only one set of parameters, then we can implement all instances ofF as given in
that protocol with the same parameters and they will still operate as if they were completely independent.

We can also show that̂FSOK can be an explicit verification algorithm (which by Theorem 4.1 means we can use
it to define the language for a higher level signature of knowledge functionality). Note thatπΣ as defined in 2.3 does
not realizeF̂SOK . Suppose we send a signature query to anFSOK instance for languageL with ssidssid. Then
we send a verification query with the resulting signature to anotherFSOK instance also for languageL, but with
slightly different ssidssid′. If we are interacting withFSOK, these two instances will be completely independent,
so the secondFSOK instance (ssid′), by which this message has not been signed, will reject the signature. If we are
interacting withπΣ, however, any signature which has been generated for a language will always cause the verification
procedure to accept when given the same language and the sae CRS by the completeness property of SimExt-secure
signatures. However, we can make a small modification to avoid this problem.

If we extendπΣ so that instead of signing messagem and verifying signatures onm, we signm ◦ ssid and
verify signatures onm ◦ ssid , the resulting protocol will UC-realizêFSOK for NP languages. Further, recall thatπΣ

UC-realizesFSOK(U). Thus,πΣ uses the same verification algorithm for all languages. If weallow πΣ to output
this verification algorithm, then this protocol will UC realize the explicit verificationF̂SOK functionality. We can
similarly show that we can UC-realize the explicit verification F̂SOK(F0) functionality. Finally, this implies that we
can realize the nestedFSOK functionality in whichF0 = F̂SOK(F ′

0). For more details, we refer the reader to the full
version.

In some cases, we would like to create a different type of multisessionFSOK functionality. In this multisession
functionality, many instances ofFSOK may be operating simultaneously, however, they need not be completely in-
dependent. Instead, we allow some of theFSOK instances to share the subfunctionalities they use to definetheir
languages. Thus, we could have twoFSOK instances ,SOK1, andSOK2, both issuing signatures of knoweldge on
behalf of the language of messages signed by some partyP . If we used the standard multisession functionality, each
FSOK instance would be defined in terms of a separate instance ofFSIG . Thus, signatures which were generated and
accepted by theFSIG instance running withinSOK1 might be rejected by theFSIG instance running withingSOK2,
even though they were all issued by partyP . Thus, we need this alternative “shared subfunctionality”multisession
extension. (Note that this becomes more useful when we allowlanguages defined by multiple subfunctionalities as
described in Appendix G.) We can show that any SimExtsecure signature of knowledge scheme can also be used to
realize this type of extension. For more details we refer thereader to the full version.
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I Delegatable Anonymous Credentials

Given anySimExt secure signature of knowledge scheme, i.e. any scheme that UC-realizesFSOK(F0) and its
shared-subfunctionality and multi-subfunctionality extensions (see Appendices G and H), we can build a delegatable
anonymous credential system.

As an example, we will see how we can implement the scenario given in the introduction. We will show how to
formulate anonymous credentials in terms of our multi-subfunctionalityFSOK functionalities. Since we have shown
that any SimExtsecure signature of knowledge scheme can be used to realize these functionalities, this will give an
implementation of delegatable anonymous credentials based on anySimExt secure scheme.

At the base level of our delegation chain is the certificationauthority (CA), which has public keyPKCA and
secret keySKCA. The CA wishes to issue a credential to Brown employee with public key PKEmp and secret key
SKEmp . In our delegatable anonymous credential scheme, this credential will be a traditional signature under the
CA’s public key on the messagePKEmp . We can desribe this in the UC model by saying that CA usesF ′

SIG (the
explicit verification form ofFSIG ) with sid = CA ◦ sid′ to issue credentials to Brown employees.

Now, we would like our Brown employee to be able to issue credentials to a guest with public keyPKGuest

and secret keySKGuest . In this case, we want the credentialCredGuest to be a signature on the guest’s public key
PKGuest of knowledge of a valid employee credential forPKEmp and a correspondingSKEmp . In order to describe
this signature of knowledge language in the UC model, we needtwo subfunctionalities. To verify the employee
credential, we need a signature functionality as describedabove. To verify the public key, we extend the multisession
encryption functionalityFEnc to an explicit verification algorithm by adding a (Verifyx,w) query which returns true
iff x is an encryption public key andw is the corresponding secret key, and a corresponding VerificationAlgorithm
query.

We can now define the Guest credential functionality as a shared-subfunctionality signature of knowledge func-
tionality(see Appendix G.) LetF1 = F ′

SIG andF2 = F ′
Enc . When we issue a new credential, we wantw =

(w1, w2, w3) = (PKEmp ,SKEmp ,CredEmp) i.e. all the information which must be hidden in the resulting signa-
ture. Since the credential should reveal no information besides the fact that it is valid, we’ll letx (the potentially
visible part of the signature)= “valid”. Now we need only determine which inputs get passed to F1 andF2. Let
f1(x,w = (w1, w2, w3)) = w1 andf ′

1(x,w = (w1, w2, w3)) = w3). Thus, the first step in checking whether(x,w)
is in our language sends (Verifyw1, w3), i.e. (VerifyPKEmp ,CredEmp) to F ′

SIG , in other words, we check that
CredEmp is a valid signature onPKEmp . Now let f2(x,w) = w1 andf ′

2(x,w) = w2. Then the second step sends
(Verify

w1, w2), i.e. (VerifyPKEmp ,SKEmp) to F ′
Enc , in other words, we check thatSKEmp is the secret key cor-

responding to public keyPKEmp . Finally, we defineb(x,w,F1(f1(x,w), f ′
1(x,w)),F2(f2(x,w), f ′

2(x,w))) =
F1(f1(x,w), f ′

1(x,w)) ∧ F2(f2(x,w), f ′
2(x,w)), sox,w is accepted by our language iff both functionalties accept.

Call this Guest credential functionalityF1
SOK . A Guest credential is now a signature of knowledge given byF1

SOK

on the messagePKGuest .
The taxi driver credentials are defined analagously. In thiscase, in the UC formulation, we represent the cre-

dentials as second level signatures of knowledge. Thus, credentials are now signatures of knowledge on behalf of a
combination ofF1 = F1

SOK andF2 = F ′
Enc , x =”valid”, and w = (PKGuest ,SKGuest ,CredGuest ). f1, f2, and

b are defined as above. A taxi credential is represented by a signature by this newFSOK functionality on message
m = PKTaxi .
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