On Signatures of Knowledge

Melissa Chase = Anna Lysyanskaya
Computer Science Department
Brown University
Providence, Rl 02912
{nthase, anna}@s. br own. edu

May 21, 2006
Abstract

In a traditional signature scheme, a signatwren a message: is issued under a public kK, and can be
interpreted as follows: "The owner of the public kB and its corresponding secret key has signed messdge
In this paper we consider schemes that allow one to issuatsigrs on behalf of any NP statement, that can be
interpreted as follows: "A person in possession of a witness the statement that € L has signed message”

We refer to such schemes signatures of knowledge

We formally define the notion of a signature of knowledge. \WWgib by extending the traditional definition of
digital signature schemes, captured by Canetti's idealsggfunctionality, to the case of signatures of knowledge.
We then give an alternative definition in terms of games tlsat seems to capture the necessary properties one may
expect from a signature of knowledge. We then gain additiomafidence in our two definitions by proving them
equivalent.

We construct signatures of knowledge under standard coditypkessumptions in the common-random-string
model.

We then extend our definition to allow signatures of knowketigbenested.e., a signature of knowledge (or
another accepting input to a UC-realizable ideal functity)acan itself serve as a witness for another signature
of knowledge. Thus, as a corollary, we obtain the fitslegatableanonymous credential system, i.e., a system in
which one can use one’s anonymous credentials as a secriarkeyuing anonymous credentials to others.
Keywords: signature schemes, NIZK, proof of knowledge, UCanonymous credentials

1 Introduction

Digital signature schemes constitute a cryptographic itivienof central importance. In a traditional digital sigaee
scheme, there are three algorithms: (1) the key generdgonitam KeyGen through which a signer sets up his public
and secret keys; (2) the signing algorittsign; and (3) the verification algorithrierify. A signature in a traditional
signature scheme can be thought of as an assetidehalf of a particular public keyOne way to interpretm, o)
whereVerify(PK, m,0) = Accept, is as follows: “the person who generated public Ry and its corresponding
secret key5K has signed message.”

We ask ourselves the following question: Can we have a sigaacheme in which a signer can speakbehalf
of any NP statement to which he knows a wit@eBsr example, lep be a Boolean formula. Then we want anyone
who knows a satisfying assignmentto be able to issue tuples of the fom, o), whereVerify(¢, m, o) = Accept,
that can be interpreted as follows: “a person who knows afgatg assignment to formula has signed message
m.” Further, we ask whether we can have a signature that jusailg that statement but nothing else; in particular, it
reveals nothing about the witness. Finally, what if we wanide a signature issued this way as a witness for issuing
another signature?

Online, you are what you know, and access to data is what eens@wser to authenticate her outgoing messages.
The question iswhatdata? Previously, it was believed that a user needed a pighing key associated with her
identity, and knowledge of the corresponding secret keyhatwave her the power to sign. Surprisingly, existence

of signatures of knowledge means that if therary NP statement € L is associated with a user’s identity, the
knowledge of a corresponding and hard-to-find witrieder this statement is sufficient to empower the user to sign.

WHY WE NEED SIGNATURES OFKNOWLEDGE AS ANEW PRIMITIVE. Suppose that a messages signed under
some public keyPK, ando is the resulting signature. This alone is not sufficient foy application to trust the
messagen, unless this application has reason to trust the publicR&y Thus, in addition tqm, o, PK), such an
application will also request some proof thdK is trustworthy, e.g., a certification chain rooted at sorastedP K.

In order to convince others to accept her signature, the owfrthe public keyPK has to reveal a lot of information
about herself, namely, her entire certification chain. ‘@tshe was trying to communicate was that the message
m comes from someone trusted by the ownePéf,. Indeed, this is all the information that the applicatiorede

to accept the message. If instead the user could issuesanature of knowledgef her SK, PK, and the entire
certification chain, she would accomplish the very same githbut revealing all the irrelevant information.

More generally, for any polynomial-time Turing maching;,, we want to be able to sign using knowledge of a
witnessw such thatM (z,w) = Accept. We think of M}, as a procedure that decides whetheis a valid withess
for x € L for the NP languagéd.. We call the resulting signatusme signature of knowledge af that is a witness to
x € L, on messagen, or sometimes just a signature of knowledgewbn messagen, or sometimes a signature of
knowledge on behalf of € L on message:.

Why do we need something so general, and not just a signdtkrewledge of a certification chain? The reason
for the generality is that different applications requiifedent things. One application may want a certificatioaich
only in order to trust a signature, while another will wantnb@ake sure that none of the links of the certification
chain has been revoked, while yet another application \aiehyet another set of requirements before it can trust a
given signature. It makes sense to define a signature of kdglin the most general terms that will suit all such
applications.

Let us give additional examples of how signatures of knogéednable simple realizations of various privacy-
preserving cryptographic schemes.

OTHER APPLICATIONS Our simplest example is a ring signature [RSTO1]. In a rirggnature, a signer wishes to
sigh a messager in such a way that the signature cannot be traced to her s@dlgifibut instead to a group df
potential signers, chosen at signing time. A ring signatae be realized by issuing a signature of knowledge of one
of the secret keys correspondingXopublic keys. Moreover, following Dodis et al. [DKNSO04] ugiieryptographic
accumulators [BdM94], the size of this ring signature neetl® proportional taV: simply accumulate all public
keys into one accumulatot using a public accumulation function, and then issue a tigaaf knowledge of a secret
key corresponding to a public key ih.

Next, let us show how signatures of knowledge give rise torgke group signature scheme [CvH91, CS97,
ACJTO00, BMWO03, BBS04]. In a group signature scheme, we haeeimg members, a group manager, and an
anonymity revocation manager. Each member can sign onflmhhke group, and a signature reveals no information
about who signed it, unless the anonymity revocation margets involved. The anonymity revocation manager can
trace the signature to the group member who issued it; merabis impossible, even if the group manager and the
revocation manager collude, to create a signature thabeiltaced to a group member who did not issue it.

Consider the following simple construction. The group’blikey consists of PK ¢, PK i, f), wherePK is a
signature verification key for which the group manager kntivescorresponding secret ke g is an encryption
public key for which the anonymity revocation manager kntiwescorresponding decryption key; afids a one-way
function. To become a group member, a user picks a secigtves f(x) to the group manager and obtains a group
membership certificate = opx,(f(x)). To issue a group signature, the user picks a random sijrencrypts his
identity using randomnesB: ¢ = Enc(PKg, f(z)) and produces a signature of knowledgef (x, g, R) suchc is
an encryption off (z) using randomnesg, andg is a signature orf (z). The resulting group signature consists of
(c,0). To trace a group signature, the revocation manager deatyjttis not hard to see (only intuitively, since we
haven't given any formal definitions yet) that this constiat is a group signature scheme. Indeed, on a high level,
this is how existing practical and provably secure groupatgres work [ACJT00, BBS04].

Unlike the two applications above that have already beatieduand where signatures of knowledge offer just a
conceptual simplification, our last application was notwndo be realizable prior to this work.

Consider the problem of delegatable anonymous credenfifle problem can be explained using the following
example. Suppose that, as Brown University employees, we tidentials attesting to that fact, and we can use
these credentials to open doors to campus facilities. Wa teide able do so anonymously because we do not want
the janitors to monitor our individual whereabouts. Now @oge that we have guests visiting us. We want to be
able to issue them a guest pass using our existing credastialsecret key, and without revealing any additional
information about ourselves, even to our guests. In turnyisitors should be able to use their guest passes in order
to issue credentials to their taxi drivers, so these drigars be allowed to drive on the Brown campus.So we
have a credential delegation chain, from the Brown Unitgrtification authority (CA) that issues us the employee
credential, to us, to our visitors, to the visitors’ taxiwdnis, and each participant in the chain does not know who gave
him/her the credential, but (1) knows the length of his cngidé chain and knows that this credential chain is rooted
at the Brown CA; and (2) can extend the chain and issue a diatienthe next person.

Although it may seem obvious how to solve this problem oncecast everything in terms of signatures of
knowledge and show how to realize signatures of knowledgemust stress that this fact eluded researchers for
a very long time, dating back to Chaum’s original vision of tlvorld with anonymous credentials [Cha85]. More
recently this problem was raised in the anonymous credsnditiarature [LRSW99, CL01, Lys02]. And it is still
elusive when it comes to practical protocols: our solutenat efficient enough to be used in practice.

In conclusion, we need signatures of knowledge as a prienlizcause it comes up again and again in privacy-
preserving protocols. This primitive is both conceptuaiipful in understanding existing constructions (groumat
tures, ring signatures), and useful for developing new dgsigaing without disclosing certification data, deleg#ab
anonymous credentials).

ON DEFINING SIGNATURES OF KNOWLEDGE. The first definition of any new primitive is an attempt to faiize
intuition. We see from the history of cryptographic defmits (from defining security for encryption, signatures,
multi-party computation) that it requires a lot of efforthrare. Our approach is to give two definitions, each cagurin
our intuition in its own way, and then prove that they are egjgint to make ourselves feel even better about them.

One definitional approach is to give an ideal functionalitgttcaptures our intuition for a signature of knowledge.
Our ideal functionality will guarantee that a signaturelwihly be accepted if the functionality sees the witness
w either when generating the signature or when verifying 1iil,anoreover, signatures issued by signers through
this functionality will always be accepted. At the same tite signatures that our functionality will generate will
contain no information about the witness. This seems taucaghe intuitive properties we require of a signature of
knowledge, although there are additional subtleties wedistussion in Section 2.1. For example, this guarantees
that an adversary cannot issue a signature of knowledgeonf some new message unless he knows), even with
access to another party who does know This is because the signatures issued by other partiestdeveal any
information aboutv, while in order to obtain a valid signature, the adversargimeveaho to our ideal functionality.
Although this definition seems to capture the intuition,ded not necessarily give us any hints as to how a signature
of knowledge can be constructed. Our second definition heisthat.

Our second definition is a game-style one [Sho04, BR04]. d&ifmition requires that a signature of knowledge
scheme be in the public parameter model (where the parasragenerated by some trusted process caHatp)
and consist of two algorithm$,gn andVerify. Besides the usual correctness property that require¥/#hidy accept
all signatures issued bYign, we also require that (1) signatures do not reveal anythbwuiathe witness; this is
captured by requiring that there exist a simulator who catetettably forge signatures of knowledge without seeing
the witness using some trapdoor information about the compazameters; and (2) valid signatures can only be
generated by parties who know corresponding witnesses;ighdaptured by requiring that there exist an extractor
who can, using some trapdoor information about the commaeanpeters, extract the witness from any signature
of knowledge, even one generated by an adversary with atcdabs oracle producing simulated signatures. This
definition is presented in Section 2.2. (We call this defamiBimExt-securityfor simulation andextaction.)

We prove that the two definitions are equivalent: namelyhase UC-realizes our ideal functionality if and only
if it is SimExt-secure.

1This is fictional; you do not need permission to drive on casapu

Our ideal signature of knowledge functionality can be redtyrextended, to a signature of knowledge of an ac-
cepting input to another ideal functionality. For exam@appose thafy; is the (regular) signature functionality.
Supposew is a signature on the valueunder public keyPK, issued by the ideaty, functionality. Then our func-
tionality Fspox can issue a signature on messagen, whose meaning is as follows: "The messages signed by
someone who knows, wherew is a signature produced liy under public keyPK on message.” In other words, a
signaturew on message under public keyPK that causes the verification algorithm 8 to accept, can be used as a
witness for a signature of knowledge. A further complicatio defining the signature of knowledge functionality this
way is that, to be meaningful, the corresponding instandbefy. functionality must also be accessible somehow,
so that parties can actually obtain signatures under pubyi® K. Further, forFsoxi to be UC-realizable, we must
require that the functionality that decides thats a witness forr, also be UC-realizable. Please see Section 4 to see
how we tackled these definitional issues. As far as we knadwjdlthe first time that an ideal functionality is defined
as a function of other ideal functionalities, which may bénaflependent interest to the study of the UC framework.

OuUR CONSTRUCTIONS In Section 3, we show how to construct signatures of knogéefr any polynomial-time
Turing machineM, deciding whethetw is a valid witness forr € L. We use the fact (proved in Section 2.3) that
SimExt-security is a necessary and sufficient notion of sgc@and give a construction of a SimExt-secure signature
of knowledge. Our construction is based on standard assomsptin the common random string model, it requires
a dense cryptosystem and a simulation-sound non-inteeazéro-knowledge proof scheme with efficient provers
(which can be realized by trapdoor permutations for exanple

We then show in Section 4 that, given any UC-realizable fonelity that responds to verification queries and is
willing to publish its verification algorithm, the functiatity which generates signatures of knowledge of an acogpti
input to F is also UC-realizable. We then explain why this yields a gialable anonymous credential scheme.

THE HISTORY OF THE TERMINOLGY. The term “signature of knowledge” was introduced by Camgmiand
Stadler [CS97], who use this term to mean a proof of knowlgdgere specifically, &-protocol [Cra97]) turned

into a signature using the Fiat-Shamir heuristic. Many sghent papers on group signatures and anonymous cre-
dentials used this terminology as well. However, existitgrdture does not contain definitions of security for the
term. Every time a particular construction uses a signatfiteowledge as defined by Camenisch and Stadler, the
security of the construction is analyzed from scratch, &edérm “signature of knowledge” is used more for ease of
exposition than as a cryptographic building block whoseiggcproperties are well-defined. This frequent informal
use of signatures of knowledge indicates their importang@actical constructions and therefore serves as addition
motivation of our formal study.

2 Signatures of Knowledge of a Witness for: € L

A signature of knowledge scheme must have two main algosiisign and Verify. The Sign algorithm takes a
message and allows anyone holding a witness to a stateinent. to issue signatures on behalf of that statement.
The Verify algorithm takes a message, a statemerg L, and a signaturer, and verifies that the signature was
generated by someone holding a witness to the statement.

Signatures of knowledge are essentially a specializedorecd noninteractive zero knowledge proofs of knowl-
edge: If a partyP can generate a valid signature of knowledge on any messdge a statement: € L, that should
mean that, first of all, the statement is true, and secordlitnows a witness for that statement. This intuitively
corresponds to the soundness and extraction propertiea@f-interactive proof of knowledge system. On the other
hand, just as in a zero-knowledge proof, the signature dheukal nothing about the witheas We know that gen-
eral NIZK proof systems are impossible without some commanameters. Thus, our signatures of knowledge will
require a setup procedure which outputs shared parametesarfscheme.

Thus, we can define the algorithms in a signature of knowlesbiemes as follows: LetMes,} be a set of
message spaces, and for any language N P, let M}, denoted a polynomial time Turing machine which accepts
input (x,w) iff w is a witness showing that € L. Let Setup be an algorithm that outputs public parameters
{0, 1}* for some paramete. LetSign(p, My, z, w, m) be an algorithm that takes as input some public paramgters

aTM M, for alanguagd. in NP, a valuer € L, a valid witnessv for z, andm € Mes, a message to be signesign
outputs a signature of knowledge for instance L on the message:. Let Verify(p, My, z, m,o) be an algorithm
that takes as input the valugsi,, x, the message:, and a purported signatuse and either accepts or rejects.

2.1 An lIdeal Functionality for a Signature of Knowledge

Canetti's Universal Composability framework gives a sienplay to specify the desired functionality of a protocol.
Furthermore, the UC Theorem guarantees that our protodbi/evk as desired, not matter what larger system they
may be operating within. We will begin by giving a UC definitiof signatures of knowledge. For an overview of the
UC framework, see Appendix A.

We begin by recalling Canetti’s signature functionalityotsl that the cited version of the functionality is from
2005, and is different from the one that Canetti first propoise2000. For details see Appendix B. For a detailed
discussion and justification for Canetti’s modelling clesicee [Can05].

Fsiq: Canetti’'s signature functionality

Key Generation Upon receiving a valuekey Gen,sid) from some partyP, verify thatsid = (P, sid") for somesid’. If not,
then ignore the request. Else, ham@y Gen,sid) to the adversary. Upon receivingl(gor i t hns, sid, Verify, Sign)
from the adversary, whefgn is a description of a PPT ITM, arikrify is a description of @eterministigoolytime ITM,
output ferificationAlgorithm, sid, Verify) to P.

Signature Generation Upon receiving a value§ gn,sid, m) from P, let o «— Sign(m), and verify thatVerify(m,o) =
1. If so, then output $i gnat ur e, sid, m,o) to P and record the entrym,c). Else, output an error message
(Completeness error) to P and halt.

Signature Verification Upon receiving a valueMer i fy, sid, m, o, Verify’) from some party/, do: If Verify’ = Verify, the
signer is not corruptederify(m, ') = 1, and no entry(m, ¢’) for any ¢’ is recorded, then output an error message
(Unforgeability error) to V and halt. Else, outpuder i fi ed,sid, m, Verify’(m, o)) to V.

Note that this functionality is allowed to produce an erragssage and halt, or quit, if things go wrong. That
means it is trivially realizable by a protocol that alwaydtfia We will therefore only worry about protocols that
realize our functionalitiemon-trivially, i.e. never output an error message.

The session id(sid) aFs;¢ captures the identity’ of the signer; all participants in the protocol with thissies
id agree thatP is the signer. In a signature of knowledge, we do not have peeific signer, saP should not be
included in the session id. But all participants in the pcotshould agree on the language that they are talking about.
Thus, we have a languadee NP and a polynomial-time Turing machind;, and a polynomiap, such that: € L
iff there exists a witness such thatw| = p(|z|) A Mr(x,w) = 1. Let us capture the fact that everyone is talking
about the samé by requiring that the session id begin with the descriptibd4.,.

As mentioned above, signatures of knowledge inherentlyiregome setup. Just as in the key generation interface
of Fgsrq above, a signature of knowledge functionalit]so k) setup procedure will determine the algoritt&ign
that computes signatures and the algoritenfy for verifying signatures. However, since anyone who knowalal
witnessw can issue a signature of knowledge on behalt af L, bothSign andVerify will have to be available to
any party who asks for them. In addition, the setup procediult@utput algorithmsSimsign andExtract that we will
explain later.

There are three things that the signature generation ptré s x functionality must capture. The firstis that in
order to issue a signature, the party who calls the funditymaust supply(m, z, w) wherew is a valid witness to the
statement that € L. This is accomplished by having the functionality check this supplied a validv. The second
is that a signature reveals nothing about the witness thatdd. This is captured by issuing the formal signature
via a procedure that does not takeas an input. We will call this proceduf8msign and require that the adversary
provide it in the setup step. Finally, the signature gemamagtep must ensure that the verification algorittenify is
complete, i.e., that it will accept the resulting signaturdf it find that Verify is incomplete, Fsox will output and
error messagéCompleteness error) and halt, just asFs;¢ does.

The signature verification part &fsox should, of course, accept signatufes, =, o) if m was previously signed

on behalf ofz € L, ando is the resulting signature (or another signature such\thafy(m, z,o) = 1). However,

unlike Fs;¢, just becausen was not signed on behalf af through the signing interface, that does not mean dhat

should be rejected, even if the signer is uncorrupted. Rew anyone who knows a valid witness should be able

to generate acceptable signatures! Therefore, the véigficalgorithm must somehow check that whoever generated

o knew the witnessv. Recall that in the setup stage, the adversary providedigioeithm Extract. This algorithm

is used to try to extract a witness from a signatarthat was not produced via a call ®sox. If Extract(m,z,0)

produces a valid witness, thenFgox will output the outcome o¥/erify(m, x, o). If Extract(m, x, o) fails to produce

a valid witness, an¥erify(m, x, o) rejects, theFsox will reject. What happens ixtract(m, x, o) fails to produce

a valid witness, buVerify(m, x,0) accepts? This corresponds to the case when a signatonen on behalf ofz

was produced without a valid withesg and yeto is accepted byerify. If this is ever the case, then there is an

unforgeability error, and s sox should outputUnforgeabilityerror) and halt. UnlikeFg;, here we need not worry

about whether the requesting party supplied a correct eatifin algorithm, since here everyone is on the same page

and is always using the same verification algorithm (detegchin the setup phase).

We are now ready to provide a more formal and concise degmripf the Fsox (L) functionality.
Fsok (L): signature of knowledge of a witness forr € L

Setup Upon receiving a valueSgt up,sid) from any partyP, verify thatsid = (M, sid’) for somesid’. If not, then ignore the
request. Else, if this is the first time th&«t up,sid) was received, handét up,sid) to the adversary; upon receivirg
(Al gorit hms, sid, Verify, Sign, Simsign, Extract) from the adversary, whergign, Simsign, Extract are descriptions
of PPT ITMs, andVerify is a description of a deterministic polytime ITM, store thedgorithms. Output the storg
(Al gori t hns, sid, Sign, Verify) to P.

o

Signature Generation Upon receiving a valu& gn,sid, m, z, w) from P, check tha\/;, (z, w) = 1. If not, ignore the request.
Else, computer < Simsign(m, x), and check thaVerify(m, z, o) = 1. If so, then output$i gnat ur e,sid, m,z,0) to
P and record the entrym, z, o). Else, output an error messa@&®mpleteness error) to P and halt.

Signature Verification Upon receiving a valueder i f y, sid, m, z, o) from some party/, do: If (m, z, o’) is stored for somg
o', then outputVeri f i ed,sid, m, x, o, Verify(m, z,0)) to V. Else letw « Extract(m, z,0); if My (x,w) = 1, output
(Verified,sid,m,x,o,Verify(m,z,0)) to V. Else if Verify(m, z,o) = 0, output Veri fi ed,sid,m,z,0,0) to V.
Else output an error messadénforgeability error) to V' and halt.

In the UC framework, each instance of the ideal functiopdbtassociated with a unique sid, and it ignores all
queries which are not addressed to this sid. Sincef@uik functionalities require thatid = M, o sid’, this means
that eachFsox functionality handles queries for exactly one language.

Now consider the following languadeé.

Definition 2.1 (Universal language).Define universal languag€ s.t. = would contain a description of a Turing
machineM and an instance’ such that: € U iff there existsw s.t. M (2/, w) = 1.

Notice thatFsox (U) allows parties to sign messages on behalf of any instanalany languagd.. Thus, if
we haveSetup, Sign, and Verify algorithms which realizeFsox (U), we can use the same algorithms to generate
signatures of knowledge for all instances and languagegaiticular, this means we do not need a separate setup
algorithm (in implementation, a separate CRS or set of shpaegameters) for each language. Readers familiar with
UC composability may notice that any protocol which reaiZ& o (U) will also realize the multisession extension
of Fsox. For more information, see Appendix H.

2.2 A Definition in Terms of Games

We now give a second, games style definition for signaturdsofvledge. We find that games style definitions are
often more intuitive, particularly to a reader not thorolyglersed in the UC composability framework, and that they
can also be much easier to work with. This definition provideditional clarity and also makes our job easier when
proving security of our construction. We will show that thisfinition is equivalent to (necessary and sufficient for)
the UC definition given in the previous section.

Informally, a signature of knowledge is SimExt-secure i§itorrect, simulatable and extractable.

Thecorrectnessproperty is similar to that of a traditional signature sclett requires that any signature issued
by the algorithmSign should be accepted Byerify.

The simulatability property requires that there exist a simulator which, giseme trapdoor information on the
parameters, can create valid signatures without knowiggngimesses. This captures the idea that signatures should
reveal nothing about the witness used to create them. Sieceapdoor must come from somewhere, the simulator
is divided intoSimsetup that generates the public parameters (possibly from sofferetdit but indistinguishable
distribution) together with the trapdoor, aBansign which then signs using these public parameters. We rechate t
no adversary can tell that he is interacting wilnsetup andSimsign rather tharbetup andSign.

Theextraction property requires that there exist an extractor, whichrgaveignature of knowledge for anc L,
and appropriate trapdoor information, can produce a vailidess showing: € L. This captures the idea that it should
be impossible to create a valid signature of knowledge witkaowing a witness. In defining the extraction property,
we require that any adversary that interacts with the sitoufimsetup andSimsign (rather than th&etup andSign)
not be able to produce a signature from which the extractonazextract a witness. The reason that in the definition,
the adversary interacts wiimsetup instead ofSetup is because the extractor needs a trapdoor to be able totextrac
Note that it also interacts withimsign instead ofSign. The adversary could rusign itself, so access tbimsign gives
it a little bit of extra power.

Definition 2.2 (SimExt-security). Let L be the language defined by a polynomial-time Turing machifieas ex-
plained above, such that all witnesses foe L are of known polynomial length(|x|). Then(Setup, Sign, Verify)
constitute a SimExt-secure signature of knowledge of aes#rforL, for message spacg\/es; } if the following
properties hold:

Correctness There exists a negligible functiom such that for allL €¢ NP, x € L, valid witnessesv for x(i.e.
witnessesw such thatV, (z, w) = 1), andm € Mes;,
Pr[p « Setup(1*); 0 « Sign(p, Mp,x,w,m) : Verify(p, Mr,z,m,o) = Accept] = 1 — v(k)

Simulatability There exists a polynomial time simulator consisting of &thms Simsetup andSimsign such that
for all probabilistic polynomial-time adversarie$there exists a negligible functionssuch that for all poly-
nomialsf, for all k, for all auxiliary inputs € {0, 1}/

Pr[(p, 7) < Simsetup(1¥); b « AS™EP7) (5 p) 2 b = 1]
— Pr[p < Setup(1¥);b « ASE @) (5 p) : b =1]
where the oracl&im receives the values/;, x, w, m as inputs, and checks that the withesgiven to it was
correct and then returns — Simsign(p, 7, M, z,m). 7 is the additional trapdoor value that the simulator
needs in order to simulate the signatures without knowingfrzess.

= v(k)

Extraction In addition to(Simsetup, Simsign), there exists an extractor algorithBxtract such that for all proba-
bilistic polynomial time adversaried there exists a negligible functian such that for all polynomialg’, for
all k, for all auxiliary inputs € {0,1}/(%)
Pr [(p,7) < Simsetup(1¥); (M, z, m, o) «— AS™E7) (5 p);
w «— Extract(p, 7, M, x,m,0) :
My (x,w) V (Mp,xz,m,o) € QV —Verify(p, Mr,z,m,0)] =1—v(k)
where(denotes the query tape which lists all the previous quefi€s, {, m, w) A has sent to the oractm.

Note that the above definition captures, for example, tHevidhg intuition: suppose that Alice is the only one
in the world who knows the witness for x € L, and it is infeasible to compute. Then Alice can use as her
signing public key, and her signatuseon a message: can be formed using a signature of knowledgé/Ne want to
make sure that the resulting signature should be existigntiaforgeable against chosen message attacks [GMR88].
Suppose it is not. Then there is a forger who can outputo), such thaw is accepted by the verification algorithm
without a querym to Alice. Then, by simulatability, he can also outgut, o) when given access ®m (which does
not knoww) instead of to Alice. Then, by extraction, it follows thatcan be extracted from him. But it is infeasible
to computew, so this is a contradiction.

2.3 Equivalence of the Definitions

As was mentioned in Section 2, signatures of knowledge dagxist without some trusted setup procedure which
generates shared parameters. In the UC model, shared persuiaee captured by th”e“gRS functionality [Can01].
This functionality generates values from a given distidoutD (the desired distribution of shared parameters), and
makes them available for all parties in the protocol. Thugtqeols requiring shared parameters can be defined in the
Feors-hybrid model, where real protocols are given access todisal shared parameter functionality.

Formally, the?—'gRS functionality receives queries of the for@RS, sid) from a partyP. If a valuev for this sid
has not been stored, it chooses a random valisem distribution D and stores it. It return€ORS, sid, v) to P and
also sends@RS,sid, v) to the adversary.

Let > = (Setup, Sign, Verify) be a signature of knowledge scheme. kéte the security parameter. We define a
FgRS—hybrid signature of knowledge protocey, whereD is the distribution oSetup(1¥).

When a partyP running s, receives an inputSet up,sid) from the environment, it checks thad = (M, sid’)
for somesid’. If not it ignores the request. It then queries thegs functionality,receives GRS,v), and stores.
Finally, it returns Al gor i t hns,sid, Sign(v, My, -, -, -), Verify(v, My, -, -)) to the environment.

When P receives a requessi gn, sid, m,x,w) from the environment, it retrieves the stored It checks that
My (z,w) = 1. If not, it ignores the request, otherwise it retur® gnat ur e, sid, m, x, Sign(v, M, z,w, m)).
When P receives a requesVéri fy, sid, m,x,o) from the environment, it again retrieves the storednd then
returns Yeri fi ed, sid, m, z, o, Verify(v, My, z,m,0)).

Recall thatl/, defined in Definition 2.1, is the universal language.

Theorem 2.1. ry; UC-realizesFsox (U) in the F2, ,-hybrid model if and only it is SimExt-secure.

Proof. (Due to lack of space, we give an abbreviated version of thefgrere, and refer the reader to Appendix C
for the full proof.) Suppose that is SimExt-secure. Then let us show that UC-realizesFsox (U). Consider
the ideal adversary (simulatod that works as follows: Upon receivingét up,sid) from Fsox, S will parse
sid = (My, sid"). It obtains(p, 7) « Simsetup(1¥) and setSSign = Sign(p, -, -, -, -) (S0Sign will have four inputs:
the languagé/;, — note that since we are realizidfsox (U), any instance will start witld/;,,— the instance: € L,

the witnessw, and the message:), Verify = Verify(p,-,-,-,-), Simsign = Simsign(p, 7, -,-,-), andExtract =
Extract(p, 7,-,,-,-). Finally, it sends &l gori t hns,sid, Sign, Verify, Simsign, Extract) back to Fsox. Another
place whereS must do something is when the adversangueries thengS functionality. In response to such a
query,S outputsp.

Let Z be any environment and be an adversary. We wish to show ttiatannot distinguish interactions with
andry, from interactions withS and Fspox. Let us do that in two steps. First, we show that the evetthat Fsox
halts with an error message has negligible probability. tN&& will show that, conditioned o not happeningZ’s
view in its interaction withS and Fsox is indistinguishable from its view in interactions withandrs..

There are two types of errors that lead to evEntFsox halts withCompleteness error or Unforgeability error.
The only way to induce a completeness error is to cAlgéy to reject a signature issued Bymsign, which con-
tradicts either the simulatability or the correctness nexpient. The only way to induce an unforgeability error is to
causeVerify to accept a signature which was not issuedinysign and from which no witness can be extracted. This
contradicts the extractability requirement. (We give miorenal justifications in Appendix C.)

Therefore we have shown that the probability of evenis negligible. Conditioned oy, Z’s view when in-
teracting withFspox and.S is indistinguishable from its view when interacting witheal adversanA and the real
protocolry;, because if it were distinguishable, then this would catittathe simulatability requirement. (Details in
Appendix C.)

Now let us show the other direction. Suppose thatUC-realizesFsox (U) in the F5p, s-hybrid model. Let us
show that it follows that is SimExt-secure. Sincey, is UC-realizable, it must have a simulatSr By (p,7) <
Simsetup(1¥) let us refer to the algorithm that runs in response to a setup query; the public paramgterssist of
the value thats will subsequently return in response to queries toﬂ&s functionality; the trapdoor consists of
the algorithmgSimsign, Extract) that.S hands over t&Fsox in response to the setup query. The resulbihgatisfies
SimExt-security. (Details in Appendix C.) O

3 Construction

Here we present a construction of a SimExt-secure signature of knowledge TBeorem 2.1, this also implies a
protocolry, that UC-realizes thésox functionality presented in Section 2.1.

Our construction has two main building blocks: CPA secumsdecryptosystems [DP92, SCP00] and simulation-
sound non-interactive zero knowledge proofs [Sah99, dSUIIP (For a review of these primitives, see Appendix
D.) Let (G,Enc,Dec) be a dense cryptosystem, and (BiZKProve, NIZKSimsetup, NIZKSim, NIZKVerify) be a
simulation-sound non-interactive zero-knowledge prostem.

Setup Let p be a common random string. Paysas follows:p = PK o p, wherePK is ak-bit public key of our
cryptosystem.

Signature Generation In order to sign a message € Mes; using knowledge of witness for x € L, letc =
Enc(PK, (m,w), R), whereR is the randomness needed for the encryption process;4etNIZKProve(p,
(m,Mp,z,c,PK), (3(w,R) : ¢=Enc(PK, (m,w),R) A Mp(z,w)), (w, R)). Outputo = (¢, 7).

Verification In order to verify a signature of knowledge of witnesgor x € L, o = (¢, 7), run NIZKVerify(p, T,
(m, My, z,c,PK),(3(w,R) : ¢=Enc(PK,(m,w),R) AN Mp(z,w))).

Intuitively, the semantic security of the cryptosystemetibgpr with the zero knowledge property of the proof
system ensure that the signature reveals no informationtabe witness. The simulation soundness property of the
proof system means that the adversary cannot prove falssrstats. Thus any signature that verifies must include a
ciphertext which is an encryption of the given message arawaflid witness. Clearly, if he is interacting only with
a simulator who does not know any witnesses, this implieistigaadversary should “know” the witness. Further, by
simulatability, the adversary cannot gain any advantageobymunicating with valid signers.

Theorem 3.1. The construction above is a SimExt-secure signature of laugs.

Proof. (Sketch) First we argue simulatability. In tBénsetup phase, our simulator will choose a key p@, SK)
of the dense cryptosystem, and will obtain the stringgether with trapdoor’ by runningNIZKSimsetup. In the
Simsign phase, the simulator will always lebe the encryption af™|+'= and will create (fake) proaf by invoking
NIZKSim.

We show that the resulting simulation is successful using@atter hybrid argument. First, note that, by the
unbounded zero-knowledge property of the underlying NIZKob system, signatures obtained by replacing calls
to NIZKProve by calls toNIZKSim will be distributed indistinguishably from real signatsreWe call this signing
processMixSign; so we see thd¥lixSign is indistinguishable fronsign. Second, note that, by semantic security of the
dense cryptosystem used, using- Enc(PK, (m,w)) versusc < Enc(PK, (0/™+/2)) results in indistinguishable
distributions. Since the only difference betwddixSign andSimsign is in how c is chosen, it follows thaiixSign
andSimsign are indistinguishable as well. So we get simulatability.

Second, let us argue extraction. Recall that, as part ofrHpgidorr, Simsetup above retainsSK, the secret
key for the cryptosystem. The extractor simply decryptscthart of the signature to obtain the witness). By the
simulation-soundness property of the underlying NIZK pisestem, no adversary can produce a signature acceptable
to theVerify algorithm without providing: that decrypts to a correct witnegs O

For a more formal proof, see Appendix E.

4 Fsoi for Generalized Languages, and Applications

Recall from the introduction that a signature of knowledgayrbe used in order to construct a group signature
scheme. LePK be the public signing key of the group manager, and suppadettib group manager can sign
under this public key (using the corresponding secret¥&y). Let PK g be a public encryption key such that the
anonymity revocation manager knows the correspondingeskeySK . A user must pick a secret keyand a public

keyp = f(s) wheref is some one-way function. She then obtains a group memipeestiificateg = opx . (p), the
group manager’s signature on her public key. In order to sighehalf of the group, the user encrypts her public key
and obtains a ciphertext= Enc(PKpg,p, R), whereR is the randomness used for encryption. Finally, her group
signature on message is a signature of knowledge @§, p, g, R) such thatc = Enc(PKg,p,R), p = f(s), andg

is a valid signature op underPK ;.

Now let us consider more closely the langudgesed in the signature of knowledge. In the example abowel.
and(s,p, g, R) is the witness. This language is determined by the paramefehe system(f, PK,, PK). Thisis
not a general language, but instead it depends on the systemmeters, which in turn depend on three other building
blocks, a one-way function, an encryption scheme and atsighacheme. We want to show that even in this context,
the use of a signature of knowledge has well-understoodecpresces for the security of the rest of the system.

To that end, we consider signatures of knowledge for langsiftiat are defined by secure functionalities realizing
particular tasks. In this example, this corresponds to tieeveay function, encryption and signing functionaliti&n-
cryption is used to incorporate the encrypted identitgf the signer into her group signature. A signing functliima
is used to issue group membership certificage$o individual group members. Finally, we have a one-waycfiam
f that takes a user’s secreaind maps it to her publig.

In this section, we wish to create a framework where, giveralidunctionalities?;, Fg,. and Fx, for these
three primitives, we can define a signature of knowledgetfonality Fsox for the resulting languagé, whereL
is defined in terms of the outputs of functionaliti#$, Fg,., and Fx. SuchFsox can be used to realize group
signatures as above, as well as other cryptographic pistoco

To that end, first, in Section 4.1, we will characterize fimualities that define such generalized languabeke.,
when they receive an inpyt:, w), verify that this is indeed an accepting input, in other veotidltw constitutes a
witness forz € L.

In Section 4.2, we will definésox (Fo), a signature of knowledge of an accepting input to one ideadtfonality,

Fo. Then, we prove Theorem 4.1: given a SimExt-secure sch&mgy (Fo) is UC-realizable in the CRS model if
and only if 7y is UC-realizable.

Then we generalize the idea to apply to languaféisat are not defined by just one functionalify, but by a set
of functionalitiesF, . . . , F.. For example, it will follow that we can define and UC-realme ideal functionality for
group signatures, where the underlying languages is defirtedns ofF;, Fg,., andFy. This extension is presented
in Appendix G. Further, we give a multiple-session extemsibFsox that allows protocols to reuse the CRS; this
is presented in Appendix H. In this multiple-session extamswe can even allow multiple signature of knowledge
instances to sign on behalf of languages defined in termeafdme subfunctionality instances.

In addition, it will follow that Fsok (. .. (Fsox (Fi1,...,Ft))...) is UC-realizable, and so a signature of knowl-
edge can serve as a witness for another signature of knoguddigs allows us to UC-realize delegatable anonymous
credentials. This is explained in Appendix .

As far as we know, prior literature on the UC framework did address the issues of defining an ideal functionality
as an extension of another ideal functionality or of a settb&iofunctionalities. (In contrast, it addressed the case
when areal protocol used an ideal functionality as a sub-routine.) Assilt, our modelling task at hand is very
complex. For simplicity, we will only formally address théustion of Fsox (F), i.e., when the languageis defined
by only one sub-functionalityF.

4.1 Explicit Verification Functionalities

Consider Canetti's signature functionalifiz;. Once the key generation algorithm has been run, this fumality
defines a language: namely, the language of messages tlabbam signed. A witness for membership in such
a language is the signatuee In aVeri f yquery this functionality will receivem, o) and will accept ifm has
been signed anWerify(m, o) = Accept, whereVerify is the verification algorithm supplied t6s;; by the ideal
adversaryS. Moreover, if it so happens th&krify(m, o) accepts whilen has not been signed, or if it is the case that
Verify(m, o) rejects a signature generated.By;, Fsi¢ Will halt with an error.Fgs;¢ is an example of a verification
functionality, defined below:

10

Definition 4.1 (Verification functionality). A functionality F is a verification functionality if (1) there exists some
start(F) query such thatF ignores all queries until it receives saart query; (2) during thestart query F ob-
tains from the ideal adversaty a deterministic polynomial-time verification algorithierify; (3) in response to
(Veri fy,sid, input, witness) queries,F either responds with the output Werify(input, witness) or halts with an
error.

Note thatstart(F) is a specific command that depends on the functiondlityror example, ifF is a signature
functionality, start (F) =Keygen. If F is another signature of knowledge functionalitygrt (F) =Setup.

Any verification functionality 7 with a particularsid defines a language of inputs that will be accepted by
this functionality if an appropriate witness is providedpmmover, this language can be captured by a determinis-
tic polynomial-time Turing machine represented by Yeeify algorithm. The only times wheXerify’s behavior is
different from that ofF causeF to halt with an error. To work with this language, we need a wegbtain the Turing
machineVerify. Note that Canetti’'s signature functionality does not midesalgorithmVerify freely available to any
party that calls it. However, it could easily be extended akaVerify explicitly available through an extra query:

Definition 4.2 (Explicit verification functionality). LetF be a verification functionality. Itis also an explicit vecii-
tion functionality if, once a&tart(F)(sid) query has taken place, it responds to a quésy {ficationAlgorithm,sid)
from any partyP by returning the algorithnVerify.

An explicit verification functionality not only defines a lguagel, but also makes available the Turing machine
M7, for deciding whethertw is a witness for: € L.

4.2 Signatures of Knowledge of an Accepting Input taF

Let Fy be any explicit verification functionality. (Our runningample is Canetti's signature functionality, or our own
Fsok functionality, augmented so that it respondsviarificationAlgorithmqueries with théVerify algorithm
obtained from the ideal adversary.) We want to build a sigreadf knowledge functionalityFsox (Fo) that incorpo-
ratesFy. It creates an instance @ and responds to all the queries directed to that instancaf $p is a signature
functionality, thenFsox (Fo) will allow some partyP to run key generation and signing, and will also allow anyone
to verify signatures. In addition, any party in possessibiizow) such thatFy’s verification interface will accept
(x,w), can sign on behalf of the statement “There exists a valsech thatF,(sidy) acceptyz, w).” For example,

if o is a signing functionalitym is a message, ang is a signature om: created by signe@® with session idsidy,
then throughFsox (Fo), any party knowingm, o) can issue a signatueg , which is a signature of knowledge of a
signaturesy onm, whereo was created by signd?. Moreover, any party can verify the validity of.

To defineFsox (Fo), we start with our definition ofFsox (L) and modify it in a few places. In the protocol
description below, these places are underlined.

The main difference for the setup, signature generatiothsagnature verification interfaces is that here the Turing
machine)M|, that decides whethep is a valid witness forr € L, is no longer passed to the functionalifgox .
Instead, it is determined by queries to the verification pdore ofFy, as well as an algorithm/;, that Fy returns
when asked to provide its verification algorithd;, is supposed to be an algorithm that UC-realizes the veiificat
procedure ofFy. Note, however, that just becaudé;, (z, w) accepts, does not mean tt#&f’s verification procedure
necessarily accepts. Indeg@ox expects thaf\/, (x, w) accepts iffFy accepts, and shouldsox be given(z,w)
where this is not the cas&sox will output and error messadgé&rror with F) and halt.

The setup procedure Fsox (Fo) differs from that of Fsox (L) in two places. First, it used to check that the
session id contains the descriptidfi;, of the languagd.; instead now it checks that it contains a description of the
functionality 7, and a session igidy with which Fy should be invoked. Second, it must now invakgto determine
the languagd. and the Turing machiné/;, (more about that later).

An important other difference is théign, Verify, Simsign, Extract) returned by the adversary now also take
as input.

The signing and verification procedures®§ox (Fy) differs from that of Fsox (L) only in that, instead of just
checking that\/y, (z, w) = 1, they check thaf, acceptyz, w) and thatM, faithfully reflects whatF, does.

11

Let us explain how the languadeis determined. During the first setup quefgox must somehow fix the set of
acceptedz, w), i.e., get the languagk. To that end, it creates an instanceff, and runs the start query fdf. It
also queriesr to obtain its verification algorithm{,. We describe how this is done separately by giving a proeedur
we call GetLanguagé, sidp), as a subroutine of the setup phaseFgbx .

Note that this instance dfF is creatednside of Fsox, and outside parties cannot access it directly. Instead, if
they want to useF, and send a query to it of the for(query, sidy, data), they should instead quet¥sox with a
query of the form(Fy-query, sid, data), wheresid = (sidy, sid;) is the session id afFsox. We specify this more
rigorously in the actual description Gfsox (Fp). Note thatFsox will ignore any queries until the first setup query
— this is done so that one cannot quéfy before it is actually created.

Also note thatF, may require input from the adversary. Whenever this is tise dle messages thgg wants to
send to the adversary are forwarded to the adversary, araditleesary’s responses are forwarded backto

Finally, we wantFsox (Fp) itself to be a explicit verification functionality (as expiad in Section 4.1), and so it
must be able to respond to queries asking it to provide itficatiion algorithm.

Fsoxk (Fo): signature of knowledge of an accepting input taFy

For anysid, ignore any message received prior8{ up, sid).

Setup Upon receiving a value Setup,sid) from any party P, verify that sid = (Fo, sido, sid1) for some
sidg, sid;. If not, then ignore the request. Else, if this is the first dirthat Get up,sid) was received
let M, = GetLanguage(Fy, sidy), storeM ,, and hand $et up,sid) to the adversary; upon receivingl(gor i t hns,
sid, Verify, Sign, Simsign, Extract) from the adversary, wher8ign, Simsign, Extract are descriptions of PPT ITMsg,
and Verify is a description of a deterministic polytime ITM, store theaslgorithms. Output theA{ gori t hns,
sid, Sign(Myp,, -, -, -),Verify(Mg, -, -, -)) to P.

Signature Generation Upon receiving a value § gn,sid,m,z,w) from P, check that
Fo acceptsVYeri fy,sidy, x, w) when invoked byP. If not, ignore the request.
Else, if M, (x,w) = 0, output an error messagError with) to P and halt. Else, computer «— Simsign(M, m, x),
and verify thatVerify(Mp,m,z,0) = 1. If so, then output $i gnat ur e,sid, m,z,0) to P and record the entry
(m,z,0). Else, output an error messa@®mpleteness error) to P and halt.

Signature Verification Upon receiving a valueMeri f y,sid, m,z, o) from some partyV, do: If (m,xz,0¢’) is stored for
some o', then output Yeri fi ed,sid, m, x, o, Verify(m,z,0)) to V. Else letw <« Extract(Mp,m,z,0). |If
My (z,w) = 1: if Fo does not accep¥ler i fy,sidy, z, w), output and error messa@Error with Fy) to P and halt; else
output {eri fi ed,sid, m,x, o, Verify(Mp,m,z,0)) to V. Else if Verify(My,m,z,0) = 0, output
(Verified,sid,m,z,0,0)toV. Else output an error messadén(orgeability error) to V' and halt.

Additional routines:

GetLanguage(Fy, sidg) Create an instance ¢, with session ickid,. Send taF, the messagéstart(Fp), sido) on behalf of
P, the calling party. Send t6, the messageé/érificationAlgorithm,sidy). In response, receive froffy, the message
(VerificationAlgorithm,sidg, M). OutputM.

Queries toFy Upon receiving a messagé&,-query, sido, sid1, data) from a partyP, sendquery, sido, data) to Fy on behalf
of P. Upon receiving response, sidg, data) from Fy, forward (Fo-response, sid, data) to P.

Fu's interactions with the adversary WhenF, wants to sendcommand, sidy, data) to the adversary, give to the adversary
the messagéF,-command, sid, sidg, data). When receive a messa{&,-header, sid, sidy, data) from the adversary]
give (header, sido, data) to Fy on behalf of the adversary.

Providing the verification algorithm Upon receiving a messag®efrificationAlgorithmsid) from any partyP, output
(VerificationAlgorithm,sid, Verify(Mp,-, -,) to P.

Theorem 4.1. Let Fy be an explicit verification functionality. Assuming SimBEe&ture signatures of knowledge,
Fsok (Fo) is nontrivially UC-realizable in theF5,,, hybrid model iffF; is nontrivially UC-realizable in theF 2,
hybrid model, where we consider a realization to be nordtiifiit never halts with an error message.

12

Proof. (Due to lack of space, we give an abbreviated proof here. Heocomplete proof, see Appendix F.) Assume
that there exists a SimExtsecure signature of knowledgenseltetup, Sign, Verify). Assume also that there exists
a protocolp which UC-realizesF,. Then we build a protocot in the FZ,¢ hybrid model which UC-realizes
Fsox (Fo) as follows.

Upon receiving a valueSet up, sid = (Fy, sidy, sidy)), if this is the first such message, the protocalill start
running an instance of. It will send p inputs Set up, sidy) and then{erificationAlgorithm, sidy), andp will
return YerificationAlgorithm, sidy, FoM). 7 will store M = FyM. From this point on, it will behave asy,
defined in Section 2.1. To finish ti&et upquery, it will obtain the CRS from ngS (where D implements the
Setup algorithm of the scheme) and output thgn(p, My, -, -, -) andVerify(p, My, -, -, -) algorithms.

OnSi gnandVer i f yqueries, it will behave exactly as. defined in Section 2.3.

Whenr receives a query of the for(@ry-query, sidy, sid1, data) from party P, it will send (query, sidg, data) to
p on behalf of party?. When it receives arespongegsponse, sidg, data) from p, it forwards(Fy-response, sidy, data)
to P.

Similarly, whenp wants to sendcommand, sidy, data) to the adversaryr will give to the adversary the message
(Fo-command, sid, sidy, data). Whenr receives a messag@&-header, sid, sidy, data) from the adversary, it will
give (header, sidy, data) to p on behalf of the adversary.

On input {erificationAlgorithm, sid) from party P, 7 will output (VerificationAlgorithm, sid,

Verify(v, Mg, -,-,-)) to P.

We show thatr UC-realizesFso i (Fo); for details, see Appendix F.

To show that if Fsox (Fo) is UC-realizable, then so i, we just notice that any realization dfsox (Fo)
automatically realizeg; for details, see Appendix F. O

References

[ACJTOO] Giuseppe Ateniese, Jan Camenisch, Marc Joye, atk G'sudik. A practical and provably se-
cure coalition-resistant group signature scheme. In Migillare, editor,Advances in Cryptology —
CRYPTO 2000volume 1880 ol ecture Notes in Computer Sciengages 255-270. Springer Verlag,
2000.

[BBS04] Dan Boneh, Xavier Boyen, and Hovav Shacham. Shatmsignatures. In Matthew K. Franklin,
editor, Advances in Cryptology — CRYPTO 200dlume 3152 ot ecture Notes in Computer Science
pages 41-55. Springer Verlag, 2004.

[BdM94] Josh Benaloh and Michael de Mare. One-way accurordatA decentralized alternative to digital
signatures. In Tor Helleseth, editokdvances in Cryptology — EUROCRYPT ,3®lume 765 of
Lecture Notes in Computer Scienpages 274—-285. Springer-Verlag, 1994.

[BMWO03] Mihir Bellare, Daniele Micciancio, and Bogdan Wasichi. Foundations of group signatures: Formal
definitions, simplified requirements, and a constructioseldaon general assumptions. In Eli Biham,
editor, Advances in Cryptology — EUROCRYPT 2008lume 2656 ofLecture Notes in Computer
Sciencepages 614-629. Springer Verlag, 2003.

[BRO4] Mihir Bellare and Phillip Rogaway. The game-playiteghnique.http://eprint.iacr.org/
2004/ 331, 2004.

[Can00] Ran Canetti. Security and composition of multitparyptographic protocolsJournal of Cryptology
13(1):143-202, 2000.

[Can01] Ran Canetti. Universally composable security: W paradigm for cryptographic protocols. Rroc.
42nd IEEE Symposium on Foundations of Computer Science $@&ges 136-145, 2001.

13

[Can04]

[Can05]

[Cha85]

[CLO1]

[CRO3]

[Cra97]

[CS97]

[CVHO1]

[DKNS04]

[DP92]

[dSdCOH01]

[FLS99]

[GMRS8]

[LRSW99]

[Lys02]

Ran Canetti. Universally composable signaturdification and authenticatiorht t p: / / epri nt .
i acr.org/ 2003/ 239, 2004.

Ran Canetti. Universally composable security: # paradigm for cryptographic protocoht t p:
[leprint.iacr.org/2000/067,2005.

David Chaum. Security without identification: Tsaotion systems to make big brother obsolete.
Communications of the ACM8(10):1030-1044, October 1985.

Jan Camenisch and Anna Lysyanskaya. Efficient nansfierable anonymous multi-show credential
system with optional anonymity revocation. In Birgit Pfitarm, editor,Advances in Cryptology —
EUROCRYPT 20Qvolume 2045 ot ecture Notes in Computer Scienpages 93—-118. Springer Ver-
lag, 2001.

Ran Canetti and Tal Rabin. Universal compositiorhvaint state. In Dan Boneh, editohdvances
in Cryptology — CRYPTO 2008olume 2729 of_ecture Notes in Computer Sciengages 265-281,
2003.

Ronald Cramemodular Design of Secure yet Practical Cryptographic Paaib PhD thesis, Univer-
sity of Amsterdam, 1997.

Jan Camenisch and Markus Stadler. Efficient groupesigie schemes for large groups. In Burt Kaliski,
editor, Advances in Cryptology — CRYPTO ;%%0lume 1296 ol ecture Notes in Computer Science
pages 410-424. Springer Verlag, 1997.

David Chaum and Eugéne van Heyst. Group signatuhesDonald W. Davies, editorAdvances in
Cryptology — EUROCRYPT '9¥olume 547 ofLecture Notes in Computer Sciengages 257-265.
Springer-Verlag, 1991.

Yevgeniy Dodis, Aggelos Kiayias, Antonio Nicolpand Victor Shoup. Anonymous identification in ad
hoc groups. In Christian Cachin and Jan Camenisch, ed&drsnces in Cryptology — EUROCRYPT
2004 volume 3027 ot.ecture Notes in Computer Sciengages 609-626. Springer, 2004.

Alfredo De Santis and Giuseppe Persiano. Zero-kedge proofs of knowledge without interaction
(extended abstract). B3rd Annual Symposium on Foundations of Computer Scigages 427-436,
Pittsburgh, Pennsylvania, 24—27 October 1992. IEEE.

Alfredo de Santis, Giovanni di Crescenzo, Rafail Ostkyy Giuseppe Persiano, and Amit Sahai. Ro-
bust non-interactive zero knowledge. In Joe Kilian, edifatvances in Cryptology — CRYPTO 2001
volume 2139 oL ecture Notes in Computer Scienpages 566-598. Springer Verlag, 2001.

Uriel Feige, Dror Lapidot, and Adi Shamir. Multipl®oninteractive zero knowledge proofs under
general assumption&IAM Journal on Computing9(1):1-28, 1999.

Shafi Goldwasser, Silvio Micali, and Ronald Rive&tdigital signature scheme secure against adaptive
chosen-message attacl&AM Journal on Computingl7(2):281-308, April 1988.

Anna Lysyanskaya, Ron Rivest, Amit Sahai, and&taf/olf. Pseudonym systems. In Howard Heys
and Carlisle Adams, editor§elected Areas in Cryptographyolume 1758 ol_ecture Notes in Com-
puter ScienceSpringer Verlag, 1999.

Anna LysyanskayaSignhature schemes and applications to cryptographic patdesign PhD thesis,
Massachusetts Institute of Technology, Cambridge, Massaits, September 2002.

14

[RSTO1] Ronald L. Rivest, Adi Shamir, and Yael Tauman. Holetik a secret. In Colin Boyd, editokdvances
in Cryptology — ASIACRYPT 200dolume 2248 of_ecture Notes in Computer Sciengages 552—
565. Springer Verlag, 2001.

[Sah99] Amit Sahai. Non-malleable non-interactive zerowledge and adaptive chosen-ciphertext security.
In Proc. 40th IEEE Symposium on Foundations of Computer Sei@p©CS) pages 543-553. IEEE
Computer Society Press, 1999.

[SCPO0] Alfredo De Santis, Giovanni Di Crescenzo, and GipsePersiano. Necessary and sufficient assump-
tions for non-interactive zero-knowledge proofs of knadge for all NP relations. In Ugo Monta-
nari, José P. Rolim, and Emo Welzl, editoPspc. 27th International Colloguium on Automata, Lan-
guages and Programming (ICALPjolume 1853 of_ecture Notes in Computer Sciengages 451—
462. Springer Verlag, 2000.

[Sho04] Victor Shoup. Sequences of games: a tool for tamimpbexity in security proofs. htt p:
[l eprint.iacr.org/2004/332,2004.

A UC definition

Here we will briefly review the UC framework as defined in [C&hO0

In the UC model, each protocol is examined independentlyy dther protocols operating simultaneously are
represented by the environment. In the execution scerthgqarties participating in a protocol are given inputs by
the environment, which captures the idea that input to apobican be dependent on all the other protocols running in
the system. Each party’s part in this protocol is repregsehyean ITM. These ITMs can communicate with each other
as specified by the protocol. They can also invoke other ITdvisih subroutines. And finally, they can communicate
with an adversary. This adversary gets input from and seredsages to the environment.

Security is defined by the description of an ideal functigpakhich specifies exactly what actions should be
possible and what information leakage is admissible. Thhis,ideal functionality expects to receive input from
parties, and deliver output back to some of them, while peiiiog some sort of operation. The ideal functionality
may also communicate with the adversary. It can send messadhe adversary, representing information that we
allow a secure protocol to leak. It can also receive messigesthe adversary, which represents information not
under the control of the parties running the protocol.

We also define a simulator which will replace the adversamhénideal world. This simulator may run a copy of
the adversary, and its goal is to convert messages from éa vebrld into the output that the environment expects
from the adversary in the real protocol. This means that esatinformation the environment expects to receive from
the adversary is information that could be generated froratule ideal functionality leaks — the protocol leaks no
more information than we have declared admissible.

We then define the ideal execution of the protocol, in whiehahvironment sends input to the parties who forward
it directly to the functionality. Any output from the funotality to the parties is delivered to the environment. When
the functionality tries to communicate with the adverstrg messages will be sent to and from the simulator instead.

Finally, a real protocol is considered secure if there exdasgtimulator such that for all environments and adversaries
the environment cannot tell whether it is communicatinghwéal parties running the real protocol ITMs and with the
real adversary, or whether itis communicating with pantigsing the ideal protocol (forwarding all inputs to theatle
functionality) and with the simulator. In this case, we dagttthe real protocol UC-realizes the ideal functionality.

We now summarize a limited version of the UC-compositioroteen. Suppose we are given a protopdhat
UC-realizes an ideal functionality’. We are also given a protocalwhich makes calls to the ideal protochl| and
which UC-realizes a functionalit¢z. Let = be the functionality which runs, but in which all calls taF" are replaced
by calls top. Then the UC-composition theorem states thatUC-realizesG.

A few other details should be mentioned. Each ITM is iderdifiy a unique identifier called an sid. The UC
model allows ITMs to send messages to other ITMs runningiwithe same protocol, or to subroutine ITMs. All

15

messages must specify the sid of the ITM they are addressedddhe code that it should run. In either case, if no
ITM with the given sid exists, an ITM will be created runnirfietgiven code? (If the ITM is already running we
ignore the given code.)

B Cannetti's Basic Signature Functionality

Over a series of papers, Canetti [Can00, Can01, Can04, Cga®b several ideal functionalities for a signature
scheme. His motivation was to capture the security pragettiat one would ideally want to obtain from a signature
scheme. Several versions were proposed, each subsequanhwvan improvement over a previous one, giving the
adversary less and less power. He then shows that a sigrsatueene realize& s if and only if it is existentially
unforgeable against adaptive chosen message attack, madiey§i Goldwasser, Micali, and Rivest [GMR88].

We refer to Canetti's most recent version [Can05], whicliedsf from earlier versions in a few fundamental
ways. The most important difference is the role that thelidel®ersary now plays. In the 2000 formulation, the
ideal adversary was contacted during signing, shown thesagesbeing signed and was asked to provide the formal
signatures. In the 2005 formulation, the adversary is contacted dukeyggeneration, and provides an algoritBign
for generating signatures. The adversary is not contadtaell @uring signing, instead signatures are generatedjusin
Sign. This new variant captures the fact that signing happeridérthe signer without interaction with the outside
adversarial world, and so we need a notion of security thes dot allow the adversary to know what messages were
signed.

Another, more subtle but very important difference from ¢lagliest versions [Can01], is that this functionality
is allowed to produce an error message and halt, or quitjrifithgo wrong. That means it is trivially realizable by
a protocol that always halts. As mentioned in 2.1, we onlyrwaibout protocols that realize our functionalities
non-trivially, i.e. never output an error message.

C Proof of Theorem 2.1

Suppose thak is SimExt-secure. Then let us show that UC-realizesFsox (U). Consider the ideal adversary
(simulator) S that works as follows: Upon receivingét up,sid) from Fsog, S will parse sid = (My, sid’). It

obtains(p, 7) < Simsetup(1*) and setSSign = Sign(p, -, -, -, -) (s0Sign will have four inputs: the languagkl; —
note that since we are realizidfsox (U), any instance will start witid/; ,— the instance: € L, the witnessv, and
the messagen), Verify = Verify(p,-,-,-,-), Simsign = Simsign(p, 7, -,-,-,-), andExtract = Extract(p,7,-,-,-,).

Finally, it sends Al gor i t hirs,sid, Sign, Verify, Simsign, Extract) back toFsox. Another place wher& must do
something is when the adversafyqueries the7-“gRS functionality. In response to such a quesyputputsp.

Let Z be any environment and be an adversary. We wish to show tl#atannot distinguish interactions witth
andry, from interactions withS and Fsox. Let us do that in two steps. First, we show that the evetthat Fsox
halts with an error message has negligible probability. tN&& will show that, conditioned o not happeningZ’s
view in its interaction withS and Fsox is indistinguishable from its view in interactions withandrs..

There are two types of errors that lead to evEBntFsox halts withCompleteness error or Unforgeability error.

Suppose that the probability of a completeness error isnagfigible. By construction af, a completeness error
happens when a signature generatedSioysign is rejected byerify. This contradicts the simulatability require-
ment: Since the environmet can, with non-negligible probability, find a series of gesrto Fsox that lead to
a completeness error, then it distinguishes the outpGirofas defined in definition 2.2 from that 6fgn, since by
SimExt-security ob> we get the property that signatures generate8igy are always accepted Merify.

Suppose that the probability of an unforgeability errorasmegligible. Then there exists some polynoniial),
such that the probability that thigk)*" verification query causes the error, is non-negligible. Bygstruction ofS,

The codec includes the name of the functionality and the code for tiaé peotocol which realizes it. If the new ITM is being invoked
the ideal world, the real code is ignored, and the new ITM theddeal functionality with the given name. If the new ITMasing invoked in
the real world, the name is ignored and the new ITM runs thergaode.

16

an unforgeability error happens wheértract fails to extract a witness) from a signaturer, issued byZ, that is
accepted byerify but which was not generated B§sox. Let us construct an adversay that uses sucly’ to
break the unforgeability property &f. By definition of SimExt-security, firstp, 7) « Simsetup(1¥) are generated,
and then4>™(®.7) (s, p) is invoked, wheres is an auxiliary string, for example one that contains thecdption
of Z. A then invokesZ. WhenZ issues setup querieSdt up,sid), A returns the appropriatgign(p, -,-,-) and
Verify(p, -, -, -) algorithms. Wher¥ issues signing queries} uses itsSim oracle; note that by construction §f the
resulting responses are distributed identically to theorses thatFsox would have issued. For the firgtk) — 1
verification queries\er i fy,sid, m,z, o of Z, A returns the output o¥erify(p, m,x,0). A outputs the contents
of Z’s i(k)*" verification query(m,x, o). Note thatZ’s view here is the same as its view in an interaction with
Fsok, and so the probability thaFsox would halt with an unforgeability error is non-negligibl&éinforgeability
error occurs wherkxtract(p, 7,m, x, o) fails to extract a valid witness), andm has not been signed b¥sox,
and yetVerify(p, m,z,0) = Accept. Thus, with non-neglible probabilityd produces(m, x, o) that violate the
conditions of the extractability property of the SimExtssty definition. Therefore} is not SimExt-secure, which
is a contradiction.

Therefore we have shown that the probability of evBris negligible. Let us now show that, conditioned B
Z's view when interacting witl¥sox ands is indistinguishable from its view when interacting witheat adversary
A and the real protocotry. Suppose for contradiction that it is distinguishable. et us useZ to construct a
distinguisherA that will contradict the simulatability property &f, namely, distinguish between tBé&n oracle and
the Sim oracle. .4 will invoke Z. It will respond toZ’s setup query by giving iSign(p, -, -, -) andVerify(p, -, -, -). If
p was generated usirfgetup (and saA is givenSign as its oracle), this is the same situation as whdn interacting
with 7y; while if it was generated usin§imsetup (and soA’s oracle isSim), then this is the same as whehis
interacting withS and Fsox . In response td&’s signing queriesA will ask its oracle to produce a signature. Again,
note that if. A’s oracle isSign, o is distributed as inry;, while if it is Sim, ¢ is distributed as in an interaction with
Fsox— the only other possibility foFsox would be to halt with an error, but we are considering the @asen this
does not happen. To respondA¢s verification queriesA runs theVerify algorithm. Since we have conditioned on
Fsox hot halting with an error, the response of terify algorithm will, in caseA’s oracle isSim, correspond to
the behavior ofFsox. On the other hand, ifl's oracle isSign, this response is the same asrin. Therefore, ifZ
distinguishesFsox andS from ns; and A, it implies thatA distinguishes between the two oracles, which contradicts
simulatability.

Now let us show the other direction. Suppose thatUC-realizesFsox (U) in the FEy,s-hybrid model. Let us
show that it follows that is SimExt-secure. Sincey, is UC-realizable, it must have a simulatsr By (p,7) «—
Simsetup(1¥) let us refer to the algorithm that runs in response to a setup query; the public paramptesssist of
the value thatS will subsequently return in response to queries toﬂ&s functionality; the trapdooft consists of
the algorithmgSimsign, Extract) that.S hands over tdFsox in response to the setup query.

SupposeX. does not satisfy the correctness property andngetJC-realizesFsox (U). Then let us show a
contradiction. Note that honest parties that #5g x, always accept signatures generated by honest partiagytiro
Fsok, (@lthoughFsox may halt during signing with Gorrectness error). On the other hand, sinéedoes not satisfy
completeness, honest parties ushgejects signatures produced by honest parties thabusgth non-negligible
probability. Therefore, to distinguisihsox from mny, all Z needs to do is to find a signatuse output by an honest
party, that is rejected byerify. Such a signature will exist iny; with non-negligible probability sinc& does not
satisfy correctness, and yet will not existsAgox by the argument above. This is a contradiction.

Suppose: does not satisfy simulatability. Then there exists a digtisher between th&ign and theSim oracles.
Then it is easy to see how the environment can use such agiitiver to distinguish betweefsox andrs, since in
Fsoxk Signatures output by honest parties are computed accam@ien, while in 7y, they are computed according
to Sign.

Finally, suppose. does not satisfy extractability. Then there exists an adwrgrA that, with non-negligible
probability produces a signature from which an appropnetaess cannot be extracted. Then it is easy to see how
the environmentZ can use this adversary to distinguish from Fgsox . It will invoke A; wheneverA issues queries
to Sim, it will direct these queries to be signed by honest partiénally, A produces an unsigned messageand

17

(m, x, o) that Verify accepts, but from which a witness cannot be extractedirects(m, x, o) to be verified by an
honest party. 1fA’s success happens non-negligibly often, then, shauluk talking toFsoxk, it will cause Fsox
to halt with an error with non-negligible probability; whilhould it be talking tors;, the valuegm, x, o) will be
accepted.

D Primitives

Recall that a cryptosysterf;, Enc, Dec) is calleddenseif the following two distributions are statistically indis-
guishable: (1) the uniform distribution dnbit binary strings; (2) the distribution of public keys abited by running
G(1%).

Recall that a non-interactive zero-knowledge (NIZK) prepstem consists of algorithnillIZKProve, NIZKSimsetup,
NIZKSim, NIZKVerify).

NIZKProve takes as input (1) a common random string2) the common input; (3) the statement that is being
proven about the common input(i.e., the description of a poly-time non-deterministiaifig machine that accepts
x); (4) the witnessu that the statement is true. It outputs a praof

NIZKSimsetup generates a string that is indistinguishable from random, together with sorapdoor informa-
tion 7 about this stringNIZKSim takes as input (1) the stringgenerated b\NI1ZKSimsetup; (2) the trapdoorr; (3)
the common inpug; (4) the statement that is being proven about the commaort inpltioutputs a simulated proaf.

NIZKVerify takes as input (1) the common reference stpng2) the proofr; (3) the common inpuk; (4) the
statement about that is being proven. It either accepts or rejects.

Such a proof system has has three basic properties: comgdst®lIZKVerify always accepts proofs generated
by NIZKProve); soundnessNIZKVerify always rejects proofs of false statements); and zero-leuyd (a proof
generated bWIZKSim is indistinguishable from one generated¥y KProve).

A multi-theorem NIZK proof system requires that these props hold even as many proofs for adversarially (and
adaptively) chosen statements are generated.

Here we need simulation-sound NIZK, which is a strengthgrifithe basic soundness property in the multi-
theorem setting. Simulation-soundness requires thatatzapilistic poly-time adversary can gétZKVerify to accept
a proofr for a false statement, even after obtainsigulatedproofs (i.e. proofs produced BYIZKSim instead of
NIZKProve) of statements of its own choice.

We refer the reader to existing literature [FLS99, dSd©®@) for formal definitions.

E Proof of Theorem 3.1
Proof. e Simulatability:

Simsetup runs (PK, SK) < G(1%) to obtain a random public ke§K and the corresponding secret ke .
Then, let(p, 7') « NIZKSimsetup(1¥). Letp = PK o p, T = (SK, 7).

Simsign(p, 7, Mz, x,m) parsesp = PK o p andt = (SK,7'), letsc « Enc(PK, (m,0*)) and obtains
7 = NIZKSim(p, 7', (m, My, z,¢,PK),(3(w,R) : ¢ = Enc(PK,m,w,R) N Mp(x,w))). Output

(c,).

We will show that interaction witlsign and Setup is indistinguishable from interaction withimsign and
Simsetup. Consider an intermediate signing algorithm:

MixSign(p, 7, L, z,m,w) verifies thatM (z,w) accepts, parses = PK o p andt = (SK,7'), letsc «
Enc(PK, (m,w)) and obtainsr = NIZKSim(p, 7/, (m, M, z,¢,PK), (3(w, R) : ¢ = Enc(PK, m,w, R)A
My (z,w))). Output(c,)

18

Let
| Pr[(p,) « Simsetup(1¥); b « AMXSiEnP) (5 p) 2 b = 1]
pl B - Pl“[p — Setup(lk)7 b “— ASign(pv'v'v'v')(S’p) : b —]

Sign andMixSign are identical except th&ign makes calls tdllZKProve, andMixSign makes calls ttNIZKSim.
Thus, if p; is nonnegligible, then we have broken the Unbounded ZeroMatdge property of the SSNIZK
proof system.

Finally, consider the following hybrid signing algorithms
HybridSign; calls MixSign the firsti times it is queried, and callsim for the rest of the queries.

Note thatHybridSign, andHybridSign, , are identical except that on tie+ 1)-th call, HybridSign,, ; encrypts
(mi+1, UJZ'_H), while hyb?"ldl encrypts(mz-H, OIL).
That means if

Pr[(p, 7) < Simsetup(1¥); b « AHYbridSigni i (p.70) (5) 1 b = 1]

— Pr[(p,7) « Simsetup(1%); b « AHYPidSigni(p,7o00) (5 p) o b = 1]

is nonnegligible, then we have broken the semantic seooifritye encryption scheme.
Thus, sinceHybridSign, = Simsign, andHybridSign, = MixSign whereq is the total(polynomial) number of
signing queries4 makes, we now have

| Pr[(p,7) « Simsetup(1¥);b «— ASM®T) (5, p) b = 1]
2= _ Pr[(p, 7) < Simsetup(1¥); b « AMMSIENPT) (5 1)+ b = 1]
is negligible.
So finally, combiningy; andp, , we have that
Pr[(p,) « Simsetup(1¥); b « ASM®T00) (s, p)
— Prfp « Setup(1%);b « ASE) (s p) ¢ b=
is negligible. Thus, we have shown Simulatability.

Extraction:

Extract(p, 7, My, z,m,0) parsess = (¢, 7) andr = (SK, 7’), runsDec(PK, SK, ¢) to obtain(m,w), and
outputsw.

Suppose there exist4, f, s such that

Pr [(p,7) « Simsetup(1¥); (M, z,m, 0) « AS™@™)(s, p);
w «— Extract(p, 7, M, z,m,0) :
My (z,w) V (M, 2,m,0) € Qv ~Verify(p, My, z,m,o)] = 1— (k)
for nonnegligiblee(k)

Let L' be alanguage such that an instafyger, My, m, ¢, PK) € L'iff there exist{w, R) such thatM, (x, w)A
¢ = Enc(PK, (m,w), R).

Then, from above, using the constructions $onsetup, Extract, andVerify:

Pr [(PK 0 p,SK o7) — Simsetup(1¥); (M, #,m,0 = (c,)) ASMCm)(s, p);
(m,w) = Dec(PK,SK,c) :
My (z,w)V (Mg, z,m,o) € QV ~(NIZKVerify(r, (p, z, M, m,c, PK) € L'))] =1—¢€(k)

19

Looking at the probability of the opposite event, we get:

Pr [(PK op,SK o) « Simsetup(1¥); (Mp,z,m,0 = (¢, 7)) — ASM@) (5 p):
(m,w) = Dec(PK,SK,c) :
(Mp,z,m,o) ¢ Q A NIZKVerify(r, (p, 2, My,,m,c, PK) € L)
A-Mp(z,w)] = e(k)

Finally, using the definition of.’, which says that whem is obtained fromDec(PK, SK,¢), My (z,w) must
accept:

Pr [(PK o, SK o7) < Simsetup(1%): (M, z,m, 0 = (e,7)) < ASTG7(s,p):
(m,w) = Dec(PK,SK,c) :
(Mp,z,m,o) ¢ Q A NIZKVerify(r, (p, 2, My,,m,c, PK) € L)
Ao My m,2.PK) ¢ L] = e(k)

SinceSim calls NIZKSim for each of the queried proofs and we now have an algorithnclwban prove false
statements, we have broken the simulation soundness proper
]

F Proof of Theorem 4.1

Proof. Assume that there exists a SimExtsecure signature of kgwlechemeSetup, Sign, Verify). Assume also
that there exists a protocplwhich UC-realizesF,. Then we build a protocot in the 2,4 hybrid model which
UC-realizesFsox (Fop) as follows.

Upon receiving a valueSet up, sid = (Fy, sidy, sidy)), if this is the first such message, the protocalill start
running an instance of. It will send p inputs Set up, sidy) and then {erificationAlgorithm, sidy), andp will
return YerificationAlgorithm, sidy, FoM). 7 will store M = FyM. From this point on, it will behave asy
defined in Section 2.1. To finish the Setup query, it will obtéie CRSp from ngS (whereD is the distribution of
Setup(1*)) and output th&ign(p, M, -, -, -) andVerify(p, M7, -, -, -) algorithms.

On Sign and Verify queries, it will behave exactly7as defined in Section 2.3.

Whenr receives a query of the for(@Fy-query, sidy, sid1, data) from party P, it will send (query, sidg, data) to
p on behalf of party?. When it receives arespongegsponse, sidg, data) from p, it forwards(Fy-response, sidg, data)
to P.

Similarly, whenp wants to sendcommand, sidg, data) to the adversaryr will give to the adversary the message
(Fo-command, sid, sidy, data). Whenr receives a messag@&-header, sid, sidy, data) from the adversary, it will
give (header, sidy, data) to p on behalf of the adversary.

On input {erificationAlgorithm,sid) from party P, = will output (VerificationAlgorithm,sid,

Verify(v, Mg, -,-,-)) to P.

We will show thatr UC-realizesFsox (Fo)-

Consider the hybrid protocdlf, which runs in theFy-hybrid model. H will behave liker except that calls t@
will be sent instead to the ided, functionality. By the UC theorem, iff UC-realizesFsox (Fo) in the Fy-hybrid
mode, thenr UC-realizesFso i (Fo). Thus,we have only to show that UC-realizesFso i (Fop) in the hybrid model.

Let us examine the definition of thEso i (Fp) functionality more closely. Note that we can equivalentfide
Fsox (Fo) as follows: in theSetup query, first obtain}/;, using Get Languageas a subroutine; then obtain the
algorithmsSign and Verify by invoking an instance af sox (U) with session idsid as a subroutine, wherg is
the universal language, and every instanqeassed t&Fsox (U) is prepended by a description df;,. Similarly, to
processsign andVerify queries, first check that there is no error wiily if there is an error, halt with the error message
“Error with F;” otherwise, compute the output of the query by making atoathe same instance fsox (U), again
with M}, prepended to the instanae Let us denote this (equivalent) formulationBox (Fo) by G. (The fact that

20

G is an equivalent formulation follows by inspection Btox (Fy) and we will leave it to the reader to verify that
fact.)

Let us consider the event that does not output “Error witt#,.” In that case, note that if, iG7, we replace all
calls toFsox (U) by calls tory;, and conditioned on the error withy never happening, we obtafd. Moreover, by
Theorem 2.17y; realizesFsox (U), and therefore by the UC theorem, no environmg&mian distinguish an execution
with H from an execution witlt.

Sinced is just another formulation afsox (Fo), we have shown that as long 50k (Fp) does not halt with
an “Error with 7" error, Fsox (Fo) and H are indistinguishable. By definition, sindg is an explicit verification
functionality, the call {erificationAlgorithm, sidg) to Fo returnsiiy = Verify» , the algorithmF, uses on its
verification queries. Thus\(z,w) = Verify (x,w) = 1iff Fy accepts on queryeri fy, sido, z, w).

That means “Error witt#,” can only occur ifF;, halts with an error. However, we require thatvhich realizes
Fo never outputs an error. Now suppose there exists an envaoirZnwhich can caus&so i (Fo) to halt with “Error
with F,” with nonnegligible probablility. Then we can simulaf;ox and useZ to distinguishp from F, sincep
never outputs an error, biffy does.

Thus, with all but negligible probability, interaction WitFso i (Fo) andS is indistinguishable from interaction
with H in the Fy-hybrid model, which as stated above implies thalC-realizesFsox (Fo)-

Now we will consider the reverse direction. Assume tigb x (Foy) is UC-realized by some protocal in the
FE, s hybrid model. Then we will show tha, is also UC-realizable.

Let p be the following protocol in théFsox (Fo)-hybrid model: On inputstart (Fo)sido), p Setssid =
(Fo, sidy, sidy) for some randonmsid;, and Set up,sid) to Fsox (Fo). On receiving any other quelyuery, sidy,
data), p sends(Fo-query, sidy, sidy, data) 10 Fsox (Fo). WhenFsox (Fo) sends a respongé-response, sidy,
data), p will output (response, sidy, data). Whenp receives a messag@&-command, sid, sido, data) from Fsox (Fo),
it sends(command, sidy, data) to the adversary. When the adversary sends a respbnséer, sidy, data), it sends
(Fo-header, sid, sidg, data) 10 Fsox (Fo).

Clearly, by definition ofFso i (Fo), p UC-realizesF in the Fso i (Fo)-hybrid model. Thus, by the UC theorem,
p™ (the protocolp where all calls taFsox (Fo) have been replaced by callstd UC-realizesF,. Furthermore, since
7 nontrivially realizesFsox (Fp), andp doesn’t output any error messages, ang’saontrivially realizesFy.

]

G Multiple Subfunctionalities

We definedFsox (Fo) in terms of just one instance of a sub-functionalfy. It is easy to extend the ideal function-
ality to a more complex case. For example, supposefhand.F, are both explicit verification functionalities, and
we want to realize a signature of knowledge of either a angt@einput toF; or accepting input tgv,. In order

to decide whether a givefinput, witness) pair are acceptable h§; or 7, it is sufficient to query both function-
alities and combine the result using the OR function. Siryil@iven the Turing machinesd/;, and M, for their
respective verification algorithms, it is straightforwaodproduce a Turing machine for the verification algorithm of
this extended functionality: just output a Turing machinattoutputs the OR a¥/;, and M, .

In general, ifF,...,F. are explicit verification functionalitiesfi, ..., f. and fi,..., f. are any poly-time
computable functions, andlis any polynomial-time computable Boolean function, them ean specify a signa-
ture of knowledge functionalityFsox (F1,- .., Fe, f1, f1,---, fe, fL, b) for signatures of knowledge af such that
b(z,w, Fi (f1(z,w), fi(x,w)),..., Fe(felz,w), fi(z,w))) = 1. WhatFsox will need to do to decide whether
is a witness tar's membership in the language defined in terms?of. .., F., fi1,...,f. and f{,..., f. and the
Boolean functiorb, is to: (1) store the responsgof eachZ; to a(Verify, sid;, f(x,w), f'(xz,w)) query; (2) evaluate
b(x,w,r,...,7.). And again, given a TM for each/;,, we can easily build a TM for this composite language.

For example, this captures signatures of knowledge of aagiga on one of several messages; on all of several
messages; on a preimage of a one-way function; on a deanypfi@ ciphertext formed using a given string as
randomness; etc. Itis easy to see that this covers the gignaitsre and ring signature applications we have discussed
previously.

21

Note that for all such extensions, we can generalize thef mfobheorem 4.1 and show that, assuming SimExtse-
cure signatures of knowledge exist, the resultfigx (F1, . . ., Fe, f1, f1,- - - » fe, f2, D) is UC-realizable in theF 2,
hybrid model if and only itFy, . .., 7. are UC-realizable in th&Z,, ; hybrid model.

For an example of howWFso x might use multiple subfunctionalities, see Appendix |.

H Multi-Session Extensions

Recall the definition of a multi-session extensidnof an ideal functionality due to Canetti and Rabin [CRO3]. In
a nutshell, a multi-session extensightakes care of managing many instancesfoin such a way that they don’t
interfere with each other. Specifically, when invokeds given a session idid, and also a sub-session dsid, and
the query itself.F creates an instance &fwith sub-session idsid if it does not already exist, and forwards the query
to it. Thus, many instances d&f run within F as if they were running completely independently. Caneiti Rabin
proved that for any protocat, if a protocol p UC-realizes#, and protocolr UC-realizes a functionality in the
F-hybrid model (with calls to many independent instancepfthenr[?) UC-realizesz, wherer!?! is the protocol

7 where all calls to instances gf have been replaced by callsgo

This is often used to examine the need for common setup p&ezesné 7 can be realized by a protocol in which
many independent copies use use only one set of paramdtenswe can implement all instances®fas given in
that protocol with the same parameters and they will stilrage as if they were completely independent.

We can also show thasox can be an explicit verification algorithm (which by Theoreni theans we can use
it to define the language for a higher level signature of keolge functionality). Note that> as defined in 2.3 does
not realizeFsox. Suppose we send a signature query taFapx instance for languagé with ssidssid. Then
we send a verification query with the resulting signaturenotlder Fsox instance also for language, but with
slightly different ssidssid’. If we are interacting withFso ., these two instances will be completely independent,
so the secontFsox instance £sid’), by which this message has not been signed, will rejectigrature. If we are
interacting withr™>, however, any signature which has been generated for adgeguill always cause the verification
procedure to accept when given the same language and theR&bythe completeness property of SimExt-secure
signatures. However, we can make a small modification tadathié problem.

If we extend7> so that instead of signing messageand verifying signatures om, we signm o ssid and
verify signatures om o ssid, the resulting protocol will UC-realiz& 5o for NP languages. Further, recall that
UC-realizesFsor (U). Thus,7> uses the same verification algorithm for all languages. lfall@v 7> to output
this verification algorithm, then this protocol will UC rézg the explicit verificationFso functionality. We can
similarly show that we can UC-realize the explicit verifioatﬁso;{(}“o) functionality. Finally, this implies that we
can realize the nestellso i functionality in whichFy = ﬁSOK(}“é). For more details, we refer the reader to the full
version.

In some cases, we would like to create a different type ofisegsionFsox functionality. In this multisession
functionality, many instances dfspx may be operating simultaneously, however, they need nobbmpletely in-
dependent. Instead, we allow some of theyx instances to share the subfunctionalities they use to défaie
languages. Thus, we could have tWgo i instances SOK;, and SO K5, both issuing signatures of knoweldge on
behalf of the language of messages signed by some partfijwe used the standard multisession functionality, each
Fsok instance would be defined in terms of a separate instanég;af. Thus, signatures which were generated and
accepted by th& ;¢ instance running withith O K1 might be rejected by th&s; instance running withing O K,
even though they were all issued by pafty Thus, we need this alternative “shared subfunctionalityltisession
extension. (Note that this becomes more useful when we dlaguages defined by multiple subfunctionalities as
described in Appendix G.) We can show that any SimExtsedgrature of knowledge scheme can also be used to
realize this type of extension. For more details we referdéaeler to the full version.

22

| Delegatable Anonymous Credentials

Given anySimFExt secure signature of knowledge scheme, i.e. any scheme @aedlizesFsox (Fp) and its
shared-subfunctionality and multi-subfunctionalityendions (see Appendices G and H), we can build a delegatable
anonymous credential system.

As an example, we will see how we can implement the scenavengn the introduction. We will show how to
formulate anonymous credentials in terms of our multi-sabfionality Fso i functionalities. Since we have shown
that any SimExtsecure signature of knowledge scheme casdukta realize these functionalities, this will give an
implementation of delegatable anonymous credentialsdbasenySim Fxt secure scheme.

At the base level of our delegation chain is the certificatothority (CA), which has public ke’ K ¢4 and
secret keySK ¢4. The CA wishes to issue a credential to Brown employee withlipkey PK g,,, and secret key
SK gmp. 1IN our delegatable anonymous credential scheme, thiewctiedl will be a traditional signature under the
CAs public key on the messageK g,,,. We can desribe this in the UC model by saying that CA ugg. (the
explicit verification form ofFg;¢) with sid = CA o sid’ to issue credentials to Brown employees.

Now, we would like our Brown employee to be able to issue anédks to a guest with public keYK guest
and secret keYsK ¢qs¢- In this case, we want the credenti@ted ;.5 t0 be a signature on the guest’s public key
PK ¢yest Of knowledge of a valid employee credential 8K g, and a correspondin§K g,,. In order to describe
this signature of knowledge language in the UC model, we reedsubfunctionalities. To verify the employee
credential, we need a signature functionality as descriede. To verify the public key, we extend the multisession
encryption functionality# gz, to an explicit verification algorithm by adding a (Verify w) query which returns true
iff « is an encryption public key and is the corresponding secret key, and a corresponding \&rditAlgorithm

query.
We can now define the Guest credential functionality as aeshsmbfunctionality signature of knowledge func-
tionality(see Appendix G.) Lef; = Fg,, andF, = Fp,.. When we issue a new credential, we want=

(w1, w2, w3) = (PK gmp, SK Emp, Cred gmyp) i.€. all the information which must be hidden in the resigitigna-
ture. Since the credential should reveal no informatiorideassthe fact that it is valid, we'll let (the potentially
visible part of the signature} “valid”. Now we need only determine which inputs get passecrt and F». Let
fi(z,w = (w1, w2, w3)) = wy and f{(z, w = (w1, w2, ws)) = ws). Thus, the first step in checking whether, w)

is in our language send¥ér i f yw:,ws), i.e. Veri fyPK gy, Cred pmp) 10 Fg;, in other words, we check that
Cred pmyp is a valid signature oK g,,,,. Now let fo(z, w) = w; and f5(z, w) = wy. Then the second step sends
(Verify

wi, ws), i.e. VerifyPKgny,, SK gnp) to Fp,,., in other words, we check th&iK g, is the secret key cor-
responding to public keyPK g,,,. Finally, we defineb(x, w, Fi (fi(z,w), fi(z,w)), Fo(fo(z,w), fi(z,w))) =
Fi(fi(z,w), fi(z,w)) A Fa(fo(z,w), f4(z,w)), sox,w is accepted by our language iff both functionalties accept.
Call this Guest credential functionalit§’,, . A Guest credential is now a signature of knowledge giverFby,.
on the message K guyest-

The taxi driver credentials are defined analagously. Indhi&e, in the UC formulation, we represent the cre-
dentials as second level signatures of knowledge. Thudentils are now signatures of knowledge on behalf of a
combination ofF; = FéOK andF, = Fp,., x ="valid’, and w = (PK guest, SK Guest, Cred Guest)- f1, f2, and
b are defined as above. A taxi credential is represented bynatsig by this newFso i functionality on message
m = PK 74;.

23

